BRITISH GEOLOGICAL SURVEY

Ascension Island

Observatory

Monthly

Magnetic Bulletin October 2012

ASCENSION ISLAND OBSERVATORY MAGNETIC DATA

1. Introduction

Ascension Island observatory was installed by the British Geological Survey (BGS) with financial support from a consortium of oil companies and became operational in September 1992.

This bulletin is published to provide rapid access to the provisional geomagnetic observatory results. The information is freely available for personal, academic, educational and non-commercial research or use. Magnetic observatory data are presented as a series of plots of one-minute, hourly and daily values, followed by tabulations of monthly values. The operation of the observatory and presentation of data are described in the rest of this section.

Enquiries about the data should be addressed to:

```
Geomagnetism Team
Earth Hazards and Systems
British Geological Survey
Murchison House, West Mains Road
Edinburgh EH9 3LA
Scotland, UK
Tel: \(\quad+44(0) 1316671000\)
Fax: \(\quad+44\) (0) 1316500265
E-mail: enquiries@bgs.ac.uk
Internet: www.geomag.bgs.ac.uk
```


2. Position

Ascension Island Observatory, one of the geomagnetic observatories maintained and operated by BGS, is situated on a site adjacent to the Cable and Wireless Earth Station on Donkey Plain. The observatory co-ordinates are:

Geographic: $\quad 7^{\circ} 5658^{\prime \prime} S \quad 345^{\circ} 37 \prime 26^{\prime \prime} E$ Geomagnetic: $\quad 2^{\circ} 40^{\prime} 30^{\prime \prime} \mathrm{S} \quad 057^{\circ} 16^{\prime} 01^{\prime \prime} E$ Height above mean sea level: 177 m

The geomagnetic co-ordinates are approximations, calculated using the 11th generation International Geomagnetic Reference Field (IGRF) at epoch 2012.5. On-line access to models (including IGRF), charts and navigational data are available at http://www.geomag.bgs.ac.uk/data service/models compass/home

3. The Observatory Operation

3.1 GDAS

The observatory operates under the control of the Geomagnetic Data Acquisition System (GDAS), which was developed by BGS staff, installed and became operational in August 2002. The data acquisition software, running on QNX operated computers, controls the data logging and the communications.

There are two sets of sensors used for making magnetic measurements. A tri-axial linear-core fluxgate magnetometer, manufactured by the Danish Meteorological Institute, is used to measure the variations in the horizontal (H) and vertical (Z) components of the field. The third sensor is oriented perpendicular to these, and measures variations, which are proportional to the changes in declination (D). Measurements are made at a rate of 1 Hz .

In addition to the fluxgate sensors there is a proton precession magnetometer (PPM) making measurements of the absolute total field intensity (F) at a rate of 0.1 Hz .

The raw unfiltered data are retrieved automatically via Internet connections to the BGS office in Edinburgh in near real-time. The fluxgate data are filtered to produce one-minute values using a 61point cosine filter and the total field intensity samples are filtered using a 7-point cosine filter. The one-minute values provide input for various data products, available on-line at www.geomag.bgs.ac.uk/data_service/home

3.2 Absolute Observations

The GDAS fluxgate magnetometers accurately measure variations in the components of the geomagnetic field, but not the absolute magnitudes. Two sets of absolute measurements of the field are made manually once per month. A fluxgate sensor mounted on a theodolite is used to determine D and inclination (I); the GDAS PPM measurements, with a site difference correction applied, are used for F. The absolute observations are used in conjunction with the GDAS variometer measurements to produce a continuous record of the absolute values of the geomagnetic field elements as if they had been measured at the observatory reference pillar.

4. Observatory Results

The data presented in the bulletin are in the form of plots and tabulations described in the following sections.

4.1 Absolute Observations

The absolute observation measurements made during the month are tabulated. Also included are the corresponding baseline values, which are the differences between the absolute measurements and the variometer measurements of D, H and Z (in the sense absolute-variometer). These are also plotted (markers) along with the derived preliminary daily baseline values (line) throughout the year. Daily mean differences between the measured absolute F and the F computed from the baseline corrected H and Z values are plotted in the fourth panel (in the sense measured-derived). The bottom panel shows the daily mean temperature in the fluxgate chamber.

4.2 Summary magnetograms

Small-scale magnetograms are plotted which allow the month's data to be viewed at a glance. They are plotted 16 days to a page and show the one-minute variations in D, H and Z . The scales are shown on the right-hand side of the page. On disturbed days the scales are multiplied by a factor, which is indicated above the panel for that day. The variations are centred on the monthly mean value, shown on the left side of the page.

4.3 Magnetograms

The daily magnetograms are plotted using oneminute values of D, H and Z from the fluxgate sensors, with any gaps filled using back-up data. The magnetograms are plotted to a variable scale; scale bars are shown to the right of each plot. The absolute level (the monthly mean value) is indicated on the left side of the plots.

4.4 Hourly Mean Value Plots

Hourly mean values of D, H and Z for the past 12 months are plotted in 27-day segments corresponding to the Bartels solar rotation number. Magnetic disturbances associated with active regions and/or coronal holes on the Sun may recur after 27 days: the same is true for geomagnetically
quiet intervals. Plotting the data in this way highlights this recurrence. Diurnal variations are also clear in these plots and the amplitude changes throughout the year highlight the seasonal changes. Longer term secular variation is also illustrated.

4.5 Daily and Monthly Mean Values

Daily mean values of D, H, Z and F are plotted throughout the year. In addition, a table of monthly mean values of all the geomagnetic elements is provided. These values depend on accurate specification of the fluxgate sensor baselines. It is anticipated that these provisional values will not be altered by more than a few nT or tenths of arcminutes before being made definitive at the end of the year.

5. Conditions of Use

The data presented in this bulletin are provided for personal, academic, educational, non-commercial research or other non-commercial use and are not for sale or distribution to third parties without written permission from BGS.

Reproduction of any part of this bulletin should be accompanied by the statement: 'Reproduced with the permission of the British Geological Survey ©NERC. All rights Reserved'. Publications making use of the data should include an acknowledgment statement of the form: 'The results presented in this paper rely on the data collected at Ascension Island magnetic observatory, operated by the British Geological Survey.'

Commercial users can contact the geomagnetism team for information on the range of applications and services offered. Full contact details are available at www.geomag.bgs.ac.uk/contactus/staff

ASCENSION ISLAND OBSERVATORY

ABSOLUTE OBSERVATIONS

		Declination			Inclination		Total Field		Horizontal Intensity		Vertical Intensity		
Date	Day Number	$\begin{aligned} & \text { Time } \\ & \text { (UT) } \end{aligned}$	Absolute (${ }^{\circ}$)	Baseline (${ }^{\circ}$)	Time (UT)	Absolute $\left({ }^{\circ}\right)$	Site difference (nT)	Absolute corrected (nT)	Absolute (nT)	Baseline (nT)	Absolute (nT)	Baseline (nT)	Observer
02-Oct-12	276	17:11	-15.6203	-15.7983	17:22	-43.0492	87.1	28402.0	20755.2	21337.4	-19387.9	-19038.5	GA
02-Oct-12	276	17:33	-15.6214	-15.7950	17:46	-43.0503	87.1	28403.8	20756.2	21337.4	-19389.6	-19038.4	GA
18-Oct-12	292	12:41	-15.6453	-15.8067	12:53	-42.9807	87.1	28434.2	20802.0	21337.5	-19385.1	-19038.1	GA
18-Oct-12	292	13:00	-15.6428	-15.8117	13:10	-42.9831	87.1	28432.3	20799.8	21336.5	-19384.7	-19039.2	GA

Ascension Island 2012

Date: 02-10-2012
Day number: 276

Date: 04-10-2012
Day number: 278

Date: 06-10-2012
Day number: 280

Date: 08-10-2012
Day number: 282

Date: 10-10-2012
Day number: 284

Date: 12-10-2012
Day number: 286

Date: 14-10-2012
Day number: 288

Date: 16-10-2012
Day number: 290

Date: 18-10-2012
Day number: 292

Date: 20-10-2012
Day number: 294

Date: 22-10-2012
Day number: 296

Date: 24-10-2012
Day number: 298

Date: 26-10-2012
Day number: 300

Date: 28-10-2012
Day number: 302

Date: 30-10-2012
Day number: 304

Ascension Island Observatory: Declination (degrees)

Ascension Island Observatory: Horizontal Intensity (nT)

Ascension Island Observatory: Vertical Intensity (nT)

Monthly Mean Values for Ascension Island Observatory 2012

Month	D	H	I	X	Y	Z	F
January	$-15^{\circ} 43.9^{\prime}$	20809 nT	$-42^{\circ} 52.7^{\prime}$	20030 nT	-5642 nT	-19323 nT	28397 nT
February	$-15^{\circ} 43.4^{\prime}$	20801 nT	$-42^{\circ} 54.1^{\prime}$	20023 nT	-5637 nT	-19330 nT	28396 nT
March	$-15^{\circ} 41.8^{\prime}$	20779 nT	$-42^{\circ} 56.4^{\prime}$	20004 nT	-5622 nT	-19336 nT	28384 nT
April	$-15^{\circ} 41.0^{\prime}$	20784 nT	$-42^{\circ} 56.3^{\prime}$	20010 nT	-5618 nT	-19340 nT	28390 nT
May	$-15^{\circ} 40.4^{\prime}$	20790 nT	$-42^{\circ} 56.5^{\prime}$	20017 nT	-5617 nT	-19348 nT	28400 nT
June	$-15^{\circ} 39.8^{\prime}$	20782 nT	$-42^{\circ} 58.2^{\prime}$	20010 nT	-5611 nT	-19359 nT	28402 nT
July	$-15^{\circ} 39.2^{\prime}$	20771 nT	$-42^{\circ} 60.0^{\prime}$	20001 nT	-5605 nT	-19369 nT	28401 nT
August	$-15^{\circ} 38.1^{\prime}$	20781 nT	$-43^{\circ} 00.2^{\prime}$	20012 nT	-5601 nT	-19381 nT	28416 nT
September	$-15^{\circ} 37.1^{\prime}$	20777 nT	$-43^{\circ} 01.4^{\prime}$	20010 nT	-5594 nT	-19391 nT	28420 nT
October	$-15^{\circ} 36.9^{\prime}$	20762 nT	$-43^{\circ} 03.7^{\prime}$	19996 nT	-5588 nT	-19403 nT	28417 nT

Note

i. The values shown here are provisional

