Report of Magnetical Observations at Falmouth Observatory for the Year 1896. Latitude $50^{\circ} 9^{\prime} 0^{\prime \prime} \mathrm{N}$. and Longitude $5^{\circ} 4^{\prime} 35^{\prime \prime}$ W. ; height, 167 feet above mean sea-level.

These observations have been made by instruments purchased from the Government Grant Fund administered by the Royal Society.

Photographic curves of Magnetic Declination and of Horizontal Force variations have been regularly taken throughout the past year, with the exception of three days in December, and the magnets have worked satisfactorily throughout.

The results obtained from the Vertical Force Magnet are not sufficiently reliable for publication.

The scale values of the instruments were determined on lst January, 1897. The following values of the ordinates of the photographic curves were then found :-

$$
\text { Declination, } 1 \mathrm{~cm} .=0^{\circ} 11^{\prime} 7 .
$$

Bifilar, $1 \mathrm{~cm} . \delta \mathrm{H} .=0.00050$ C.G.S. unit.
The principal magnetic disturbances recorded during. the year occurred on the following dates:-January 3, 4, 5, 31; Febraary 2, 4, 28; March 4, 26, 27, 28; April 22, 23, 24; May 2, 3, 17, 18, 20 ; June 16; July 3, 4, 5; August 1, 2 ; September 18; October 11, 12; December 3, 4.

Observations with the Absolute Instruments have been made monthly, of which the following is a summary:-

Determinations of Horizontal Intensity, 34. Inclination, 34 sets of four, absolute Declination, 34 .

Following the method adopted in the five previons years, it is intended that the observations be reduced, and that the Declination and Horizontal Force curves for five quiet days in each month of the year-selected by the Astronomer Royal-be tabulated and prepared for publication, in accordance with the International scheme. The results will be printed in the Royal Cornwall Polytechnic Society's Annual Report, and also in the ' Proceedings' of the Royal Society.

The following are the principal results of the magnetic elements for the year 1896 :-

Mean Westerly Declination, $18^{\circ} 47^{\prime} \cdot 5$.
Mean Inclination, $\quad 67^{\circ} 5^{\prime} 0$.
Mean Horizontal Force, $0 \cdot 18554$ C.G.S. unit.

The Declination and Horizontal Force are deduced from hourly readings of the photographic curves, and so are corrected for the diarnal variation.

The Inclination is the mean of the absolute observations, the mean time of which is 3 Р.m.

In Table V, X is the mean of the absolute values observed during the month (generally three in number), uncorrected for diarnal variations and for any disturbance. Y is the mean of the products of the Dips and X .

The results in the following tables, Nos. I, II, III, IV, are deduced from the magnetograph curves which have been standardised by observations of deflection and vibration. These were made with the Collimator Magnet marked 66a, and the Declinometer Magnet marked 66c in the Unifilar Magnetometer (No.66) by Elliott Brothers, of London. Table No. V is deduced from these observations. The temperature correction (which is probably very small) has not been applied.

The Iuclination was observed with the Inclinometer by Dover, of Charlton, Kent, No. 86, and needles 1 and 2, which are $3 \frac{1}{2}$ ins. in length, the results of which appear in Table VI.

The Declination and Horizontal Force values given in Tables I to IV are prepared in accordance with the suggestions made in tho fifth report of the Committee of the British Association on comparing and reducing magnetic obserrations, and the time given is Greenwich mean time, which is 20 min .18 sec . earlier than local time.
The following is a list of the days during the year 1.896 which were selected by the Astronomer Royal, as suitable for the determination of the magnetic diurnal variations, and which hare been employed in the preparation of the magnetic tables :-

January	1, 2, 21, 24, 29.
Febraary	7, 18, 20, 23, 24.
March	11, 16, 17, 18, 21.
April.	7, 14, 16, 20, 30.
May	$5,6,9,26,29$.
June	2, 7, 20, 23, 24.
July	2, 9, 17, 19, 31.
August	5, 13, 16, 27, 28.
Septembe	8, 9, 10, 25, 28.
Octobe	6, 7, 18, 25, 26.
Novembe	3, 12, 22, 24, 25.
December	8, 12, 18, 19, 21.

Thrs whole of the instruments have been maintained in good order. The Magnetic Hut in the garden has been painted inside and out, and the Magnetic Chamber thoroughly drained, to prevent the
recurrence of flooding during periods of excessive rainfall. The Photographic curres were suspended for four days in November owing to the presence of workmen in the chamber.

The Committee appointed by the British Association in 1895 to make a comparison of tho Magnetic Standard Instruments in use at the several Magnetic Observatories in the Kingdom presented their Report at the Liverpool meeting of the Association, held A.ugust, 1896. Referring to Falmouth, the Committee, of whom Professor A. W. Rücker, M.A., F.R.S., was chairman, state inter aiia:-"The work of the Falmonth Observatory is hampered by want of funds. The Vertical Force recording instrument has never worked properly, and appears to want extensive alterations. The Observations made by the Superintendent, Mr. E. Kitto, are of a very ligh order of excellence, and it is to be hoped that the Royal Cornwall Polytechnic Society, by which the Obserratory was founded, will be able to ensure the maintenance of the Magnetic Observations under the best conditions."

Edward Kitto,
Magnetic Observer.

Table I.-Hourly Means of Declination at the Falmonth on five selected quiet Days in

Hours	Mid.	1	2	3	4	5	6	7	8	9	10	11
Winter.												
1896.	,	,	,	,	,	,	,	,	,	,	,	,
*Jan. ..	$49 \cdot 0$	$49 \cdot 4$	$49 \cdot 6$	$49 \cdot 6$	$50 \cdot 2$	$50 \cdot 2$	$50 \cdot 0$	$49 \cdot 7$	$49 \cdot 2$	$43 \cdot 7$	$49 \cdot 5$	$51 \cdot 1$
Feb. ..	$48 \cdot 5$	$49 \cdot 1$	$49 \cdot 2$	$49 \cdot 1$	$49 \cdot 1$	$49 \cdot 2$	$49 \cdot 1$	$48 \cdot 9$	$48 \cdot 5$	$48 \cdot 7$	$49 \cdot 2$	$50 \cdot 3$
March .	48.9	$48 \cdot 7$	$48 \cdot 9$	$48 \cdot 6$	$48 \cdot 4$	$48 \cdot 4$	$48 \cdot 4$	$48 \cdot 0$	$46 \cdot 6$	$45 \cdot 8$	$47 \cdot 1$	48.9
Oct. ..	43.5	$43 \cdot 5$	$43 \cdot 7$	$43 ;$	$43 \cdot 6$	$43 \cdot 5$	$43 \cdot 4$	$42 \cdot 6$	$42 \cdot 0$	$41 \cdot 9$	$43 \cdot 6$	$46 \cdot 0$
\dagger Nov. ..	$42 \cdot 9$	$42 \cdot 9$	$43 \cdot 3$	$43 \cdot 5$	$43 \cdot 9$	$43 \cdot 7$	$43 \cdot 0$	$43 \cdot 0$	$42 \cdot 7$	$41 \cdot 9$	$42 \cdot 9$	$44 \cdot 1$
Dec. ..	$44 \cdot 2$	$44 \cdot 6$	$44 \cdot 9$	$45 \cdot 0$	$45 \cdot 4$	$45 \cdot 4$	$45 \cdot 1$	$45 \cdot 0$	$44 \cdot 9$	$44 \cdot 8$	$44 \cdot 9$	$45 \cdot 8$
Means	$46 \cdot 2$	46.4	$46 \cdot 6$	$46 \cdot 6$	$46 \cdot 8$	$46 \cdot 7$	$46 \cdot 5$	$46 \cdot 2$	$45 \cdot 7$	$45 \cdot 3$	$46 \cdot 2$	$47 \cdot 7$
Summer.												
	,	,	,	,	,	,	,	,	,	,	,	,
April..	$47 \cdot 5$	$47 \cdot 9$	$48^{\circ} 1$	48.0	$47 \cdot 6$	$47 \cdot 8$	$46 \cdot 5$	$45 \cdot 0$	$43 \cdot 8$	$43 \cdot 4$	$44 \cdot 7$	$47 \cdot 4$
Mey ..	$48 \cdot 8$	$48 \cdot 6$	$48 \cdot 5$	$48 \cdot 2$	$47 \cdot 6$	$46 \cdot 7$	$45 \cdot 5$	$44 \cdot 7$	$44 \cdot 0$	$44 \cdot 4$	$46 \cdot 4$	$48 \cdot 4$
June ..	$45 \cdot 9$	$45^{\circ} 8$	$45 \cdot 3$	$4{ }^{4} \cdot 1$	$44 \cdot 7$	$43 \cdot 6$	$42 \cdot 3$	41.8	$42 \cdot 1$	$42 \cdot 9$	$44 \cdot 5$	$46 \cdot 6$
July ..	$47 \cdot 5$	$47 \cdot 4$	$47 \cdot 2$	$47 \cdot 1$	$46 \cdot 6$	$45 \cdot 7$	$44 \cdot 5$	$43 \cdot 7$	$43 \cdot 8$	$44 \cdot 4$	$46 \cdot 5$	$48 \cdot 6$
Aug. ..	$46 \cdot 9$	$46 \cdot 9$	$46 \cdot 8$	$46 \cdot 5$	$45 \cdot 3$	$45 \cdot 6$	$45 \cdot 1$	$44 \cdot 3$	$44 \cdot 1$	$44 \cdot 6$	$46 \cdot 8$	$49^{\cdot 5}$
Sept. ..	$45 \cdot 1$	$45 \cdot 2$	$45 \cdot 2$	$44 \cdot 9$	$44 \cdot 8$	$44 \cdot 2$	$43 \cdot 5$	$42 \cdot 6$	$41 \cdot 3$	$42 \cdot 0$	45.0	$48 \cdot 2$
Means	$47 \cdot 0$	$47 \cdot 0$	$46 \cdot 9$	$46 \cdot 6$	$46 \cdot 3$	$45 \cdot 6$	$44 \cdot 6$	$43 \cdot 7$	$43 \cdot 2$	$43 \cdot 6$	$45 \cdot 7$	$48 \cdot 1$

* Mean of four days, 1st, 21st, 24th, 29 th. $\quad \dagger$ Mean of four days, 3rd, 22nd, 24th, 25th.

Table II.-Solar Diurnal Range of the Falmouth

Hours	Mid.	1	2	3	4	5	6	7	8	9	10	11
Summer mean.												
	-0.7	, $-0 \cdot 7$	\prime $-0 \cdot 8$	$\|$$\prime$ $-1 \cdot 1$	$\left\lvert\, \begin{gathered}\prime \\ -1 \cdot 4\end{gathered}\right.$	$\left\lvert\, \begin{gathered}\prime \\ -2 \cdot 1\end{gathered}\right.$	$\left\lvert\, \begin{gathered}\text {, } \\ -3 \cdot 1\end{gathered}\right.$	$\left\lvert\, \begin{gathered}\prime \\ -4 \cdot 0\end{gathered}\right.$	$\|$$\prime$ $-4 \cdot 5$	$\left\lvert\, \begin{gathered}\prime \\ -4 \cdot 1\end{gathered}\right.$	$\|$$\prime$ $-2 \cdot 0$	\prime +0.4
Winter mean.												
	$\stackrel{\prime}{1}$	1 -0.9	1 -0.7	$\|$$\prime$ $-0 \cdot 7$	$\left\lvert\, \begin{gathered}\prime \\ -0.5\end{gathered}\right.$	$\left\lvert\, \begin{gathered}\prime \\ -0.6\end{gathered}\right.$	$\left\lvert\, \begin{gathered}\prime \\ -0 \cdot 8\end{gathered}\right.$	$\|$$\prime$ $-1 \cdot 1$	$\left\lvert\, \begin{gathered}\prime \\ -1 \cdot 6\end{gathered}\right.$	$\left\lvert\, \begin{gathered}\prime \\ -2 \cdot 0\end{gathered}\right.$	${ }_{-1} \cdot 1$	\prime +0.4
Annual mean.												
	\prime -0.9	-0.8	-0.8	$\left\lvert\, \begin{gathered}\prime \\ -0 \cdot 9\end{gathered}\right.$	-1'0	$\underline{\prime}$	-2•0	$\left\lvert\, \begin{gathered}\prime \\ -2 \cdot 6\end{gathered}\right.$	$\underline{\prime}$	$\left\lvert\, \begin{gathered}\text {, } \\ -3 \cdot 1\end{gathered}\right.$	-1'6	\prime +0.4

Observatory determined from the Magnetograph Curves each Month during the Year 1896.

Declination as derived from Table I.

Noon	1	2	3	4	5	6	7	8	9	10	11	Mid.
Summer mean.												
$+3 \cdot 7$	\prime $+5 \cdot 4$	\prime $+5 \cdot 8$	\prime $+4 \cdot 7$	\prime $+3 \cdot 1$	\prime $+1 \cdot 7$	\prime $+0 \cdot 8$	\prime $+0 \cdot 4$	\prime $+0 \cdot 2$	0'0		¢ ${ }^{\prime}$	-0.7
Winter mean.												
$+2 \cdot 3$	$+3 \cdot 4$	\prime $+3 \cdot 3$	' ${ }^{\prime}$	\prime $+1 \cdot 4$	\prime $+0 \cdot 6$	\prime $+0 \cdot 3$	-0.1	-0'3	-0.6	\%	' ${ }^{\prime} \cdot 0$	${ }_{-1}{ }^{\prime} \cdot 1$
Annual mean.												
,	,	,	1	,	,	,	'	${ }^{\prime}$,	,	, ${ }^{\text {, }}$,	,
$+3 \cdot 0$	$+4 \cdot 4$	$+4 \cdot 6$	$+3 \cdot 6$	$+2 \cdot 3$	$+1 \cdot 2$	$+0 \cdot 6$	$+0 \cdot 2$	$-0 \cdot 1$	$-0 \cdot 3$	$-0 \cdot 5$	-0.7	-0.9

[^0]Table III.-Hourly Means of the Horizontal Force at Falmouth on five selected quiet Days in $0 \cdot 18000+$ (C.G.S. units.)

Hours	Mid.	1	2	3	4.	5	6	7	8	9	10	11
Winter.												
1896.	535	537	537	538	541	541	544	547	548	541	534	526
Feb. ..	536	534	534	533	536	539	541	541	541	533	526	519
March .	550	551	551	551	551	553	553	552	546	535	526	528
Oct. ..	570	567	564	564	566	567	567	564	560	552	543	541
\dagger Nov. ..	569	567	566	567	569	573	572	571	569	562	554	554
Dec. ..	561	562	562	561	562	565	567	567	567	565	560	559
Means	554	553	552	552	554	556	557	557	555	548	541	538

Summer.

April...	545	545	545	547	547	547	550	546	541	530	520	516
May ..	554	553	552	551	550	549	551	546	540	536	529	529
June \ldots	567	563	562	561	562	562	556	551	546	543	542	548
July \ldots	566	564	563	563	563	561	557	554	549	540	538	542
Aug. ..	564	562	561	559	557	556	554	550	541	531	527	530
Sept. .	564	564	556	564	562	561	560	551	542	530	525	528
Means	560	559	558	558	557	556	555	550	543	555	530	532

* Mean of four days, 1st, 21st, 24th, 29th. $\quad \dagger$ Mean of four days, 3rd, 22nd, 24th, 25th.
(C.G.S. units.)

Table IV.--Diurnal Range of the Falmouth

Hoars	Mid.	1	2	3	4	5	6	7	8	9	10	11
Summer mean.												
	+ 00004	$+\cdot 00003$	+ 00002	+ 00002	+ $+\cdot 00001$	-00000	-.00001	-.00006	- 00013	-.00021	00026	- .00024
Winter mean.												
	+ ${ }^{(00002} \mid$	+00001	$\cdot 00000$.00000	+ ${ }^{0} 0002 \mid$	$+00004$	$+\cdot 0000{ }^{\text {a }}$	$+\cdot 00005$	+ ${ }^{\circ} 0000$	-.00004	-00011	--00014
Annual mean.												
	$+\cdot 00003$	+ $\cdot 00002$	$+\cdot 00001+$	$+\cdot 00001+$	+00002 +	$\cdot 00002+$	+ 00002	-.00001	-00005	- 00013	-.00019	--00019

Falmouth Observatory for the Year 1896.

Observatory determined from the Magnetograph Curves, each Month during the Year 1896.

Noon	1	2	3	4	5	6	7	8	9	10	11	Mid.

Horizontal Force as deduced from Table III.

[^1]Table V.-Magnetic Intensity. Falmouth Observatory, 1896.

1896.	C.G.S. measure.	
	X or Horizontal force.	Y or Vertical force.
January	$0 \cdot 18519$	$0 \cdot 43748$
February	$0 \cdot 18520$	$0 \cdot 43775$
March..	$0 \cdot 18517$	$0 \cdot 43722$
April.	$0 \cdot 18526$	$0 \cdot 43814$
May .	$0 \cdot 18544$	$0 \cdot 43907$
June ..	$0 \cdot 18563$	$0 \cdot 43934$
July . .	$0 \cdot 18{ }^{\text {a }} 67$	$0 \cdot 43904$
August	$0 \cdot 18530$	$0 \cdot 43867$
September ..	$0 \cdot 18547$	$0 \cdot 43903$
October ..	$0 \cdot 18554$	$0 \cdot 43920$
November	$0 \cdot 18558$	$0 \cdot 43887$
December.	0-18559	$0 \cdot 43928$
Meaus	$0 \cdot 18542$	$0 \cdot 43859$

Table VI.-Observations of Magnetic lnclination. Falmouth Observatory, 1896.

Month.		Mean.	Month.		Mean.	
January	16...........	$67 \quad 1{ }^{\prime} \cdot 4$	July	10..........	$\stackrel{\circ}{67}$	$5^{\prime} \cdot 4$
	23............	$\begin{array}{ll}67 & 3 \cdot 8\end{array}$		23.	67	$3 \cdot 7$
	31.	$67 \quad 4 \cdot 9$				-
February		-7 3			67	4'6
		$\underline{67}$	August	10..	67	$6 \cdot 1$
	8..	$67 \quad 4 \cdot 9$		28.	67	$5 \cdot 9$
	19...........	$\begin{array}{lll}67 & 2 \cdot 7\end{array}$				-
	27...........	67 3 5			67	$6 \cdot 0$
March		$67 \quad 3 \cdot 7$	September	5...........	67	$5 \cdot 6$
				9............	67	$5 \cdot 5$
	10............	$67 \quad 2 \cdot 5$		30.........	67	$6 \cdot 7$
	21............	$\begin{array}{lll}67 & 2 \cdot 7\end{array}$				(8)
	31............	$67 \quad 3 \cdot 3$			67	$5 \cdot 9$
April	-	$67 \quad 2.8$	October	9............	67	$7 \cdot 6$
		-		27..........	67	$4 \cdot 2$
	9............	$67 \quad 2 \cdot 1$		30...........	67	$6 \cdot 0$
	21............	$67 \quad 5 \cdot 8$				5
	30..	67 6 6			67	$5 \cdot 9$
May		67 4.8	November	11...........	67	$5 \cdot 3$
		-		24...........	67	$4 \cdot 3$
	9.............	$67 \quad 7 \cdot 1$		30...........	67	4.4
	20............	$67 \quad 5 \cdot 5$				-
	30............	67 6.0			67	$4 \cdot 7$
June		$67 \quad 6 \cdot 2$	December	10...........	67	$6 \cdot 3$
		-		21...........	67	$4 \cdot 5$
	10.............	$67 \quad 7 \cdot 6$		29...........	67	$6 \cdot 6$
	19............	$67 \quad 5 \cdot 4$				--
	29............	$67 \quad 4 \cdot 2$			67	$5 \cdot 8$
		$\overline{67 \quad 5 \cdot 7}$				

[^0]: points to the west of its mean position.

[^1]: reading is above the mean.

