RESULTS

OF THE

magnetical and meteorological
 OBSERVATIONS

MADE AT

THE ROYAL OBSERVATORY, GREENWICH,

1864.

(EXTRACTED FROM THE GREENWICH OBSERVATIONS, 1864.)

I NDEX.

Introduction.
Limitation of Observations during the year 1864 $i i i$
Dipping Needles, and Method of observing the Magnetic Dip iii
Description of the New Instrument by Simms entitled Airy's Instrument iii to v
Description of the Illuminating Apparatus of Airy's Instrument v and $v i$
Dimensions, \&c., of the Needles used with Airy's Instrument vi
Zenith Point Needle used with Airy's Instrument $v i$
Effect of re-grinding the agate edges vii
Object of introducing flat Needles, and reason for rejecting their results vii
Observations for the Absolute Measure of the Horizontal Force of Terrestrial Magnetism vii
Description of the New Unifilar Instrument, similar to those used in the Kew Observatory vii and viiiExplanation of Method of Reductionviii
Correction of the Magnetic Power for Temperature viii
Moment of Inertia of the Magnet as mounted viii
Difference between Results of Old and New Instruments. viii
Conversion of Results into French Measure viii and ix
Barometer, Description of, Diameter of Tube, Correction for Capillarity, Height of Cistern above the Level of the Sea, Reduction of the Readings to 32° Fahrenheit . ix and x
Photographic self-registering Apparatus for Continuous Record of the Readings of the Barometer x
Position, and diameter of bore of Syphon Barometer used for Photographic Self- Registration x
Description of the Method adopted for Registering the Barometric Variations x
Dates when this Barometer first came into use, and when the Mercury was boiled in the Tube. \boldsymbol{x}
Results of Indications, where Printed x
Thermometers for ordinary observation of the Temperatures of the Air and of Evaporation \boldsymbol{x}
Description of the revolving stand upon which the Thermometers are mounted $x i$
Attachment of the Thermometers to the Stand $x i$
Comparison of Thermometers with Standard Thermometer $x i$
Authenticity of Standard Thermometer, whence derived $x i$
Table of Corrections required to the Dry-Bulb Thermometer $x i$
Wet-Bulb Thermometer, Method of using $x i i$
Table of Corrections to its Readings $x i i$
Times of Eye-Readings of the Dry-Bulb and Wet-Bulb Thermometers, and Method of obtaining their true Diurnal Means $x i i$
Method adopted for obtaining the Temperature of the Dew-Point xii
Table of Factors to facilitate the Deduction of the Dew-Point Temperature from Observations of the Dry-Bull and Wet-Bulb Thermometers $x \geq 2$
Description of the Maximum Self-registering Thermometer xiii
Description of the Minimum Self-registering Thermometer xiii
Method of obtaining the adopted Mean Daily Temperature and Mean D.rily Value ofDew-Pointxiii and xiv

I N D E X.

Introdyction-continued.
Photographic self-registering Apparatus for Continuous Record of the Readings of the Dry-Bulb and Wet-Bulb Thermometers $x i v$
Position of the Self-registering Apparatus. $x i v$
Dimensions of the Bulbs of the Thermometers $x i v$
Method of raising and depressing the Thermometers $x i v$
Thermometer Frames, and System of Wires placed on the Thermometer tubes. $x i v$
Positioy of. Lamps and Lenses $x i v$
Photograpbic Trace xiv
Time of Revolution of the Photographic Cylinder $x i v$
Dimensions of. Cylinder $x i v$
Thermometers for Solar Radiation and Radiation to the Sky $x v$
Position of the. Thermometer for Solar Radiation $x v$
Description of.Solar Radiation Thermometer of new construction $x v$
Times of observation $x v$
Position and Description of a Solar Radiation Thermometer of the construction formerly adopted $x v$
Position and Description of the Thermometer for Radiation to the Sky $x v$
Times of observation $x v$
Days on which the Thermometer for Radiation to the Sky was out of order $x v$
Thermoneters sunk below the Surface of the Soil at different Depths $x v$
Number and Situation of the Thermometers $x v$
Nature of the Soil through which the Thermometers have been sunk $x v i$
Shape and Size of the Bulbs and Tubes of the Thermometers $x v i$
Depth in the Ground to which each Thermometer has been sunk $x v i$
Method of Sinking the Thermometers, and Height of the upper part of the Tube of each above the Surface of the Ground $x v i$
Wooden case for covering the Thermometers $x v i$
Values of I° an the different Scales of the Thermometers $x v i$
Ranges of the Scales of the Thermometers $x v i$
Ranges on some of the Thermometers found to be insufficient $x v i$
Removal of Fluid from two of the Thermometers $x v i$
Amount of Fluid removed, now found to be somewhat too great $x v i$
Limits of the Scales of the 6-foot and 3-foot Thermometers $x v i$
Porlions of the Series of Observations, defective $x v i$ and $x v i i$
Time of observation of the several Thermometers xvii
Thermometers mmersed in the Water of the Thames $x v i i$
Time of making the Observations, and Position of the Thermometers xvii
Observations, by whom made xvii
Days on which these Thermometers were out of Order xvii
Osler's Anemometer xvii
,, . its Direction Pencil xvii
,, Method of giving Motion to the Travelling Board xvii
,, \quad its Registering Paper xvii
,, its Adjustment for Azimuth $x v i i$
,, its Pressure Apparatus. xviii
,, . Hour of changing the Registering Paper xviii
Robinson's Anemoaieter xviii
,, " its principles, where described xviii
, diameter of its hemispherical cups xviii
, mode of revolution of the hemispherical cups xviii xviii

I N D E X.

Introduction-continued.Robinson's Anemometer, number of revolutions of the cups corresponding to a horizontalmovement of the air of one mile, according to theory.xviii
,, . . details of the working parts of the instrument xviii
,, Hour of reading its registered results xviii
,, Experiments to verify the correctness of its theory xviii and xix
,, . Results of Experimental Observations xix
Rain-Gauges xix
,, No. 1, Osler's, Situation of, and Heights above the Ground and above Mean Level of the Sea xix
Area of exposed surface. xix
Syphon Principle of Discharying the Water xix
Method of Recording its Results $x i x$
Formation of Scale for Determining the Quantity of Rain xix
No. 2, Situation of, and Area of exposed Surface $x x$
Position with regard to No. 1 $x x$
No. 3, Situation of, and Heights above the Ground and above the Mean Level of the Sea $x x$
Area of exposed surface and General Description $x x$
Arrangement to prevent Evaporation $x x$
No. 4, Situation of, Area of exposed Surface, and Heights above the Ground and above Mean Level of the Sea $x x$
No. 5, Situation of, and Heights above the Ground and above the Mean Level of the Sea $x x$
No. 6, Crosley's, and Area of exposed Surface $x x$
,, Description of its Mode of Action $x x$
Method of Recording, its Observations
Method of Recording, its Observations $x x$ $x x$
,, Situation of, and Height above Mean Level of the Sea xxi
,, Nos. 7 and 8, Situation of, Heights of receiving Surfaces above the Ground and above the Mean Level of the Sea $x x i$
,, Times at which the Gauges are read $x x i$
,, List of the Makers of the several Gauges $x x i$
The Actinometer $x x i$
Description of the instrument $x x i$
Mode of using the instrument xxi and xxii
Measure for ascertaining the physical value of one division of its scale xxii
Electrical Apparatus xxii
" Electrometer Mast and Moveable Apparatus xxii and xxiiii
" Wire from the Moveable Box to the Turret of the Octagon Room xxiii
" Insulation of both ends of the wire $x_{x i} i i i$
" Communication from this wire to the apparatus within the room xxiii
" Insulation of the attgrhment within the room xxiii" Electrometers, Volta's, Henley's, Ronalds' Spark-Measurer, DryPile Apparatus, Galvanometer. xxiii to xxv
Explanation of the Tables of Meteorological Observations $x x v$
Mean, Greatest and Least Differences between Temperatures of the Air and Dew-Point Temperatures, how obtained $x x v$
Differcnces between Mean Daily Temperatures and Average Temperatures, how found • $x x v$
Explanation of Results from Osler's and Robinson's Anemometers $x x v$
Register of Rain, whence derived $x x v$
Explanation of the Divisions of Time under the Heads of Electricity and Weather $x x v$

INDEX.
Introduction-continued.
Explanation of Notation employed for Record of Electrical Observations . .xxv and $x x v i$
Explanation of Notation for the Description of Clouds and Weather $x x v i$
Foot-Notes, whence derived xxvi
Details of the Chemical Operations for the Photographic Records xxvii
Chemical Preparation and Treatment of the Photographic Paper for Primaries xxvii
Description of the Paper employed. xxvii
First Operation.—Preliminary Preparation of the Paper xxvii
Chemical Solutions, how prepared xxvii
Preparation of the Paper xxvii
Second Operation.—Rendering the Paper sensitive to the Action of Light xxvii
Chemical Solution, how prepared xxvii
Preparation of the Paper xxviii
Third Operation.—Development of the Photographic Trace xxviii
Fourth Operation.-Fixing the Photographic Trace xxviii
Chemical Preparation and Treatment of the Photographic Paper for Secon- daries xxviii
Description of the Paper employed xxviii
First Operation.-Preliminary Preparation of the Paper xxviii
Chemical Solution, how prepared xxviii
Preparation of the Paper xxix
Second Operation.-Rendering the Paper sensitive to the Action of Light xxix
Preparation of the Chemical Solution, and of the Paper xxix
Third Operation.-Formation of the Photographic Copy xxix
Fourth Operation.-Fixing the Photographic Secondary xxix
Brief Notice of the Process for obtaining a Tertiary from a Secondary $x x x$
Personal Establishment $x x x$
Results of Magnetical and Meteorological Observations in Tabular Arrangement :- Results of Observations of the Magnetic Dip (i)
Dips observed (ii)
Monthly and Yearly Means of Magnetic Dips (iii) and (iv)
Observations of Deflexion of a Magnet for Absolute Measure of Horizontal Force (v)
Abstract of Observations of a Magnet for Absolute Measure of Horizontal Force made with the Kew Unifilar Instrument (vi)
Computation of the Values of Absolute Measure of Horizontal Force, from Observations with the Kew Unifilar Instrument (vii)
Results of Meteorological Observations (ix)
Results of ordinary Meteorological Observations (x)
Maxima and Minima Readings of the Barometer (xxxiv)
Absolute Maxima and Minima Readings of the Barometer for each month (xxxy)
Monthly Means of Results for Meteorological Elements (xxxvi)
Observations with the Actinometer (xxxvii)
Readings of Thermometers sunk in the Ground (lv)
Weekly Means of Readings of Deep-sunk Thermometers (lx)
Abstract of the Changes of the Direction of the Wind, as derived from Osler's Anemometer (lxi)
Amount of Rain collected in each Month by the different Rain Gauges (lxiii)

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS,

1864.

Introduction.

§ 1. Restriction of Observations during the year 1864.
In the month of January 1864, the excavation of a subterraneous room, below the former observing room or instrument-room of the Magnetic Observatory, and (like it) in the form of three arms of a cross, was begun. The finishing of the room, and the mounting in it of the Magnetic Instruments, were not completed till the summer. After that time, various experiments were tried and repeated changes were made, which destroyed the efficiency of the remaining months of the year. As none of the observations made in the room were entirely satisfactory, I have thought it best to suppress their printing, preserving them in manuscript for reference if necessary on any special points. The Dip-instrument and Deflexion-instrument, and the Meteorological instruments generally, were not affected by these operations, and observations were made with them as usual.

§ 2. Dipping Needles, and Method of observing the Magnetic Dip.

The instrument with which all the dips in the year 1864 have been observed, is that which, for distinction, is called Airy's instrument. The following description will probably suffice to convey an idea of its peculiarities :-

The form of the needles, the form of their axes, the form of the agate bearings, and the general arrangement of the relieving apparatus, are precisely the same as those in Robinson's and other needles. But the form of the observing apparatus is greatly modified, in order to secure the following objects:-
I. To obtain a microscopic view of the points of the needles, as in the instruments introduced by Dr. Lloyd and Major-General Sabine.
II. To possess at the same time the means of observing the needles while in a state of vibration.
III. To have the means of observing needles of different lengths.
IV. To give an illumination to the field of view of each microscope, directed from the side opposite to the observer's eye, so that the light may enter past the point of the needle into the object glass of the microscope, forming a black image of the needlepoint in a bright field of view.
V. To give facility for observing by day or night.

With these views, the following form is given to the apparatus:-
The needle, and the bodies of the microscopes, are inclosed in a square box. The base of the box, two vertical sides, and the top, are made of gun-metal (carefully selected to insure its freedom from iron); but the sides parallel to the plane of vibration of the needle are of glass. Of the two glass sides, that which is next the observer is firmly fixed ; it is hereafter called "the graduated glass-plate." The other glass side can be withdrawn, to open the box, for inserting the needle, \&c.

An axis, whose length is perpendicular to the plane of vibration of the needles, and is as nearly as possible in the line of the axis of the needle, supported on two bearings (of which one is cemented in a hole in the graduated glass-plate, the other being upon a horizontal bar near to the agate support of the needle-axis), carries a transverse arm, about 11 inches long, or rather two arms, projecting about $5 \frac{1}{2}$ inches on each side of the axis. Each of these projecting arms has a long opening, or slot, about 1 inch wide, extending from the neighbourhood of the center-work nearly to the end of the arm. Through this opening the tube of a microscope passes, in a direction parallel to the axis of the needle, and is firmly fixed by a shoulder-bearing on one side of the arm, and a circular nut, working in a thread cut upon the microscope-tube, on the other side of the arm. The microscope can thus be fixed at any distance from the central axis, within the limits of the length of the projecting arm. In 1863, between February 24 and May 11, the slot for a single moveable microscope on each side was changed for three fixed microscopes on each side, adapted in position to the lengths of the needles to be mentioned shortly.

The microscope-tube thus carried is not the entire microscope, but so much as contains the object-glass and the field-glass. Upon the plane side of the field-glass (which is turned towards the object-glass), a series of parallel lines is engraved by etching with fluoric acid. The object-glass is so adjusted that the image of the needle-point is formed upon the plane side of the field-glass; and thus the parallel lines can be used for observing the needle in a state of vibration; and, one of them being adopted as standard, the lines can be used for reference to the graduated circle (to be mentioned). All this requires that there be an eye-glass also for the microscope.

The axis of which we have spoken is continued through the graduated glass-plate, and there it carries another transverse arm parallel to the former, and generally similar to it. In each part of this slides a short eye-piece, carrying the eye-glass. In 1863,
at the time mentioned above, the slotted arm and moveable eye-socket were changed for an arm with three sockets and eye-glasses. Thus, reckoning from the observer's eye, there are the following parts :-
(1.) The eye-glass.
(2.) The graduated glass-plate (its graduations, however, not intervening in this part of the glass, the graduated circle being so large as to include all the microscopes).
(3.) The field-glass, on the further surface of which the parallel lines are engraved.
(4.) The object-glass.
(5.) The needle.
(6.) The removeable glass side of the box.
(7.) The illuminating reflector, to be described hereafter.

The optical part of the apparatus being thus described, we may proceed to speak of the graduated circle.

The graduations of the circle (whose diameter is about $9 \frac{3}{4}$ inches) are etched on the inner surface of the graduated glass-plate. These divisions (as well as the parallel lines on the field glasses of the microscopes) are beautifully neat and regular, and are, I think, superior to any that I have seen on metal. The same piece of metal which carries the transverse arms supporting the microscope bodies carries also two arms with verniers for reading their graduations. These verniers (being adapted to transmitted light) are thin plates of metal, with notches instead of lines. The reading of the verniers is very easy. The portion of the axis which is external to the graduated glass-plate (towards the observer), and which has there, as already stated, two arms for carrying the microscope eye-glasses, has also two arms for carrying the lenses by which the verniers and glass-plate graduations are viewed. These four arms are the radii of a circle, which can be fixed in position by a clamp, attached to the gun-metal casing of the graduated glass-plate, and furnished with the usual slow-motion screw.

The entire system of the two arms carrying the microscope-bodies, the two arms carrying the microscope eye-glasses, the two arms carrying the verniers, and the two arms carrying the reading-glasses for the verniers, is turned rapidly by means of a button on the external side of the graduated glass-plate, or is moved slowly by means of the slow-motion screw just mentioned.

It now remains only to describe the illuminating apparatus. On the outside of the removeable glass plate, there are supports for the axis of a metallic circle turning in a plane parallel to the plane of needle-vibration. This circle has four slotted radii, and in these slots or openings there slide small frames carrying prismatic glass reflectors, each of which can turn on an axis, in the plane of the circle, but transverse to the radius. Two of these reflectors are for the purpose of sending light through the verniers, and therefore are fixed in radial distance; the other two were intended for sending light past the ends of the needle through the microscopes, and therefore required adjustment on change of needle and corresponding change of position
of microscopes. In 1863 these were changed for fixed reflectors, corresponding to the fixed microscopes. The circle was originally turned by a small winch near the observer's hand; at present, the winch is removed, as its axis was found to be slightly magnetic. At each observation, it is necessary to turn the circle which carries the reflectors; but this is the work of an instant.

The light which illuminates the whole is a gas-burner, in the line of the axis of rotation. Its rays fall upon the glass prisms, and each of these is adjusted, by turning on its axis, to throw the reflected light in the required direction.

The whole of the apparatus, as thus described, is planted upon a horizontal plate admitting of rotation in azimuth : the plate is graduated in azimuth, and verniers are fixed to the gun-metal tripod stand. The gas-pipe is led down the central vertical axis, and there communicates by a rotatory joint with the fixed gas-pipes.

The needles which are used with this instrument are-

In discussing carefully the observations taken with this instrument (as well as with other dip-instruments), great trouble was experienced in determining the zenith-point (or reading of the vertical circle when the points of the needle are in the same vertical). To remedy this, a "zenith-point-needle" was constructed under my instructions by Mr. Simms; and it has been used as need required in 1864. It is a flat bar of brass; with pivots similar to those of the dip-needles; and with three pairs of points corresponding to the three lengths of needles used; loaded at one end so as to take a position perfectly definite with respect to the direction of gravity; observed with the microscopes, and reversed for another observation, exactly as the dip-needles. For each of the different lengths of dip-needles, the zenith-point is determined by observation of that pair of points of the zenith-point-needle whose interval is the same as the length of the dip-needle.

Discordances, of which no satisfactory explanation could be given, had been found in the ordinary use of the instrument for determination of dip, as well as in the change of readings when a needle was raised and lowered, and in the change of readings when, without raising the needle, the instrument was turned completely in azimuth. Between November 10 and November 19, Mr. Simms reground the agate edges on
which the needle-pivots rotate ; and the discordances have entirely or in great measure disappeared. The process of regrinding was merely the following. A brass tool was provided which nearly fitted the agates, and which permitted lengthwise-strokes but scarcely permitted cross-strokes; and this tool carried, in succession, the different powders required for shaping and polishing the agate edges. As the edges were pretty well shaped, it was scarcely necessary to use coarse emery; but fine emery was used in the tool to give a final figure, and tin-oxide to give the ultimate polish. The process scarcely differs from that by which the edges had been ground originally; except that a tool had formerly been used which perhaps admitted of too much crossstroke, and that rotten-stone powder had been used instead of tin-oxide.

The flat needles B_{4}, C_{4}, D_{4}, were used with the object of determining whether any part of the discordances of results arose from the position of the principal plane of the magnetized needle. But with the increased harmony of results, an error showed itself which is peculiar to their form. The small flexure of the needle, produced by the resolved part of gravity in the direction perpendicular to the needle's length, changes the position of its centre of gravity in such a manner that the action of gravity is necessarily opposed to that of the magnetic vertical force; and thus the apparent dip is made too small. This error is perhaps insensible in the 3 -inch needle D_{4}, but it is visible in the 6 -inch needle C_{4}, and conspicuous in the 9 -inch needle B_{4}. In the tables of results, therefore, while I have included all the separate results from these needles, I have omitted them in the formation of means.

§ 3. Observations for the absolute Measure of the Horizontal Force of Terrestrial Magnetism.

In the spring of 1861 , a Unifilar Instrument, similar in all respects (as is understood) to those used in and issued by the Kew Observatory, was procured by the courteous application of Major-General Sabine, from the makers, Messrs. J. T. Gibson and Son; and after having been subjected to the usual examinations, at the Kew Observatory, for determination of its constants (far which I am indebted to the kindness of Balfour Stewart, Esq.), was mounted at the Royal Observatory. Observations with this instrument commenced on 1861, June 11, and were continued through the year; and, after some slight modifications of its verniers, it is still maintained in use (1865).

The deflected magnet (whose use is mereiy to ascertain the proportion which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism) is 3 inches long, carrying a small plane mirror. The deflecting magnet is 4 inches long; it is a hollow cylinder, carrying in its internal tube a collimator, by means of which its time of vibration is observed in another apparatus. The frame which supports the suspension-piece of the deflected magnet carries also the telescope directed to the magnet-mirror; it rotates round the vertical axis of a horizontal graduated circle whose external diameter is 10 inches. The deflecting magnet is
always placed on the E. or W. side of the deflected magnet, with one end towards the deflected magnet. In the reduction of the observations, the precepts contained in the Skeleton Form prepared by the Kew Observatory have received the strictest attention.

The following is the explanation of the method of reduction.
The distance of the centers of the deflected and deflecting magnet being r_{0}, it is supposed (from observations made at Kew, of which the details have not reached me) that the magnetism of the deflecting magnet is so altered by induction that the following multipliers ought to be used in computing the Absolute Force:-

At distance $1 \cdot 0$ foot, factor is $1 \cdot 00031$	
$1 \cdot 1$	$1 \cdot 00023$
$1 \cdot 2$	$1 \cdot 00018$
1.3	$1 \cdot 00014$
1.4	$1 \cdot 00011$
1.5	$1 \cdot 00009$

The correction of the magnetic power for temperature t_{0} of Fahrenheit, reducing all to 35° of Fahrenheit, is

$$
0.000131261\left(t_{0}-35\right)+0.000000259\left(t_{0}-35\right)^{2}
$$

A_{1} is $\frac{1}{2}$ (distance) ${ }^{3} \times$ sine deflection, corrected by the two last-mentioned quantities, for distance 1 foot; A_{2} is the similar expression for distance $1 \cdot 3$ foot; A_{2}^{\prime} is $\frac{A_{2}}{(1 \cdot 3)^{2}}$: \mathbf{P} is $\frac{\mathbf{A}_{1}-\mathbf{A}_{2}}{\mathbf{A}_{1}-\mathbf{A}^{\prime} ;}$. \mathbf{A} mean value of \mathbf{P} is adopted from various observations; then $\stackrel{m}{\bar{X}}=A_{1} \times\left(1-\frac{P}{1}\right)$ for smaller distance, or $=A_{2} \times\left(1-\frac{P}{1.69}\right)$ for larger distance. The mean of these is usually adopted for the true value of $\frac{m}{\bar{X}}$.

For computing the value of $m X$ from observed vibrations, it is necessary to know K, the moment of inertia of the magnet as mointed. The value of log. $\pi^{2} K$ furnished by Mr. Stewart is $1 \cdot 66073$ at temperature 30° and 1.66109 at temperature 90°. Then, putting T for the time of the magnet's vibration as corrected for induction, temperature, and torsion-force, the value of $m X$ is $=\frac{\pi^{2} K}{T^{2}}$. From the combination of this value of $m X$ with the former value of $\frac{m}{\bar{X}}, m$ and X are immediately found.

It appears, from a comparison of observations given in the Introduction to the Magnetical and Meteorological Observations, 1862, that the determinations with the Old Instrument (in use to 1861) ought to be diminished by $\frac{1}{117}$ part, to make them comparable with those of the Kew Unifilar.

The computation of the values of m and X has, to the year 1857 , been made in reference to English measure only, using the foot and the grain as the units of length and weight ; but, for comparison with foreign observations of the Absolute Intensity of Magnetism, it is desirable that \boldsymbol{X} should be expressed also in reference to French measure, in terms of the millimètre and milligramme. If an English foot be supposed equal to α times the millimètre, and a grain be equal to β times the milligramme, then

Absolute Measure of Horizontal Magnetic Force: Standard Barometer. ix

 it is seen that, for the reduction of $\frac{m}{\boldsymbol{X}}$ and $m \boldsymbol{X}$ to French measure, these must be multiplied by α^{3} and $\alpha^{2} \beta$ respectively. Hence X^{2} must be multiplied by $\frac{\beta}{\alpha}$, and X by $\sqrt{\frac{\beta}{\alpha}}$. Assuming that the mètre is equal to $39 \cdot 37079$ inches, and the gramme equal to $15 \cdot 43249$ grains, log. $\sqrt{\frac{\beta}{\alpha}}$ will be found to be $=9 \cdot 6637805$, and the factor for reducing the English values of \boldsymbol{X} to French values will be 0.46108 or $\frac{1}{2 \cdot 1689}$. The values of \boldsymbol{X} in French measure thus derived from those in English measure are given in the proper table.
§ 4. Standard Barometer.

The Barometer is a standard, by Newman, mounted in 1840. It is fixed on the South wall of the West arm of the Magnetic Observatory. The graduated scale which measures the height of the mercury is made of brass, and to it is affixed a brass rod, passing down the inside of one of the upright supports, and terminating in a conical point of ivory; this point in observation is made just to touch the surface of the mercury in the cistern, and the contact is easily seen by the reflected and the actual point appearing just to meet each other. The rod and scale are made to slide up and down by means of a slow-motion screw. The scale is divided to $0^{\text {in. }} 05$.

The vernier subdivides the scale divisions to $0^{\text {in }} 002$; it is moved by a slow-motion screw, and in observation is adjusted so that the ray of light passing under the back and front of the semi-cylindrical plate carried by the vernier, is a tangent to the highest part of the convex surface of the mercury in the tube.

The tube is $0^{\text {in }} 565$ in diameter ; the correction for the effect of capillary attraction is therefore only $+0^{\text {in }} 002$. The cistern is of glass.

At the bottom of the instrument are three screws, turning in the fixed part of the support, and acting on the piece in which the lower pivot of the barometer-frame turns, for adjustment to verticality: this adjustment is examined weekly.

The readings of this barometer are considered to be coincident with those of the Royal Society's flint-glass standard barometer.

All observations of this barometer have been corrected for the difference of temperature of the mercury in the tube at the time of observation from 32°, by the application of the corrections contained in the table for barometers whose scales are engraved upon a rod of brass reaching from the level of the mercury to the vernier. (See the report of the Committee of Physics and Meteorology approved by the Royal Society.)

The height of the cistern above the mean level of the sea is 159 feet. This element is founded upon the determination of Mr. Lloyd, in the Phil. Trans., 1831; the elevation of the cistern above the brass piece inserted in a stone in the transit-room (to which Mr. Lloyd refers) being $5^{\text {ft }} .2^{\text {in }}$.
Greenwich Magnetical and Meteorologigal Obsbrvattons, 1864.

The barometer has been read at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}$ (astronomical), on every day, excepting on Sundays, and on Good Friday and Christmas Day, on which days fewer observations have been taken. Every reading has been reduced to the reading which would have been obtained at the temperature 32° of the mercury and scale, by application of the correction given in Table II. (pages 82 to 87) of the Report of the Committee of Physics of the Royal Society. The mean of the reduced readings has then been taken for each civil day, and finally converted into mean daily reading, by application of the correction inferred from Mr. Glaisher's paper in the Philosophical Transactions, 1848, Part I.
In the printed record of the barometrical and all other meteorological observations, the day is to be understood, generally, as defined in civil reckoning.

§ 5. Photographic self-registering Apparatus for continuous Record of the readings of the Barometer.

The Photographic self-registering Apparatus for continuous Record of Magnetic Vertical Force is furnished with a vertical cylinder covered with photographic paper and revolving in 24 hours. North of the surface of this cylinder, at the distance of about 30 inches, is a large syphon barometer, the bore of the upper and lower extremities of its arms being about $1 \cdot 1$ inch. A glass float in the quicksilver of the lower extremity is partially supported by a counterpoise acting on a light lever (which turns on delicate pivots), so that the wire supporting the float is constantly stretched, leaving a definite part of the weight of the float to be supported by the quicksilver. This lever is lengthened to carry a vertical plate of opaque mica with a small aperture, whose distance from the fulcrum is eight times the distance of the point of attachment of the float wire, and whose movement, therefore, is four times the movement of the column of a cistern-barometer. Through this hole the light of a lamp, collected by a cylindrical lens, shines upon the photographic paper.

The scale of time is established by means of occasional interruptions of the light, and the scale of measure is established by comparison with occasional eye-observations.

This barometer was brought into use in 1848, but its indications were not satisfactory till the mercury was boiled in the tube by Messrs. Negretti and Zambra on 1853, August 18, since which time they have appeared unexceptionable. Results of the indications are printed in the Maxima and Minima of the Barometer, near the end of the Meteorological Results.

§ 6. Thermometers for ordinary Observation of the Temperature of the Air and Evaporation.

The Dry-Bulb Thermometer, the Wet-Bulb Thermometer, the Maximum SelfRegistering Thermometers, both dry and wet, and the Minimum Self-Registering Thermometers, dry and wet, all for determination of the temperature of the air and
of evaporation, are mounted on a revolving frame whose fixed vertical axis is planted in the ground. From the year 1846 to 1863 the post forming the vertical axis was about 23 feet south (magnetic) of the S.S.E. angle of the south arm of the Magnetic Observatory; in 1863 it was moved to a position about 35 feet south (astronomical) of the south angle. A frame revolves on this post, consisting of a horizontal board as base, of a vertical board projecting upwards from it connected with one edge of the horizontal board, and of two parallel inclined boards (separated about three inches) connected at the top with the vertical board, and at the bottom with the other edge of the horizontal board. The outer inclined board is covered with zinc. The air passes freely between all these boards.

The dry and wet-bulb thermometers are attached to the outside, and near the center of the vertical board; the maximum and minimum thermometers for air towards one vertical edge, and those for evaporation towards the other vertical edge, with their bulbs at almost the same level, and near to those of the dry and wet-bulb thermometers; their bulbs are about 4 feet above the ground and projecting from 2 inches to 3 inches below the horizontal board. Above the thermometers is a small projecting roof to protect them from rain. The frame is always turned with the inclined side towards the sun. It is presumed that the thermometers are thus sufficiently protected.

The graduations of all the thermometers used in the Royal Observatory rest fundamentally upon those of a Standard Thermometer, the property of Mr. Glaisher, which derives its authority from comparison with original thermometers constructed by the late Rev. R. Sheepshanks about the years 1840-1843, in the course of his preparations for the construction of the National Standard of Length. The whole of the radical determinations of Freezing Point, Boiling Point, and Subdivision of Volume of Tube, were made by Mr. Sheepshanks with the utmost care : it is believed that these were the first original thermometers that had been constructed in England for many years. Mr. Glaisher's thermometer has been used as the standard of reference for all the thermometers used in the Royal Observatory since 1840.

The Dry-Bulb Thermometer is by Newman. The corrections required for its readings, as found by comparison with the standard above-mentioned, are as follows:-

Below	3_{2}°	subtract $0^{\circ} \cdot 5$
Between 32 and ${ }_{4}^{3}$		
	44 and 47	$\circ^{\circ} 7$
	48 and 56	$\bigcirc \cdot 9$
	57 and 61	I'1
	62 and 74	$1 \cdot 3$
	75 and 80	1.5
	81 and 86	$1 \cdot 8$
	87 and 95	
96 and 100		

The Wet-Bulb Thermometer is by Negretti and Zambra. Its bulb is of the same size as that of the Dry-Bulb Thermometer. A piece of muslin is wrapped round the bulb, and a skein of cotton is led from it into a cup of rain-water, by which it is maintained in a state of moisture. In frosty weather the muslin is moistened some time before each observation. The corrections which the readings of this thermometer are found to require are as follows:

Below	$\stackrel{\circ}{32}$	subtract $0 \cdot 4$
Between 32 and 36		
	37 and 40	$\cdot 2$
	41 and 55	$0 \cdot 1$
	56 and 75	-
Above	75	add $0^{\circ} 1$

The eye-readings of the dry-bulb and wet-bulb thermometers have usually been taken at the hours (astronomical reckoning) $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}$, and corrected by application of the numbers given above; then their mean has been taken, and a correction applied, in order to obtain the true diurnal mean. This correction is derived from the numbers in Mr. Glaisher's paper in the Philosophical Transactions for 1848.

The dew-point has been inferred exclusively from the simultaneous observations of the dry-bulb and wet-bulb thermometers, by multiplying the difference between the readings of these thermometers by a factor peculiar to the temperature of the air, and subtracting the product from the reading of the dry-bulb thermometer. These factors have been found by Mr. Glaisher from the comparison of a great number of dew-point determinations, obtained by use of Daniell's hygrometer, with simultaneous observations of dry-bulb and wet-bulb thermometers. The first part of this investigation was published in full, in the volume of Magnetical and Meteorological Observations for 1844, pages $67-72$; it was based upon all the observations made up to that time. Subsequently, the comparison was extended to include all the simultaneous observations of these instruments made at the Royal Observatory, Greenwich, from 1841 to 1854, with some observations taken at high temperatures in India, and others at low and medium temperatures at Toronto. The results at the same temperature were found to be the same at these different localities, so far as the climatic circumstances permitted comparison. (See Glaisher's Hygrometrical Tables, 3rd Edition). The following table exhibits the result of the entire comparison ; it has been used in forming the dew-points in the present volume.

Table of Factors by which the Difference of Readings of the Dry-Bulb and Wet-Bulb Thermometers is to be Mclitiplied in order to produce the Difference between the Readings of the Drf-Bulb and Dew-Point Thermometers.

Reading of Dry-bulb \#hermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.
10	8.78	${ }_{3}^{\circ}$	$3 \cdot 01$	56	. 1 '94	$7{ }^{\circ}$	I.69
11	$8 \cdot 78$	34	$2 \cdot 77$	57	1.92	80	I. 68
12	8.78	35	$2 \cdot 60$	58	$1 \cdot 90$	81	1.68
13	$8 \cdot 77$	36	2.50	59	1.89	82	1.67
14	$8 \cdot 76$	37	2.42	60	1.88	83	1.67
15	8.75	38	$2 \cdot 36$	61	1.87	84	1.66
16	$8 \cdot 70$	39	$2 \cdot 32$	62	1.86	85	1.65
17	$8 \cdot 62$	40	2.29	63	I•85	86	1.65
18	$8 \cdot 50$	41	$2 \cdot 26$	64	1.83	87	1.64
19	$8 \cdot 34$	42	2.23	65	I.82	88	1.64
20	8.14	43	$2 \cdot 20$	66	1.81	89	1.63
21	7.88	44	$2 \cdot 18$	67	1.80	90	1.63
22	7.60	45	$2 \cdot 16$	68	$1 \cdot 79$	91	1.62
23	7.28	46	2.14	69	1.78	92	1.62
24	$6 \cdot 92$	47	$2 \cdot 12$	70	1.77	93	1.61
25	$6 \cdot 53$	48	$2 \cdot 10$	71	$1 \cdot 76$	94	I. 60
26	6.08	49	2.08	72	1.75	95	1.60
27	$5 \cdot 61$	50	$2 \cdot 06$	73	1.74	96	1. 59
28	5.12	51	2.04	74	1.73	97	1.59
29	4.63	52	2.02	75	$1 \cdot 72$	98	1.58
30	4.15	53	$2 \cdot 00$	76	$1 \cdot 71$	99	I-58
31	3.70	54	1.98	77	1.70	100	I 57
32	$3 \cdot 32$	55	1•96	78	$1 \cdot 69$		

The maximum self-registering thermometer is a mercurial thermometer, of the construction invented by Messrs. Negretti and Zambra. There is a small detached piece of glass in the tube, just above a bent part of the tube (near the bulb), through which the piece of glass cannot pass down. The column of mercury in rising lifts the glass up and passes freely; but in descending it is unable to pass the glass, and the lower mass of mercury descends, leaving a vacant space below the glass, and leaving a portion of the mercury above it. The piece of glass operates as an efficient valve. The graduation of this thermometer is sensibly correct. There is a similar thermometer for the maximum wet-bulb reading; its readings are too high by $0^{\circ} \cdot 4$.

The minimum self-registering thermometer is an alcohol thermometer, of the construction known as Rutherford's. A sliding glass index allows the alcohol in rising to pass above it, but is drawn down by the peculiar action of the bounding surface of the fluid when it sinks. The readings of that which gives the minimum temperature of the air require an additive correction $0^{\circ} \cdot 5$; those of the minimum wet-bulb temperature require corrections varying from $+2^{\circ} \cdot 2$ at 24° to $-0^{\circ} \cdot 2$ at 71°.

The numbers in the printed columns of Mean Daily Value of Dry Thermometer are found by combining two numbers derived from different sources. One is the corrected mean of four observations taken in the day, as is described above. The

xiv

 Introduction to Greenwich Magnetical Observations, 1864.other is the mean of the maximum and minimum corrected by a small quantity depending on the month, given in Mr. Glaisher's paper. The adopted mean temperature is the mean of those two numbers, weights being given proportional to the number of observations from which they are derived.

For the Mean Daily value of Dew Point, the dew-point is found from the observations at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}$, in the manner above described, and by use of the table of factors given above, and the mean of these dew-points is corrected by a number given in the paper in the Philosophical Transactions, 1848.

§ 7. Photographic self-registering Apparatus for continuous Record of the Readings of the Dry-Bulb and Wet-Bulb Thermometers.

About 28 feet south (magnetic) of the south-east angle of the south arm of the Magnetic Observatory, and about 25 feet east of the thermometers for eye-observations, is a shed 10 feet square, standing upon posts 9 feet high, under which are placed the photographic thermometers, the dry-bulb thermometer towards the east, and the wet-bulb thermometer towards the west. The bulbs of the thermometers are eight inches in length, and 0.4 inch internal bore, and their centers are about 4 feet above the ground. The bulb of one of the thermometers is covered with muslin throughout its whole length, which is kept moist by means of capillary passage of water along cotton wicks leading to a vessel filled with water.

There are small adjustments admitting the raising or dropping of the thermometers, so that the register of their changing readings may be on a convenient part of the paper. The thermometer frames are covered by plates having longitudinal apertures, so narrow, that any light which may pass through them is completely, or almost completely, intercepted by the broad flat column of mercury in the thermometer-tube. Across these plates a fine wire is placed at every degree; and at the decades of the degrees, and also at $32^{\circ}, 52^{\circ}$, and 72°, a coarser wire is placed. A gas lamp is placed about 9 inches from each thermometer (east of the dry bulb and west of the wet bulb), and its light, condensed by a cylindrical lens, whose axis is vertical, shines through the thermometer-tube above the surface of the mercury, and forms a well-defined line of light upon the photographic paper, which is wrapped around the cylinder. As the cylinder revolves under this light, it receives a broad sheet of photographic trace, whose breadth (in the direction of the axis of the cylinder) varies with the varying height of the mercury in the thermometer-tube. The light in its passage is intercepted by the wires placed across the tube at every degree, and there are, therefore, left upon the paper corresponding lines in which there is no photogenic action.

The cylinder revolves in 48 hours; the daily photographic traces of the two thermometers are thus simultaneously registered on opposite sides of the cylinder without intermixing. The length of the cylinder is $13 \frac{1}{2}$ inches, and its circumference is 19 inches.

§ 8. Thermometers for Solar Radiation and Radiation to the Sky.

The thermometer for Solar Radiation is placed in an open box about 10 feet south of the south-west angle of the south arm of the Magnetic Observatory. The box is about 13 inches high; the bulb of the thermometer is about 10 inches above the bottom of the box, fully exposed to the sun's rays.

The thermometer is a self-registering maximum mercurial thermometer of Negretti and Zambra's construction ; its bulb is blackened, and enclosed in a glass sphere from which the air has been exhausted. Its graduations are correct, and the numbers inserted in the tables are those read from the instrument without alteration. The thermometer is read at 9^{h} a.m., noon, 3^{h} p.m., and occasionally at 9^{h} p.m.; the highest of these readings is adopted as the maximum for the day.

Near to this thermometer, within the same box, and at the same height, is placed a thermometer with blackened bulb, which is not enclosed in an exhausted sphere. An instrument of this form and in this position was exclusively used to the year 1859. Simultaneous readings of both instruments are now taken, with the view of rendering the series of observations which terminated in 1859 (made with exposed bulb) comparable with that which commenced in 1859, and is still continued (made with bulb inclosed in an exhausted sphere).

The thermometer for radiation to the sky is placed about 12 feet west of the Solar Radiation thermometer, with its bulb resting on short grass, and fully exposed to the sky. It is a self-registering minimum spirit thermometer of Rutherford's construction, made by Negretti and Zambra. Its graduation is correct, and the numbers inserted in the table are those read from the scale without alteration. It is read every day at 9^{h} a.m., and occasionally at 9^{h} p.m.

This thermometer was out of order on April 19, 26, May 4, July 9, August 1, 7, 9, 10, 11, 14, 30, September 5, October 19, and November 3.

§ 9. Thermometers sunk below the Surface of the Soil at different Depths.

These thermometers were made by Messrs. Adie of Edinburgh, under the immediate superintendence of Professor (now Principal) J. D. Forbes. The graduation was made by Professor Forbes himself.

The thermometers are four in number. They are all placed in one hole in the ground, the diameter of which in its upper half is 1 foot, and in its lower half about 6 inches. Each thermometer is attached in its whole length to a slender piece of wood, which is planted in the hole with it. The place of the hole is 20 feet south of the extremity of the south arm of the Magnetic Observatory, and opposite the center of its south front.

The soil consisted of beds of sand; of flint-gravel with a large proportion of sand; and of flints with a small proportion of sand, cemented almost to the consistency of pudding-stone. Every part of the gravel and sand extracted from the hole was perfectly dry.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long and 2 or 3 inches in diameter. The bore of the principal part of the tubes, from the bulb to the graduated scale, is very small. In that part to which the scale is attached, the tube is larger.

The thermometer No. 1 was dropped into the hole to such a depth that the center of its bulb was 24 French feet ($25 \cdot 6$ English feet) below the surface: then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the center of its bulb was 12 French feet below the surface; No. 3 and No. 4 till the centers of their bulbs were respectively 6 and 3 French feet below the surface ; and the hole was then completely filled with dry sand. The upper parts of the tubes, carrying the scales, were left projecting above the surface: No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, the parts $8 \cdot 5,10 \cdot 0,11 \cdot 0$, and 14.5 inches, respectively are tube with narrow bore.

The projecting parts of the tubes are protected by a wooden case or box fixed to the ground; the sides of the box are perforated with numerous holes, and it has a double roof. In the North face of this box is a large plate of glass through which the thermometers are read. Within the box are two smaller thermometers one (No. 5) whose bulb is sunk one inch in the ground, and one (No. 6) whose bulb is in the free air nearly in the center of the box.

The fluid of the four long thermometers is alcohol tinged with a red colour.
The values of 1° on the scales of Nos. $1,2,3$ and 4 , are respectively $2^{\text {in. }}, 1^{\text {in. }} 1,0^{\text {in. }} 9$, and $0^{\text {in. }} 55$; and the ranges of the scales, as first mounted, were, $43^{\circ} \cdot 0$ to $57^{\circ} \cdot 7,42^{\circ} \cdot 0$ to $56^{\circ} \cdot 8,39^{\circ} \cdot 0$ to $57^{\circ} \cdot 5$, and $34^{\circ} \cdot 2$ to $64^{\circ} \cdot 5$.

These ranges for Nos. 2, 3, and 4, were found to be insufficient in some years, particularly those of Nos, 3 and 4, or the thermometers sunk to the depth of 6 feet and 3 feet.

In 1857, June 22, Messrs. Negretti and Zambra removed from Nos. 3 and 4 a quantity of fluid corresponding to the extent of 5° on their scales, and the scales of these two thermometers were lowered by that linear extent, making the readings the same as before.

In subsequent years it was found that the amount of fluid removed was somewhat too great, for now at the lower end of the scale the 6 -foot thermometer sometimes falls below the limit of its scale or $43 \frac{1}{2}^{\circ}$; and the 3 -foot thermometer below $39^{\circ} .7$; in which cases the alconol sinks into the capillary tube.

The readings at the early part of the series were at times defective at high tempera-

Deep-sunk Thermometers; Thames Thermometers; Osler's Anemometer. xuiz
tures, but always complete at low temperatures; now, they are always complete at high temperatures, and are at times defective at low temperatures. The two combined however, will enable us to complete all readings.

These thermometers are read once a day, at noon, and the readings appear in the printed volumes as read from their scales without correction.

§ 10. Thermometers immersed in the Water of the Thames.

The self-registering maximum and minimum thermometers for determining the highest and lowest temperatures of the water of the Thames are by Messrs. Negretti and Zambra, and are observed every day at 9^{h} a. m.

A strong wooden trunk is firmly fixed to the side of the Dreadnought Hospital Ship, about 5 feet in length, and closed at the bottom; the bottom and the sides, to the height of 3 feet, are perforated with a great number of holes, so that the water can easily flow through; the thermometers are suspended within this trunk so as to be about 2 feet below the surface of the water, and 1 foot from the bottom of the trunk.

The regular observations are made under the superintendence of the Medical Officers of the Ship.

The thermometer for maximum temperature was out of order on February 13 to 23, April 17 to 20, June 30, July 1 to 23, November 1 to 14, 25, 28, 29, 30, December 2, 8, 9. That for minimum temperature was out of order on February 13, 21, 22, 23, April 17 to 21, November 1 to 14, 25, 28, 29, 30, December 2, 8, 9.
§ 11. Osler's Anemometer.
This anemometer is self-registering: it was made by Newman, but has received several changes since it was originally constructed. A large vane, which is turned by the wind, and from which a vertical spindle proceeds down nearly to the table in the north-western turret of the ancient part of the Observatory, gives motion by a pinion upon the spindle to a rackwork carrying a pencil. This pencil makes a mark upon a paper affixed to a board which is moved uniformly in a direction transverse to the direction of the rack-motion. The movement of the board is effected by means of a rack connected with the pinion of a clock. The paper has lines printed upon it corresponding to the positions which the pencil must take when the direction of the vane is N., E., S., or W.; and also has transversal lines corresponding to the positions of the pencil at every hour. The first adjustment for azimuth was obtained by observing from a certain point the time of passage of a star behind the vane-siaft, and computing from that observation the azimuth; then on a calm day drawing the vane by a cord to that position, and adjusting the rack, \&c., so that the pencil position on the sheet corresponded to that azimuth.
Greenwich Magnetical and Meteorological Odservations, 1864.

xviii Introduction to Greenwich Magnetical Observations, 1864.

For measuring the pressure of the wind, the shaft of the vane carries a plate one foot square, which is supported by horizontal rods sliding into grooves, and is urged in opposition to the wind by three springs, so arranged that only one comes into play when the wind is light, and the others necessarily act in conjunction with the first as the plate is driven further and further by the force of the wind. A cord from this plate passes over a pulley, and communicates with a copper wire passing through the center of the spindle, which at the bottom communicates with another cord passing under a pulley and held in tension by a slight spring : and by this a pencil is moved transversely to the direction in which the paper fixed to the board is carried by the clock. Lines are printed upon the paper corresponding to different values of the pressure; the intervals of these lines were adjusted by applying weights of $1 \mathrm{lb} ., 2 \mathrm{lbs} ., 8 \mathrm{c}$., to move the pressure-plate in the same manner as if the wind pressed it.

A fresh sheet of paper is applied to this instrument every day at 22^{h} mean solar time.

§ 12. Robinson's Anemometer.

This anemometer is self-registering, and was made by Messrs. Negretti and Zambra on the principles described by Dr. Robinson in the Transactions of the Royal Irish Academy, vol xxii. It is furnished with four hemispherical cups [each being 3.75 inches in diameter], attached to the extremities of two arms at right angles to each other, and revolving in a horizontal plane by the excess of pressure of the wind on their concave over that on their convex surfaces.

The distance between the centers of opposite cups is $13 \cdot 45$ inches, and their centers describe 42.24 inches in each revolution, indicating, according to the theory, a horizontal movement of the air of 126.72 inches for each revolution, and of one mile for 500 revolutions. The accuracy of this theory was verified by experiments made in 1860 (to be described immediately). The horizontal arms are connected with a vertical spindle, upon which is an endless screw, working in a toothed wheel connected with a train of wheels, furnished with indices capable of registering one mile and decimal multiples of a mile up to 1,000 miles. The instrument is read every day at $22^{\text {h }}$.

In the year 1860, on July 3, 4, and 13, experiments were made in Greenwich Park to ascertain the correctness of the theory of Robinson's anemometer ; the point to be verified being that the scale of the instrument, founded on the supposition that the horizontal motion of the air is about three times the space described by the centers of the cups, is correct.
A post about 5 feet high with a vertical spindle in the top was erected, and on this spindle turned a horizontal arm, carrying at the extremity of its longer portion Robinson's anemometer, and on its shorter portion a counterpoise. The distance from the vertical spindle of the post to the vertical axis of the anemometer was $17^{\mathrm{ft}} 8^{\mathrm{in}} \cdot 7$.

The reading of the dial was taken, and then the arm was made to revolve in the horizontal plane 50 or 100 times, an attendant counting the number of revolutions, and the reading of the dial was again taken. In this manner 1,000 revolutions were made in the direction N.E.S.W.N., and 1,000 revolutions in the direction N.W.S.E.N. In some of the experiments the air was sensibly quiet, and in others there was a little wind ; the result was,

For a movement of the instrument through one mile,

The results from rapid revolutions and from slow revolutions were sensibly the same.

This may be considered as confirming in a very high degree the accuracy of the theory.

§ 13. Rain Gauges.

The rain-gauge connected with Osler's anemometer is 50 feet 8 inches above the ground, and 205 feet 6 inches above the mean level of the sea. It exposes to the rain an area of 200 square inches (its horizontal dimensions being 10 by 20 inches).

The collected water passes through a tube into a vessel suspended in a frame by spiral springs, which lengthen as the water increases, until 0.24 of an inch is collected in the receiver; it then discharges itself by means of the following modification of the syphon. A copper tube, open at both ends, is fixed in the receiver, in a vertical position, with its end projecting below the bottom. Over the top of this tube a larger tube, closed at the top, is placed loosely. The smaller tube thus forms the longer leg, and the larger tube the shorter leg of a syphon. The water, having risen to the top of the smaller tube, gradually falls through it into the uppermost portion of a tumbling bucket, fixed in a globe under the receiver. When full, the bucket falls over, throwing the water into a small pipe at the lower part of the globe; the water completely fills the bore of the pipe ; its descent causes an imperfect vacuum in the globe, sufficient to cause a draught in the longer leg of the syphon, and the whole contents run off. After leaving the globe, the water is received in a pipe attached to the building, which carries it away. The springs then shorten and raise the receiver. The ascent and descent of the water-vessel move a radius-bar which carries a pencil ; and this pencil makes a trace upon the paper carried by the sliding-board of the selfregistering anemometer.

The scale of the printed paper was adjusted by repeatedly filling the water-vessel until it emptied itself, then weighing the water, and thus ascertaining its bulk, and dividing this bulk by the area of the surface of the rain receiver.

A second gauge, with an area 77 square inches nearly, is placed close to the preceding, the receiving surface of both being on the same horizontal plane.

A third gauge is placed on the roof of the Octagon room, at 38 feet $4 \frac{1}{2}$ inches above the ground, and 193 feet $2 \frac{1}{2}$ inches above the mean level of the sea. It is a simple cylinder gauge, 8 inches in diameter and about $50 \frac{1}{4}$ inches in area. The height of the cylinder is $13 \frac{1}{2}$ inches; at the depth of 1 inch from the top within the cylinder is fixed a funnel (an inverted cone) of 6 inches perpendicular height; with the point of this funnel is connected a tube, $\frac{1}{5}$ of an inch in diameter, and $1 \frac{1}{2}$ inch in length; $\frac{3}{4}$ of an inch of this tube is slightly curved, and the remaining $\frac{3}{4}$ of an inch is bent upwards, terminating in an aperture of $\frac{1}{8}$ of an inch. By this arrangement, the last few drops of water remain in the bent part of the tube, and the water is some days evaporating. The upper part of the funnel or bore of the cone is connected with a brass ring, which has been turned in a lathe, and this is connected with a circular piece 6 inches in depth, which passes outside the cylinder, and rests in a water joint, attached to the inner cylinder, and extending all round.

A fourth gauge is placed on the top of the Library ; it is a funnel, whose diameter is 6 inches; its exposed area is $28 \frac{1}{4}$ inches nearly. The water passes into a cylinder, from which it is poured into a circular vessel, the diameter of which is $3 \frac{1}{4}$ inches; and therefore $3 \cdot 4$ inches of this corresponds to 1 inch of rain. The receiving surface of the gauge is 22 feet 4 inches above the ground, and 177 feet 2 inches above the mean level of the sea.

A fifth gauge is planted on the roof of the Photographic Thermometer stand, 10 feet above the ground, and 164 feet 10 inches above the mean level of the sea. Its construction is the same as that of the third gauge.

A sixth gauge is a self-registering rain-gauge on Crosley's construction, made by Watkins and Hill. The surface exposed to the rain is 100 square inches. The collected water falls into a vibrating bucket, whose receiving concavity is entirely above the center of motion, and which is divided into two equal parts by a partition whose plane passes through the axis of motion. The pipe from the rain-receiver terminates immediately above the axis. Thus that part of the concavity which is highest is always in the position for receiving water from the pipe. When a certain quantity of water has fallen into it, it preponderates, and, falling, discharges its water into a cistern below ; then the other part of the concavity receives the rain, and after a time preponderates. Thus the bucket is kept in a state of vibration. To its axis is attached an anchor with pallets, which acts upon a toothed wheel by a process exactly the reverse of that of a clock-escapement. This wheel communicates motion to a train of wheels, each of which carries a hand upon a dial-plate; and thus inches, tenths, and hundredths are registered. Sometimes, when the escapement has obviously failed, the water which has descended to the lower cistern has again been passed through the gauge, in order to enable an assistant to observe the indication of the dial-plates without fear of an imperfection in the machinery escaping notice. The gauge is placed
on the ground, 21 feet South of the Magnetic Observatory, and 156 feet 6 inches above the mean level of the sea.

The seventh and eighth gauges are placed near together, about 16 feet south of the Magnetic Observatory, 5 inches above the ground, and 155 feet 3 inches above the mean level of the sea. They are similar in construction and area to No. 3. These cylinders are sunk about 8 inches in the ground.

All these gauges, except No. 7, are read at 22^{h} daily; in addition, Crosley's gauge and No. 8 are read daily at 9^{h} p.m., and No. 7 at the end of each month only, to check the summation of the daily readings of No. 8.

Gauges Nos. 1, 2, 3, 5, 8 were made by Messrs. Negretti and Zambra; No. 4 by Troughton; No. 6 by Watkins and Hill; and No. 7 is an old gauge.

§ 14. The Actinometer.

The actinometer consists of a hollow cylinder of glass 7 inches in length, and $1 \cdot 22$ inch in diameter, united at one end to a tube similar to a thermometer tube, 7 inches in length, which is terminated at its upper end by a ball $1 \cdot 1$ inch in diameter, the upper part of which is drawn out to a point, and broken off, so as to leave the end open, merely stopped by wax, and covered by a brass cap. The other end of the cylinder is closed by a silver plated cap, cemented on it, and furnished with a screw of silver, with 16 threads to an inch, passing through a collar of waxed leather. The axis of this screw is perforated through its entire length, to allow the stem of a thermometer to pass through it, (the bulb of which is nearly central within the cylinder), for the purpose of determining the temperature of the inclosed liquid. This liquid is of a deep blue colour (ammonio-sulphate of copper). When the actinometer is used in observation, the ball at the top is left full of air, and, according to the position of the screw, the liquid mounts into the first-mentioned tube, and its elevation can be read off on an attached scale which is divided into 100 parts. The cylinder is enclosed in a chamber which is blackened on three sides, and is covered on the fourth side or front by plate glass, to defend the chamber from currents of air; this glass is removeable at pleasure. The screw is used to diminish or increase the capacity of the cylindrical cistern, and thus to drive into the ball, which acts as a reservoir, all air out of the tube, and then to draw back from the reservoir such a quantity as shall leave the top of the liquid at the zero of the scale or elsewhere at pleasure, leaving no bubble of air in the cylinder, and no blebs of liquid in the tube.
For using the instrument a wooden table is prepared, with a moveable part, on which the instrument is placed, and on which it can very readily be exposed perpendicularly to the rays of the Sun ; and where a screen can momentarily be placed so as to cut off all the rays of the Sun from the chamber of the instrument, and can be quickly withdrawn, so as fully to expose the cylindrical chamber to the Sun's radiation.

The method of observation is as follows:
The liquid being adjusted to zero of the scale by the screw, will mount into the stem, as soon as exposed to the Sun. It is allowed to do so for a minute or two, taking care, by the use of the screw, that it does not mount into the ball. When all is ready for observation, the liquid is drawn down to the zero of the scale, slowly and steadily, the thermometer is read for the temperature of the liquid, at the beginning of a minute the scale is read, and at the end of a minute it is read again: the screen is placed before the instrument: at the following 30^{s} the scale is read for the first shade-observation, and at one minute afterwards is again read for the second shadeobservation ; the instrument is then exposed to the Sun at the beginning of the next minute, and read as before : and so on successively.

A delicate blackened bulb thermometer for solar radiation has also been frequently read during each series of experiments, for collection of comparative observation of the two instruments.

It is found by experiment that the fluid is driven up the tube 100 divisions by onetenth of a turn of the screw. One inch in length of the screw including 16 threads, the distance between two contiguous threads is therefore 0.0625 inch.

A fine piece of silk was carefully passed round the bottom of 18 threads; its length was found to be $25 \cdot 2$ inches. Therefore the circumference of the screw at the bottom of the thread was 1.4 inch and its diameter 0.445 nearly. The depth of the thread is fully 0.05 inch.

These measures will give the means of converting the observed readings of the liquid in the slender tube into actual expressions of the proportion to the general store of liquid in the cylindrical chamber.

§ 15. Electrical Apparatus.

The electrical apparatus consists of two parts, namely, the Moveable Apparatus, which is connected with a pole nearly 80 feet high planted 7 feet North and 2 feet East of the north-east angle of the north arm of the Magnetic Observatory (as extended in 1862) ; and the Fixed Apparatus, which is mounted in a projecting window in the ante-room of the Magnetic Observatory.

On the top of the pole is fixed a projecting cap, to which are fastened the ends of two iron rods, which terminate in a pit sunk in the ground, and are kept in tension by attached weights. These rods are to guide the moveable apparatus in its ascents and descents. Near the bottom of the pole is fixed a windlass; the rope upon which it acts passes over a pulley in the cap, and is used to raise the moveable apparatus, which when raised to the top is suspended on a hook.

The moveable apparatus consists of the following parts:-A plank in a nearly vertical position is attached to perforated iron bars, which slide upon the iron rods.

On the upper part of this plank is a cubical box. The box incloses a stout pillar of glass, having a conical hollow in its lower part. In the bottom of the box there is a large hole through which a cone of copper passes into the conical hollow of the glass pillar. In a space below the box a gas-lamp is placed, by the flame of which the copper cone and the lower part of the glass pillar are kept in a state of warmth. A copper wire is fastened round the glass pillar ; its end is carried to a similar glass pillar, warmed in the same manner, near the north-western turret of the Octagon room; by this wire, whose length is about 400 feet, the atmospheric electricity is collected. To this wire, near the box, is attached another copper wire $0 \cdot 1$ inch in diameter, and about 73 feet long, at the end of which is a hook; a loaded brass lever connected with the fixed apparatus presses upon this hook, and thus keeps the wire in a state of tension, and at the same time establishes the electrical communication between the long horizontal wire and the fixed apparatus.

The fixed apparatus consists of these parts :-A glass bar, nearly 3 feet long, and thickest at its middle, is supported in a horizontal position, its ends being fixed in pieces of wood projecting downwards from the roof of the projecting window. Near to each end is placed a small gas-lamp, whose chimney encircles the glass, and whose heat keeps the glass in a state of warmth proper for insulation. A brass collar surrounds the center of the glass bar ; it carries one brass rod, projecting vertically upwards through a hole in the roof of the window-recess, to which rod are attached a small umbrella and the loaded lever above-mentioned; and it carries another rod projecting vertically downwards, to which is attached a horizontal brass tube in an East and West direction. On the North and South sides of this tube there project four horizontal rods, through the ends of which there pass vertical rods, which can be fixed by screws at any elevation ; these are placed in connexion with the electrometers, which rest on the window seat.

The electrometers during the year 1864 consisted of a Double Gold Leaf Electrometer of the ordinary construction ; two Volta's Electrometers, denoted by Nos. 1 and 2; a Henley's Electrometer ; a Ronalds' Spark Measurer ; a Dry-pile Apparatus ; and a Galvanometer.

Volta 1 and Volta 2 are of the same construction; each is furnished with a pair of straws 2 Paris inches in length; those of the latter being much heavier than those of the former : each instrument is furnished with a graduated ivory scale, whose radius is 2 Paris inches, and it is graduated into half Paris lines. In the original construction of these instruments it was intended that each division of No. 2 should correspond to five of No. 1: the actual relation between them has not yet been determined by observations at the Royal Observatory. The straws are suspended by hooks of fine copper wire to the suspension-piece, and they are separated by an interval of half a line.

Henley's Electrometer is supported on the West end of the large horizontal tube by means of a vertical rod fixed in it. On each side of the upper part of this rod is
affixed a semicircular plate of ivory, whose circumference is graduated; at the centers of these ivory plates two pieces of brass are fixed, which are drilled to receive fine steel pivots, carrying a brass axis, into which the index or pendulum is inserted; the pendulum terminates with a pith ball. The relation between the graduations of this instrument and those of the other electrometers has not been determined. This instrument has seldom been affected till Volta 2 has risen to above 100 divisions of its scale.

The spark measurer consists of a vertical sliding rod terminated by a brass ball, which ball can be brought into contact with one of the vertical rods before referred to, also terminating in a ball; and it can be moved from it or towards it by means of a lever, with a wooden handle. During the operation of separating the balls, an index runs along a graduated scale, and exhibits the distance between the balls, and this distance measures the length of the spark.

The electrometers and the spark measurer were originally constructed under the superintendence of Francis Ronalds, Esq., but have since received small alterations.

The dry-pile apparatus was made by Watkins and Hill; it is placed in connexion with the brass bar by a system of wires and brass rods. The indicator, which vibrates between the two poles, is a small piece of gold leaf. This instrument is very delicate, and it indicates at once the quality of the electricity. When the inclination of the gold leaf is such that it is directed towards the top of either pile, it remains there as long as the quantity of electricity continues the same or becomes greater: the position is sometimes expressed in the notes by the words " as far as possible." The angle which the gold leaf makes with the vertical at this time is about 40°.

The galvanometer was made by Gourjon of Paris, and consists of an astatic needle, composed of two large sewing needles; suspended by a split silk fibre, one of the needles of the pair vibrating within a ring formed by 2,400 coils of fine copper wire. The connexions of the two portions of wire forming these 2,400 coils are so arranged that it is possible to use a single system of 1,200 coils of single wire, or a system of 1,200 coils of double wire, or a system of 2,400 coils of single wire : in practice the last has always been used. A small ball communicating by a wire with one end of the coils is placed in contact at pleasure with the electric conductor, and a wire leading from the other end of the coil communicates with the earth. An adjustible circular card, graduated to degrees, is placed immediately below the upper needle; the numeration of its divisions proceeds in both directions from a zero. One of these directions is distinguished by the letter A , and the other by the letter B ; and the nature of the indication represented by the deflection of the needle towards A or towards B will be ascertained from the following experiment. A voltaic battery being formed by means of a silver coin and a copper coin, having a piece of blotting paper moistened with saliva between them: when the copper touches the small ball, and the wire which usually communicates with the earth is made to touch the silver, the needle turns
towards A; when the silver touches the small ball, and the wire is made to touch the copper, the needle turns towards B.
§ 16. Explanation of the Tables of Meteorological Observations.
The mean daily value of the difference between dew-point temperature and airtemperature is the difference between the two numbers in the sixth and seventh columns. The Greatest and Least are the greatest and least among the differences corresponding to the times of observation in the civil day, or they are found from the absolute maxima and minima, as determined by comparing the observations of the self-registering wet-bulb thermometers with those of the self-registering dry-bulb thermometers.

The difference between the mean temperature for the day and the mean for the same day of the year on an average of forty-three years, is found by comparison with a table of results deduced by Mr. Glaisher from forty-three years' observations, made at the Royal Observatory, ending 1856.

Little explanation of the results deduced from Osler's Anemometer appears to be necessary. It may be understood generally that the greatest pressure occurred in gusts of short duration.

Robinson's Anemometer is read off every day at 22^{h} (10^{h} a.m.).
The register of rain is read at 9^{h} P.m. from the Cylinder Rain-gauge partly sunk in the ground, described above as the "eighth." If, however, there appears to be any doubt as to the correctness of the results, reference is made to a Rain-gauge of similar ronstruction and placed near to it, called above the "seventh."

For understanding the divisions of time under the heads of Electricity and Weather, the following remarks are necessary:-The day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is roughly subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the remarks before it apply (roughly) to the interval from midnight to 6 a.m., and those following it to the interval from 6 а.м. to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column.

The following is the explanation of the notation employed for record of electrical observations, it being premised that the quality of the Electricity is always to be supposed positive when no indication of quality is given :-

g cur. denotes galvanic currents	s denotes strong				
m	\ldots	moderate	sp	\ldots	sparks
N	\cdots	negative	v	\ldots	variable
\mathbf{P}	\cdots	positive	w	\ldots	weak

Greenwich Magnetical and Meteorological Observations, 1864.

The duplication of the letter denotes an intensity of the modification described : thus, s s is very strong; v v , very variable.

The Clouds and Weather are described generally by Howard's Nomenclature ; the figure denotes the proportion of sky covered by clouds, the whole sky being represented by 10. The notation is as follows :

The foot-notes show the means and extremes of readings, and their departure in each month from average values, as found from the preceding Twenty-three Years' Observations; those relating to Humidity have been calculated from the Third Edition of Glaisher's Hygrometrical Tables.
§ 17. Details of the Chemical Operations for the Photographic Records.
Mr. Glaisher has drawn up the following account of the Chemical Processes employed in the Photographic Operations for the self-registration of the Magnetical and Meteorological Indications.

Chemical Preparation and Treatment of the Photographic Paper for Primaries.
The paper used is similar to that made by Whatman; it is made by his successor Hollingsworth; it is strong and of even texture, and is prepared expressly for Photographic purposes.

First Operation.-Preliminary Preparation of the Paper.

The chemical solutions used in this process are the following :-
(1.) Sixteen grains of Iodide of Potassium are dissolved in one ounce of distilled water.
(2.) Twenty-four grains of Bromide of Potassium are dissolved in one ounce of distilled water.
(3.) When the crystals are dissolved, the two solutions are mixed together, forming the iodising solution. The mixture will keep through any length of time. Immediately before use, it is filtered through filtering paper.

A quantity of the paper, sufficient for the consumption of several weeks, is treated in the following manner, sheet after sheet.

The sheet of paper is pinned by its four corners to a horizontal board. Upon the paper, a sufficient quantity (about 50 minims, or $\frac{5}{48}$ of an ounce troy) of the iodising solution is applied, by pouring it upon the paper in front of a glass rod, which is then moved to and fro till the whole surface is uniformly wetted by the solution. Or, the solution may be evenly distributed by means of a camel's hair brush.
The paper thus prepared is allowed to remain in a horizontal position for a few minutes, and is then hung up to dry in the air ; when dry, it is placed in a drawer, and may be kept through any length of time.

Second Operation.-Rendering the Paper sensitive to the Action of Light.

A solution of Nitrate of Silver is prepared by dissolving 50 grains of crystallized Nitrate of Silver in one ounce of distilled water. In hot weather a few drops of Acetic Acid are added.

Then the following operation is performed in a room illuminated by yellow light.
The paper is pinned as before upon a board somewhat smaller than itself, and (by means of a glass rod, as before,) its surface is wetted with 50 minims of the nitrate of silver solution. It is allowed to remain a short time in a horizontal position, and, if any part of the paper still shines from the presence of a part of the solution unabsorbed into its texture, the superfluous fluid is taken off by the application of blotting paper.
The paper, still damp, is immediately placed upon the interior glass cylinder, and is covered by the exterior glass cylinder, and the united cylinders are mounted upon the revolving apparatus, to receive the spot of light formed by the mirror, which is carried by the magnet; or to receive the line of light passing through the thermometer tube.

Third Operation.-Development of the Photographic Trace.

When the paper is removed from the cylinder, it is placed as before upon a board, and a saturated solution of Gallic Acid, to which a few drops of Aceto-Nitrate of Silver are added, (in hot weather this solution is used at the temperature of the air, in cold weather it is heated to the temperature of 70° or 80°, or even higher if the weather is very cold,) is spread over the paper by means of a glass rod, and this action is continued until the trace is fully developed. When the trace is well developed, the paper is placed in a vessel with water, and repeatedly washed with several waters; a brush being passed lightly over both sides of the paper to remove any crystalline deposit.

Fourth Operation.-Fixing the Photographic Trace.

The Photograph is placed in a solution of Hyposulphite of Soda, made by dissolving four or five ounces of the Hyposulphite in a pint of water; it is plunged completely in the liquid, and allowed to remain from one to two hours, until the yellow tint of the Iodide of Silver is removed. After this the sheet is washed repeatedly with water, allowed to remain immersed in water for 24 hours, and afterwards placed within folds of cotton cloths till nearly dry. Finally it is placed between sheets of blotting-paper, and is pressed.

Chemical Preparation and Treatment of the Photographic Paper for Secondaries.

The paper used is made by Rive; it is a strong wove paper of tolerably even texture, thin, but able to bear a great deal of wear.

First Operation.-Preliminary Preparation of the Paper.
The chemical solution required for this purpose is as follows:-
Two grains of Chloride of Ammonium are dissolved in one ounce of distilled water.

A sufficient quantity of this solution is placed in a flat-bottomed porcelain dish, and sheets of paper, one by one, are plunged within it; care being taken that no air bubbles remain between the paper and the solution; this may be prevented by slight pressure over the sheet by means of a bent glass rad. When a few sheets are thus immersed, they are turned over, and are taken out and hung to dry. Any number of sheets may thus be prepared.

An equally good result is obtained, by spreading over one side by means of a glass rod, as in the preparation of the Primaries, a solution of Chloride of Ammonium made by dissolving five grains in one ounce of distilled water.

Second Operation.-Rendering the Paper sensitive to the Action of Light,
The solution required for this purpose is as follows :-
To a filtered solution of Nitrate of Silver, (made by dissolving 50 grains of Crystallized Nitrate of Silver in one ounce of distilled water,) some strong solution of Ammonia is added; the whole becomes at first of a dark brown colour, but when a sufficient quantity of Ammonia is added the solution becomes perfectly clear; a few crystals of Nitrate of Silver are then added till the solution is a little dull, forming "Ammoniacal Nitrate of Silver;" it is then ready for use.
The following operation is performed in a room illuminated by yellow light :-
By means of, a glass rod this solution is spread over the paper, whilst pinned on a board; the paper is dried before a fire, and is then in a fit state to be used for producing a Secondary.

Third Operation.-Formation of the Photographic Copy.

A sheet of the paper so prepared is placed in a printing frame with its prepared side upwards, upon a bed of blotting paper resting upon a sheet of plate-glass; the Primary is then placed on the paper with its own face downwards; and as it is necessary, for obtaining a correct copy of the Primary, that it should be in close contact with the prepared surface, a second sheet of plate-glass is placed over it, and the two are pressed together by clamps and screws. The whole is then exposed to the light (the Primary to be copied being above the paper on which the copy is to be made). The time required to produce a copy depends, in a great measure, upon the thickness of the paper on which the Primary is made, and on the actinic quality of the light; a period of five minutes in a bright sunshine, or one hour in clear daylight, is generally sufficient.

> Fourth Operation.-Fixing the Photographic Secondary.

When an impression has been thus obtained, it is necessary that the undecomposed Salts of Silver remaining in the paper be removed.

For this purpose the Secondary is at once plunged into water and well washed on both sides, passing a camel's hair brush over every part of it ; it is then plunged into a solution of Hyposulphite of Soda (made by dissolving two or three ounces of the Hyposulphite in a pint of water), and is left through a period varying from half aut hour to an hour. It is then removed, and washed in plain water several times; and running water is allowed to pass over it for twenty-four hours.

The sheets are then placed within the folds of drying cloths, till nearly dry, and finally between sheets of blotting paper.

The process of obtaining a Tertiary from a Secondary is in every respect the same as that of obtaining a Secondary from a Primary.

§ 18. Personal Establishment.

The personal establishment during the year 1864 has consisted of James Glaisher, Esq., F.R.S., Superintendent of the Magnetical and Meteorological Department, and Mr. William Carpenter Nash, Assistant.

Three or four computers have usually been attached to the Department.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF'

O B S E R V A T I O N S

OF THE
MAGNETIC DIP。
1864.

Magnetic Dif, observed at the Royal Observatory, Greenwich, chiefly with Airy's Dip Apparatus, in the Year 1864.

The observations of Magnetic Dip with Airy's instrument, distinguished by the initial N, have been made throughout the year by Mr. W. C. Nash. One observation on November 10, with the initial W, was made by Mr. Whipple of the Kew Observatory.
On November ro and II, observations were made with two Kew Dip-Circles marked 43 and 44, by Mr. Glaisher, and Mr. Balfour Stewart, Director of the Kew Observatory. These observations are distinguished by the initials G and BS.
The agate edges of Airy's instrument were re-ground by Mr. Simms, between November 1 I and November 18.

Monthly Means of Magnetic Dips, observed at the Roval Observatory, Greenwich, in the Year 186														
$\begin{gathered} \text { Month, } \\ \text { 1864. } \end{gathered}$	Airr's Dip Apparatus.													
		$\begin{gathered} \text { Number } \\ \text { of ofer } \\ \text { ofations. } \end{gathered}$		$\begin{gathered} \text { Number } \\ \text { Oofer } \\ \text { Obser. } \\ \text { vations. } \end{gathered}$			$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of ofer } \\ \text { ofser } \\ \text { vations. } \end{gathered}\right.$		$\begin{gathered} \text { Number } \\ \text { Nof } \\ \text { obser } \\ \text { vations. } \end{gathered}$	$\substack{\text { C-inch } \\ \text { Ninede. }}$	$\begin{gathered} \text { Number } \\ \text { ous ofer } \\ \text { obser } \\ \text { vatios. } \end{gathered}$			$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Obser- } \\ \text { vations. } \end{gathered}$
		\because \because \because \because \cdots \because		\because \because \because \because \because \cdots \because \square							1 1 1 1 1 \because \because 1 \square \square			
Means.	(68. 2. 13)	$\overline{S_{6}}$	(68. 5. 2)	$\overline{\operatorname{Sum}_{5}}$				(67.47.41)	Sum 9	(68. 7. 4)	${ }_{\substack{\text { Sum } \\ \text { io }}}$	(68.		Sum
$\begin{gathered} \text { Month, } \\ \text { I864 } \end{gathered}$	Airr's Dip Apparatus.													
		$\begin{gathered} \text { Number } \\ \text { Nober } \\ \text { obser } \\ \text { vations. } \end{gathered}$		$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { obser- } \\ \text { vations. } \end{gathered}\right.$	$\begin{gathered} \text { D I } 1, \\ \text { 3-inch } \\ \text { Needle. } \end{gathered}$		$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { obser } \\ \text { vations. } \end{gathered}\right.$	$\begin{gathered} \mathrm{D}_{3} \text { inch } \\ \text { Ninched. } \\ \text { Need. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { Ofoser } \\ \text { obaion } \\ \text { vations. } \end{gathered}\right.$		$\begin{gathered} \text { Number } \\ \text { oforer } \\ \text { obever } \\ \text { vations. } \end{gathered}$			$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Obser- } \\ & \text { vations. } \end{aligned}$
January. March April May. June July. August... October . . December	$\circ \ldots$ \cdots $\cdots 8$. 68.164^{3} \cdots $\cdots .$.			1 2 2 2 1					\because \because \because \because 1 1 1 1 1 \because 4	68.29. 7 68.10. 26 \qquad -•••	1 \because \because \because \because \because \because \because \because \because			$\begin{gathered} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ . \\ .1 \\ . \\ \hline \end{gathered}$
eans			(68. 0.52)	${ }_{18}{ }_{1}$	(68.		${ }_{6} \mathrm{Sum}$	(68. 2. 2	${ }_{\substack{\text { Sum } \\ 10}}$.	(68.		$\overline{\mathrm{Sum}_{14}}$
$\begin{gathered} \text { Month, } \\ 1864 . \end{gathered}$	Kew Dip Circle, No. 43.							Kew Dip Circle, No. 44.						
	$\underset{3^{3} \text {-inch Ni Neadle. }}{\text { A }}$	$\begin{gathered} \text { Number of } \\ \text { Observations. } \end{gathered}$		$\underset{3_{2}^{2}-\text {-inch }}{\text { A } 2 \text { Needle }}$.		Number of Observations.\qquad		$\underset{3 \text { 3--inch }}{\mathrm{A} \mathrm{f} \text { Neede }}$		Number of Observations.	${ }_{3 \frac{1}{2}-\text { inch }}^{\text {A } 22}$ Needle.		Number of Observations	
January. March April . May. June . July August September November December -••• 68. $4 \cdot 20$ \qquad		\because							 \ldots \ldots 68. 6. 23 			
	\cdots					\cdots							
For this table the monthly means have been formed without reference to the hour at which the observation was made on each day, as in preceding years no 														

Yearly Means of Magnetic Dips for each of the Needles, and General Mean for the Year 1864.								
Lengths of the several Sets of Needles.	Needles.	Number of Observations with each Needle.	Yearly Means uncorrected.			Yearly Means reduced to the middle of the Year.		
			Mean Yearly Dip from Observations with each Needle.	Mean Yearly Dip from each Set of Needles, excluding the flat Needles.	Mean Yearly Dip from all the Sets of Needles, excluding the flat Needles.	$\begin{aligned} & \text { Adopted mean } \\ & \text { Yearly Dip } \\ & \text { for each } \\ & \text { Needle. } \end{aligned}$	Mean Yearly Dip from each Set of Needles, excluding the flat Needles.	Mean Yearly Dip from all the Sets of Needles, excluding the flat Needles.
9-inch Needles . . . $\{$			- , "	- 11	- , "	- , "	- 11	- , "
	B 1	6	68. 2.32			68. 2. 13)
	B 2	5	68. 5. 21	68. 3.49		68. 5. 2	68. 3.38	
	B4	9	(67.47.36)			(67.47.41)		
6-inch Needles . . . $\{$	Cl_{1}	10	68. $7 \cdot 24$			68. 7. 4		
	C 2	7	68.3.21	68. 5. 44	668.4.23	68. 2.57	68. 5. ○	668. 4. 3
	C 4	18	(68. 0.52)			(68. 0.52)		
3-inch Needles $\{$	D 1	6	68. 4.58			68. 4.35		
	D 2	10	68. 2.47	68. 3.36		68. 2.29	68. 3.32	
	D 4	14	(68. 2. 57)		J	(68. 2.58)		\int

The observations with the loaded needles $\mathrm{B}_{3}, \mathrm{C}_{3}$. and D_{3}, have been too few in number for the formation of yearly means for those needles.
The results for the flat needles $\mathrm{B}_{4}, \mathrm{C}_{4}, 1$, , though perfectly consistent among themselves, are affected by constant errors, different for the different needles, which diminish the apparent dip, as is explained in the Introduction.

ROYAL OBSERVATORY, GREENWICH.
OBSERVATIONSOF
DEFLEXION OFA MAGNET
FOR
ABSOLUTE MEASURE
OF
HORIZONTAL FORCE.
1864.
(vi) Observations of Deflexion of a Magnet and Computations of Absolute Measure of Horizontal Force,

Abstract of the Observations of Deflexion of a Magnet for Absolute Measure of Horizontal Force, made with the Kew Unifilar Instrument.

Month and Day, 1864.		Distances of Centers of Magnets.	Temperature.	Observed Deflexion.	Mean of the Times of Vibration of Deflecting Magnet.	Number of Vibrations.	Temperature.	寅
January	29	$\begin{aligned} & \text { ft. } \\ & 1.0 \\ & 1.3 \end{aligned}$	$48 \cdot 1$	$\begin{array}{r} \circ \quad, \quad " 1 \\ 14.40 .55 \\ 6.37 .53 \end{array}$	$\begin{aligned} & 4.959 \\ & 4.960 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 49^{\circ} \circ \\ & 54^{\circ} \end{aligned}$	N
February	2	$\begin{aligned} & 1 \circ 0 \\ & 1.0 \end{aligned}$	46^{1}	$\begin{array}{r} 14.41 .39 \\ 6.38 .32 \end{array}$	$\begin{aligned} & 4.949 \\ & 4.960 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 49 \cdot 8 \\ & 49 \cdot 5 \end{aligned}$	${ }^{N}$
February	9	$\begin{aligned} & 1 \circ 0 \\ & 1.0 \end{aligned}$	319	14.43 .3 6. 39.3	$\begin{aligned} & 4 \cdot 958 \\ & 4 \cdot 953 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 33 \cdot 6 \\ & 35 \cdot 8 \end{aligned}$	N
March	29	$\begin{array}{r} 1 \cdot 0 \\ : 1 \cdot 3 \end{array}$	$48 \cdot 8$	$\begin{array}{r} 14.39 .14 \\ 6.37 .8 \end{array}$	$\begin{aligned} & 4 \cdot 954 \\ & 4 \cdot 959 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 50 \cdot 2 \\ & 53 \cdot 9 \end{aligned}$	N
April	13	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$58 \cdot 2$	14.35 .46 6.35 .28	$\begin{aligned} & 4.970 \\ & 4.97 \mathrm{I} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58 \cdot 3 \\ & 61 \cdot 7 \end{aligned}$	N
April	26	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	$58 \cdot 2$	$\begin{array}{r} 14.36 .45 \\ 6.36 .10 \end{array}$	$\begin{aligned} & 4 \cdot 963 \\ & 4.970 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 59 \cdot 3 \\ & 6 \mathrm{I} \cdot 5 \end{aligned}$	N
May	10	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	597	$\begin{array}{rr} 14.39 . & \circ \\ 6.37 . & 5 \end{array}$	$\begin{aligned} & 4 * 955 \\ & 4 \cdot 970 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 60 \cdot 5 \\ & 62 \cdot 6 \end{aligned}$	N
June	9	$\begin{aligned} & \text { 1.0 } \\ & 1.3 \end{aligned}$	$69 \cdot 8$	14.41 .54 6.36 .43	$\begin{aligned} & 4 \cdot 983 \\ & 4 \cdot 983 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 73 \cdot 8 \\ & 72 \cdot 0 \end{aligned}$	N
June	21	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	677	14.30 .45 6.33 .14	$\begin{aligned} & 4 * 98 \mathbf{1} \\ & 4 \cdot 975 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 69 \cdot 1 \\ & 69.0 \end{aligned}$	N
July	6	$\begin{array}{ll} 1 \\ 1 & 0 \end{array}$	$64 \cdot 8$	14.30 .53 6.31 .0	$\begin{aligned} & 4.980 \\ & 4.982 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 65 \cdot 8 \\ & 65 \cdot 8 \end{aligned}$	N
July	27	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	727	14.27 .10 6.31 .36	$\begin{array}{r} 4.991 \\ 4.991 \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 73 \cdot 2 \\ & 78 \cdot 0 \end{aligned}$	N
August	12	$\begin{aligned} & 100 \\ & 103 \end{aligned}$	$72 \cdot 3$	14.22 .39 6.29 .44	$\begin{aligned} & 4.995 \\ & 4.996 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 72 \cdot 6 \\ & 77 \cdot 7 \end{aligned}$	N
August	24	$\begin{aligned} & 100 \\ & 1.0 \end{aligned}$	$61 \cdot 3$	$\begin{array}{r} 14.26 .48 \\ 6.31 .44 \end{array}$	$\begin{aligned} & 4.996 \\ & 4.999 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 59 \cdot 2 \\ & 64 \cdot 5 \end{aligned}$	N
September	15	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$65 \cdot 1$	14.21 .23 6.29 .17	$\begin{aligned} & 4 \div 998 \\ & 4.998 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 67 \cdot 1 \\ & 70 \cdot 0 \end{aligned}$	N
October	4	$\begin{aligned} & 100 \\ & 103 \end{aligned}$	61.6	$\begin{array}{r} 14.20 .2 \\ 6.28 .24 \end{array}$	$\begin{aligned} & 5 \cdot 010 \\ & 5 \cdot 008 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 64 \cdot 9 \\ & 63 \cdot 9 \end{aligned}$	N
October	18	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$60 \cdot 8$	$\begin{array}{r} 14.20 .2 \\ 6.28 .40 \end{array}$	$\begin{aligned} & 5 \cdot 006 \\ & 5 \cdot 014 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 62 \cdot 7 \\ & 62 \cdot 0 \end{aligned}$	${ }^{\text {N }}$
November	9	$\begin{aligned} & 1 \circ 0 \\ & 1.0 \end{aligned}$	467	14.19 .24 6.28 .16	$\begin{aligned} & 5 \cdot 006 \\ & 5 \cdot 019 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 53 \cdot 5 \\ & 47 \cdot 8 \end{aligned}$	N
December	8	$\begin{aligned} & 1 \circ \\ & 143 \end{aligned}$	477	14.18 .48 6.27 .48	$\begin{aligned} & 5 \cdot 012 \\ & 5 \cdot 13 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 49 \cdot 7 \\ 52 \cdot 9 \end{array}$	${ }^{\text {N }}$
December	27	$\begin{aligned} & 100 \\ & 1.3 \\ & \hline \end{aligned}$	34.4	$\begin{array}{r} 14.17 .21 \\ 6.27 .41 \\ \hline \end{array}$	$\begin{gathered} 5 \cdot 008 \\ 5 \cdot 011 \\ \hline \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{r} 36 \cdot 8 \\ 37 \cdot 1 \\ \hline \end{array}$	N

The position of the Deflecting Magnet with regard to the suspended Magnet is always that which was formerly termed "Lateral." The Deflecting Magnet
is placed on the East side of the suspended Magnet, with its marked pole alternately E. and W., and it is placed on the West side with its pole alternately E .
and W.; and the deflexion in the table above is the mean of the four deflexions observed in those positions of the magnets.
The lengths of I foot and $1 \cdot 3$ foot answer to $304 \cdot 8$ and $396 \cdot 2$ millimètres respectively.
The initial N is that of Mr. W. C. Nash.
In the following calculations, every observation is reduced to the temperature 35°.

Compttation of the Values of Absolute Measure of Horizontal Force, from Observations with the Kew Unifilar Instrument.

[^0]ROYAL OBSERVATORY, GREENWICH.

RESULTS

${ }^{0}$

METEOROLOGICAL OBSERVATIONS.

1864.

$\left\lvert\, \begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ 1864 . \end{gathered}\right.$	Phases of the Moon．		Readings of Thermometers．								Difference between the Dew Point Temperature and Air Temperature．				Wind as deduced from Anemometers．								
			Dry．						In the Water of the Thames， at Greenwich， by Self－Regis－ tering Ther－ $\underset{\text { at } 9^{n} \text { A．M．}}{\text { mometers，rea }}$					Osler＇s．	Sobiv．								
						Dew Point．					General Direction．	Pressure in lbs． on the square foot．											
			$\begin{aligned} & \text { 淢 } \\ & \text { 荡 } \end{aligned}$		$\begin{array}{c\|} \text { Mean } \\ \text { Daily } \\ \text { Value. } \end{array}$	Mean Daily Value．								Mean Daily Value．			$\begin{aligned} & \text { 甾 } \\ & \text { H } \end{aligned}$	A．M．	P．M．	葉		䔍	\％\％
		in．	－	－	\bigcirc	－	\bigcirc	－	－	－	－	\bigcirc						1bs．	1bs．	Ibs．	miles．	in．	
Jan． 1		29.842	35.5	$30 \cdot 9$	$32 \cdot 9$	$21^{\circ} \mathrm{O}$	$39^{\circ} 0$	$30 \cdot 5$	$43 \cdot 2$	$41^{\circ} \mathrm{O}$	11＊9	16.0	8.4		-3.6	NE		$7{ }^{\circ}$	$0 \cdot 0$	1.5	275	00	
	Last Qr．	30.372	34.5	$25 \cdot 2$	$29^{\circ} 8$	$20 \cdot 6$	$36 \cdot 8$	$18 \cdot 6$	$42 \cdot 6$	$39^{\circ} 4$	9.2	12.9	77		－6．6	NE	NE：E	$0 \cdot 0$	－0	$0 \cdot$	120	0.00	
3		30.473	34.5	23.5	28.7	179	$47 \cdot 8$	17.0	42.4	$39^{\circ} 2$	10.8	13.2	79	－77	$\mathbf{N}: \mathbf{E}$	NE	$2 \cdot 7$	\bigcirc	$0 \cdot 3$	I98	$0 \cdot 00$		
		$30 \cdot 362$	$32 \cdot 8$	22.0	$27 \cdot 8$	$20^{\circ} 9$	$44^{\circ} \mathrm{O}$	18.0	$4{ }^{\circ} 6$	38.4	6.9	11.2	5.6	－8．5	NE	NE	3.0	$0 \cdot 0$	$0 \cdot 4$	241	$0 \cdot 00$		
5		$30 \cdot 161$	$33 \cdot 5$	21.7	$26 \cdot 6$	14.7	$47^{\circ} 2$	17.2	41.6	$38 \cdot 4$	$11 \cdot 9$	$16 \cdot 3$	$8 \cdot 8$	－ 9.5	ENE	E	$2 \cdot 0$	$0{ }^{\circ}$	0.2	126	$0 \cdot 00$		
6		$30 \cdot 095$	$28 \cdot 1$	15\％	21.1	$10 \cdot 4$	$35 \cdot$	$7{ }^{\circ}$	41.4	$38 \cdot 2$	$10 \cdot 7$	$16 \cdot 5$	$6 \cdot$	－149	Calm	Calm	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	54	$0 \cdot 00$		
	Decilinat	30．037	29＊8	14.3	22.6	17.5	32.0	6.0	$41^{\circ} \mathrm{I}$	$37 \cdot 9$	$5 \cdot 1$	8.0	3.4	-13.2	Calm	Calm	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	63	0		
8		29.862	$3 \mathrm{I} \cdot 8$	23.7	27.3	$20^{\circ} 9$	42°	22°	$40 \cdot 8$	$39^{\circ} 6$	6.4	10.4	2.7	－ 8.2	Calm	Calm	$\bigcirc \cdot$	$0 \cdot 0$	$0 \cdot 0$	83	0.00		
9	New．	29.780	$38 \cdot 3$	21.6	32.4	$3 \mathrm{I} \cdot 1$	59°	19.5	$40 \cdot 1$	$30^{\circ} 9$	$1 \cdot 3$	$2 \cdot 3$	$0 \cdot 0$	－3．0	Calm	SE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	157	－0		
10	Perigee．	29.883	$45 \cdot 6$	$36 \cdot 6$	$40^{\circ} 1$	$35 \cdot 6$	$64^{\circ} \mathrm{O}$	31.6	$40 \cdot 6$	3 I 4	4.5	$6 \cdot 5$	$1 \bigcirc$	＋ $4{ }^{\circ} 4$	SE	SE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	126	0		
11	Pers	29.975	$46 \cdot 7$	$34^{\circ} 9$	$39 \cdot 5$	$33 \cdot 2$	73.0	30.2	$40 \cdot 5$	$3 \mathrm{I} \cdot 4$	$6 \cdot 3$	$9^{9} 9$	2.0	+3.9 $+\quad 1$	SE	SE	1.5	$0 \cdot 0$	$0 \cdot 1$	201	00		
12		29.982	41．4	$32 \cdot 2$	$37 \cdot 2$	$35 \cdot$	55.0	25°	$38 \cdot 8$	$33 \cdot 0$	$2 \cdot 2$	$5 \cdot 3$	$0{ }^{\circ}$	$+1 \cdot 6$	SE	Calm	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	77	$0 \cdot 02$		
13	In Equat	$30 \cdot 170$	$38 \cdot 0$	$35 \cdot 9$	$36 \cdot 9$	$35 \cdot 9$	$39^{\circ} 6$	$33 \cdot 7$	38.2	33.4	$1 \cdot 0$	1.4	$0 \cdot 0$	＋1．3	Calm	Calm	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	83	0.14		
14	－	$30 \cdot 123$	$38 \cdot 2$	34°	$36 \cdot 2$	34.7	$39^{\cdot} 3$	3 I 9	$37 \cdot 9$	$35 \cdot 4$	${ }_{1} \cdot 5$	$2 \cdot 9$	$0 \cdot 0$	＋ $0 \cdot 6$	Calm	Calm	－	$0 \cdot 0$	$0 \cdot 0$	66	0.01		
15	First Qr．	$30 \cdot 151$	$34 \cdot 5$	$29^{\circ} 9$	$32 \cdot 5$	29.5	$39^{\circ} 4$	$25 \cdot 7$	$37 \cdot 8$	$35 \cdot 6$	$3 \cdot 0$	$4 \cdot 8$	$1 \cdot 4$	－3．0	Calm	SE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	164	$0 \cdot 00$		
16		30.091	$38 \cdot 2$	32.4	35°	28.0	48.0	29°	37.5	$35 \cdot 3$	$7{ }^{\circ} 0$	10.8 2.3	$3 \cdot 4$	－0．5	SE	SE	2.4	$0 \cdot 0$	0.2	263	$0 \cdot 00$		
17		29.828	$42 \cdot 6$	$32 \cdot 5$	$36 \cdot 8$	$35 \cdot 4$	42.6	$28 \cdot 2$ 38.	$37^{\circ} 6$	$35 \cdot 3$	I．4	$2 \cdot 3$	$0 \cdot 0$	+0.9 $+\quad 5$	${ }_{\text {SE }}^{\text {Salm }}$	SE	$3 \cdot 0$	$0 \cdot$	$0 \cdot 3$	98	0.22		
18		29.969	$44 \cdot 8$	38.0	$41 \cdot 3$	$40^{\circ} 7$	$45^{\circ} \mathrm{O}$	38.0	$37 \cdot 8$	$36 \cdot 0$	0.6	I－3	$0 \cdot 0$	$+5 \cdot$	Calm	SE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	112	$0 \cdot 00$		
19		$30 \cdot 064$	$48 \cdot 2$	$40^{\circ} 7$	$44^{\circ} 4$	40＊8	$68 \cdot 9$	38.4	$38^{\circ} 0$	35.4	$3 \cdot 6$	$6 \cdot 3$	$\cdot 0$	＋ 79	SSW	SW	$2 \cdot 8$	$0 \cdot 0$	$0 \cdot 3$	342	$0 \cdot 01$		
20	$\underset{\text { deelinationt }}{\text { Greater }}$ N．	30.08 I	$47 \cdot 8$	$43 \cdot 6$	$45 \cdot 2$	$42 \cdot 3$	$57^{\circ} 5$	$43 \cdot 1$	$39 \cdot 6$	$37 \cdot 5$	$2 \cdot 9$	$4 \cdot 6$	$1 \cdot 7$	+8.4 +8.2	SW	SSW	4.0	$0 \cdot 0$	0.6	426	0.15		
21		29.823	$48 \cdot 8$	$4 \mathrm{I} \cdot 3$	$45 \cdot 3$	$42 \cdot 2$	55.2	41°	$41^{\circ} 1$	$39^{\prime} 7$	$3 \cdot 1$	$6 \cdot 3$	$1 \cdot 4$	＋ 8.2	SW	SW：SSW	$4 \cdot 5$	－0	$0 \cdot 7$	384	．06		
22		29.668	53．0	$44^{\circ} 4$	$49^{\circ} 9$	$47^{\circ} 2$	$55^{7} 7$	$41^{\prime 2}$	$42 \cdot 3$	40＊0	2.7	4.6	1.3	＋12．6	W	\boldsymbol{W}	$8 \cdot 0$	$0 \cdot 0$	2.5	586	0		
23	Full．	29.696	$53 \cdot 2$	$45 \cdot 9$	48.5	$43 \cdot 1$	$56 \cdot 9$	40.0	$44^{6} 6$	42.4	$5 \cdot 4$	$7 \cdot 6$	17	＋11．0	${ }_{\text {SWW }}^{\text {SW }}$	SW	12.0	$0 \cdot 0$	${ }^{1} 7$	230	0.04		
24	Apogee	30.098	$45 \cdot 8$	$34 \cdot 2$	$39^{\cdot 1}$	$34^{\cdot 1}$	$58^{\circ} \mathrm{O}$	26.0	$44 \cdot 5$	$41 \cdot 4$	$5 \cdot$	10.9	$0 \cdot 0$	$+1.3$	NW：SW	SW	1.5	$0 \cdot 0$	0.2	263	$\bigcirc 19$		
25		30.280	$42 \cdot 6$	34.5	$39^{\circ} \mathrm{I}$	$38 \cdot 6$	$45 \cdot 6$	$28 \cdot 5$	$44^{\circ} 2$	42.4	0．5	2.2	$0 \cdot 0$	$+1 \cdot 1$ $+\quad 2 \cdot 1$		$\underset{\mathbf{S W}}{\mathbf{S W}}: \mathbf{S}$	$1 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	178	0.00		
26		30.084	$45 \cdot 8$	$35 \cdot 1$ 37	$40^{\circ} 4$	$34 \cdot 3$	$74^{\circ} 6$	$26 \cdot 0$ $35 \cdot 7$	$44^{\circ} 7$	42.4 42.4	$6 \cdot 1$ $3 \cdot 0$	$7 \cdot 2$ 9.4		$+\quad 11$ $+\quad 8.7$	$\underset{\mathbf{S W}}{\mathbf{S}: \mathbf{S S W}}$	$\begin{aligned} & \text { SW } \\ & \mathbf{S W} \end{aligned}$	1.5 4.4	－0	$0 \cdot 1$ 1.5	319 438	－0．00		
27	In Equator	29.851	54．0	$37 \cdot 9$	47°	44°	77°	$35 \cdot 7$	44.7	424	$3 \cdot 0$	9.4	I•9	$+8.7$	SW	SW	4	$0 \cdot 0$	I．5	438	－．03		
28		29.782	$49^{\circ} 5$	40：5	$44^{\circ} 5$	$36 \cdot 6$	68.7	3 I 7	$45 \cdot 6$	$43 \cdot 4$	$7 * 9$	12.0	4.2	＋6．4	W W	NE WSE	$6 \cdot 0$	$0 \cdot 0$	1．6	363	0.01		
29		30.276	$42 \cdot 2$	27.8	34^{-2}	$26 \cdot 1$	$60 \cdot 5$	17°	$44^{\circ} 8$	$42 \cdot 6$	$8 \cdot 1$	12.5	$5 \cdot$	－3．7	N：${ }_{\mathbf{N}}^{\mathbf{N E}}$	NE：ESE	3.5	$0 \cdot 0$	$0 \cdot 3$	143	0.00		
30		30．319	41.0	$24^{\circ} \mathrm{O}$	$32 \cdot 8$	27.5	68.7	15.3	44^{6}	$42 \cdot 4$	$5 \cdot 3$	9.4	0.8	-4.8	SE：SW	SW ：S	$1 \cdot$	$0 \cdot 0$	$\bigcirc \cdot 1$	245	$0 \cdot 00$		
31		30．175	$4^{2 *} 9$	$29^{\circ} 9$	$35 \cdot 9$	$30 \cdot 5$	69°	22.7	42.6	$40^{\circ} 4$	$5 \cdot 4$	97	$0 \cdot 0$	－1．4	S：SW	SSW	I•O	$0 \cdot$	－＊	225	$0 \cdot 00$		
Means		30．044	41＊4	317	$36 \cdot 5$	$3 \mathrm{I} \cdot 3$	53.1	$27^{\circ} 0$	41.4	$38 \cdot 1$	$5 \cdot 2$	$8 \cdot 3$	2.5	－ $\mathrm{O}^{\circ} \mathrm{I}$			\ldots	．		6649	－		

Barometer Readings from Eye－Observations．
The absolute maximum in the month was $30^{\mathrm{in}} \cdot 483$ on the 3 rd ；the first minimum in the month was $29^{\text {in }} \cdot 77^{1}$ on the 9 th
The second maximum ，，was $30^{\text {in }} \cdot 184$ on the 13 th ；the second minimum ，，was $30^{\text {in }} \cdot 112$ on the 14 th．

，was $29^{\text {in }} \cdot 815$ on the 17 th
＂，\quad was $29^{\text {tin }} \cdot 636$ on the 23 rd ．
The fifth maximum ，，was $30^{\text {in }} \cdot 303$ on the 25 th ；the fifth minimum ，，was $29^{\text {in }} \cdot 744$ on the 28th．
The sixth maximum $\quad,, \quad$ was $30^{\text {in }} \cdot 354$ on the 30 th．
The range in the month was $0^{\text {in }} \cdot 847$ ．
The mean for the month was $30^{\mathrm{in}} \cdot 044$ ，being $o^{\mathrm{in}} \cdot 284$ higher than the average of the preceding 23 years．
Temperature of the Air．
The highest in the month was $54^{\circ} \cdot \circ$ on the 27 th ；the lowest was $14^{\circ} .3$ on the 7 th；and the range in the month was $39^{\circ} \cdot 7$
The mean ，，of all the highest daily readings was $41^{\circ} \cdot 4$ ，being $1^{\circ} \cdot 9$ lower than the average of the preceding 23 years．
The mean ，of all the lowest daily readings was $3 \mathrm{I}^{\circ} \cdot 7$ ，being $\mathrm{r}^{\circ} \cdot 9$ lower than the average of the preceding 23 years．
The mean daily range was $9^{\circ} \cdot 7$ ，being the same as the average of the preceding 23 years．
The mean for the month was $36^{\circ} \cdot 5$ being $x^{\circ} \cdot 8$ lower than the average of the preceding 23 years．

$\left\|\begin{array}{c} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ 1864 . \end{array}\right\|$	Phases of the Moon．	ษ ํ 꾸 낭 트율 \approx觟句 	Readings of Thermometers．								Difference between the Dew Point Temperature and Air Temperature．				Wind as deduced from Anemometers．								
			Dry．			Dew Point． Mean Daily Value．			In the Waterof the Thames，at Greenwich，by Self－Regis－tering Ther－mometers，readat 9^{h} A．M．					Osler＇s．	Robin，								
						General Direction．					Pressure in lbs． on the square foot．												
					$\begin{gathered} \text { Mean } \\ \text { Daily } \\ \text { Value } \end{gathered}$										$\begin{array}{\|c\|} \text { Mean } \\ \text { Daily } \\ \text { Value. } \end{array}$		$\begin{aligned} & \dot{\mathbf{3}} \\ & \stackrel{y}{4} \end{aligned}$	A．M．	P．M．			$\begin{aligned} & \text { 屬 } \end{aligned}$	
		in	－	－	－		－	－	－	\bigcirc	\bigcirc	－	－						1bs．	1bs．	ivs．	miles．	in．
Feb． 1	Last Qr．	$30 \cdot 055$	$46 \cdot 3$	$3 \mathrm{I} \cdot 0$	39^{-2}	$36 \cdot 9$	67.4	$21 \cdot 1$	$42 \cdot 1$	39.9	$2 \cdot 3$	77	00°		＋ 2.0	SSW	SSW	3.0	$0 \cdot 0$	0.5	373	0.00	
		29.995	47×7	$40 \cdot 8$	$44^{\cdot 8}$	$43 \cdot 0$	$50 \cdot 6$	$31 \cdot 2$	$42 \cdot 4$	$40 \cdot 2$	1.8	3.8	$0 \cdot 0$	＋ $7 \cdot 8$	SW	SW	$6 \cdot 0$	$0 \cdot 0$	1－0	499	$0 \cdot 00$		
3	Greatest	29.872	$50^{\circ} 0$	$39 \cdot 8$	$45 \cdot 4$	41.6	$63 \cdot 0$	$37^{\circ} \mathrm{O}$	$42 \cdot 6$	$40 \cdot 4$	$3 \cdot 8$	$7 \cdot 4$	$0 \cdot 0$	＋8．1	SW	WSW	$8 \cdot 0$	$0 \cdot 0$	I． 5	321	$0 \cdot 03$		
		30．036	$42 \cdot 8$	$31 \cdot 6$	$35 \cdot 5$	27.8	53.3	$24^{\circ} 1$	$41^{\circ} 6$	$39 \cdot 4$	77	I 1＊4	1.3	－ 2.2	WSW	NW：WSW	$2 \cdot 3$	$0 \cdot 0$	0.2	310	0.00		
4 5		30.073	$36 \cdot 6$	$27^{\circ} 9$	$32 \cdot 7$	$25 \cdot 9$	$57 \cdot 0$	23.0	41.6	38.4	$6 \cdot 8$	$14^{\circ} \mathrm{O}$	$2 \cdot 0$	$-5 \cdot 7$	N	N	4.5	$0 \cdot 0$	0.5	379	0.03		
6		29.970	$36 \cdot 2$	$28^{\circ} 9$	31.5	26.9	$48 \cdot 0$	25.0	41.4	$38 \cdot 2$	$4 \cdot 6$	$6 \cdot 2$	1.6	－7．5	N	N	2.6	$\bigcirc \cdot$	0.4	257	$0 \cdot 00$		
7	（ Perigee ；	29．759	$34 \cdot 6$	24.5	28.4	24°	63.0	17%	$4{ }^{1} 2$	$36 \cdot 4$	4.4	$8 \cdot 1$	$0 \cdot 0$	$-10 \cdot 8$	N	N	$0 \cdot 0$	$0 \cdot 0$	0＊0	181	00		
8		29.569	$36 \cdot 0$	$26 \cdot 3$	$30 \cdot 5$	$26 \cdot 2$	$49^{\circ} 5$	20.5	41.1	$35 \cdot 5$	4.3	$10 \cdot 0$	$0 \cdot 0$	－ $8 \cdot 7$	NW： \mathbf{N}	N	$\bigcirc \cdot$	$0 \cdot$	$0 \cdot 0$	260	0.01		
9	In Equator．	29.439	$35 \cdot 7$	$22 \cdot 8$	28.3	22.9	$44^{\circ} 2$	14.2	$40 \cdot 6$	$35 \cdot 4$	$5 \cdot 4$	11.2	1.5	-10.7	W	W：NW	$0 \cdot 0$	\bigcirc	$0 \cdot 0$	40	$0 \cdot 00$		
10		29.310	$40^{\circ} 0$	$20^{\prime} 1$	$30 \cdot 3$	3231	62°	12.1	$39 \cdot 8$	34.5	7.2	15．0	$0 \cdot 0$	－ 8.4	SW：SE	$\underset{\mathbf{N}}{\mathbf{N}} \mathbf{E}$ ： $\mathbf{N}^{\text {N}}$	$\bigcirc \bigcirc$	$0 \cdot 0$	O＇0	172	$0 \cdot 00$		
11		29.640	$35 \cdot 8$	$3 \mathrm{I} \cdot \mathrm{I}$	$33 \cdot 5$	28.0	39°	$29^{\circ} 1$	38.6	33.9	$5 \cdot 5$	$7 \cdot 8$	$1 \cdot 7$	$-5 \cdot 0$	N	W：S	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	264	$0 \cdot 00$		
12		29.311	$52 \cdot 7$	$32 \cdot 2$	$42 \cdot 7$	$41^{\circ} 4$	59.6	19.6	$40 \cdot 1$	34.9	$1 \cdot 3$	2.4	$0 \cdot 0$	$+4.4$	S	SW	$6 \cdot 0$	$0 \cdot 0$	$1^{\circ} \mathrm{C}$	460	0．33		
13		$29 \cdot 647$	$53 \cdot 8$	$43 \cdot 4$	$48 \cdot 5$	439	$56 \cdot 7$	37°			$4 \cdot 6$	$6 \cdot 6$	$0 \cdot 0$	$+10.3$	SW	SW	21°	$0^{\circ} 0$	$3 \cdot 8$	492	－0．00		
14	First Qr．	30.119	53.3	37°	44°	39°	$72 \cdot 5$	$31 \cdot 1$		$35 \cdot 4$	$4 \cdot 8$	12.2	$0 \cdot 0$	＋6．0	SW	SW	$3 \cdot 3$	$0 \cdot 0$	$0 \cdot 4$	346	$0 \cdot 00$		
15		29：734	50．0	$40 \cdot 9$	46.0	$43 \cdot 9$	$56 \cdot 0$	$37 \cdot 3$		37.9	$2 \cdot 1$	5.0	$0 \cdot 0$	＋ 79	SW	SW	$4^{\circ} \mathrm{O}$	0	$0 \cdot 6$	417	$0 \cdot 00$		
16	$\underset{\text { Deccinatiognt }}{\substack{\text { G }}}$	29.592	$50 \cdot 6$	$37 \cdot 2$	$43 \cdot 2$	38.7	$69 \cdot 6$	$34^{\circ} \mathrm{O}$		38.4	4.5	$9 \cdot 2$	10	$+5 \cdot 1$	SW	W	$6 \cdot 0$	$0 \cdot 0$	0.6	346	－0．05		
17		29.876	$44 \cdot 8$	$32 \cdot 3$	37.5	$29 \cdot 8$	64°	$26 \cdot 2$		$38 \cdot 9$	77	13.0	1×2	－0．7	W：NW	$\stackrel{\mathrm{N}}{\mathbf{N E}}$	$4 \cdot 8$	－ 0	$0 \cdot 4$	268	$\bigcirc \cdot 05$		
18		30．069	397	28.9	33.8	$26 \cdot 7$	$60 \cdot 8$	24.4	．	38.4	7．1	$13 \cdot 1$	$0 \cdot 0$	-4.5		E：NE	$3 \cdot 0$	$0 \cdot 0$	0.2	267	$0 \cdot 00$		
19		$30 \cdot 157$	34.4	$26 \cdot 4$	$28 \cdot 9$	18.1	61.0	23.2		38.4	10.8	13.9	7.0	－ 95	NE	NE	$4^{\circ} 0$	－0	$0 \cdot 4$	269	$0 \cdot 01$		
20	Apogee	29.803	$3 \mathrm{I} \cdot 5$	$23 \cdot 8$	26.9	19.5	$56 \cdot 5$	23.0		37.4	$7 \cdot 4$	11.0	$2 \cdot 3$	－11．6	NE	NE^{N}	$1 \cdot 5$	－0	0.1	255	$0 \cdot 1$		
21		29.534	$33 \cdot 3$	$26 \cdot 0$	$29^{\circ} 6$	18.8	38.0	$25 \cdot 2$			10．8	12.3	9＊0	－ $8 \cdot 9$	NNE	N	$1 \cdot 0$	\bigcirc	$0 \cdot 1$	172	0.00		
22	Full	$29^{\circ} 712$	$35 \cdot 3$	$29^{\prime} 1$	31．5	$25 \cdot 5$	44.5	27.8			$6 \cdot 0$	94	$2 \cdot 1$	－7．1	N	NE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	48	$0 \cdot 00$		
23		29.782	$37 \cdot 0$	$25 \cdot 0$	$30 \cdot 5$	27.3	49.5	18.5			$3 \cdot 2$	7＊－3	\bigcirc	-8.4 -6.9	$\stackrel{\text { Calm }}{\text { NE }}$	NE	－0．0	－0．0	$0 \cdot 0$ 0.3	145	$0 \cdot 05$		
24	In Equator	29.809	$39 \cdot 3$	24.4	$32 \cdot 2$	27.3	$46 \cdot 4$	16.2	$37 \cdot 6$	$35 \cdot 4$	4.9	10.1	$0 \cdot 0$	－ $6 \cdot 9$	NE	NE	2.5	$0 \cdot 0$	$0 \cdot 3$	253	0.01		
25		29．819	$37 \cdot 8$	31－9	34.7	30．3	$46 \cdot 0$	31．1	$36 \cdot 6$	34.4	4.4	74	$1 \cdot 2$	－4．8	NE		$3 \cdot 0$	$0 \cdot 0$	$0 \cdot 2$	214	$0 \cdot 10$		
26		29.785	$37 \cdot 3$	33.7	35.5	$33 \cdot 7$	$40 \cdot 5$	$30 \cdot 9$	$37 \cdot 1$	$34^{\circ} 9$	1.8	$2 \cdot$	$1 \cdot 2$	－ 4.2	NE	NNE	$0 \cdot 0$	$0 \cdot$	$0 \cdot 0$	160	$0 \cdot 00$		
27	．	29.585	39°	34.7	$36 \cdot 8$	36．2	$43 \cdot 3$	$34 \cdot 2$	37.6	$35 \cdot 4$	0.6	14	$0 \cdot 0$	－ 3.0	NE：EN	E	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	155	$0 \cdot 0$		
28		29.507	$50 \cdot 0$	$37 \cdot 1$	$42 \cdot 3$	$41 \cdot 3$	50°	$33 \cdot 3$	$38 \cdot 1$ 38.6	$35 \cdot 9$ $36 \cdot 9$	1.0	$5 \cdot 3$	$0 \cdot 0$	$+\quad 2.3$ 0.0	$\begin{aligned} & \mathbf{E} \\ & \mathbf{E} \end{aligned}$	$\begin{gathered} \mathbf{S E} \\ \mathbf{S E}: \mathbf{S W} \end{gathered}$	$0 \cdot 0$	$0 \cdot 0$	0＊o	17	$\bigcirc \cdot 00$		
29		29.482	$43 \cdot 3$	$36 \cdot 9$	40.0	39.4	49^{1}	30°	$38 \cdot 6$	$36 \cdot 4$	$0 \cdot 6$	$1 \cdot 2$	$0 \cdot 0$			SE ：SW	$0 \cdot 0$	$0 \cdot 0$	$0{ }^{\circ}$	94	$0 \cdot 08$		
Means		29．760	41．5	31．2	$36 \cdot 0$	31．3	$53 \cdot 8$	$26 \cdot 1$	$39^{\circ} 9$	$37^{\circ} 0$	47	$8 \cdot 5$	$1 \cdot 1$	－ 2.6	－••	－••	－•	\cdots		$\stackrel{\text { Sum }}{7434}$	－sum		

Barometer Readings from Ete－Observations．

The first minimum in the month was $29^{\text {in }} .864$ on the 3 rd．
The first maximum in the month was $30^{\mathrm{in}} \cdot 096$ on the 5 th ；the second minimum ，，was $29^{\text {in }} \cdot 284$ on the 10 th． The second maximum ，，was $29^{\text {in }} \cdot 674$ on the 1 rth；the absolute minimum ，，was $29^{\text {in }} \cdot 207$ on the 12 th．

The absolute maximum ，，was $30^{\text {in }} \cdot 211$ on the 19 th ；the fifth minimum ，，was $29^{\text {in }} \cdot 594$ on the 21 st． The fifth maximum ，，was $29^{\text {in }} \cdot 830$ on the 25 th ；the sixth minimum ，，was $29^{\text {in }} \cdot 468$ on the 29th．
The range in the month was $\mathrm{I}^{\mathrm{In}} \cdot 004$ ．
The mean for the month was $29^{\text {in }} \cdot 760$ ，being $0^{\text {in }} \cdot 044$ lower than the average of the preceding 23 years．
Temperature of the Air．
The highest in the month was $53^{\circ} .8$ on the $13^{\text {th }}$ ；the lowest was $20^{\circ} \cdot 1$ on the roth；and the range in the month was $33^{\circ .} 7$ ．
The mean ，，of all the highest daily readings was $41^{\circ} \cdot 5$ ，being $3^{\circ} \cdot 6$ lower than the average of the preceding 23 years．
The mean ，，of all the lowest daily readings was $3 \mathrm{I}^{\circ} \cdot 2$ ，being $2^{\circ} \cdot 4$ lower than the average of the preceding 23 years．
The mean daily range was $10^{\circ} \cdot 3$ ，being $1^{\circ} \cdot 2$ less than the average of the preceding 23 years．
＇I＇he mean for the month was $36^{\circ} \cdot 0$ ，being $2^{\circ} \cdot 9$ lower than the average of the preceding 23 years．

$\left\lvert\, \begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ 1864 . \end{gathered}\right.$	Phases of the Moon．	品 ： 安豆容 会灾 ${ }^{\circ}$ A崗会号	Readings of Thermometers．								Difference between the Dew Point Temperature and Air Temperature				Wind as deduced from Anemometers．								
			Dry．			Dew Point． \qquad Mean Daily Value．			In the Water of the Thames， at Greenwich， tering Ther－ mometers，read at 9^{h} A．M．					Osler＇s．	Robis								
						General Direction．					Pressure in lbs． on the square foot												
				$\begin{aligned} & \text { 䓂 } \\ & \text { 容 } \end{aligned}$	Mean Daily Value．										Mean Daily Value．			A．M．	P．M．			荡	\％
		in．	－	－			－	－	－	－	－	\bigcirc	－		－	－			tbs．		ibs．	es．	in．
April ${ }^{\text {I }}$		29.531	53.0	$3{ }^{\prime} 1$	$43 \cdot 8$	$33 \cdot 1$	88.0	33.0	$44^{\circ} 5$	$42 \cdot 3$	10.7	16.6	$4^{\circ} 0$		$+0.2$	WSW	WSW	\cdot	$0 \cdot 0$	0.8	431	0.13	
		29.794	54.4	$33 \cdot 8$	$42 \cdot 1$	$31 \cdot 7$	82.5	$22 \cdot 9$	$44^{\circ} 6$	42.4	$10 \cdot 4$	18.3	3.9	－ 2.0	WSW： $\mathbf{N W}$	WNW：WSW	3.0	$0 \cdot 0$	$0 \cdot 4$	272	$0 \cdot 00$		
3		29.768	$49^{\circ} 7$	$36 \cdot 9$	44^{-1}	$42 \cdot 1$	$55 \cdot 6$	$27 \cdot 2$	$45 \cdot 1$	43.6	$2 \cdot 0$	$6 \cdot 3$	$0 \cdot 0$	＋ 0.4	SW	SW	$2 \cdot 3$	$0 \cdot 0$	0.2	295	$0 \cdot 00$		
		29.770	61．4	$47 \cdot 9$	53.3	$48 \cdot 4$	$76 \cdot 5$	$45 \cdot 5$	$45 \cdot 6$	$43 \cdot 6$	$4 \cdot 9$	$9 \cdot 5$	0.7	$+8.5$	$\mathbf{W}: \mathbf{N W}$	NW： N	$1{ }^{\circ} 0$	$0 \cdot 0$	$0 \cdot 0$	219	0		
5		30.096	$41 \cdot 4$	$35 \cdot 3$	$36 \cdot 8$	33．5	$46 \cdot 5$	$33 \cdot 2$	$44^{\circ} 8$	43.4	$3 \cdot 3$	6.4	0.6	-8.3	ENE	NNE	2.0	$0 \cdot 0$	$0 \cdot 1$	132	$0 \cdot 56$		
6	New．	30.071	$48 \cdot 5$	$35 \cdot 0$	41.2	37.6	$83 \cdot 7$	34.5	$45 \cdot 6$	43.4	$3 \cdot 6$	$7 \cdot 1$	$1 \cdot 3$	－ 4.2	E：SE	NNE	$\bigcirc \cdot$	$0 \cdot 0$	$0 \cdot 0$	103	$\bigcirc \cdot 07$		
		30.151	$5 \mathrm{I} \cdot 8$	39.4	$43 \cdot 6$	35．4	$82^{\circ} \mathrm{O}$	$37 \cdot 3$	$46 \cdot 6$	43.9	$8 \cdot 2$	12.4	$3 \cdot 2$	－ $1 \cdot 9$	NNE：SE	SE	$0 \cdot 5$	$0 \cdot 0$	$0 \cdot 0$	152	0.00		
8		30.218 30.08	51.7 57	$37^{\circ} 9$	4.4 .4	4321	101.1	33.7 33	$47^{1} 1$	44.4	$12 \cdot 3$ 5.5	$1 \begin{aligned} & 16.4 \\ & 1.8\end{aligned}$	7.0	$1 \cdot 1$ $+\quad 25$	SE：${ }_{\text {SW }}$	SE：${ }_{\text {WS }}^{\text {W }}$ ：${ }^{\text {NW }}$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	137	$0 \cdot 00$		
9		30．087	$57 \cdot 3$	37.4	$47^{\circ} 9$	42.4	75.0	$33 \cdot 0$	47.6	$45 \cdot 4$	$5 \cdot 5$	I 1.8	$2 \cdot 0$	$+2.5$	SW	WSW：NW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	106	$0 \cdot 00$		
10		30.017	58.5	46－3	$5 \mathrm{I}^{-}$	I 45.4	$78 \cdot 7$	$44^{\circ} \mathrm{O}$	49°	$46 \cdot 4$	$5 \cdot 7$	$9 \cdot 3$	0.6	$+6.0$	NW： N	NE：SE	$\cdot 5$	$0 \cdot 0$	$0 \cdot 0$	131	$0 \cdot 00$		
11	Deelireatest N （	29.898	$63 \cdot 3$	$44^{\circ} 0$	53．I	I 463	$86 \cdot 4$	35.7	$49^{\circ} 6$	$47 \cdot 4$	$6 \cdot 8$	14.3	$1 \cdot 1$	＋8．1	SW	NW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	166	－0．00		
12		29.917	$60 \cdot 1$	$40^{\circ} 9$	$48 \cdot 1$	I 38.6	$96 \cdot 6$	$32 \cdot 6$	50.6	$48 \cdot 4$	$9 \cdot 5$	17.5	$3 \cdot 0$	$+3.2$	N	N：E	$0 \cdot 5$	$0 \cdot 0$	$0 \cdot 0$	156	$0 \cdot 00$		
13		29＊916	54.2	33.4	44.3	$336 \cdot 0$	93.0	$24^{\circ} 9$	$51 \cdot 1$	$48 \cdot 4$	$8 \cdot 3$	17.2	$0 \cdot 0$	－ 0.9	E	，	$2 \cdot 0$	$0 \cdot 0$	0.4	266	$0 \cdot 00$		
14	First Qr．	29．735	$56 \cdot 5$	36．6	$46 \cdot 2$	38.0	$95 \cdot 3$	28.0	51.6	48.4	$8 \cdot 2$	15.8	$0 \cdot 0$	＋ 0.7	$\stackrel{\text { E }}{\text { E }}$（ ${ }^{\text {de }}$	SE：${ }^{\text {E }}$	$2 \cdot 5$	$0 \cdot 0$	0.2	205	$0 \cdot 00$		
15		29.555	68.5	$36 \cdot 9$	$52 \cdot 8$	$39^{\circ} 6$	104．6	$34^{\circ} 2$	$52 \cdot 6$	48.4	13.2	24.7	1.0	＋ 711	SE：SE	E SW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	155	$0 \cdot 0$		
16	Apogee．	29.565	51．5	$44^{\circ} 8$	$46 \cdot 9$	4577	57.2	$39 \cdot 3$	53.6	$49^{\circ} 4$	1．2	2.4	$0 \cdot 8$	$+\quad 0.9$ $+\quad .7$	$\mathrm{SW}: \underset{\mathbf{N}}{\boldsymbol{W}} \mathbf{N} W$	Variable．	$0 \cdot 4$	$0 \cdot 0$	$0 \cdot 0$	162	0.06		
17	In $\begin{aligned} & \text { a }\end{aligned}$	29.799	60．7	$41 \cdot 2$ 38.2	$48 \cdot 9$	$39 \cdot 8$	950	$30 \cdot 6$ 25.5	．	\cdots	19 9.1 10.5	$16 \cdot 5$ $20 \cdot 3$	2.8 2.9	$+\quad 27$ $+\quad 4.7$	$\stackrel{\mathrm{N}}{\mathrm{NW}}$	$\begin{gathered} \text { NNW } \\ \mathbf{S W}: \mathbf{S} \end{gathered}$	0.8 1.0	0.0 0.0	$0 \cdot 0$	211	－0．00		
18	In Equator	29.934	65\％	$38 \cdot 2$	$51 \cdot 1$	$40 \cdot 6$	1000	25.5	．	．	$10 \cdot 5$	20.3	$2 \cdot 9$	＋ 47	SW	SW：S	1.0	$0 \cdot 0$	$0 \cdot 0$	258	$0 \cdot 00$		
19		29．829	68.0	$42 \cdot 1$	$55^{\circ} 9$	38．8	103.6				$17^{\circ} 1$	$26 \cdot 5$	$6 \cdot 2$	＋9．4			1.5	$0 \cdot 0$	0.1	259	$0 \cdot 00$		
19 20		29.829 29	$73 \cdot 8$	$45 \cdot 8$	60．2	41.2	105.	37°			$19^{\circ} \mathrm{O}$	$30 \cdot 4$ 22.9	$5 \cdot 9$ 9.0	+13.5 $+\quad .6$	$\underset{S E}{ } \text { by }$	\mathbf{S} by $\underset{\mathbf{E}}{\mathbf{E}}: \mathbf{S E}$	1.0 $3 \cdot 2$	$0 \cdot 0$	$0 \cdot 0$	168	$0 \cdot 00$		
21		29.888	$67 \cdot 2$	$46 \cdot 0$	54.6	（39．6	$105 \cdot 5$	33.4	$57 \cdot 6$	．	$15 \cdot 0$	$22 \cdot 9$	9°	$+7.6$	SE		3.2	$0 \cdot 0$	$0 \cdot 4$	257	$0 \cdot 00$		
22	Full．	30．028	62.9	$39^{\circ} 2$	51．1	40＇1	110.5	$26 \cdot 5$	$55 \cdot 6$	54.4	11．0	22.6	$0 \cdot 0$	$+3.8$	ENE	ENE：ESE	$0 \cdot 5$	$0 \cdot 0$	$0 \cdot 0$	158	$0 \cdot 00$		
23		30.079	$66 \cdot 4$	35.5	51.5	418	1178	$23 \cdot 3$	$58 \cdot 5$	52.4	$9{ }^{9} 7$	22.9	20	＋3．9	ESE	NE：SE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	173	$\bigcirc \cdot 0$		
24		30.077	55．0	$39^{\cdot 2}$	$44^{\circ} 8$	$39^{2} 2$	85.0	$32 \cdot 5$	$58 \cdot 8$	52.4	$5 \cdot 6$	12.8	$\bigcirc \cdot 9$	－ $2 \cdot 8$	E：NE	NE：ESE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	180	$0 \cdot 0$		
25	$\underset{\text { dectinationt }}{\text { Great }}$ S．	29.993	$59^{\circ} 2$	37×7	$48 \cdot 0$	41＊4	$103 \cdot 6$	$29^{\circ} 2$	$58 \cdot 9$	52.4	$6 \cdot 6$	15\％2	$1 \cdot 2$	＋ 0.4	Calm : NE	$\underset{\mathbf{E}}{\mathbf{E}}$	\bigcirc	$0 \cdot 0$	$0 \cdot 0$	104	$0 \cdot 0$		
26	Decilinations．	29.997	$56 \cdot 9$	$40^{\circ} \mathrm{O}$	48.0	417	69．1		58．0	53.4	6．3	12.8	$0 \cdot 0$	+0.4 $+\quad 0.8$	Calm：NE	$\underset{\mathbf{N} E:}{\mathbf{N E}: \mathbf{E}}$	\cdot	$0 \cdot 0$	$0 \cdot 0$	167	$0 \cdot 0$		
27		30．018	$58 \cdot 7$	$43 \cdot 1$	$48 \cdot 8$	43．7	$77 \cdot 3$	$37 \cdot 5$	$58 \cdot 3$	$55 \cdot 4$	5•1	112	$1 \cdot 9$	＋ $0 \cdot 8$		NE：E	$0 \cdot 5$		$0{ }^{\circ}$	176	0＊00		
28		29.958	$50 \cdot 0$	4199	$44^{\circ} 4$	$40 \cdot 5$	$59^{\circ} \mathrm{O}$	39°	$58 \cdot 5$	$55 \cdot 8$	3＊9	$7 \cdot 6$	1.6	－ 4.1	$\begin{gathered} \text { NE } \\ \mathbf{N N E} \end{gathered}$		$0 \cdot 8$	$0 \cdot 0$	$0 \times$	230	$0 \cdot 00$		
29	Last Qr．	29.968	62.4	41.7	$49^{\circ} 5$	42.4	$95 \cdot 0$	$39 \cdot 2$	$58 \cdot 6$ 59	$56 \cdot 1$ $56 \cdot 7$	$\begin{aligned} & 7 \cdot 1 \\ & 7 \times 8 \end{aligned}$	16.3 13.2	$\begin{aligned} & 2.4 \\ & 1.0 \end{aligned}$	+ $+\quad 0.4$ $+\quad 0.2$	$\mathbf{N}_{\mathbf{N}}^{\mathbf{N}} \mathbf{E}$	$\begin{aligned} & \text { NNE: W } \\ & \text { NW: SE } \end{aligned}$	0.7 1.0	$0 \cdot 0$	$0{ }^{\circ} \mathrm{O}$	214	$\bigcirc \cdot 0$		
30		29.986	58.8	$43 \cdot 6$	$49^{\circ} 7$	$4{ }^{\prime} 9$	77.9	419	59^{1}	$56 \cdot 7$	$7 \cdot 8$	13.2					$1 \cdot 0$		$0 \cdot 0$	110	$0 \cdot 00$		
Means		29.915	$58 \cdot 3$	40＇0	$48 \cdot 2$	$40^{\circ} 0$	$86 \cdot 9$	$33 \cdot 4$	52.0	$48 \cdot 7$	$8 \cdot 2$	15.2	2.2	$+2.0$		\cdots	\cdots	－•		${ }_{5}^{\text {Bum }} 5$	Sum 0.82		

Barometer Readings from Ete－Observations．
The absolute minimum in the month was $29^{\mathrm{in}^{14}} 500$ on the 1 st．
The first maximum in the month was $29^{\text {in }} .846$ on the 2 nd ；the second minimum ，，was $29^{\text {in }} .709$ on the 4 th．
The ，was $33^{\text {in }} \cdot 0.057$ on the 6th．
The absolute maximum ，，was $30^{\text {in }} \cdot 241$ on the 8 th ；the fourth minimum ，，was $29^{\text {in }} \cdot 537$ on the 15 th．
The fourth maximum ，，was $29^{\ln } \cdot 95^{\circ}$ on the 18 th ；the fifth minimum \quad, was $29^{\ln . ~} 787$ on the 19 th．
The fifth maximum ，，was $30^{\text {in }} \cdot 104$ on the 24 th ；the sixth minimum ，，was $29^{\text {in }} \cdot 908$ on the $29^{\text {th }}$ ．
The range in the month was $0^{\mathrm{tn}} \cdot 74 \mathrm{I}$ ．
The mean for the month was $29^{\text {in }} \cdot 915$ ，being $o^{\text {in }} \cdot 165$ ligher than the average of the preceding 23 years．
Temperature of the Air．
The highest in the month was $73^{\circ} \cdot 8$ on the 20th；the lowest was $33^{\circ} \cdot 4$ on the $13^{\text {th }}$ ；the range in the month was $40^{\circ} \cdot 4$
The mean ，，of all the highest daily readings was $5^{8^{\circ} \cdot 3}$ ，being $1^{\circ} \cdot 3$ higher than the average of the preceding 23 years．
The mean ，，of all the lowest daily readings was $40^{\circ} \cdot 0$ ，being $\mathbf{I}^{\circ} \cdot 3$ higher than the average of the preceding 23 years．
The mean daily range was $18^{\circ} \cdot 3$ ，being $0^{\circ} \cdot 1$ greater than the average of the preceding 23 years．
The mean for the month was $48^{\circ} \cdot 2$ ，being $\mathrm{I}^{\circ} \cdot 7$ higher than the average of the preceding 23 years．

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ 1864 . \end{gathered}$	ELEC'TRICITY.		CLOUIS AND Whatimer.			
	A.M.	P.M,			P.M.	
April $\begin{gathered}1 \\ \\ 2 \\ \\ 3 \\ \\ \\ 4 \\ \\ 5 \\ 6\end{gathered}$	$\begin{aligned} & \circ \\ & \circ \\ & \circ \end{aligned}$	$\bigcirc \quad \stackrel{0}{ } 0$	$\begin{aligned} & \text { 1o, h.--shs } \\ & \text { 1, ei, ci.-cıu } \\ & \text { 10, li.-cl } \end{aligned}$: 4, ci, ci.-cu	$\begin{aligned} & \text { 5, ci, ci.-cu :r, hl, r } \\ & 8 \text {, ci, ci.-cu, cu.-s }: \quad: \quad \text { 10, sl.-r } \end{aligned}$	
	-	$\begin{array}{lc}0 & \text { w } \\ \text { W } & \text { : } \\ & \text { : } \\ & 0\end{array}$	$\begin{aligned} & 9 \\ & \text { Io, h.-r } \\ & \text { 10, c.-r } \end{aligned}$: $10, \mathrm{sl}, \mathrm{r}$	10, ci.-cu $: 10$ 10, c.-r $: 10$, c.-r 10, ci.-s $: 10$	
	\bigcirc					
	w					
	\bigcirc	$\bigcirc \quad$: w	$\begin{array}{ll}10 \\ 10 & \\ 10\end{array}$		$\begin{array}{lc} \begin{array}{lc} 9, \text { ci.-cu, ci.-s } & : \\ 4, \text { ci, ci.-cu, ci, ci.-s: } & \text { ro } \\ 10 & : 10, \text { li.-cl } \\ 10 & : 10 \end{array} \end{array}$	
8	\bigcirc					
- 9	w	- : w	10			
10	-	w $\begin{array}{ccc}: & 0 \\ 0 & \\ & 0 & \end{array}$	$\begin{aligned} & \text { 10 } \\ & \text { 10, ci.-s } \\ & 7, \text { ci.-cu, ci.-s } \end{aligned}$			
11	w					
12	-				$0 \quad: 3, \mathrm{ci}, \text { ci.-cu }: \quad \text { o }$	
13	w	w $\quad \begin{array}{cc}\text { w } \\ \text { : } \\ \text { w }\end{array}$	-		$0, \mathrm{~h}$ 0 $: 1, \mathrm{ci}^{:} \mathrm{o}$ 0	
14	w		2, ci : 0			
15	w				$\circ \quad: 4, \text { ci, ci.-cu }: 10$	
16	\bigcirc	$\mathrm{m} \quad \begin{array}{lll}: & 0 \\ & \\ & 0 & \\ & 0\end{array}$	$\begin{aligned} & 10 \\ & 5, \text { li.-cl, h } \\ & 0 \end{aligned}$: $10, \mathrm{r}$	$\begin{aligned} & 10, \mathrm{r}: 10 \\ & 3, \mathrm{ci}, \text { ci.-cu } \\ & \text { a }\end{aligned}$	
17	-					
18	w			: 0	4, ci, ci.-cu : i, ci, lu.-ha	
19	\bigcirc	0 : w	$\stackrel{\circ}{\circ} \mathrm{o}$		○ : 0	
20	\bigcirc				$\bigcirc \quad: \mathrm{ci}$: o	
21	-	$\bigcirc: w: 0$			$2, \mathrm{ci} \quad: 0$	
22	-	-	\bigcirc		$\begin{array}{ll}0 & : \\ 0 & \\ 0 & 0\end{array}$	
23	-	\bigcirc				
24	\bigcirc	- : w			8, ci, ci.-大ir, cu : $0: 3, \mathrm{ci}, \mathrm{ci} \cdot \mathrm{s}$	
25	\bigcirc	$0: \begin{gathered} 0 \\ \mathrm{~m} \\ 0 \end{gathered}: \quad 0$	$\begin{aligned} & \text { 6, ci, ci.-cu, cu } \\ & \text { 10, ci.-s } \\ & \text { 10, ci.-s } \end{aligned}$		$\left[\begin{array}{lll} 4, \text { ci, h } & : & 1, \text { ci, h } \\ 10, \text { ci.-s, sl.-r } & : & : \\ 10 & : & 9, \text { ci, ci.-cu } \end{array}\right.$	
26	\bigcirc					
27	-					
	-	$0 \quad: \quad w$			$\begin{array}{ccc} \begin{array}{c} 10 \\ 6, \text { li.-cl, h } \\ \text { 10, ci.-s } \end{array} & : 10 & : \quad 5, \text { li.-cl, } \mathrm{h} \end{array}$	
29	\circ	o	10	: 10		
30	-	\bigcirc	10, ci.-s			

Humidity of the Air.

Temperature of the Dew Point.
The highest in the month was $5^{\circ} \cdot 2$ on the 4 th ; and the lowest was $30^{\circ} \cdot 4$ on the 2 nd .
The mean , , was $40^{\circ} \mathrm{O}$, being $0^{\circ} \cdot 2$ lower than the average of the preceding 23 years.
Elastic Force of Vapour.-The mean for the month was $0^{\mathrm{in}} \cdot 248$ being $\mathrm{o}^{\mathrm{in}} \cdot 002$ less than the average of the preceding 23 years.
Weight of Vapour in a Cubic Foot of Air. -The mean for the month was $2^{\mathrm{gr}} \cdot 9$, being the same as the average of the preceding 23 years.
Degree of Humidity.-The mean for the month was 74 (that of Saturation being represented by 100), being 5 less than the average of the preceding 23 years.
Weight of a Cubic Foot of Air.—The mean for the month was 547 grains, being 4 grains greater than the average of the preceding 23 years.

Clouns.

The mean amount for the month, a clear sky being represented by o and a cloudy sky by 10 , was $5 \cdot 6$.
Ozone.
The mean amount for the month, on a scale ranging from 0 to 10 , was $I \cdot I$.
Wind.
The proportions were of N. 5, S. 5, W. 4, E. 7, and Calm 9. The greatest pressure in the month was $7^{1 \mathrm{bs}} .0$ on the square foot on the ist.
Rain.
Fell on 4 days in the month, amounting to $0^{\text {in }} \cdot 82$, as measured in the simple cylinder gauge partly sunk below the ground; veing $0^{\text {in }}$. 94 less than the average fall of the preceding 49 years.

Greenwich Observations, 1864.

MONTH and． DAY， 1864．	Phases of the Moon．		Readings of Thermometers．								Difference between the Dew Point Temperature and Air Temperature				Wind as dedveci from Anemometers．									
			Dry．			$\left\|\begin{array}{c} \text { Dew } \\ \text { Point. } \end{array}\right\|$								Osler＇s．	$\xrightarrow[\substack{\text { Ronsw．} \\ \text { sonv }}]{ }$									
						General Direction．					Pressure in lbs． on the square foot													
			$\begin{aligned} & \text { 范 } \\ & \text { 坒 } \\ & \text { an } \end{aligned}$	高	Mean Value．				$\left\lvert\, \begin{gathered} \text { Mean } \\ \text { Daily } \\ \text { Value. } \end{gathered}\right.$	$\begin{aligned} & \text { 䓙 } \\ & \text { 淠 } \end{aligned}$					$\begin{gathered} \text { 䓂 } \\ \text { 容 } \end{gathered}$	$\begin{gathered} \text { Meau } \\ \text { Maily } \\ \text { Value. } \\ \text { Valu } \end{gathered}$		求	A．M．	P．M．			渹	
							－	－										${ }^{\text {1bs．}}$				in．		
May 1	Perigee	29．996	$67 \cdot 8$	$43 \cdot 0$	53.0	43.2	$73 \cdot 5$	$36 \cdot 2$	$58 \cdot 1$	54.9	$9 \cdot 8$	22.0	$1 \cdot 8$		＋3．0	SSE：SW	WSW	1.8	$0 \cdot 0$	\cdot	297	$\bigcirc \cdot 00$		
	In Equator	29.649	$64 \cdot 5$	493	$55 \cdot 7$	52°	82°	$46 \cdot 0$	58.3	55.6	$3 \cdot 7$	$10 \cdot 5$	\bigcirc	＋5．2	SW	W	$3 \cdot 5$	\bigcirc	$\bigcirc \cdot 7$	300	11			
	\cdots	29.662	59.5	$47 \cdot 6$	$51 \cdot 6$	$46 \cdot 7$	$77 \cdot 6$	$46 \cdot 4$	（56．2）	（56．6）	4.9	9.3	$\bigcirc \cdot$	＋ 0.7	W	N：SE	4.1	$\bigcirc \cdot$	$0 \cdot 4$	211	－ 18			
		29．705	50	44°	$46 \cdot 5$	44.5	59°		（56．2）	（56．6）	2.0	3.8	$\bigcirc \cdot 0$	－ $4 \cdot 8$	SE	SE	0.8	\bigcirc		136	9			
		29.822	57^{2}	$44^{\circ} 9$	49.1	44.4	74.2	$42^{\circ} \cdot$	57－1	52.9 5	4.7	10.6	${ }_{\circ}^{\circ} \cdot$	－ 2.5 $+\quad 3.6$	S by E	$\xrightarrow[\text { SSWE }]{\text { SSE }}$	\bigcirc	$0 \cdot 0$	\bigcirc	104	0			
6	New	29.762	69.6	$42 \cdot 8$	$55 \cdot 4$	$47^{3} 1$	113.8	$31 \cdot 1$	$57 \cdot 8$	54.7	$8 \cdot 1$	18.0	I•I	＋ 3.6		SSW：S	$\bigcirc \cdot 0$	\bigcirc		184	$\bigcirc \cdot \circ$			
		29.682	$63 \cdot 6$	47\％7	$53 \cdot 3$	44＇1	110°	$46 \cdot 6$	58.7	55.2	9^{-2}	$16 \cdot 5$	12	＋ 14	SW： \mathbf{N}	NNE：SE	1.0	$0 \cdot 0$		157	38			
8	Deecinatiost N ．	29.572	$54 \cdot 3$	$38 \cdot 5$	47°	$42^{\circ} \mathrm{O}$	83°	$28 \cdot 8$	$58 \cdot 1$	$55 \cdot 9$	$5 \cdot$	11.6 3.8	\bigcirc	－ 4.8	ESE	$\underset{\text { E }}{ }$	$3 \cdot 2$	$0 \cdot 0$	\bigcirc	321	－ 28			
9		29.514	$48 \cdot 2$	$44^{\circ} 9$	$45 \cdot 4$	427	50°	$42^{\circ} \mathrm{O}$	$56 \cdot 9$	54.7	2.7	3.8	0.8	－6．2		E	2.0	\bigcirc	$0 \cdot 1$	165	28			
10		29.755	$6 \mathrm{I} \cdot 5$	$45 \cdot 1$	$51 \cdot 2$	$40 \cdot 5$	85.5	$40^{\prime} 7$	$56 \cdot 8$	54.6	$10 \cdot 7$	16.9	$3 \cdot 3$	$0 \cdot 2$	E	NNE	－	$0 \cdot 0$		317	00			
11		$29 \cdot 721$	$55 \cdot 0$	$46 \cdot 3$	49.6	$46 \cdot 9$	$70 \cdot 8$	45.5	$56 \cdot 7$	$54 \cdot 5$	2.7	$5 \cdot 8$	\bigcirc	－17	NE	ENE	$\bigcirc \cdot 9$	$0^{\circ} 0$	$\bigcirc \cdot$	195	${ }^{\circ} \cdot 4$			
12		29.673	$66^{\circ} \mathrm{O}$	$48 \cdot 6$	$56 \cdot 2$	$49^{\circ} 4$	79°	$45 \cdot 4$	57.2	54.9	$6 \cdot 8$	II^{6}	1.3	＋ 49	NE	NE	0.8	\bigcirc		219	$0 \cdot 00$			
13	First Suarte	29.908	$69 \cdot 3$	$43 \cdot 9$	55.8	$46 \cdot 4$	1100	43.2	57.6	55.4	9.4	19.1	$1 \cdot 1$	＋ 44	N		$0 \cdot 0$	$0 \cdot 0$		142				
14		$30 \cdot 022$	70^{2}	$42 \cdot 6$	$56 \cdot 8$	$46 \cdot 4$	117.5	40°	58.8	$55 \cdot 8$	104	$21 \cdot 1$ $17 \cdot 8$	－ 0	＋ $5 \cdot 0$ +1.3	$\stackrel{\text { Calm }}{\text { S }}$	$\underset{\mathbf{V a r}}{\mathbf{N E}: ~ S E ~}$	\bigcirc	$0 \cdot 0$			0			
15	In Equator	29．996	74.8	$52 \cdot 6$	$63 \cdot 5$	$54 \cdot 5$	$11^{\circ} \mathrm{O}$	$39^{\circ} 4$	59^{6}	$56 \cdot 4$	$9 \cdot$	178	18	＋113			\bigcirc	$\bigcirc \cdot$		67				
16		$30 \cdot 052$	71.8	49°	60°	46•8	1190	$39 \cdot 2$	59.7	$56 \cdot 4$	13.2	$26 \cdot 1$	$\bigcirc \cdot$	＋ 74	E	E	$\bigcirc \cdot 5$	$0 \cdot 0$		160				
17		$30 \cdot 071$	$76 \cdot$	$45 \cdot 3$	$60 \cdot 6$	$52 \cdot 3$	125.7	37.7	$59^{\circ} 9$	$56 \cdot 7$	$8 \cdot 3$	$20^{\circ} 9$	$\bigcirc \cdot 2$	＋ 78	$\xrightarrow{\text { E }}$	E	\bigcirc	$\bigcirc \cdot 0$	$0 \cdot$	100	$\bigcirc \cdot 0$			
18		30．079	$81^{\circ} \mathrm{O}$	48.0	$65 \cdot 7$		128.2	$45 \cdot 6$	$60 \cdot 1$	$58 \cdot 1$	118	25.8	$\bigcirc \cdot$	＋12．6	Calm	E ：	\bigcirc	\bigcirc		55				
19		30．079	$77 \cdot 5$	50＊9	$64 \cdot 8$	$51 \cdot 9$	126.8	$4{ }^{\prime} 7$	$60 \cdot 6$	$58 \cdot 1$	12.9	24^{-1}	$\bigcirc \cdot$	＋11．5	Calm	E	$\bigcirc \circ$	$0 \cdot 0$		117				
20		29.938	80°	48.5	$65 \cdot 2$			38.7		58.4	12.4	24.5	$\stackrel{0}{0} 6$	＋11．6	Calm：SW	SW： \mathbf{N}	3.5	$0^{\circ} \mathrm{O}$		286	$0 \cdot 00$			
21	Full	$29 \cdot 877$	$61 \cdot 6$	$49^{\prime} 6$	52．9	48.7	68.2	44°	$61 \cdot 8$	58.4	4.2	114	$2 \cdot$	－ $0 \cdot 9$	NW：N	N：SW	2.5	\bigcirc	－ 0	208	$\bigcirc \cdot 22$			
22	${ }_{\text {Dectinatest }}^{\text {gren }}$	29.840		49.4	58：	$47 \cdot 3$	103．1	41.3	$63 \cdot 6$	62.4	$10 \cdot 7$	17.3	2.5	＋ 3.9	WSW	NNW	$2 \cdot 5$	$0 \cdot 0$	\bigcirc	286				
23		29.909	$64 \cdot 1$		$49^{\circ} 9$	$41^{1} 2$	$76 \cdot 0$	41.7	$63 \cdot 6$	62.4	8.7	$15 \cdot 2$	1．5	－ 4.4	\mathbf{W} ： \mathbf{N}	NNE	$2 \cdot 6$	－ 0	$\bigcirc \cdot 1$	188	0			
		30•097	$63 \cdot 5$	$35 \cdot 7$	49^{-3}	39^{-2}	1130	31.4	$63 \cdot 7$	$63 \cdot 4$	10.1	19°	－0	$-5 \cdot 1$	NE	NE	$\bigcirc \circ$	\bigcirc		157	－00			
25		29.828	$66 \cdot$	38.9	$52 \cdot 1$		96.0	$28 \cdot 1$	$63 \cdot 8$	$59 \cdot 9$	$7 \cdot 5$	17.3	－＇9	－ $2 \cdot 5$	SW	NW：ESE	1.5	$0 \cdot 0$		239	O0			
26	Perigee	29.868	$59 \cdot 1$	$45 \cdot 2$	49.4	$36 \cdot 8$	$76 \cdot 2$	$42^{\circ} \mathrm{O}$	63.1	$59^{\circ} 9$	12.6	18.1	6.6	－ 5.3	NNE	NNE	1.0	$\bigcirc \cdot 0$	\bigcirc	250	\bigcirc			
27		29.859	64^{-2}	$44^{\circ} 7$	$53 \cdot 4$	$39 \cdot 8$	1060	44^{6}	62.6	59.4	13.6	$20^{\circ} 1$	6.0	－ 1.5		NW： \mathbf{N}	$\bigcirc \circ$	$0 \cdot 0$		196				
28	Last Qr．	29.863	61.2	$45 \cdot 8$	$5 \mathrm{I} \cdot 8$	$42 \cdot$	90°	$36 \cdot 9$	$62 \cdot 6$	$59^{4} 4$	9.8	19^{6}	$5 \cdot 7$	－ 3.4	WSW	N：SSW	$\bigcirc \bigcirc$	$0 \cdot 0$	$\bigcirc \cdot$	203	－0			
29	In Equator	29.783	$56 \cdot 8$	45.7	48.5	41.5	$70 \cdot 2$	$43 \cdot 5$	$62 \cdot 6$	$59^{4} 4$	$\stackrel{7}{ }{ }^{\circ}$	13.0	1．0	－ 6.9	WSW	SSW	$1 \cdot 1$	$\bigcirc \cdot$	$\bigcirc \cdot$	159	$\bigcirc \cdot 03$			
30	．．	29.778	$62^{\circ} \mathrm{O}$	$33 \cdot 4$	$47^{\circ} 9$	39.8	88.2	$26 \cdot 4$	61.6	58.4		19.8		－788	S	SSW	$\bigcirc 7$	\bigcirc		187				
3 I		29.584	61.7	$41 \cdot 3$	49°	$44^{\circ} 9$	$75 \cdot 3$	$31 \cdot 7$	61.6	59.4	$4 \cdot 3$	13.9	0.2	－ 6.9	SW ：N	N：NE	$0 \cdot 7$	$0 \cdot$	－ 0	183	$\bigcirc \cdot 50$			
Means		29.837	$64 \cdot 8$	$44^{\circ} 9$	53．8	$45 \cdot 6$	93•I	$39 \cdot 6$	$60 \cdot 1$	57.4	8.2	$16 \cdot 3$	$1 \cdot 3$	＋ $0 \cdot 9$	\ldots	\ldots				sum 5900	Sum 2000			

Barometer Readings from Eye－Observations．
The first maximum in the month was $30^{\mathrm{in}} \cdot 040$ on the 1 st ；the first minimum in the month was $29^{\mathrm{in}} \cdot 556$ on the 3 rd．

The third maximum was $2 g^{i n} .84$ was $2 g^{i n} .444$ on the 9 th

The fifth maximum
The fifth maximum
The absolumum
The eighth maximum
The ninth maximum

The fourth \quad, was 29 in． 834 on the 5 th ；the absolute minimum was $29^{\text {in．}} 834$ on the $5^{\text {th }}$ ；the absolute minimum
was $29^{\text {in．}} \cdot 760$ on the roth ；the fourth minimum was 30^{in} ． 106 on the 18th；the fifth minimum was $29^{\text {in }} \cdot 905$ on the 2 Ist ；the sixth minimum was $30^{\text {in．}} 118$ on the 24 th ；the seventh minimum was $29^{\text {in }} \cdot 9^{27}$ on the 27 th ；the eighth minimum was $29{ }^{\mathrm{in}} .827$ on the 27 th ；the eighth minimum was $29^{\text {in．}} .444$ on the 9 th．
was $29^{\text {in．}} 638$ on the 12 th． ，was $29^{\text {in }} \cdot 638$ on the 12 th． ，，was $29^{\text {in．}} 806$ on the 20th．
，，was $29^{\text {in }} \cdot 803$ on the 23 rd．
，，was $29^{\text {in．}} 773$ on the $25^{\text {th．}}$ ．
$? \quad$ was $29^{\text {in．}} 725$ on the 29 th．
, was $29^{\text {in．}} 573$ on the 3 Ist．
The ninth maximum ，Was in the month was 0° in 674 ．
The mean for the month was $29^{\mathrm{in}} \cdot 837$ ，being $0^{\mathrm{in}} \cdot 066$ higher than the average of the preceding 23 years．
Temperature of the Air．
The highest in the month was $81^{\circ} \circ$ on the 18 th ；the lowest was $33^{\circ} \cdot 4$ on the 30 th．
The range ，was $47^{\circ} \cdot 6$ ．
The mean \quad, ，\quad of all the highest daily readings was $64^{\circ} \cdot 8$ ，being $0^{\circ} \cdot 3$ higher than the average of the preceding 23 years．
The mean \quad, ，of all the lowest daily readings was $44^{\circ} \cdot 9$ ，being $0^{\circ} \cdot 7$ higher than the average of the preceding 23 years．
The mean daily range was $19^{\circ} \cdot 9$ ，being $0^{\circ} \cdot 4$ less than the average of the preceding 23 years．
The mean for the month was $53^{\circ} \cdot 8$ ，being $0^{\circ} .9$ higher than the average of the preceding 23 years．

$\left\|\begin{array}{c} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { s864. } \end{array}\right\|$	Phases of the Moon.		Readings of Thermometers.								Difference between the Dew Point Temperature and Air Temperature.				Wind as deduced from Anemometers.						
			Dry.						Tn the Waterof the Thames,at Grenwich,by Self-Regis-tering Ther-mometers,readat 9 h A.M.					$\frac{\text { Qslex }}{}$		Pressure in lbs. on the square foot.					
						$\begin{gathered} \text { Dew } \\ \text { Point. } \end{gathered}$															
					Mean Daily Value.	Mean Daily Value.					Mean Daily Value.		$\begin{aligned} & \text { 烒 } \\ & \text { H } \end{aligned}$	A.M.	P.M.		㵄				
		in.	\bigcirc	-					ibs.	les.	in.										
July 1		29*799	$66 \cdot 5$	49°	$57 \cdot 5$	$45 \cdot 0$	947	$40 \cdot 3$.	$60 \cdot 7$	12.5	$20^{\circ} 2$	$7 \cdot 6$	-4°	WSW: WNW	WNW: SW	$2 \cdot 0$	-	O. 1	243	$0 \cdot 00$
Juy	$\underset{\text { Greatest }}{\text { declination } \mathrm{N} .}$	29.598	$70 \cdot 6$	49°	59°	$51 \cdot 2$	$90 \cdot$	39.2	.	$61 \cdot 4$	$8 \cdot 0$	18.7	2.7	-2.2	SW	SW	2.6	$0 \cdot 0$	$0 \cdot 4$	375	$\bigcirc \cdot$
		29.540	66^{1}	$49^{\circ} 8$	$56 \cdot 4$	$48 \cdot 9$	IO1.3	$4^{3 \cdot 2}$.	6 r 2	$7 \cdot 5$	13.3	1.3	- $5 \cdot 0$	SW	WSW: WNW	3.1	$0 \cdot 0$	$0 \cdot 4$	305	0.12
	New	29.849	$71 \cdot 6$	$46 \cdot 3$	$57^{\circ} 9$	47'7	$108 \cdot 7$	$38 \cdot 8$.	$60 \cdot 9$	10.2	23.8	I'9	- 3.6	WSW	WSW	0.8	$0 \cdot 0$	0	299	00
		29.879	$74^{1} 1$	$46 \cdot 5$	$59^{\circ} 7$	$44: 8$	1094	$35 \cdot 8$.	$60 \cdot 9$	14.9	$28 \cdot 1$	-	$1 \cdot 9$	SW: NW	NW	1.6	$0 \cdot 0$	$0 \cdot 1$	278	$0 \cdot 0$
6		29.997	$68 \cdot 6$	46.4	$56 \cdot 5$	47°	91.4	$36 \cdot 2$.	61.0	$9 \cdot 5$	20^{2}	1.7	-5.2	NNW	N: NE	$0 \cdot 0$	\bigcirc	$0 \cdot$	6	0
		29.978	$7{ }^{\prime} 9$	$50 \cdot 8$	$57 \cdot 3$	$48 \cdot 9$	$85 \cdot 6$	$49^{\circ} 6$.	61.4	8.4	$19 \cdot 3$	$3 \cdot 2$	-4.5	Variable	$\mathbf{N}: \mathbf{N N E}$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	173	00
8	Apogee	29.998	61.2	$45 \cdot 8$	$53 \cdot 5$	47.6	78.4	$37^{\circ} \mathrm{O}$		61.0	$5 \cdot 9$ 6.5	$1 \begin{aligned} & 13 \cdot 3 \\ & 14.8\end{aligned}$	1-1	- 8.2	$\stackrel{\mathbf{N}}{\mathbf{N} \mathbf{N}}$	N: N NEE	-0.0	0	-०	171	-0.00
9	In Equator	29.925	$64^{\circ} \mathrm{O}$	$46 \cdot 3$	54.3	$47 \cdot 8$	$90 \cdot 9$. .	$60 \cdot 4$	$6 \cdot 5$	14.8	I'I	-7.2	NNE	NE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	194	$0 \cdot 00$
10			$72 \cdot 8$	$50 \cdot 6$	$59^{*} 9$	$53 \cdot 8$	$93 \cdot 0$	$50 \cdot 4$..	$60 \cdot 3$	$6 \cdot 1$	$16 \cdot 6$	$0 \cdot 0$	- 1.6	NE	ENE: NE	$2 \cdot 7$	$0 \cdot 0$	$0 \cdot 2$	266	$0 \cdot 02$
11		29.913	79°	52.4	$66 \cdot 1$	$55^{\circ} 9$	112.2	$50 \cdot 2$		$60 \cdot 7$	$10 \cdot 2$	$23 \cdot 5$	2.0	$+45$	NE: NE	E:N	$2 \cdot 2$	$0 \cdot 0$	\bigcirc	233	$0 \cdot 00$
12	First Qr.	$29^{*} 938$	77.5	$51 \cdot 8$	$60 \cdot 8$	$5 \mathrm{I} \cdot 8$	11199	47.4	. .	62.4	9.0	22.6	$0 \cdot 0$	- 0.9	N	NNE:E	$\bigcirc \cdot 0$	$0 \cdot 0$	-0	211	$0 \cdot 00$
13		29.882	$68 \cdot 5$	$50 \cdot 0$	$57 \cdot 3$	$49^{\circ} 4$	93.0	46.0	.	62.1	7.9	178	$0 \cdot 0$	- 4.5	NNE	$\mathbf{N E}: \mathbf{E}$	$1 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	160	$0 \cdot 00$
14		29.945	$78 \cdot 1$	$47 \cdot 8$	$59^{\circ} 8$	49^{-1}	11007	$42 \cdot 7$.	62.4	$10 \cdot 7$	26.4	0.4	- 1.9	NNE	NNE : SE: SW	\bigcirc	$0 \cdot 0$	$0 \cdot$	72	$0 \cdot 00$
15		$29^{\circ} 948$	77.7	$45 \cdot 8$	617	$49^{\circ} 9$	111.8	37.2		$62 \cdot 3$	11.8	$25 \cdot 7$	$0 \cdot 0$	$0 \cdot 0$	Calm: NE	E	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	169	$0 \cdot 00$
16	${ }_{\text {Decinate }}^{\text {Grate }}$	29.987	$73 \cdot 7$	$50 \cdot 3$	$59^{\circ} 9$	52.5	11004	43.9	. .	62.4	$7 \cdot 4$	18.7	O	- 1.8	E	NE:E	$\bigcirc \cdot \bigcirc$	$0 \cdot 0$	$0 \cdot 0$	106	$0 \cdot 00$
17	Deciinatio	29.959	$8 \mathrm{I} \cdot \mathrm{I}$	$48 \cdot 5$	64.5	$53 \cdot 8$	114.0	$46 \cdot 9$.	$63 \cdot 4$	10.7	24.7	-	+ $2 \cdot 8$	Calm	NE:SE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	84	$0 \cdot 00$
18		$29^{\circ} 930$	80.8	$52 \cdot 3$	$65^{\circ} 4$	$54 \cdot 3$	1168	$45 \cdot 1$.	64.4	II•I	$24^{\circ} \mathrm{I}$	$0 \cdot 0$	$+3.7$	NE	NNW:N	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot$	144	. 00
19	Full	29*929	$83 \cdot 5$	59.5	$68 \cdot 9$	57.4	96•9	$54^{\circ} \mathrm{O}$.	$64^{\circ} 9$	11.5	$24^{\circ} 1$	$3 \cdot 6$	+7.2 +8.2	$\underset{\mathbf{W S W}}{\mathbf{S W}}$	Variable WSW.SW	\bigcirc	$0 \cdot 0$	$00^{\circ} 0$	113	0.00
20	Perigee	29.879	$85 \cdot 6$ $80 \cdot 6$	$55 \cdot 7$ $55 \cdot$	$69 \cdot 8$	$55 \cdot$ 53	$1 \begin{aligned} & 15 \cdot 8 \\ & 1129\end{aligned}$	$48 \cdot 1$ $50 \cdot 0$		$65 \cdot 4$ 65.5	14.8 13.1	$29 \cdot 1$ 25.7	0.0 2.0	$+8 \cdot 2$ $+5 \cdot 5$	WSW	WSW:SW SW	-0.0	0\% 0	$0 \cdot 0$	188	-0.00
21		29.737	$80 \cdot 6$	55.0	67°	53.9	1127	50°		$65 \cdot 5$	13.1	$25 \cdot 7$	2.0	+ $5 \cdot 5$	SW	SW	1.8	00	$0 \cdot 1$	296	$0 \cdot 00$
22	In Equator	29.736	74.5	53.5	$63 \cdot 7$	$53 \cdot 8$	$95 \cdot 0$	45*0		65.4	9.9	21.1	$0 \cdot 8$	+ 2.2		W	$2 \cdot$	$0 \cdot 0$	$\bigcirc \cdot 1$	285	0.00
23		29.842	78.5	$56 \cdot 7$	65^{-1}	$51 \cdot 9$	1.12.1	$45 \cdot 6$		$66 \cdot 3$	$14^{\circ} 2$	23.5	$3 \cdot 6$	+ 4.6	WSW	SW	\bigcirc	$0 \cdot 0$	$0 \cdot 0$	236	$0 \cdot 00$
24		29.736	$78 \cdot 8$	$54 \cdot 8$	64.0	54.4	107.3	54.0	$66 \cdot 6$	$65 \cdot 4$	$9 \cdot 6$	$23 \cdot 6$	0.2	+ 2.4	SW	SW	$2 \cdot 0$	$0 \cdot 0$	$0 \cdot 2$	286	$\bigcirc \cdot$
25	Last Qr.	29.597	$71^{\circ} 2$	51.8	$59 \cdot 3$	53.9	$94^{\circ} 6$	$50 \cdot 8$	$66 \cdot 6$	64.4	$5 \cdot 4$	16.2	\bigcirc	- 2.5			$2 \cdot 0$	$0 \cdot 0$	$0 \cdot 1$	318	0.13
26		29.715	$76 \cdot 0$	$55 \cdot 2$	64.0	$49^{\circ} 6$	1100	$48 \cdot 0$	$65 \cdot 8$	63.4	1.4	$24^{8} 8$	$1 \cdot 0$	$+\quad 19$ $+\quad 0.6$	WSW: NW NE:WSW	$\begin{gathered} \mathbf{N W}: \mathbf{N} \\ \mathbf{S W}: \mathbf{S} \mathbf{S} \mathbf{W} \end{gathered}$	1.0	$0 \cdot 0$	$0 \cdot$	130	$0 \cdot 00$
27		29*790	79.4	47×7	62.9	50.2	117.6	$39 \cdot 8$	$67 \cdot 6$	$65 \cdot 4$	12.7	26.2	$0 \cdot 0$	$+0.6$	NE:WSW	SW : SSW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot$	209	0.00
28		29.696	$76 \cdot 0$	53. 1	$63 \cdot 2$	52.7	85.7	$45 \cdot 4$	67.4	$65 \cdot 2$	10.5	21.8	$2 \cdot 8$	+0.7			1.6	$0 \cdot 0$	$0 \cdot 1$	261	0.00
28	${ }_{\text {declinatest }}^{\text {Gran }} \mathrm{N}$.	29.92 29	$82 \cdot 2$	$53 \cdot 6$	$65 \cdot 7$	$5 \mathrm{~L} \cdot 4$	122.6	$42 \cdot 9$	$67 \cdot 1$	64.9	14.3	31.6	$0 \cdot 2$	+3.2	WSW	$\mathbf{W}: \underset{\mathbf{S W}}{\mathbf{W} \mathbf{S}}$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot$	203	$0 \cdot 0$
30		$30 \cdot 020$	$81 \cdot 3$	$53 \cdot 2$	$66 \cdot 2$	59.6	1097	$44 \cdot 3$	$67 \cdot 1$	$65 \cdot 4$	$6 \cdot 6$	20.0	0.6	$+37$	SW	SW	$1 \cdot 7$	$0 \cdot 0$	$0 \cdot 1$	265	0.00
31		$29^{\circ} 980$	82.4	577	$66 \cdot 8$	57.4	110°	577	$67 \cdot 6$	65.4	$9^{\circ} 4$	$25 \cdot 5$	$1 \cdot 3$	$+4.3$	SW	SW	$4 \cdot 2$	$0 \cdot 0$	0.6	364	$0 \cdot 00$
Means		29.856	$75 \cdot 3$	$51 \cdot 2$	6I.8	$5 \mathrm{I} \cdot 6$	103.7	$45 \cdot 2$	67.0	$63 \cdot 1$	10.2	22.1	1.3	$0^{\circ} 0$.			6743	\bigcirc

Barometer Readings from Eye-Observations.
The absolute minimum in the month was $29^{\mathrm{in}} \mathrm{m}_{4 \mathrm{x}}$ on the 2nd.
The first maximum in the month was $30^{\text {in }} .015$ on the 6 th ; the second minimum ,, was $29^{\text {in }} .896$ on the 9 th. , , was $29^{\text {in }} 866$ on the $3^{\text {th }}$ The third maximum , was $30^{\text {in } .005 ~ o n ~ t h e ~} 16$ th ; the fourth minimum , was $29^{\text {in. }} 705$ on the $21 s t$. The fourth maximum , was $29^{\mathrm{in}} \cdot 854$ on the 23 rd ; the fifth minimum , , was $29^{\text {in. } 520 \text { on the } 25 \text { th. }}$ The fifth maximum , was $29^{\mathrm{in}} .817$ on the 27 th ; the sixth minimum , , was $29^{\text {in }} 689$ on the 28 th. The absolute maximum ,, was $3^{0 \text { in }} \cdot 056$ on the 3 rst.
The range in the month was o'in. 585 .
The range in the month was $0^{\text {in }} \cdot 5^{5} 5_{5}$. , being $o^{\text {in }} 0.05$ higher than the average of the preceding 23 years.
Temperature of the Air.
The highest in the month was $85^{\circ} \cdot 6$ on the 20 th ; the lowest was $45^{\circ} .8$ on the 8 th and 15 th.
The range ,, was $39^{\circ} \cdot 8$.
$\begin{array}{lll}\text { The range } \quad, \text {, } & \text { was } 39^{\circ} \cdot 8 \text {. } \\ \text { The mean all the highest daily readings was } 75^{\circ} \cdot 3 \text {, being } 1^{\circ} \cdot 7 \text { figher than the average of the preceding } 23 \text { years. }\end{array}$
The mean \quad, , \quad of all the lowest daily readings was ${ }_{5} 1^{\circ} \cdot 2$, being $1^{\circ}{ }_{7}{ }_{7}$ lower than the average of the preceding 23 years.
The mean daily range was $24^{\circ} 1$, being $3^{\circ} 4$ greater than the average of the preceding 23 years.
The mean for the month was $61^{\circ .} 8$ being $0^{\circ} \cdot 2$ higher than the average of the preceding 23 years.

$\left\lvert\, \begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1864. } \end{gathered}\right.$	Phases of the Moon．		Readings of Thermometers．								Difference between the Dew Point Temperature and Air Temperature．				Wind as deduced from $\Lambda^{\text {anemometers．}}$								
			Dry．						In the Water of the Thames， at Greenwich， tering Ther－ mometers，read at 9 h A．m．					Osler＇s．	${ }_{\substack{\text { Robin } \\ \text { son＇s }}}^{\text {a }}$								
											General Direction．	Pressure in lbs． on the square foot．											
					$\begin{aligned} & \text { Mean } \\ & \text { Daily } \\ & \text { Value. } \end{aligned}$	Mcan Daily Value．				$\begin{aligned} & \text { 萝 } \\ & \text { 莒 } \end{aligned}$				$\begin{aligned} & \text { Mean } \\ & \text { Daily } \\ & \text { Value. } \end{aligned}$			蔦	A．M．	P．M．	$\begin{aligned} & \text { 苞 } \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$			¢
		in．				\bigcirc	\bigcirc	－	－	－	－	\bigcirc								ibs．	iles．	in．	
Aug． 1		29.890	$75 \cdot 2$	54.5	$64 \cdot 1$	48.5	1109.8		$66 \cdot 6$	64.4	15.6	23.8	4°		$+1.6$	WSW	WSW	3.0	$\bigcirc \cdot$	0.2	254	$0 \cdot 00$	
	New	29.964	$71^{\circ} \mathrm{O}$	48.7	$59^{\circ} 7$	$45 \cdot 1$	103.3	$37^{\circ} \mathrm{O}$	$66 \cdot 6$	$65 \cdot 4$	14.6	23.8	$\bigcirc \cdot 9$		－ 2.6	WSW：WNW	NW	\bigcirc	$0 \cdot 0$	$0 \cdot 0$	147	$\bigcirc \cdot 00$	
3		29.948	$75 \cdot 2$	$43 \cdot 4$	58.7	$45 \cdot 8$	1100	34.9	$67 \cdot 1$	64.4	12.9	$27^{\circ} \mathrm{O}$	2.4	－ $3 \cdot 5$	W：WSW	WSW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	164	$0 \cdot 00$		
4	Apogee	29＊902	$82 \cdot 3$	$52 \cdot 8$	$67 \cdot 3$	$48 \cdot 6$	119.3	$48 \cdot 3$	671	64.9	18.7	$35 \cdot 2$	$5 \cdot 0$	$+5 \cdot 2$	WSW	SW	$0 \cdot \circ$	$0 \cdot 0$	$0 \cdot 0$	196	$0 \cdot 00$		
5	In Equator	29.964	88.6	$56 \cdot 6$	71.6	$53 \cdot 8$	12511	$40 \cdot 9$	$67 \cdot 6$	$65^{\circ} 4$	17.8	$32 \cdot 0$	$1 \cdot 3$	＋ 96	SW	SW	$0 \cdot 0$	$0 \cdot 0$	00°	185	$\bigcirc \cdot 00$		
6		$29^{\circ} 906$	$82 \cdot 1$	$59 \cdot 6$	$66 \cdot 9$	52.6	$121^{\circ} \mathrm{O}$	$53 \cdot$	$68 \cdot 1$	65.9	14.3	$26 \cdot 2$	$6 \cdot 6$	＋ 49	WSW	WSW： N	$0 \cdot 0$	\bigcirc	$0 \cdot 0$	147	$0 \cdot 00$		
7		29.818	$8 \mathrm{I}^{\circ} 2$	$48 \cdot 7$	$64^{\circ} \mathrm{O}$	$48 \cdot 3$	31110		67.5	64.5	15.7	29.6	3.2	＋ 2.0	N：SW	WSW	1.0	\bigcirc	$0 \cdot 0$	3II	$0 \cdot 00$		
8		29.723	82.4	$60 \cdot 7$	$69^{\cdot 2}$	57°	113．2	54.2	$66 \cdot 6$	65.4	12.2	$24 \cdot 1$	$1 \cdot 4$	＋ 7.2	WSW	WSW	1.5	$0 \cdot 0$	$0 \cdot 2$	219	－0．00		
9		29.685	67.7	54.4	58.3	56.0	78.8		$66 \cdot 2$	$64 \cdot 6$	2.3	$8 \cdot 0$	$\bigcirc \cdot 5$	-3.6	Variable	SW：W	$2 \cdot 5$	$0 \cdot 0$	0.2	298	$0 \cdot 50$		
10	First Qr．	29.921	67°	47°	$55 \cdot 8$	41.3	$383 \cdot 0$		64.6	62.9	14.5	$25 \cdot 2$	4.4	－ 6.0	W：WNW	$N W: W$	2.4		$0 \cdot 3$	309	$0 \cdot 00$		
11	－	30．176	69.8	$46 \cdot 9$	$57^{\circ} 6$	$41 \cdot 1$	1110.6		64.7	62.9	16.5	27.9	$3 \cdot 4$	－4．1	NW：NNW	$\mathbf{N N W}: E$	$0 \cdot 0$	$0 \cdot$	$0 \cdot 0$	144	0.00		
12		$30 \cdot 181$	$76 \cdot 2$	$42 \cdot 2$	$60^{\circ} 1$	16^{1}	$198 \cdot 7$	$32 \cdot 6$	64%	62.9	14°	27.7	$0 \cdot 0$	－ 1.5	SE ：SW	Variable	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	124	$0 \cdot 00$		
13	$\underset{\text { Declinatiost }}{\text { Greatest }}$	30.202	79°	47.5	$63 \cdot 1$	149	41065	$38 \cdot 7$	64.6	62.4	13.7	$27 \cdot 2$	$0 \cdot 0$	＋ 1.6	SW	NE：ESE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	107	$0 \cdot 00$		
14	Decination s．	$30 \cdot 274$	78.0	$50 \cdot$	63.0	54°	2116.6		65.6	63.4	$8 \cdot 8$	20.9	$0 \cdot 0$	＋ 1.5	SE：NE	E	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	140	$\bigcirc \cdot 00$		
15		30.239	$78 \cdot 1$	$49^{\circ} 9$	63.7	$51 \cdot 7$	7114.2	$42 \cdot 1$	$65 \cdot 8$	$63 \cdot 7$	12.0	$25 \cdot 5$	$0 \cdot 0$	＋ $2 \cdot 3$	Calm ：N	N	1.5	$0 \cdot 0$	$0 \cdot 0$	199	$0 \cdot 00$		
16		$30 \cdot 072$	$75 \cdot 8$	$44^{7} 7$	$59 \cdot 7$	7561	197°	$43 \cdot 6$	$65 \cdot 6$	63.4	3.6	$15 \cdot 1$	$\bigcirc \circ$	－ 177	${ }^{\mathrm{N}}$	N：SW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	166	$0 \cdot 00$		
17	Full ：Perigee．	29.930	$72 \cdot 0$	$54^{\circ} \mathrm{I}$	$60 \cdot 8$	$45 \cdot 6$	$6{ }^{9} 8$	$48 \cdot 1$	$65 \cdot 5$	63.4	15.2	22.9	$7 \cdot 2$	－ 0.5	$\mathrm{N}: \mathrm{N} E$	NNE：ESE	$0 \cdot 0$		$0 \cdot 0$	139	$\bigcirc \cdot 00$		
18		29.787	70.5	$42 \cdot 3$	$55 \cdot 9$	$42 \cdot$	－118．7	32.4	64.6	$62 \cdot 6$	13.9	24.8	$0 \cdot 0$	$-5 \cdot 2$	NE	N	0.0	\bigcirc	$0 \cdot 0$	102	$\bigcirc \cdot 00$		
19	In Equator	29．547	$70 \cdot 6$	$43 \cdot 4$	$57 * 4$	$42 \cdot 3$	$34^{\circ} \mathrm{O}$	$34 \cdot 5$	64.6	$62 \cdot 6$	I5．1	$25^{\circ} 9$	9	－ $3 \cdot 5$	Calm	NE： $\mathbf{E S W}_{\text {NW }}$	$0 \cdot 0$	－0	$0 \cdot 0$	130	$0 \cdot 00$		
20	In Equator	29.647	67.0	51．7	56.7	457	79	$48 \cdot$	64.4	62.4	11.0	$20 \cdot 5$	$6 \cdot 6$	－ 4.1	NNW	NNW：SSW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	114	$\bigcirc \cdot 00$		
21	．．	29.739	68.4	$44 * 7$	53.4	$47 \cdot 8$	8974	31.5	$64 \cdot 6$	62.9	$5 \cdot 6$	194	$0 \cdot 2$	-7.2	S	NW： N	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	124	$0 \cdot 12$		
22		29.775	$65 \cdot 2$	41.4	$53 \cdot 5$	45.4	$490 \cdot 3$	$30 \cdot 9$	65.0	63.4	$8 \cdot 1$	$16 \cdot 0$	\bigcirc	－6．9	$\mathrm{N}: \mathrm{NE}$		$1{ }^{\circ} \mathrm{O}$	$0 \cdot 0$	$0 \cdot 0$	299	$0 \cdot 00$		
23		29.587	56．2	47.7	49.5	$45 \cdot$	＋ $56 \cdot 2$	$47 \circ$ 34	64.6 62.6	62.4 60.2	4．5	$10 \cdot 8$ 21.9	$1 \cdot 3$	－ 10.8 $-\quad 7.9$	$\cdot \mathbf{N}$	NNW	3.0 $0 \cdot 0$	$0 \cdot 0$	0	325 167	\circ $0 \cdot 53$ $\cdot 00$		
24	Last Qr．	$29^{\circ} 910$	62.4	43.7	52.4	$40 \cdot 4$	484.6	34.5	62.6	60.2	12.0	21.9	$0 \cdot 7$	－79	NW	NW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	167	$\bigcirc \cdot 0$		
25	$\underset{\text { dectinatest }}{\substack{\text { Grast } \\ \text { D．}}}$	30．044	6I．2	38.4	$50 \cdot 6$	$42 \cdot 5$	5 81－8	27.2	$62 \cdot 8$	$60 \cdot 4$	$8 \cdot 1$	16.9	\bigcirc	－ 9.6	SW	Variable	$0 \cdot 0$	$0 \cdot \circ$	$0 \cdot 0$	99	$\bigcirc \cdot 00$		
26		$30 \cdot 146$	67.2	$42 \cdot 0$	53.0	$40^{\circ} 9$	85．5	$3 \mathrm{I} \cdot 2$	62.7	$60 \cdot 4$	12.1	22.9	$\bigcirc \cdot 7$	－ 6.9	$\xrightarrow{\mathbf{N}}$	$\underset{\mathbf{S W}}{\mathbf{N}}$	\bigcirc	$0 \cdot 0$	$0 \cdot 0$	154	$0 \cdot 00$		
27		30＇168	$66 \cdot 2$	$38 \cdot 1$	$53 \cdot 0$	$43 \cdot 5$	105.5	$29^{\circ} 3$	61.6	59.4	9．5	$20 \cdot 9$	$0 \cdot 0$	－ $6 \cdot 7$	Calm	SW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	183	$0 \cdot 00$		
28		29.980	$70^{\circ} 1$	$5 \mathrm{I}^{\circ}$	$58 \cdot 3$	48°	$94^{\circ} 4$	$44^{\circ} \mathrm{I}$	6i．6	59.4	10.3	20.5	2.5	－ $1 \cdot 3$	SSW ：SW	SW	1.0	$0 \cdot 0$	$0 \cdot 0$	272	0.02		
29		29.899	$78 \cdot 4$	$56 \cdot 7$	$65 \cdot 2$	50°	1043	52.3	$6 \mathrm{I}^{1} 1$	$58 \cdot 9$	$15 \cdot 2$	$26 \cdot 2$	$6 \cdot 6$	$+5 \cdot 8$	SW	$\mathbf{S W}: \mathbf{S}$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot$	191	$\bigcirc \cdot 00$		
30		29.736	81.0	$47 \cdot 9$	$65 \cdot 3$	$52 \cdot 1$	106．0	．．	$6 \mathrm{I} \cdot 6$	$59 \cdot 4$	13.2	$30 \cdot 3$	0.6	$+6 \cdot 2$	SSE	SSW	$2 \cdot 0$	$0 \cdot 0$	$0 \cdot 1$	365	$0 \cdot 00$		
31	Apogee	29.693	$69 \cdot 8$	$53 \cdot 5$	$59 \cdot 3$	$56 \cdot 0$	$69 \cdot 8$	51°	62.6	61．4	$3 \cdot 3$	8．0	I•8	$+0.3$	SSW	WSW ：SW	$4{ }^{\circ} \mathrm{O}$	$0 \cdot 0$	$0 \cdot 3$	279	0.14		
Means		$29^{\circ} 918$	$72 \cdot 8$	$48 \cdot 5$	$59 \cdot 6$	47.8	100．1	$40 \cdot 3$	64.8	$62 \cdot 8$	11•8	22.8	2.0	－1．5	－••	－••		\cdots		${ }^{\text {Sum }}$	－Sum		

Barometer Readings from Efe－Observations．

Temperature of the Air．

The highest in the month was $88^{\circ} \cdot 6$ on the 5 th ；the lowest was $38^{\circ} \cdot 1$ on the 27 th．
The range ，，was $50^{\circ} \cdot 5$ ．
The mean \quad, \quad of all the highest daily readings was $72^{\circ} \cdot 8$ ，being the same as the average of the preceding 23 years．
The mean ，，of all the lowest daily readings was $48^{\circ} \cdot 5$ ，being $4^{\circ} \cdot 8$ lower than the average of the preceding 23 years．
The mean daily range was $24^{\circ} \cdot 3$ ，being $4^{\circ} \cdot 8$ greater than the average of the preceding 23 years．
The mean for the month was $59^{\circ} \cdot 6$ ，being $1^{\circ} \cdot 8$ lower than the average of the preceding 23 years．

Humidity of the Air.
Temperature of the Dew Point.
The highest in the month was $64^{\circ} \cdot 3$ on the 9th ; and the lowest was $37^{\circ} .8$ on the 24 th.
The mean ,, was $47^{\circ} \circ 8$, being $6^{\circ} \cdot 3$ l lower than the average of the preceding 23 years.
Elastic Force of Vapour.-The mean for the month was $0^{\mathrm{in}} \cdot 333$, being $0^{\mathrm{in}} \cdot 089$ less than the average of the preceding 23 years.
Weight of Vapour in a Cubic Foot of Air. -. The mean for the month was $3^{g r s} \cdot 7$, being $\mathrm{I}^{\mathrm{gr}} \cdot \circ$ less than the average of the preceding 23 years.
Degree of Humidity.-The mean for the month was 65 (that of Saturation being represented by roo), being 12 less than the average of the preceding 23 years.
Weight of a Cubic Foot of Air. -The mean for the month was 533 grains, being 5 grains greater than the average of the preceding 23 years.
Clouds.
The mean amount for the month, a clear sky being represented by \circ and a cloudy sky by 10 , was $5 \cdot 3$.
Ozone.
The mean amount for the month, on a scale ranging from \circ to 10 , was $0^{\circ} g$.
Wind.
The proportions were N. 7, S. 4, W. ro, E. 2 and Calm 8. The greatest pressure in the month was $4^{\text {1bs }} \cdot 0$ on the square foot on the 3 ist.
Rain.
Fell on 5 days in the month, amounting to $\mathrm{I}^{\text {in }} \mathbf{3 1}$, as measured in the simple cylinder gauge partly sunk below the ground; being $\mathrm{I}^{\text {in }}$. 08 less than the average fall of the preceding 49 years.
Electricity.-The insulating lamp was not burning on August 14 and 15 .

$\left\|\begin{array}{c} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ 1864 . \end{array}\right\|$	Phases of the Moon．		Readings of Thermometers．								Difference between the Dew Point Temperature and Air Temperature．				Wind as deduced from Anemometers．								
			Dry．						In the Water of the Thames， at Greenwich， tering Ther－ mometers，read at 9h A．M．					Osler＇s．	Robiv．								
						Dew Point．					General Direction．	Pressure in lbs． on the square íoot．											
					Mean Daily Value．	$\begin{gathered} \text { Mean } \\ \text { Daily } \\ \text { Value. } \end{gathered}$								Mean Daily Value．			$\begin{aligned} & \text { 范 } \\ & \text { \# } \end{aligned}$	A．M．	P．M．				产宮
		in．			\bigcirc	－	\bigcirc	－				\bigcirc						s．	s．		miles	in．	
Sept．I	New	29.892	$70 \cdot 3$	$47^{\circ} 4$	$57 \cdot 2$	$45 \cdot 5$	$105 \cdot 0$	$37 \cdot 2$	62.7	61．5	11.7	23.2	$\bigcirc \bigcirc$		－1．6	SW	SW	$2 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	308	0	
	In Equator	29.677	67°	$49 \cdot 3$	57.4	$54 \cdot 5$	$89^{\circ} 2$	$37^{\circ} 2$	$62 \cdot 6$	61.4	$2 \cdot 9$	$10 \cdot 6$	$0 \cdot 0$		-1.2	\mathbf{W}	W	$1 \cdot 3$	$0 \cdot 0$	$\bigcirc \cdot 1$	256	$0 \cdot 05$	
3	－	29.546	$74^{\circ} 6$	$5 \mathrm{r}^{\circ} 4$	$59^{.6}$	52.6	96．5	43.4	62.8	$61 \cdot 6$	$7{ }^{\circ}$	18.9	$0 \cdot 0$	＋I•I	SW	SW	$1 \cdot 0$	00	－0	212	$0 \cdot 11$		
		29	$68 \cdot 7$	51.7	$58 \cdot 5$	$47 \cdot 3$	$87 \cdot 2$	47°	62.6	$60 \cdot 4$	11．2	17.3	4.2	＋ 0.1	WSW：${ }^{\text {WW }}$	W：W N W	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	293	$0 \cdot 02$		
5		29.840	$67 \cdot 2$	$53 \cdot 3$	$57 * 9$	43：9	$93 \cdot 3$		62.1	$59^{\circ} 9$	14°	19.8	$6 \cdot 4$	－0．3	WNW	WSW	2.6	$0 \cdot 0$	$0 \cdot 3$	281	0.09		
6		29.804	$74^{\circ} \mathrm{O}$	48.4	$59 \cdot 8$	$57 \cdot 3$	102.8	$37 \cdot 1$	$61 \cdot 6$	$59 \cdot 4$	2.5	10.8	$0 \cdot 0$	＋ 1.8	SW	SW	$5 \cdot 0$	00	$0 \cdot 6$	391	0.25		
		29.836	$70 \cdot 6$	62.2	65°	$59 \cdot 6$	$79 \cdot 8$	$62 \cdot 0$	62.6	59.9	$5 \cdot 4$	$9^{\circ} 0$	$2 \cdot 9$	$+7.2$	WSW	SW	0.6	$0 \cdot 0$	$0 \cdot$	314	00		
8		29.852	$75 \cdot 5$	61.5	$66 \cdot 8$	$60 \cdot 5$	$81^{\circ} \mathrm{O}$	$60 \cdot 2$	$63 \cdot 1$	$60 \cdot 4$	$6 \cdot 3$	11.7	$2 \cdot 1$	$\begin{array}{r} \\ +9.1 \\ \hline 9\end{array}$	SW	SW	1．6	$0 \cdot 0$	$0 \cdot 1$	385	$0 \cdot 03$		
9	First Quarter： Greatest Dec．	29.771	$70 \cdot 0$	58.9	$63 \cdot 1$	$56 \cdot \mathrm{I}$	88.0	56.0	63．1	$60^{\circ} 9$	7×0	10.8	3.2	$+5 \cdot 5$	SW	SW ：WSW	$5 \cdot 0$	$0 \cdot 0$	$0 \cdot 9$	293	$0 \cdot 00$		
10		29.804	$62 \cdot 3$	$51 \cdot 5$	$56 \cdot 3$	$48 \cdot 5$	73.4	$48 \cdot 6$	$63 \cdot 8$	61．6	78	12.2	1.8	-1.2	SW	SW	$0 \cdot 0$	0×0	$0 \cdot 0$	217	$0 \cdot 00$		
11		29.710	64.0	$44^{\circ} \mathrm{O}$	$52 \cdot 2$	$40 \cdot 9$	94.4	$42 \cdot 0$	$62 \cdot 9$	$60 \cdot 6$	$1 \mathrm{I} \cdot 3$	19.4	$0 \cdot 6$	－ $5 \cdot 2$	SW：W	WNW：WSW	0.6	$0 \cdot 0$	$0 \cdot 0$	240	$0 \cdot 02$		
12	．	29.874	67.2	40：9	53.4	$42 \cdot 4$	$83 \cdot 3$	$31 \cdot 1$	6I．6	$60 \cdot 4$	II．O	23.4	0.5	－3．9	WSW：W		$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	178	0.00		
13		29＊774	$63 \cdot 5$	$44^{\circ} 4$	$54^{\circ} \mathrm{O}$	$49^{\circ} 4$	$8 \mathrm{I} \cdot 3$	29°	6I•1	58.9	$4 \cdot 6$	11°	1．6	-3.2	SW：	SSW ：SW	0.6	$0 \cdot 0$	$0 \cdot 0$	265	$0 \cdot 00$		
14		29.458	$62 \cdot 6$	$5 \mathrm{I} \cdot 7$	57.8	53.1	$86 \cdot 0$	$48 \cdot 5$	6i•1	$58 \cdot 9$	47	$8 \cdot 5$	0.6	＋ 0.8	SSW	SSW：SW	4.5	$0 \cdot 0$	$0 \cdot 7$	279	0.21		
15	$\left\lvert\, \begin{gathered} \text { Perigee: } \mathrm{In} \\ \text { Equator: } \mathrm{Full} . \end{gathered}\right.$	29.459	$66 \cdot 0$	$46 \cdot 4$	$56 \cdot 1$	49^{1}	84°	$40 \cdot 2$	$60 \cdot 6$	$58 \cdot 4$	$7 \cdot 0$	$15 \cdot 0$	0.2	－0．6	SW	SSW ：SSE	1．5	$0 \cdot 0$	$0 \cdot 0$	251	$0 \cdot 18$		
16		29.212	$62 \cdot 2$	$53 \cdot 2$	$56 \cdot 3$	50：5	$84^{\circ} \mathrm{O}$	$47^{\circ} 6$	$59 \cdot 8$	$57 \cdot 6$	$5 \cdot 8$	$10^{\circ} 0$	$2 \cdot 6$	－	SW：SW	SSW	2.7	$0{ }^{\circ} \mathrm{O}$	$0 \cdot 2$	215	26		
17		29.379	$65^{\circ} 4$	$45 \cdot 9$	54.2	47.4	89.5	$42 \cdot 3$	$60 \cdot 1$	$57 \cdot 9$	$6 \cdot 8$	$15 \cdot 6$	$0 \cdot 0$	-2.1	SSW：SW	SW： $\mathbf{S W}_{\text {W }}$	$2 \cdot 2$	$0 \cdot 0$	$0 \cdot 2$	277	$0 \cdot 57$		
18		29.538	$65 \cdot 4$	$47 \cdot 9$	54.9	$46 \cdot 4$	84.2	$43 \cdot 8$	$60 \cdot 1$	57.9	$8 \cdot 5$	13.7	$1 \cdot 7$	－1．1	SW	SW	$1 \cdot 0$	$0 \cdot 0$	\bigcirc	234	$0 \cdot 35$		
19		29．611	64.6	$45 \cdot 7$	$53 \cdot 2$	$46 \cdot 4$	$95 \cdot 0$	41°	$60 \cdot 6$	58.4	$6 \cdot 8$	15.2	0.4	－ 2.7	SW：WS	WSW	$0 \cdot 0$	$0{ }^{\circ}$	$0 \cdot 0$	178	00		
20		29.734	$65 \cdot 8$	42．1	53．2	$47 \cdot 2$	$92 \cdot 3$	$32 \cdot 8$ $52 \cdot$	$60 \cdot 8$ $60 \cdot 6$	$58 \cdot 6$ $58 \cdot 4$	$6 \cdot 0$	14.8 16.6	－ 1.8	+2.4 $+\quad 3.3$	$\stackrel{\text { SW }}{\mathbf{W}} \mathbf{W}$	SW ：SSW SW $: \mathbf{S}$	\bigcirc	$0 \cdot 0$	0	240	－0．00		
21		29.642	68.2	$53 \cdot 1$	$58 \cdot 8$	49^{-2}	91.2	$52 \cdot 2$	$60 \cdot 6$	58.4	$9^{\circ} 6$	16．6	1.8	$+3 \cdot 3$	S ：WSW	SW ：S	1.0	$0 \cdot 0$	$0 \cdot 1$	203	0.06		
22	Greatest Dec．N． Last Quarter．	29.660	$68 \cdot 5$	$52 \cdot 9$	$58 \cdot 7$	$5 \mathrm{r} \cdot 0$	99°	$50 \cdot 5$	60＊9	$58 \cdot 9$	777	$15 \cdot 5$	1.4	$+3.3$	SSE：S ${ }_{\text {WS }}$		1 0 0	$0 \cdot 0$	$0 \cdot 1$	277	$0 \cdot 52$		
23		29.909	$66 \cdot 8$	$47 \cdot 6$	$56 \cdot 1$	$48 \cdot 3$	$98 \cdot 0$	$40 \cdot 0$	6i．5	59.3	$7 \cdot 8$	$16 \cdot 0$	$0 \cdot 4$	＋0．8	WSW		$0 \cdot 5$	$0 \cdot 0$	$0 \cdot$	323	$0 \cdot 01$		
24		$30 \cdot 17$	$68 \cdot 8$	50．2	57．4	$49^{\circ} 8$	102．0	$48 \cdot 7$	6i．6	59.4	$7 \cdot 6$	$16 \cdot 2$	$0 \cdot 4$	＋ 2.4	SW	SW ：N	3.0	$0 \cdot 0$	0.2	159	$0 \cdot 03$		
25		$30 \cdot 196$	$68 \cdot 8$	$43 \cdot 6$	55.9	52.0	108.7	$35 \cdot 7$	61．6	$59^{\circ} 4$	3.9	12.6	$0 \cdot 0$	＋1．0	SW	SW SS	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	80	00		
26		$30 \cdot 208$	$68 \cdot 3$	$37^{\circ} 4$	55．6	$52 \cdot 1$	$86 \cdot 0$	$46 \cdot 0$	$61 \cdot 8$	$59 \cdot 6$	3.5	10.6	$0 \cdot 0$	＋ 0.9	Calm	SW ：SS	$0 \cdot 0$	00°	$0 \cdot 0$	86	0.00		
27		$30 \cdot 130$	$66 \cdot 2$	$46 \cdot 3$	3557	$48 \cdot 9$	83.4	38.8	$61 \cdot 7$	$59 \cdot 5$	$6 \cdot 8$	$16 \cdot 3$	$0 \cdot 0$	＋1．2	SE	E	$0 \cdot 0$	$0 \cdot$	$0 \cdot 0$	177	$\bigcirc \cdot$		
28	Apogee	30．086	68.7	$42 \cdot 6$	54．9	$48 \cdot 3$	$105 \cdot 1$	35.4	62.6	$60 \cdot 2$	$6 \cdot 6$	17.8	$0 \cdot 0$	＋ 0.6			$0 \cdot 0$	$0 \cdot 0$	\bigcirc	90	$0 \cdot 00$		
29	In Equator	29．984	65．7	42.0	53．5	48＇1	101．6	$35 \cdot 5$ $32 \cdot 9$	$61 \cdot 6$ 60.6	59.4 58.4	$5 \cdot 4$ 9.2	$16 \cdot 3$ 16.2	0.0 2.0	-0.5 -0.1	$\begin{gathered} \mathbf{W} \\ \text { NNW: NNE } \end{gathered}$	$\begin{aligned} & \text { NNW } \\ & \text { NNE } \end{aligned}$	$0 \cdot 0$	$0 \cdot 0$	0．0	157	－0．00		
30	New	$29^{\circ} 99^{\circ}$	62.7	50．0	－ $53 \cdot 7$	744^{5}	$75 \cdot 4$	$32 \cdot 9$	60.6	58.4	$9 \cdot 2$	16.2	2.0	－0．1	NNW：NNE		$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	126			
Means		29.777	$67 \cdot 3$	$349^{\prime} 1$	I $56 \cdot 9$	9497	$90 \cdot 7$	$42 \cdot 9$	61．7	$59 \cdot 6$	7×2	$14^{\circ} 8$	1 2	$+0.4$			\therefore	\cdots		8um 6985	Sum 2.76		

Barometer Readings from Eye－Observations．
The first maximum in the month was $29^{\text {in }} 942$ on the 1 st ；the first minimum in the month was $29^{\ln } \cdot 525$ on the ard．
，was 2 ，was $29^{\text {in } .758 ~ o n ~ t h e ~} 6$ th
, ，, ，was 29 in． 758 on the 6th．

The absolute maximum $\quad,$, was $30^{\text {in }} \cdot 242$ on the 26 th．
The range in the month was＇ $\mathrm{I} \cdot \mathrm{in}_{0}$ was I ．
The range in the month was $\mathrm{x} \cdot \mathrm{in}^{\mathrm{in}} \mathrm{O}_{3} \mathrm{r}$ ． ，being $\mathrm{o}^{\text {in }} \cdot 042$ lower than the average of the preceding 23 years．
The mean for the month was $29^{\text {n }} \cdot{ }_{777}$ ，
Temperatere of the Air．
The highest in the month was $75^{\circ} \cdot 5$ on the 8th ；the lowest was $40^{\circ} \cdot 9$ on the $\mathbf{1 2 t h}$ ．
The range \quad, \quad was $34^{\circ} .6$ ．
The range \quad, \quad was \quad of all the highest daily readings was $67^{\circ} \cdot 3$ ，being the same as the average of the preceding 23 years．
The mean ，，of all the lowest daily readings was $49^{\circ} \cdot 1$ ，being $0^{\circ} \cdot 3$ higher than the average of the preceding 23 years．
The mean daily range was $18^{\circ} \cdot 2$ ，being $0^{\circ} \cdot 3$ less than the average of the preceding 23 years．
The mean for the month was $56^{\circ} \cdot 9$ ，being the same as the average of the preceding 23 years．

Humidity of the Air.

Temperature of the Dew Point.
The highest in the month was $62^{\circ} \cdot 5$ on the 8th; and the lowest was $39^{\circ} \cdot 3$ on the rith.
The mean , , was $49^{\circ} \cdot 7$, being $\mathrm{I}^{\circ} \cdot 2$ lower than the average of the preceding 23 years.
Elastic Force of Vapour.-The mean for the month was $\mathrm{o}^{\text {in }} \cdot 357$, being $\mathrm{o}^{\mathrm{in}} \cdot 022$ less than the average of the preceding 23 years.
Weight of Vapour in a Cubic Foot of Air. -The mean for the month was $4^{\mathrm{rr}^{8}} \cdot 0$, being $0^{\mathrm{gr}^{\mathrm{r}}} 2$ less than the average of the preceding 23 years.
Degree of Humidity. -The mean for the month was 77 (that of Saturation being represented by 100), being 4 less than the average of the preceding 23 years.
Degree of Humidity.-The mean for the month was 77 (that of Saturation being represented by 100), being 4 less than the average of the
Weight of a Cubic Foot of Air.-The mean for the month was 533 grains, being \mathbf{I} grain less than the average of the preceding 23 years
Cloums.
The mean amount for the month, a clear sky being represented by o and a cloudy sky by 10 , was $6 \cdot 2$.
Ozone.
The mean amount for the month, on a scale ranging from \circ to 10 , was $I^{\prime} 3$.
Wind.
The proportions were N. 2, S. 12, W. 13 , E. x, and Calm 2. The greatest pressure in the month was $5^{1 b s} \cdot \circ$ on the square foot on the 6 th and 9 th.
Fell on 16 days in the month, amounting to $2^{\text {tn }} \boldsymbol{7} 76$, as measured in the simple cylinder gauge partly sunk below the ground; being $0^{\text {in }} \cdot 33$ greater than the average fall of the
preceding 49 years.
Electricitr.-The moveable part of the electrical apparatus fell from the top of the pole to the ground in consequence of a breakage in its suspension on September 22 .

$\begin{gathered} \mathrm{MONTH} \\ \text { and } \\ \mathrm{DAY} \\ \mathrm{~s} 864 . \end{gathered}$	Phases of the Moon．		Readings of Thermometers．												Wind as dedoced from Anemometers．							
			Dry．			Dew Point． $\begin{array}{l}\text { Mean } \\ \text { Daily } \\ \text { Value．}\end{array}$			In the Waterof the Thames，at Greenwich，by Self－Regis－tering Ther－mometers，readat 9h A．M．					General Direction．		Pressure in lbs． on the square foot．						
						$\begin{gathered} \text { between } \\ \text { the } \\ \text { Dew Point } \\ \text { Temperature } \\ \text { and } \\ \text { Air Temperature. } \end{gathered}$																
				荡 荷	Mean Daily Value．						Mean Daily Value．	$\begin{aligned} & \text { 竒 } \\ & \stackrel{y}{4} \\ & \text { en } \end{aligned}$	$\begin{aligned} & \text { 㳦 } \\ & \hline \end{aligned}$	A．M．	P．M．		㴓					
		in．	－	－	\bigcirc		－	－	\bigcirc	－	－	\bigcirc	\bigcirc	－				ibs．	1us．	ibs．	miles，	in．
Oct． 1		29.951	61．8	$44^{\circ} 7$	52.1	$45 \cdot 5$	94.2	38.8	60.6	57.9	6.6	13.9	0.2	－ 14	E	E：NE	－	$0 \cdot 0$	$0 \cdot 0$	228	00	
		$30 \cdot 081$	59.7	$46 \cdot 2$	51.0	$40 \cdot 5$	$93 \cdot 2$	$45 \cdot 0$	$58 \cdot 6$	$56 \cdot 4$	10.5	13.7	$1 \cdot 9$	－ 2.4	NE	E ：ENE	$3 \cdot 5$	$0 \cdot 0$	$0 \cdot 6$	340	0.01	
3	\cdots	$30 \cdot 141$	$57 \cdot 2$	$44^{\circ} 2$	$49^{\circ} 8$	$37 \cdot 2$	$92 \cdot 2$	37.0	57.6	$55 \cdot 4$	12.6	17.2	$7 \cdot 3$	－ $3 \cdot 3$	ESE	E：ENE	$4 \cdot 8$	$0 \cdot 0$	$0 \cdot 9$	405	$0 \cdot 00$	
			54.2	42＊	$47^{\circ} 4$	$35 \cdot 9$	87°	$35 \cdot 6$	$57^{\circ} 1$	54.9	II•5	15.2	$7 \cdot 3$	－ $5 \cdot 6$	ESE	E ：ENE	$8 \cdot 0$	$0 \cdot 0$	1.4	367	00	
5		29.917	$57 \cdot 2$	$39 \cdot 1$	$48 \cdot 4$	$38 \cdot 3$	90.2	27.7	$56 \cdot 6$	$54^{\circ} 4$	$10 \cdot 1$	18.4	2.5	－ 4.4	E	ENE	$4 \cdot 5$	－0	$0 \cdot 6$	262	0	
6	$\begin{gathered} \text { Greatest } \\ \text { Declination } \end{gathered}$	$30 \cdot 15$	59.5	$37 \cdot 5$	$49^{\circ} 9$	42.0	$96 \cdot$	28.1	$56 \cdot 3$	54.1	7×9	17%	$0 \cdot 0$	－ $2 \cdot 6$	E	E	29	$0 \cdot 0$	$0 \cdot 1$	237	0	
		30．083	62.4	$42 \cdot 4$	$51 \cdot 2$	$45 \cdot 0$	$93 \cdot 3$	$34^{\circ} \mathrm{O}$	56.1	53.9	$6 \cdot 2$	14.8	$0 \cdot 0$	－I•I	NE	NE	$0 \cdot 4$	$0 \cdot 0$	$0 \cdot 0$	198		
8	First Qr．	30．069	$60 \% 7$	39.2	$50 \cdot 5$	$44 \cdot 6$	$92 \cdot$	28.4	$55 \cdot 1$	$52 \cdot 9$	$5 \cdot 9$	15.4	$00^{\circ} 0$	－1．6	NE	E：N．E	$2 \cdot 5$	$0 \cdot 0$	0	222	－0	
9		$30 \cdot 009$	$57 \cdot 2$	$47 \cdot 8$	$50 \cdot 8$	$42 \cdot 3$	73.0	37.8	$54 \cdot 6$	$52 \cdot 4$	8.5	12.5	$5 \cdot 5$	－I•1	NNE	N	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot$	205	0	
10		30．099	$60 \cdot 8$	$46 \cdot 4$	$50 \cdot 8$	$42 \cdot 8$	$97^{\circ} \circ$	$41^{\circ} 4$	54.2	52.4	$8 \cdot 0$	14.6	$5 \cdot 0$	－0．9	$\stackrel{\mathbf{N}}{\mathbf{N}}$	$\xrightarrow{\mathbf{N}}$	$0 \cdot 4$	$0 \cdot 0$	0.0	244	0	
11		30.163	$58 \cdot 3$	$46 \cdot 9$	$50 \cdot 5$	$42 \cdot 2$	78.2	$45 \cdot 5$ 37.5	54.1 53.8	（ 52.4	$8 \cdot 3$	12.4	$2 \cdot 3$	$-\quad 0.9$ $+\quad 18$	NNW	NNW	0.5 0.0	－0	0	226	－0．00	
12		30．090	$59^{\circ} 2$	477	$52 \cdot 8$	$43 \cdot 9$	$75 \cdot 0$	37.5	$53 \cdot 8$	$51 \cdot 7$	8.9	14^{-1}	$5 \cdot 0$	＋ 1.8	NNW	NW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	226	$0 \cdot 00$	
13	$\begin{gathered} \text { In } \begin{array}{l} \text { Pequatat } \\ \text { Perige } \end{array} \end{gathered}$	29.913	$56 \cdot 2$	$46 \cdot 0$	$50 \cdot 9$	$41 \cdot 8$	$63 \cdot 2$	34.6	53.9	$51 \cdot 4$	$9^{\prime \prime} 1$	13.6	I＊9	$+0.4$	W	NW	${ }^{\circ} \mathrm{O}$	$0 \cdot 0$	$0 \cdot 1$	189	－0	
14		29.886	$58 \cdot 2$	$45 \cdot 3$	$50 \cdot 9$	44.5	$62 \cdot 1$	34.2	$53 \cdot 9$	$51 \cdot 6$	$6 \cdot 4$	11.6	$0 \cdot 9$	＋ 0.8	W	$\xrightarrow[\mathrm{N}]{\mathbf{N}}$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot$	138	00	
15	Full	29.961	$56 \cdot 0$	37.7	$45 \cdot 6$	$38 \cdot 6$	84.2	297	53.7	$50 \cdot 8$	7.0	15.0	$0 \cdot 0$	-4.2	N	SW	$0 \cdot$	$0 \cdot 0$	$0 \cdot 0$	66	0	
16		29.666	59.4	44.3	51•7	$43 \cdot 3$	79°	34.2	$5 \mathrm{I} \cdot 6$	$49^{\circ} 4$	$8 \cdot 4$	14.8	$0 \cdot 0$	$+2 \cdot 1$		SW	1．7	$0 \cdot 0$	0.2	368	0	
17		29.507	$60 \cdot 8$	$48 \cdot 9$	53.8	$47 \cdot 8$	$79 \cdot 5$	$40 \cdot 7$	$51 \cdot 1$	$48 \cdot 9$	$6 \cdot 0$	$13 \cdot 1$	$2 \cdot 0$	＋ 4.4	WSW	$\begin{gathered} \text { WSW W W.ssW } \end{gathered}$	3.5	$0 \cdot 0$	0	294	06	
18	\cdots	29.513	62.6	$48 \cdot 3$	53.7	47%	$87 \cdot 1$	$39^{1} 1$	$51 \cdot 6$	$49^{\circ} 4$	$6 \cdot 3$	12.7	$2 \cdot 1$	$+4.5$	W：W	SW ：SSW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot$	175	－0	
19	$\underset{\text { Deecinatiost }}{\substack{\text { Greatest }}}$	29＊059	67．2	$45 \cdot 1$	$58 \cdot 1$	$50^{\circ} 9$	$86 \cdot 0$		$52 \cdot 6$	$50 \cdot 4$	7.2		$0 \cdot 0$	＋ $9^{\circ} 0$	SSE	W	$4^{\circ} 0$	$0 \cdot 0$	$0 \cdot 6$	447	00	
20	Decisination	$29^{22} 7$	64.2	$46 \cdot 0$	$5 \mathrm{I} \cdot 7$	$39 \cdot 5$	$87 \cdot 8$	$42 \cdot 6$	52.6	$49 \cdot 6$	12.2	18.8	$5 \cdot 9$	＋ $2 \cdot 6$	S ：WSW	SW	$9{ }^{\circ}$	$0 \cdot 0$	1•9	327	$0 \cdot 02$	
21		29．283	$56 \cdot 2$	42.6	$50 \cdot 3$	44°	66.0	37.4	53.6	5 r 4	$6 \cdot 3$	13.0	$2 \cdot 0$	＋ 1.4	S ：SSE	SE	$2 \cdot 3$	$0 \cdot 0$	$0 \cdot 1$	249	0	
22	Last Q	$28 \cdot 948$	$59^{\circ} 2$	479	52.4	$48 \cdot 7$	79.6	$47 \cdot 3$	$53 \cdot 1$	$50^{\circ} 9$	$3 \cdot 7$	7.2	1•9	＋3．8	SS	SSE：SSW	3.4	$0 \cdot$	$0 \cdot 3$	360	0.50	
23		28.996	$56 \cdot 2$	$46 \cdot 7$	$49 \cdot 9$	$43 \cdot 7$	$75 \cdot 4$	$42 \cdot 2$	$53 \cdot 1$	$50 \cdot 9$	$6 \cdot 2$	8.2	$1 \cdot 3$	＋1．6	SW	SW	8.0	$0 \cdot 0$	$1 \cdot 0$	328	$0 \cdot 11$	
24		29.241	$60 \cdot 0$	$39^{\circ} 4$	$48 \cdot 3$	42.0	$93 \cdot 3$	$32 \cdot 1$	$52 \cdot 1$	$49^{\circ} 9$	$6 \cdot 3$	16.1	$0 \cdot 0$	$+0.4$	SW	SW：	$0 \cdot 0$	$0 \cdot$	$0 \cdot$	82	$0 \cdot 00$	
25	Apogee	29．315	$56 \cdot 4$	37	$48 \cdot 8$	$46 \cdot 5$	$78 \cdot 5$	31•9	$52 \cdot 6$	$50 \cdot 4$	$2 \cdot 3$	7.2	$0 \cdot 5$	$+1 \cdot 3$	Calm	NE	\bigcirc	$0 \cdot 0$	$0 \cdot 0$	200	0.00	
26	In Equator	29.139	55：5	$48 \cdot 3$	52.4	$51 \cdot 1$	$58 \cdot 7$	44.4	$52 \cdot 6$	50.4	I•3	3.6	$0 \cdot 6$	＋ $5 \cdot 0$	Calm	$\xrightarrow[\text { NEW }]{ }$	$0 \cdot 0$	－	$0 \cdot$	133	$0 \cdot 00$	
27	In Equator	$29 \cdot 160$	$57 \cdot 2$	51.7	53.3	$5 \mathrm{I} \cdot 6$	62.0	$5 \mathrm{I} \cdot 3$	53.4	$51 \cdot 2$	$1 \cdot 7$	$3 \cdot 8$	0.6	$+6 \cdot 1$	Calm	SW ：SW	$0 \cdot 0$	\bigcirc	$0 \cdot$	155	34	
28		29.362	60°	44＊	$51 \cdot 4$	$46 \cdot 8$	$90^{\circ} 4$	$4{ }^{\circ} 7$	53.1	$50 \cdot 9$	4.6	114	$0 \cdot 0$	＋ 4.4	S	E	－ 0	$0 \cdot 0$	$0 \cdot$	200	00	
29		29.555	53.7	$47 \cdot 3$	$50 \cdot 0$	$47 \cdot 2$	$66 \cdot 8$	$45 \cdot 2$	$53 \cdot 0$	$51 \cdot 4$	$2 \cdot 8$	$4 \cdot 8$	1．5	+3.2 +3.6	NE	NE	1.5	$0 \cdot$	$0 \cdot$	255	$0 \cdot 00$	
30	New	29.837	$48 \cdot 2$	38.9	$43 \cdot 0$	$40 \cdot 6$	$50 \cdot 0$	37°	$5 \mathrm{I} \cdot 6$	$49^{\circ} 4$	2.4	4.4	I．8	－ 3.6	NNE	NNE	$0 \cdot$	0	0°	164	$0 \cdot 02$	
31		$30 \cdot 031$	497	$38 \cdot 7$	$43 \cdot 9$	37.9	$79^{\circ} 9$	$35 \cdot 2$	$50 \cdot 6$	$48 \cdot 4$	6.0	$10^{\prime} 7$	0.7	-2.6	ENE	E ：ESE	$2 \cdot 1$	\bigcirc	$0 \cdot 2$	250	$0 \cdot 00$	
Means		29.684	58.2	44^{1}	50.5	$43 \cdot 7$	$80 \cdot 3$	37.9	$54^{\circ} \mathrm{O}$	51•8	$6 \cdot 8$	12.4	2.	－ 0.6	．		－	\cdots	\cdots	7674	I－06	

Barometer Readings from Eye－Observations．
The first minimum in the month was $29^{\text {in．}} 93^{8}$ on the ist．

The first maximum	month	was $30^{\text {in }}$ ． 190 on the 3 rd ；the second minimum	，，	was $29^{\text {in }} \cdot 896$ on the 5 th．
The absolute maximu		was $30^{\text {in }} \cdot 205$ on the 1 rth；the third minimum	，，	was $29^{\text {in }} \cdot 875$ on the 14th．
The third maximum	，	was $29^{\text {in }} .999$ on the 15 th；the absolute minimum	，	was $28^{\text {in }} 8895$ on the 19th．
The fourth maximum		was $29^{\text {in }} \cdot 398$ on the 20th ；the fifth minimum	，，	was $28^{\text {in }} 905$ on the 22 nd ．
The fifth maximum	，，	was $29^{\text {in }} \cdot 373$ on the 25 th ；the sixth minimum	，	was $29^{\text {in }} \cdot 087$ on the 26 th．

The range in the month was $\mathrm{I}^{\mathrm{In}} \cdot 310$ ．
The mean for the month was $29^{\text {in }} \cdot 684$ ，being $o^{\text {in }}$ or 2 lower than the average of the preceding 23 years．
Temperature of the Air．
The highest in the month was $67^{\circ} 2$ on the 19 th ；the lowest was $37^{\circ} .5$ on the 6 th．
The range ，，was $29^{\circ} \cdot 7$ ．of all the highest daily readings was $58^{\circ} \cdot 2$ ，being $0^{\circ} .5$ lower than the average of the preceding 23 years．
$\begin{array}{lll}\text { The mean } & , \text { ，} & \text { of all the highest daily readings was } 58^{\circ} \cdot 2 \text { ，being } 0^{\circ} \cdot 5 \text { lower than the average of the preceding } 23 \text { year } \\ \text { The mean } & , \text { of all the lowest daily readings was } 44^{\circ \circ} \mathrm{I} \text { ，being the scme as the average of the preceding } 23 \text { years．}\end{array}$
The mean daily range was $14^{\circ \cdot} 1$ ，being $0^{\circ \cdot}{ }_{5}$ less than the average of the preceding 23 years．
The mean for the month was $50^{\circ \cdot} 5$ ，being the same as the average of the preceding 23 years．

$\left\|\begin{array}{c} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ 1864 . \end{array}\right\|$	Phases of the Moon．		Readings of Thermometers．								DifferencebetweentheDew PointTemperatureandAir T Temperature．				Wind as deduced from Anemometers．								
			Dry．						In the Water of the Thames， at Greenwich， by Self－Regis－tering Ther－ mometers，read at $9^{h} \Delta M$ ．					Osler＇s．	$\xrightarrow{\text { Robin }}$ sonsis								
						$\left\|\begin{array}{c} \text { Dew } \\ \text { Point. } \end{array}\right\|$					General Direction．	Pressure in lbs． on the square foot．											
			苼	若 畐	Mean Daily Value．	$\left\|\begin{array}{c} \text { Mean } \\ \text { Daily } \\ \text { Value. } \end{array}\right\|$								$\begin{array}{\|l\|} \text { Mean } \\ \text { Daily } \\ \text { Value. } \end{array}$			遁	A．M．	P．M．				\％
		in，	－			－	－	\bigcirc	－	c	\bigcirc							${ }^{\text {lbs．}}$	s．	ibs．	miles．	in，	
Nov． 1		30．047	49．2	$40 \cdot 9$	44.4	$436 \cdot 1$	71°	34°	．	．	$8 \cdot 3$	10.9	$5 \cdot 1$		－ 2.0	E	E：NE	$4{ }^{\circ} \mathrm{O}$	$0 \cdot 0$	$0 \cdot 5$	268	$0 \cdot 00$	
		29.995	47.6	39．7	$43 \cdot 5$	$5{ }^{36 \cdot 1}$	$63 \cdot 2$	38.4	．	．	7.4	$10 \cdot 7$	$2 \cdot 5$		-2.7	NNE	NNE：N	1.7	$0 \cdot 0$	$0 \cdot 1$	197	$\bigcirc \cdot 00$	
3	$\underset{\text { Dectinatiost }}{\text { Great }}$	30．138	$52 \cdot 8$	3477	$42 \cdot 7$	$738 \cdot 1$	83.4			．	$4 \cdot 6$	11．8	$0 \cdot 0$	-3.4	N ：Calm	NNE：Calm	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	119	$0 \cdot 0$		
		30.283	$45 \cdot 5$	$30 \cdot 1$	37.0	－ $35 \cdot 1$	$45 \cdot 5$	$23 \cdot 2$	．	－．	$1 \cdot 9$	$4 \cdot 8$	$0 \cdot 0$	－8．9	Calm	SW	$0 \cdot 0$	$0 \cdot 0$	00°	170	$0: 00$		
		$30 \cdot 199$	53－0	33.9	42.5	538.7	77°	$3 \mathrm{I} \cdot 5$		．．	$3 \cdot 8$	11.8	1.2	－ $3 \cdot 2$	WSW	N	1.4	$0 \cdot 0$	$0 \cdot 1$	239	$0 \cdot 00$		
6	First Qr．	$30 \cdot 452$	49°	$33 \cdot 5$	$40 \cdot 6$	$\begin{array}{lll} 6 & 32 \cdot 3 \end{array}$	$77^{\circ} 6$	$25 \cdot 0$	．	．	$8 \cdot 3$	16.0	0.6	－4．9	N	NE	$2 \cdot 0$	$0 \cdot 0$	$0 \cdot 1$	160	0.00		
7		30.243	$43 \cdot 1$	$30 \cdot 6$	$636 \cdot 3$	$3{ }^{30} 7$	$70 \cdot 0$	$26 \cdot 2$	．	．	$5 \cdot 6$	9．5	0.4	－8．8	NE	Variable	$0 \cdot 0$	00°	$0 \cdot 0$	111	0.00		
8		29.960	44^{-8}	28.9	$936 \cdot 9$	$934 \cdot 1$	$45 \cdot$	23.4	\cdots	．．	2.8	$4 \cdot 8$	$0 \cdot 0$	－799	SW	\mathbf{W} ： \mathbf{N}	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	145	0.00		
9	In Equator	$29^{*} 995$	$48 \cdot 4$	32．4	49.9	$934 \cdot 1$	$74^{\circ} \mathrm{O}$	30.4		\cdots	$5 \cdot 8$	11.6	0.6	-4.6	N	NE：E	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	129	$0 \cdot 00$		
10	Perigee	29.878	44.6	$25 \cdot 9$	934.9	928.7	$75 \cdot$	18.0	．	\ldots	$6 \cdot 2$	13.2	$0 \cdot 0$	－ 94	Calm	ENE	$2 \cdot 0$	$0{ }^{\circ}$	$0 \cdot 1$	140	0.00		
11		29.762	$41 \cdot 2$	28.4	$45^{\circ} 9$	$930 \cdot 9$	$48 \cdot 0$	19.8	．	．．	$5 \cdot 0$	$7 \cdot 8$	$0 \cdot 0$	－8．1	Calm	Calm	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	65	0.00		
12		29.646	42．5	$31 \cdot 6$	6．379	934.7	$45 \cdot 6$	$25 \cdot 9$	．	．	3.2	$5 \cdot 9$	$0 \cdot 0$	－6．0	Calm	Calm ：SE	$\bigcirc \cdot$	$0 \cdot 0$	$0 \cdot 0$	125	$0 \cdot 00$		
13	Full	29.001	$50 \cdot 0$	$36 \cdot 2$	$44^{6} 6$	$643 \cdot 5$	50.0	$33 \cdot 1$		．	$1{ }^{1} 1$	3.6	$0 \cdot 0$	＋1．1	SSE	SSE	$3 \cdot 0$	$0 \cdot 0$	$0 \cdot 1$	303	$0 \cdot 11$		
14		28.617	$53 \cdot 0$	$40 \cdot 7$	$76 \cdot 2$	$240 \cdot 3$	$78 \cdot 8$	$39^{\circ} 2$		\cdots	$5 \cdot 9$	10.4	$0 \cdot 0$	＋ 29	SW	SW：S	1.6	$0 \cdot 0$	$0 \cdot 1$	272	0.36		
15	$\underset{\text { decilination }}{\substack{\text { Greast }}}$	28.673	50．7	$35 \cdot 3$	$343 \cdot 7$	742.6	69.6	$33 \cdot 7$	$43 \cdot 9$	41.2	$1 \cdot 1$	$3 \cdot 8$	$0 \cdot 0$	＋0．7	SE	$\mathbf{E}: \mathbf{N}$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	175	－0．09		
16		29.210	$47^{\prime} 1$	$\|40 \cdot 9\|$	43.7	$74^{\circ} \mathrm{O}$	$49^{\circ} 2$	$36 \cdot 2$	45.4	$43 \cdot 2$	$2 \cdot 7$	$5 \cdot 0$	0.2	＋1．1	$\mathbf{N}: \mathbf{N W}$	NW ：WSW	$0 \cdot 0$	00°	$0 \cdot 0$	180	0.00		
17	．	29．136	$54 \cdot 3$	$35 \cdot 2$	$45 \cdot 7$	$44^{\circ} 4$	$54 \cdot 3$	$3 \mathrm{I} \cdot 1$	$45 \cdot 5$	44^{-1}	1.3	$3 \cdot 8$	$0 \cdot 0$	＋ $3 \cdot 3$	SSE	$\mathbf{S}: \mathbf{S S W}$				526	$\bigcirc \cdot 28$		
18	．	29.272	$53 \cdot 7$	$40 \cdot 8$	$47 \circ 4$	$\begin{array}{l\|l\|} \hline 48 \cdot 4 \\ 4 & 38 \cdot 7 \end{array}$	74.6	31.2	$45 \cdot 1$	$43 \cdot 7$	$8 \cdot 7$	12.2	3.9	$+5 \cdot 2$	SW	WSW	$8 \cdot 0$	$0 \cdot 0$	I＇7	405	$\bigcirc \cdot 03$		
19		29.656	53．9	37.9	$46 \cdot 9$	9 $44^{\circ} \mathrm{O}$	77.5	$29^{2} 2$	$45 \cdot 1$	44°	$2 \cdot 9$	$5 \cdot 6$	1．5	＋ 47	SW	S ：SSE	$0 \cdot 0$	00°	$0 \cdot 0$	228	$0 \cdot 00$		
20		29.448	52.4	43.0	$47^{\circ} 4$	4448	$53 \cdot 3$	$38 \cdot 6$	$45 \cdot 1$	44.7	2.6	$5 \cdot 2$	$0 \cdot 0$	＋ $5 \cdot 2$	SE	SSE	\bigcirc	$0 \cdot 0$	$0 \cdot 0$	129	$\bigcirc \cdot 00$		
21	Last Qr．	29.693	$5 \mathrm{I} \cdot 5$	$35 \cdot$	43.5	$53^{3} 1$	$68 \cdot 5$	29.2	$45 \cdot 3$	$44: 7$	$0 \cdot 4$	27	$0 \cdot 0$	＋ 1.5	S	SSW	0.2	$0 \cdot 0$	$0 \cdot 0$	234	0.05		
22	Apogee	29.400	$52 \cdot 5$	$38 \cdot 7$	$44^{\circ} 9$	$94^{2 \cdot 1}$	$70^{\circ} 0$	$29^{\prime 7}$	45.7	$45 \cdot 2$	2.8	$5 \cdot 7$	0.8	+3.2 $+\quad 0.8$	SW	$\stackrel{S W}{\mathbf{S E}}, \mathbf{v}$	$3 \cdot 7$	$0 \cdot 0$	$0 \cdot 3$	366	－ 0.19		
23	In Equator	29.440	$46 \cdot 7$	$37 \cdot 3$	$42 \cdot 2$	2994	58.7	$30 \cdot 2$	$45 \cdot 9$	44.7	$2 \cdot 8$	$5 \cdot 0$	0.6	＋ 0.8	$\mathbf{S W}: \mathbf{S}$	$\mathbf{S}: \mathbf{S E}: \mathbf{E}$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	268	0.18		
24		29.097	$41 \cdot 3$	35.9	38－3	3 35－1	$56 \cdot 0$	$35 \cdot 9$	$46 \cdot 1$	44.9	3.2	4.4	0.8	－ 2.7	NE: NW	WSW : SSW	$1 \cdot 7$	$0 \cdot 0$	0.2	238	$0 \cdot 86$		
25		29.106	44.5	31.4	438.5	$535 \cdot 3$	$68 \cdot 0$	24.6		－	$3 \cdot 2$	$8 \cdot 1$	$0 \cdot 0$	－ $2 \cdot 3$	SW	SSW ：SSE	$5 \cdot 0$	$0 \cdot 0$	$0 \cdot 4$	354	$0 \cdot 04$		
26		28.945	$45 \cdot 5$	34.0	－ $39^{\circ} 6$	634.7	$65 \cdot 6$	$3 \mathrm{I} \cdot 1$	$44^{\circ} 9$	$42 \cdot 9$	4.9	$8 \cdot 6$	$\bigcirc \bigcirc$	－1．3	WSW	WSW	$2 \cdot 1$	$0 \cdot 0$	\bigcirc	362	－ 11		
27	－•	29.646	$46 \cdot 6$	35•1	42．2	$237 \cdot 3$	697	29＊	$44 \cdot 8$	$43 \cdot 8$	$4 * 9$	$8 \cdot 1$	1．8	＋I•I	WSW	WSW ：SSW	1.8	$0 \cdot 0$	$0 \cdot 0$	354	$0 \cdot 00$		
28		29.626	54.4	$42 \cdot 7$	48.8	8 $46 \cdot 6$	$60 \cdot 3$	$41 \cdot 6$		\ldots	$2 \cdot 2$	5.4	1＇0	$+73$	SSW	SW	$7{ }^{\circ} 0$	$0 \cdot 0$	$0 \cdot 9$	409	$\bigcirc \cdot 03$		
29		$30 \cdot 204$	$47 \cdot 5$	35．9	41.3	$3{ }^{36 \cdot 9}$	$72 \cdot 5$	27.7			44	$7 \cdot 8$		－0．3	SW	SW : SSW	$\bigcirc \circ$	$0 \cdot 0$		307	$0 \cdot 00$		
30	Greatest Declination S	30.001	$48 \cdot 4$	37.7	43.9	9 $38 \cdot 5$	54.2	34.4			$5 \cdot 4$	8.4	I－3	$+2 \cdot 3$	SSW	$\mathbf{S S W}$	$4{ }^{11}$	$0 \cdot 0$	\bigcirc	364	$\bigcirc \cdot 24$		
Means		29.626	$48 \cdot 5$	$35 \cdot 5$	42.0	－37．9	$64 \cdot 2$	$30 \cdot 4$	$45 \cdot 2$	43.9	4.1	$7 * 8$	0.8	$-1 \cdot 2$			．	\cdots	\cdots	Sum 7342	Sum ${ }^{\text {sum }}$		

Barometer Readings from Eye－Observations．
The first maximum in the month was $30^{i n} \cdot 3^{1} 7$ on the 4 th ；the first minimum in the month was $30^{\text {in．}} 156$ on the 5 th．
The absolute maximum ，was $30^{\mathrm{in}} .492$ on the 6 th ；the absolute minimum ，was $28^{\mathrm{in}} \cdot 610$ on the 14 th．
The third maximum ，was $29^{\mathrm{in}} .328$ on the 16 th ；the third minimum，was $29^{\mathrm{in}} .02 \mathrm{I}$ on the 17 th

The fourth maximum
The fifth maximum
The sixth maximum
The seventh maximum
The eighth maximum ，Was 29 in． $7 x_{5}$ on the 19 th；the foarth minimam ，Was $29^{\text {in．}} 715$ on the 21 st ；the fifth minimum , ，was $29^{\text {in．}} 530$ on the 23 rd ；the sixth minimum
，，was $29^{\text {in．}} 26$ on the 25 th ；the seventh minimum ,, was $29^{\text {th．}} \cdot 267$ on the 25 th ；the seventh minimum
,,\quad was $29^{\text {in．}} 712$ on the 27 th ；thr eighth minimum was $\mathrm{m}^{\mathrm{in} .,} \quad$ was $28^{\mathrm{in} .811}$ on the 25 th．
The ninth maximum wa
The range in the month was $\mathrm{I}^{\mathrm{in}} \cdot 882$ ．
Temperature of the Air．
The highest in the month was $54^{\circ .} 4$ on the 28 th ；the lowest was $25^{\circ} .9$ on the ioth ；and the range in the month was $28^{\circ} .5$ ．
The mean $\quad " \quad$ of all the highest daily readings was $48^{\circ} .5$ ，being $0^{\circ} \cdot 6$ lower than the average of the preceding 23 years．
The mean＂，of all the lowest daily readings was $35^{\circ}, 5$ ，being $2^{\circ} \circ$ o lower than the average of the preceding 23 years．
The mean daily range was $13^{\circ} \circ$ ，being $1^{\circ} \cdot 4$ greater than the average of the preceding 23 years．
The mean for the month was $42^{\circ} \cdot \circ$ ，being $2^{\circ} \cdot I_{1}$ lower than the average of the preceding 23 years．
Osler＇s Anemometer．On the 17 th the pressure pencil was out of order；and on the 18 th the numbers inserted in the pressure columns refer only to the 5 hours between 9^{h} a．m．and midnight．

Humidity of the Air.
Temperature of the Dew Point.
The highest in the month was $47^{\circ} \cdot 7$ on the 6th; and the lowest was $15^{\circ} \cdot 2$ on the 17 th.
The mean ,, was $34^{\circ} \cdot 4$, being $2^{\circ} \cdot 7$ lower than the average of the preceding 23 years.
Elastic Force of Vapour. -The mean for the month was oin $\cdot 199$, being $o^{i n} \cdot 024$ less than the average of the preceding 23 years.
Weight of Vapour in a Cubic Foot of Air. -The mean for the month was $2^{5 \mathrm{rr}} \cdot 3$, being $0^{\mathrm{gr}} \cdot 3$ less than the average of the preceding 23 years.
Degree of Humidily. -The mean for the month was 86 (that of Saturation being represented by 100) being 2 less than the average of the preceding 23 years.
Weight of a Cubic Foot of Air.-The mean for the month was 55^{6} grains, being 4 grains greater than the average of the preceding 23 years,

Clouds.

The mean amount for the month, a clear sky being represented by \circ and a cloudy sky by ro, was $7^{\circ} 9$.
Ozone.
The mean amount for the month, on a scale ranging from 0 to 10 , was $1 \cdot 0$.
Wind.
The proportions were, N. 5, S. 12, W. 5, E. 9 , and Calm 0 . The greatest pressure in the month was $4^{108} \cdot 2$ on the square foot on the 23 rd .
Rans.
Fell on rodays in the month, amounting to oin ${ }^{\circ} 50$, as measured in the simple cylinder gauge partly sunk below the ground; being $\mathrm{I}^{\text {in }}$. 42 less than the average fall of the preceding 49 years.
Electricity.-The Electrical apparatus was furnished with a new insulating glass and was finally repaired on December 19.

Maxima and Minima Barometer-Readings,

Maxima and Minima Readings of the Barometer.
The following table contains the highest and lowest readings of the Barometer, reduced to 32° Fahrenheit, extracted from the photographic records, except during the period from May 13 to June 26, when there were no photographic records. The readings are accurate ; but the times are liable to great uncertainty, as the surface of the quicksilver frequently remains at its highest or lowest point through several hours. The time given is the middle of the stationary period. Where the symbol : follows the time, it denotes that the quicksilver has been sensibly stationary through a period of more than one hour.

Maxima and Minima Readings of the Barometer-concluded.

Absolute Maxima and Minima Readings of the Barometer, for each Month in the Year 1864. [Extracted from the preceding Table.]

1864, MONTH.	Readings of the Barometer.		Range of Reading in each Month.
	Maxima.	Minima.	
January..........	$30 \cdot 483$	${ }_{29}^{\text {in. }} \cdot 553$	$\stackrel{\text { 4n }}{0.930}$
February............. . . .	30.211	$29 \cdot 173$	1 038
March .	$30 \cdot 109$	$28 \cdot 786$	1-323
April.	$30 \cdot 241$	$29 \cdot 500$	0.741
May	$30 \cdot 118$	29.428	0.690
June	$30 \cdot 130$	$29 \cdot 353$	0.777
July	$30 \cdot 056$	29.458	$0 \cdot 598$
August..................	$30 \cdot 307$	$29 \cdot 504$	0.803
September.	$30 \cdot 242$	$29 \cdot 200$	$1 \cdot 042$
October.	30-205	$28 \cdot 784$	1.42 I
November	$30 \cdot 496$	$28 \cdot 606$	I 890
December	$30 \cdot 418$	$29 \cdot 324$	1.094

[^1]Monthly Means of Results for Meteorological Elements at the Royal Observatory, Greenwich, in the Year 1864.

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

WITH THE

ACTINOMETER.

1864.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& bservatio \& ons with \& the Actin \& nome \& ETER. \& \& \& \\
\hline \multirow{2}{*}{\[
\begin{gathered}
\text { Day, } \\
\mathbf{1 8 6 4 .}
\end{gathered}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{c|}
Greenwich \\
Mean Solar \\
Mime of the \\
Initial \\
Reading.
\end{tabular}} \& \multicolumn{2}{|l|}{Readings of the Graduated Scale.} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{Apparent effect of the Sun's Radiation in parts of the Scale.} \& \multirow[t]{2}{*}{Mean Result of each Group in parts of the Scale.} \& \multirow[t]{2}{*}{Greenwich
Mean Solar
Time cor-
responding
to the
Mean of
eachGroup.} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{Thermometer in the fluid of the Actino-
meter.} \& \multirow[t]{2}{*}{Blackened
Bulb
Thermo-
meter
on Grass.} \& \multirow[t]{2}{*}{General Remarks.} \& \multirow[b]{2}{*}{碳} \\
\hline \& \& Initial \& \[
\underset{\text { B. }}{\text { Terminal }}
\] \& \& \& \& \& \& \& \& \& \\
\hline \multirow[t]{21}{*}{Jan. 6} \& \& \({ }_{1}^{\text {alir. }}\) \& \({ }_{2}^{\text {div. }}\) \& dir.
\(5 \cdot 3\)

S \& div. \& dir. \& $\mathrm{b}_{\mathrm{m}} \mathrm{m}$ \& - \& . \& \therefore \& Cloudless. \&

\hline \& 4.4.30 Shade \& 24.6 \& $25 \cdot 1$ \& 0.5 \& $5 \cdot 3$ \& \& \& \& \& \& " \& ,

\hline \& 47. - Sun \& $27^{\circ} 6$ \& $33 \cdot 8$ \& $6 \cdot 2$ \& $5 \cdot 9$ \& \} $5 \cdot 4$ \& 1. $4^{6.45}$ \& 12 \& . \& \& " \&

\hline \& 48.30 Shade \& 34.2 \& 34.4 \& 0.2 \& $5 \cdot{ }^{\text {I }}$ \& \& \& \& . \& . \& " \&

\hline \& 50. O Sun \& 34.6 \& 39.0 \& 4.4 \& $4 \cdot 2$ \& \& \& \& . \& . \& " \& ,

\hline \& 5i. 30 Shade \& 39.7 \& $40^{\circ} \mathrm{O}$ \& $\bigcirc \cdot 3$ \& $4{ }^{\circ}$ \& \& \& \& . \& . \& " \& "

\hline \& 53. o Sun \& 40° \& $44 \cdot 3$ \& $4 \cdot 3$ \& $4 \cdot 1$ \& \& \& \& \& \cdots \& " \& ,

\hline \& 54.30 Shade \& $44 \cdot 7$ \& $44^{\circ} 8$ \& \bigcirc \& 47 \& \& \& \& \ldots \& \& " \& ,

\hline \& 56. Oi Sun \& 44.8
50.2 \& $50^{\circ} \mathrm{O}$ \& 5.2 \& $5 \cdot 4$ \& \& 1.58. 0 \& \& \cdots \& \cdots \& ", \& "

\hline \& 57.30
I. 59.0
Suade \& $50 \cdot 2$
49.5 \& 49.0 \& - $\begin{array}{r}\text { - } \\ 3 \\ \hline .5 \\ \hline\end{array}$ \& $4{ }^{4} \mathrm{O}$ \& ¢ 44 \& 1.58. O \& 11 \& \cdots \& \cdots \& " \& "

\hline \& 2. 0.30 Shade \& $53 \cdot 1$ \& $52 \cdot 5$ \& -0.6 \& $4 \cdot 1$ \& \& \& \& . \& \cdots \& " \& "

\hline \& 2. O Sun \& 52° \& $55 \cdot 6$ \& 3.6 \& 4.4 \& \& \& \& \ldots \& \cdots \& " \& "

\hline \& 3. 30 Shade \& $55 \cdot 8$ \& $54^{\circ} 9$ \& -0.9 \& 4.3 \& \& \& \& \& \cdots \& " \& "

\hline \& 5.
6.30 \& $54 \cdot 6$
58.0 \& 57.9
57.5 \& 3.3
-0.5 \& 4.0
3.6 \& \& \& \& \cdots \& \cdots \& " \& "

\hline \&	8.	Suade
8.	Sun	\& $57 \circ$ \& $5{ }^{5} 9$ \& - 2.9 \& 3.6 \& \} $3 \cdot 5$ \& 2. 8.30 \& 10 \& \cdots \& \cdots \& " \& ",

\hline \& 9.30 Shade \& $60 \cdot 1$ \& 59.3 \& -0.8 \& $3 \cdot 2$ \& \} \& \& \& . \& . \& ", \& "

\hline \& 11. O Sun \& $59 *$ \& $60 \cdot 8$ \& 1.8 \& $2 \cdot 5$ \&) \& \& \& \cdots \& \cdots \& " \& ,

\hline \& 12.30 Shade \& $60 \cdot 6$ \& $60 \cdot 0$ \& -0.6 \& 2.4 \& , \& \& \& \cdots \& \cdots \& " \& "

\hline \& 14. O ${ }_{\text {15. } 30}$ Sun ${ }^{\text {Shade }}$ \& $59 \cdot 5$
6.5 \& $61 \cdot 3$
$60 \cdot 8$ \& 1.8
-0.5 \& 2.4
2.3 \& $\} 2 \cdot 4$ \& 2. 15. 15 \& 10 \& \cdots \& \cdots \& " \& "

\hline \& 17. O Sun \& $60 \cdot 2$ \& 62.0 \& 1.8 \& 2.5 \& \& \& \& . \& . \& " \& "

\hline \& 2.18.30 Shade \& 62.0 \& $61 \cdot 2$ \& -0.8 \& \& \& \& \& . \& \cdots \& " \& N

\hline \multirow[t]{11}{*}{Jan. 11} \& 2. 15. O Sun \& 11.6 \& 17.9 \& $6 \cdot 3$ \& \& \& \& \& \cdots \& \cdots \& Clear. \&

\hline \& ${ }^{16.30}$ Shade \& 17.8 \& 15.8 \& $-2 \cdot 0$ \& $8 \cdot 0$ \& \& \& \& . \& . \& " \& "

\hline \& 18. O Sun \& 14.7 \& $2 \cdot 5$ \& $5 \cdot 8$ \& $7 \cdot 8$ \& \& \& \& . \& \cdots \& " \& ,

\hline \& 19.30 Shade \& 20.4 \& $18 \cdot 5$ \& -1.9 \& 7.9 \& \& \& \& . \& \cdots \& " \& ,

\hline \& 21. O Sun \& 17.6 \& 23.8 \& $6 \cdot 2$ \& 8.1 \& \& \& \& . \& \cdots \& " \& ,

\hline \& 22.30 Shade \& $23 \cdot 5$ \& 21.5 \& -2.0 \& 7.8 \& \} 77 \& 2. 23.45 \& 9 \& \cdots \& \cdots \& " \& ,

\hline \& 24. O Sun \& 20.5 \& 259 \& $5 \cdot 4$ \& 774 \& \& 2.23 .45 \& 9 \& \cdots \& \cdots \& " \& "

\hline \& 25.30 Shade \& $25 \cdot 2$ \& 23.2 \& -2.0 \& 7.6 \& \& \& \& \because \& \cdots \& " \& "

\hline \& 27. ${ }^{\circ}$ Sun \& $22^{\circ} \mathrm{O}$ \& $27^{\circ} 7$ \& - $5 \cdot 7$ \& 7.8 \& \& \& \& \because \& \cdots \& " \& "

\hline \&	28.30	Shade
I. 30.	Sun	\& 27.7

23.8 \& 25.6
29 \& - 21
$5 \cdot 2$ \& 7.6
7.1 \& \& \& \& \cdots \& \cdots \& " \& "

\hline \& 2.31.30 Shade \& 28.9 \& 272 \& -17 \& \& \& \& \& . \& . \& " \& \%

\hline \multirow[t]{5}{*}{Jan. 11} \& 2.55. O Sun \& 9.2 \& $13 \cdot 0$ \& 3.8 \& \& \& \& \& . \& - \& Clear. \& ${ }^{N}$

\hline \& 56.30 Shade \& 12.6 \& $10 \cdot 2$ \& -2.4 \& 5.9 \& \} 5.8 \& \& \& \ldots \& \cdots \& " \& "

\hline \& 58. ○ Sun \& 8.9 \& 12.0 \& $3 \cdot 1$ \& $5 \cdot 6$ \& \} $5 \cdot 8$ \& 2.58 .30 \& 7 \& . \& \cdots \& " \& "

\hline \& 2. 5 g .30
3. \& 12.4
8.0 \& 9.8
11.5 \& -2.6
-3.5 \& $5 \cdot 9$ \& \& \& \& \ldots \& \& ", \& $\stackrel{\square}{*}$

\hline \& 3, I. ○ Sun \& $8 \cdot 0$ \& 11.5 \& \& \& \& \& \& \cdots \& \& \&

\hline \multirow[t]{5}{*}{Jan. 25} \& 23.55. O Sun \& $40^{\circ} 7$ \& 53.6 \& 12.9 \& \& \& \& \& .. \& \cdots \& Clear. \& n

\hline \& 56.30 Shade \& $56 \cdot 2$ \& $58 \cdot 5$ \& $2 \cdot 3$ \& 11.2 \& \& \& \& . \& . \& " \& "

\hline \& 58. ○ Sun \& 59.5 \& $73 \cdot 5$ \& $14^{\circ}{ }^{\circ}$ \& 11.8 \& -117 \& 23.58.30 \& 19 \& . \& \cdots \& " \& "

\hline \& 23.59.30 Shade \& $76 \cdot 0$ \& 78.0 \& $2{ }^{2}$ \& 12.0 \& \& \& \& \ldots \& . \& " \& $\stackrel{ }{*}$

\hline \& 0. 1. o Sun \& 79° \& $93 \cdot 3$ \& 14.1 \& \& \& \& \& \& . \& " \& \cdots

\hline \multirow[t]{8}{*}{Jan. 26} \& 0.21. O Sun \& $6 \cdot 0$ \& \& 13.8 \& \& \& \& \& . \& \cdots \& Clear. \& N

\hline \& 22.30 Shade \& $22^{\circ} \mathrm{O}$ \& $23 \cdot 7$ \& $1 \cdot 7$ \& 12.6 \& \& \& \& \ldots \& \& " \& "

\hline \& 24. O Sun \& 24^{1} \& $38 \cdot 8$ \& 14.7 \& 13.0 \& \& \& \& . \& \cdots \& " \& "

\hline \& 25.30 Shade \& \& $42 \cdot 6$ \& 1.6
129 \& 12.2 \& U2.8 \& \& \& \& \cdots \& " \& "

\hline \& 27. 0 Sun \& $43 \cdot 2$
$58 \cdot 5$ \& $56 \cdot 1$
$59 \cdot 5$ \& 12.9
1.0 \& 11.6
12.8
1 \& 12.8 \& 0.27.30 \& 19 \& \cdots \& . \& ", \& "

\hline \& 28.30
30. Shade \& $58 \cdot 5$
59 \& $59 \cdot 5$
74.3 \& 1.0
14.6 \& 12.8
13.7 \& \& \& \& \ldots \& \& " \& "

\hline \& | 30. | O | Sun |
| :--- | :--- | :--- |
| 31.30 | Shade | | \& 59.7

$76 \cdot 5$ \& 74.3
77 \& 14.6
0.8 \& 13.7
14% \& \& \& \& \cdots \& \cdots \& ", \& "

\hline \& 0.33. o Sun \& $77 \cdot 7$ \& $92 \cdot 8$ \& $15 \cdot 1$ \& \& \& \& \& \& \& " \& N

\hline \multicolumn{13}{|c|}{| In every observation, whether in the Sun's rays or in the shade, the terminal reading was taken exactly one minute after the initial reading. |
| :--- |
| The "Apparent Effect of the Sun's Radiation" is found by comparing each change (whether in the Sun's rays or in the shade) with the mean of that which immediately precedes and that which immediately follows it. The initial N is that of Mr. W. C. Nash. |}

\hline
\end{tabular}

					Observations with the Actinometer－continued．								
$\begin{aligned} & \text { Day, } \\ & 1864 . \end{aligned}$	Greenwich Mean Solar Time of the Initial Reading．	Instrument exposed to the Sun＇s Rays，or in the Shade．	Readings of the Graduated Scale．			Apparent effect of the Sun＇s Radiation in parts of the Scale．	Mean Result of each Group in parts of the Scale．	Greenwich Mean Solar Time cor－ responding to the Mean of each Group．		Thermo－ meter in the fluid of the Acti． nometer．	Blackened Bulb Thermo－ meter on Grass．	General Remarks．	硅
			Initial A．	Terminal B．									
Jan． 26	$\begin{array}{\|rr\|} \hline \mathrm{h} & \mathrm{~m} \\ 1.22 . & 0 \\ 23 . & 0 \\ 25 . & 0 \\ 26 . & 0 \\ 1.28 . & 0 \end{array}$	Sun Shade Sun Shade Sun	$\begin{gathered} \text { div. } \\ 8.0 \\ 19^{\circ} 6 \\ 19^{\circ} 3 \\ 3 \mathrm{I}^{\circ} \\ 30^{\circ} 6 \end{gathered}$	$\begin{aligned} & \text { div. } \\ & 18.2 \\ & 1.9 \cdot 5 \\ & 30^{\circ} 0 \\ & 31^{\circ} 0 \\ & 40^{\circ} 9 \end{aligned}$	div． 102 -0.1 10.7 0.0 10.3	$\begin{aligned} & \text { div. } \\ & 10.6 \\ & 10.7 \\ & 10.5 \end{aligned}$	$\}\}_{10 \cdot 6}$	$\begin{array}{lll}\text { b } & \mathrm{m} & \mathrm{s} \\ \text { 1．} 25.30\end{array}$	16			$\begin{aligned} & 99 \\ & 99 \\ & 99 \\ & 9 \end{aligned}$	＂，
Jan． 28	$\begin{array}{rr} 1.43 . & 0 \\ 44 . & 30 \end{array}$	Sun Shade	19.8	$21.2{ }_{1}^{1}$	$\begin{aligned} & 1 \cdot 4 \\ & 0 \cdot 3 \end{aligned}$	$I \cdot I$			14	－•	－•	Sun obscured by dense cirro－ stratus clouds throughout this set of Observations．	$\begin{aligned} & \mathrm{N} \\ & \prime \prime \end{aligned}$
	46. $\begin{array}{r}\text { 4 } \\ 47.30 \\ 49 .\end{array} 0$	Sun Shade Sun Shade Sun	22.0 23.7 24.0 25.8 26.0	23.3 24.0 25.5 26.0 27.1	$1 \cdot 3$ $0 \cdot 3$ 1.5 0.2 1.1	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 1 \\ & 1 \cdot 2 \\ & 1 \cdot 1 \end{aligned}$	$\} r \cdot 1$						＂
Jan． 28		Sun Shade	2.0	14.8	$\begin{array}{r} 12 \cdot 8 \\ 2 \cdot 2 \end{array}$			23．7． 0	37	．		Sun free from cloud．	N
			17.2	19.4							\ldots		
		Sun	20.4	27.4	7%	$5 \cdot 1$						Clouds passing over the Sun．	
		Shade	$28 \cdot 9$	$30 \cdot 5$	1.6	$8 \cdot 8$				－	．	Clear about the Sun．	＂，
	2.	Sun	31.4	$45 \cdot 2$	13.8	12.1				\cdots	－．		＂
	3.30	Shade	47×7	$49 \cdot 5$	1.8	12.1					．	Clear about the Sun．	＂
	5.0	Sun	$50 \cdot 5$	64.5	$14^{\circ} \mathrm{O}$	$12 \cdot 1$					－	＂	＂，
	6.30	Shade	$67 \cdot 1$	69°	199	13.0	\} 11•7			．	.	＂	
	8.	Sun	$70^{\circ} 0$	$85 \cdot 8$	$15 \cdot 8$	13.9							
	9．30	Shade	88.5	$90 \cdot 5$	2.0 13.7	12.7				．	－	Light clouds． A dense small cloud．Sun wholly obscured．	$\begin{aligned} & " \\ & " \\ & " \\ & " \\ & " \\ & N \end{aligned}$
	II． 0	Sun	$3 \cdot 3$	$17{ }^{\circ}$	13.7	11.8					－		
	12.30	Shade	$19 \cdot 3$	21.2	1.9	13.4				．	－		
	14． 0	Sun	$22^{1} 1$	$39^{\circ} 0$	$16 \cdot 9$	$15^{\circ} \mathrm{O}$					．		
	15.30	Shade	$42 \cdot 0$	$43 \cdot 9$	1．9	13.8	）				\cdots		
	23．17．○	Sun	44.5	59.1	14.6					$36 \cdot 0$		＂	
Jan． 29	$\begin{array}{r} \text { 2. } 49 . \\ 50.30 \\ 52 . \\ 53.30 \\ 55 . \\ 56.30 \\ 2.58 . \end{array}$	Sun Shade Sun Shade Sun Shade Sun	10.019.4	18.6	8.6-0.6		$\} 9 \cdot 0$	2．54． 0	9	$38 \cdot 2$	．	Clear throughout．	N
				18.8						．	\cdots	－	
			$18 \cdot 3$	26.5	$8 \cdot 2$	$8 \cdot 9$					．	＂	
			$27^{\circ} 0$	$26 \cdot 2$	－0．8	$9 \cdot 2$				－	．	，	
			$26 \cdot 0$	34.6	8.6	$9 \cdot 5$				．．	．	＂	
			$35 \cdot 0$ $33 \cdot 3$	34.0	－1．0	$8 \cdot 5$					．．	＂	
			$33 \cdot 3$	$39 \cdot 7$	$6 \cdot 4$					$39 \cdot 8$	．	＂	
Feb．I	$\begin{array}{r} 2.41 . \\ 42.30 \\ 44 . \\ 45.30 \\ 47 . \\ 48.30 \\ 2.50 . \end{array}$		21.629.8	28.3	$6 \cdot 7$	－	$\} 5 \cdot 3$	2．46． 0	11	28.	\cdots	Cloudy throughout．	
				$3 \mathrm{3} \cdot 8$	$2 \cdot 0$					．	$\ldots \bullet$		
			32.5	$37 \cdot 9$	$5 \cdot 4$					－	－	＂	N$\prime \prime$$"$$"$$"$N
			$3 \mathrm{~g} \cdot 3$	$40 \cdot 9$	1． 6					．	．	＂	
			41.5	$49^{\circ} 9$	8.4					－	－	＂	
			51.5	53.0	1．5					\cdots	\cdots	＂	
			53.8	6．I•8	$8 \cdot 0$					29^{8}	\cdots	＂	
Feb． 6	2．6． 0	Sun	15.2	18.9	3.7			\qquad		$20^{\circ} 0$	－•	Dense clouds ；Sun seen occa－ sionally．	
	7.30	Shade	$20^{\circ} 0$	21.5	$1 \cdot 5$	$2 \cdot 3$	$\}$	－			．		
	9． 0	Sun	22.0	25.9	3.9	$2 \cdot 6$	\} $2 \cdot 6$			－	\cdots	＂	
	10.30	Shade	27.0	$28 \cdot 1$	1－1	$2 \cdot 8$	\}	，		\cdots	．	，	
	2．12． 0	Sun	28.5	32.4	$3 \cdot 9$					$21^{\circ} \mathrm{O}$		＂	
Feb． 6	$\left\lvert\, \begin{array}{rrr}2.19 . & 0 \\ 20.30 \\ 2.22 . & 0\end{array}\right.$	SunShadeSun	$40 \cdot 3$$51 \cdot 5$$53 \cdot 2$	$49^{\circ} 5$	9.21.41.43.2	$4 \cdot 8$	$4 * 8$	2．21． 0	15		－	Sun shining brightly． Dense clouds．	
				．52．9						\cdots	\cdots		
				$56 \cdot 4$									
In every observation，whether in the Sun＇s rays or in the shade，the terminal reading was taken exactly one minute after the initial reading． The＂Apparent Effect of the Sun＇s Radiation＂is found by comparing each change（whether in the Sun＇s rays or in the shade）with the mean of that which immediately precedes and that which immediately follows it． The initial N is that of Mr．W．C．Nash．													

Observations with the Actinometer-continued.													
$\begin{aligned} & \text { Day, } \\ & 1864 . \end{aligned}$	Greenwich Mean Solar Time of the Reading Reading.	Instrument exposed to the Sun's the Shade.	Readings of the Graduated Scale.			Apparent effect of the Sun's in parts of the Scale.	Mean Result of each Grou in parts ofthe Scale.	Greenwich Mean Solar responding to the MeachGroup. fach		Thermometer in the fluid of the Actino meter.	Blackened Bulb Thermometer on Grass.	General Remarks.	¢
			Initial A.	$\underset{\text { B. }}{\substack{\text { Terminal }}}$									
Mar. 2		Sun	${ }_{1}^{\text {div. }} 18$	${ }_{2}^{\text {div. }}$.	div.	alv.	div.	m	-	38.0	\therefore	Cloudy.	
	37.30	Shade	$24 \cdot 1$ 18	$26 \cdot 1$	2.0	$5 \cdot 2$..	.		"
	39. 0	Sun	26.8	$36 \cdot 2$	94	$7 \cdot 6$	6.0			.	.	"	"
	40.30	Shade	37.7	$39 \cdot 3$ $46 \cdot 6$	$\begin{aligned} & 9.4 \\ & 1.6 \end{aligned}$	6.4	$6^{\circ} 0$	2.41. O	21	\cdots	.	"	"
	42. 43.30	Sun	$40 \cdot 1$ 47 4	$46 \cdot 6$ 49 1	6.5	5.1 5.6				\cdots	\ldots	"	"
	2. 45. 0	Sun	49.5	+56.6	$7 \cdot 1$					400	.	"	$\stackrel{ }{\prime \prime}$
Mar. 14	2.41. O	Sun	$26 \cdot 2$	$32 \cdot 4$	$6 \cdot 2$					$43 \cdot 8$	-•	Sun obscured by dense cirrostratus cloud.	$\stackrel{N}{\text { N }}$
	42.30	Shade	$33 \cdot 6$ 35.2	$34 \cdot 8$	$1 \cdot 2$			2. 43.45	25	\because	\cdots	"	"
	$44.8{ }^{\circ}$	Sun	$35 \cdot 2$ $40 \cdot 5$	39.6 41 4	4.4	$3 \cdot 3$	\} 37	2.43 .45	25	\ldots	\because	"	",
	47. 0	Sun	41.5	$60 \cdot 5$	$19^{\circ} \mathrm{O}$	18.1				.	.	Clear about Sun.	"
	48.30	Shade	$63 \cdot 3$	${ }^{6} 6.1$	$0 \cdot 8$	18.0	17.0				\cdots	"	"
	50. 51.30	Sun	$64 \cdot 3$ $18 \cdot 0$	$\begin{array}{r}82.9 \\ 18.8 \\ \hline\end{array}$	18.6 0.8	17.8 16.2	$\}^{17} 0$	2. 50.30	25	\cdots	\cdots	"	"
	53. 0	Sun	19.1	34.5	$15 \cdot 4$	14.7				\cdots	\cdots	Thin clouds.	",
	2. 54.30	Shade	36.7	$37 \cdot 3$	- 0.6					46.0	.	"	${ }^{N}$
Mar. 15	22.18. 0	Sun	11.5	$2.5 \cdot 8$	14:3					$30 \cdot 3$	\cdots	Cloudless.	N
	19.30	Shade	$28 \cdot 1$	29.4	$1 \cdot 3$	13.2				..	.	,	"
	21.0	Sun	29.7	44.4	14.7	13.5				\cdots	.	"	"
	22.30 24.	Shade	$47^{\circ} \mathrm{O}$ 48.5	48.2 6.8	1.2 16.3	14.3 15.0	${ }^{14.2}$	22.23. O	32	\cdots	\ldots	"	"
	24. 25.30	Sun	$48 \cdot 5$ 67	64.8 68.8 8.8	16.3 103	$15 \cdot$ 14.9)			.	\cdots	"	"
	22.27. o	Sun	69.2	85.4	16.2					34°	.	"	${ }^{\text {n }}$
Mar. 15	23.40. O	Sun	$8 \cdot 8$	$3 \mathrm{I} \cdot 5$	22.7					44°	\cdots	Clear.	n
	41. 30	Shade	34.8	$36 \cdot$	1.2	20.8				..	\cdots	"	"
	43. ${ }^{\circ}$	Sun	$37^{\circ} \mathrm{O}$	58.4	21.4	$20 \cdot 3$.	.	"	"
	44.30	Shade	61.8 63.4	62.8	$1{ }^{1} \circ$	19.2				\cdots	\cdots	"	"
	46. 47.30	Sun	$63 \cdot 4$ 7.2	82.4 8.2	19° 1 1	18.0 18.9				\cdots	\cdots	"	",
	49.0	Sun	${ }^{9} 9^{\circ}$	$29 \cdot 8$	20.8	20.3				\ldots	\ldots	"	"
	5 5 .30	Shade Sun	32.4 32.4	32.4 51	$\begin{array}{r}0.0 \\ \hline 15\end{array}$	20.2 10.5		23.51. o	37	\cdots	\cdots	"	"
	52.8	Sun	32.4 53	$51 \cdot 9$ 53.8	19.5 0.0	19.5 16.5	19	23.51.		\cdots	\cdots	"	"
	55.8	Sun	53.6	67×1	$\begin{array}{r}10 \\ 13 \\ \hline\end{array}$	-13.6				\ldots	\cdots	Light clouds passing over. The	",
										.		Sun was obscured for 50\%.	"
	56.30	Shade	$68 \cdot 7$.	.	Light clouds.	
	58. ${ }^{\text {O }}$	Sun	$68 \cdot 2$	-89.5	21.3	$2{ }^{1.9}$..	Clear.	"
	23.59.30	Shade	${ }_{91}{ }^{1} 5$	$90 \cdot 7$	-0.8	21.7	J			$\stackrel{\square}{\square}$	\cdots	"	"
16	o. I. O	Sun	13.7	34.2	$20 \cdot 5$					$51 \cdot 3$.	"	N
Mar. 16	2. 26. 0	Sun	14.2	$34 \cdot 2$	20.0					53.8	.	Clear.	
	27.30	Shade	34.8	$32 \cdot 6$	-2.2	$20 \cdot 6$..	.	"	
	29. 30	Sun	31.6 4.8	$48 \cdot 3$	16.7	19.5				\cdots	\cdots	"	"
	30.30 32.0	Shade	48.8	$45 \cdot 5$	-3.3	20°				\cdots	\cdots	"	"
	33.30	Shade	43.9 60.6	- 57	-3.5	19.8		2.34. 0	27	.	.	"	"
	35. 0	Sun	$55 \cdot 2$	71.2	16.0	19.6				.	\cdots	"	"
	36.30	Shade	71.2	67.6	-3.6	$19 \cdot 6$.	\cdots	"	"
	38. ${ }^{\circ}$	Sun	$65 \cdot 8$	$8 \mathrm{I} \cdot 8$	$16 \cdot 0$	19.6				\because	\cdots	"	"
	39.30 2.41	Shade	$81 \cdot 9$ $76 \cdot 1$	$78 \cdot 2$ 89.5	-3.7 13.4	18.4	J			5 $\because \circ$	\cdots	"	$\stackrel{\prime}{\prime}$

In every observation, whether in the Sun's rays or in the shade, the terminal reading was taken exactly one minute after the initial reading.
The 'A Apparent Effect of the Sun's Radiation" is found by comparing each change (whether in the Sun's rays or in the shade) with the mean of that which immediately precedes and that which immediately follows it.
Ths initial N is that of Mr. W. C. Nash.

Observations with the Actinometer-continued.													
$\begin{aligned} & \text { Day, } \\ & 1864 . \end{aligned}$	Greenwich Mean Solar Time of the Initial Reading.	Instrument exposed to the Sun's Rays or in the Shade.	Readings of the Graduated Scale.			Apparent effect of the Sun's Radiation in parts of the Scale.	Mean Result of each Group in parts of the Scale.	Greenwich Mean Solar Time corresponding to the Mean of each Group.		Thermometer in the fluid of the Actinometer.	Blackened Bulb Thermometer on Grass.	General Remarks.	\%
			Initial A.	$\begin{gathered} \text { Terminal } \\ B . \end{gathered}$									
Mar. 25	$\begin{array}{lll} \text { h } & \text { m } & s \\ \text { I. } & 2 & 1 . \end{array}$	Sun	$\begin{aligned} & \text { div. } \\ & \text { I2. } \end{aligned}$	$\stackrel{\text { div. }}{31} 9$	$\begin{gathered} \text { div. } \\ 19^{\circ} 9 \end{gathered}$	1 div.	$\}_{17 \circ}$	$\begin{array}{lll} \text { h } & m & 1 \\ \text { I. } 24 . & 30 \end{array}$	37	$\stackrel{\circ}{4}{ }^{\circ} \mathrm{O}$	67.8	Clear about the Sun.	
	22.30	Shade	34.2	37.6	$3 \cdot 4$	$16 \cdot 6$,	"
	24. 0	Sun	$38 \cdot 8$	58.8	20\%	17.0				.	69°	,	"
	25.30	Shade	$62^{1} 1$	$64 \cdot 8$	$2 \cdot 7$	17.5				\cdots	$67 \cdot 5$	"	"
	1. 27. 0	Sun	$66 \cdot 2$	$86 \cdot 7$	20.5					$48 \cdot 0$	68.0	" .	
April 6		Sun Shade Sun Shade Sun Shade Sun	$9 \circ$11.9	$11^{\circ} \mathrm{O}$	2.0	0.20.40.60.60.5	$\} 0.5$	5. 3. ○	14	31-8	$47 \cdot 8$	Overcast : dense clouds.	N
				13.6	$1 \cdot 7$. .			
			$14^{\circ} \mathrm{O}$	$15 \cdot 8$	I•8					-.	$46 \cdot 8$	\#	"
			16.6	17.7	$1 \cdot 1$. .	.	,	"
			18.0	19.5	1.5					\cdots	\cdots	"	"
			19.9	$20 \cdot 5$	0.6					\cdots	$46 \cdot 2$	"	$"$
			$2 \mathrm{I}^{\circ} \mathrm{O}$	21.7	0.7					$31 \cdot 8$	$46 \cdot 0$	"	N
April 13	$\begin{array}{r} 1.53 . \\ 54.30 \\ 56 . \\ 57.30 \\ 1.59 . \\ 2 . \\ 2 . \\ \hline \end{array}$	Sun	$\begin{array}{r} 0.6 \\ 22.2 \end{array}$	18.8	$\begin{array}{r} 18.2 \\ 2.8 \end{array}$	$15 \cdot 8$	$\}_{17 \cdot 3}$		41	$34 \cdot 2$	$71^{\circ} \mathrm{O}$	Clear throughout.	N
				$25 \cdot 0$,	71.1		
		Sun	26.0	$45 \cdot 0$	19°	$16 \cdot 1$. .	$72 \cdot 1$	" Brisk wind	"
		Shade	49°	52.0	$3 \cdot 0$	$16 \cdot 8$.	$70^{\prime} 2$	" Brisk wind.	"
		Sun	$53 \cdot 1$	$73 \cdot 8$	$20 \cdot 7$	17.9				.	71.2	"	"
		Shade	$77 \cdot 8$	$80 \cdot 5$	2.7	17.8				\cdots	\cdots	"	"
	2. 0	Sun	3.6	$24^{\circ} \mathrm{O}$	20.4	17.5				. .	$73 \cdot 7$	"	"
	3.30	Shade	27.6	$30^{\circ} 6$	$3 \cdot 0$	17.8				.	,	"	"
	5. 0	Sun	3r9	$53 \cdot 1$	21.2	18.2				-	72.0	"	"
	6.30	Shade	$57 \cdot 1$	$60 \cdot 0$	$\begin{array}{r}2.9 \\ \hline 1.9\end{array}$	18.2				$4 \cdot 3$	697	"	$\stackrel{M}{\sim}$
	2. 8. ○	Sun	6I:5	82.5	21.0					$4 \mathrm{I} \cdot 3$	$71 \cdot 2$	"	
April 14	22.34. 0		$3 \cdot 2$	21.5	$\begin{array}{r} 18 \cdot 3 \\ 3.8 \end{array}$	$15 \cdot 3$	$\left\{\begin{array}{l}17.3\end{array}\right.$	22.41.15	44	$30 \cdot 5$	82.5	Clear.	N
	22.35 .30		$25 \cdot 2$	29°						. .	82.5		
	37. O		$30 \cdot 8$	$50 \cdot 7$	19.9	15.5				. .	$\because 8$	"	"
	38.30		$55 \cdot 8$	$60 \cdot 8$	$5{ }^{\circ} \mathrm{O}$	$15 \cdot 8$				\cdots	$83 \cdot 8$	"	"
	40. 0		$63 \cdot 1$	84.9	21.8	16.8				.	8	"	"
	41.30		$90 \cdot 5$	$95 \cdot 4$	4.9	$18 \cdot 2$				-	86.1	"	"
	43. 0		$3 \cdot 5$	28.0	24.5	19.1				. .	$87 \cdot 0$	"	"
	44.30		$33 \cdot 1$	$39^{\circ} \mathrm{O}$	$5 \cdot 9$	18.7				-		"	"
	46. 0		$42^{\circ} \mathrm{O}$	$66 \cdot 7$	24.7	18.8				\cdots	$86 \cdot 6$ $86 \cdot 0$	"	$\stackrel{\text { N }}{ }$
	22.47.30		73°	$78 \cdot 9$	$5 \cdot 9$					$41 \cdot 0$	$86 \cdot 0$	"	
April 15	$\begin{array}{r} 2.21 . \\ 22.30 \\ 24 . \\ 25.30 \\ 27 . \end{array}$	Sun Shade Sun Shade Sun Shade Sun	$\begin{gathered} 0 \cdot 0 \\ 28 \cdot 8 \\ 27 \cdot 5 \\ 55 \cdot 1 \\ 53 \cdot 0 \\ 79 \cdot 9 \\ 76 \cdot 8 \end{gathered}$	27°	27°	$27 \cdot 3$27.2	$27^{\circ} 1$	2. 26. 0	37	72\%	83.0	Clear.	N
				28.1	-0.7					. .	$85 \cdot$		
				$53 \cdot 7$	$26 \cdot 2$. .		"	"
				$53 \cdot 9$	-1.2	$26 \cdot 9$.	$88 \cdot 0$	"	"
				$78 \cdot 2$	$25 \cdot 2$	$26 \cdot 9$				-		"	$"$
				77.7	-2.2	$27 \cdot 3$				\cdots	88.5	"	$\stackrel{ }{*}$
				101.8	25*					$78 \cdot 4$	$86 \cdot 6$	"	N
April 18	22.56. 0	Sun	$5 \cdot 4$	29.5	24.1					42.2	77°	Clear.	N
		Shade	$34 \cdot 2$	$39 \cdot 3$	5•1	197	7			-	$77 \cdot 4$	"	"
	22.59. ○	Sun	$41 \cdot 6$	67.0	$25 \cdot 4$	20.3				-	$78 \cdot 3$	"	"
	23. 0.30	Shade	72.0	$77^{1} 1$	$5 \cdot 1$	14.9	¢ $17 \cdot 2$	23. 0.15	47	-	$78 \cdot 4$	"	"
	2. 0	Sun	$\bigcirc \circ$	14.6	14.6	$12 \cdot 3$.	$79 \cdot 8$	"	"
	23. 3.30	Shade	$15 \cdot 2$	147	-0.5	18.8	j			-•	$80 \cdot 0$	"	N

[^2]The "Apparent Effect of the Sun's Radiation" is found by comparing each change (whether in the Sun's rays or in the shade) with the mean of that which immediately precedes and that which immediately follows it.
The initial N is that of Mr. W. C. Nash.
April 6 . The observations on this day were made for comparison with observations by Mr. Glaisher during his balloon ascent from Woolwich.

In every observation, whether in the Sun's rays or in the shade, the terminal reading was taken exactly one minute after the initial reading.
The "Apparent Effect of the Sun's Radiation" is found by comparing each change (whether in the Sun's rays or in the shade) with the mean of that which immediately precedes and that which immediately follows it.
The initial N is that of Mr. W. C. Nash.

Observations with the Actinometer－continued．													
$\begin{gathered} \text { Day, } \\ \mathbf{1 8 6 4 .} \end{gathered}$	Greenwich Mean Solar Time of the Initial Reading．	Instrument exposed to the Sun＇s Rays or in the Shade．	Readings of the Graduated Scale．			Apparent effect of the Sun＇s Radiation in parts of the Scale．	Mean Result of each Group in parts of the Scale．	Greenwich Mean Solar Time cor－ responding to the Mean of each Group．		Thermo－ meter in the fluid of the Acti－ nometer．	Blackened Bulb Thermo－ meter on Grass．	General Remarks．	寅
			Initial A．	Terminal B．									
July 11	h m s 2． 3	Sun	$\begin{aligned} & \text { div. } \\ & 15.0 \end{aligned}$	$\begin{aligned} & \text { div. } \\ & 64^{\circ} 2 \end{aligned}$	$\frac{\text { div. }}{} 49^{\circ}$	div．	div．	b mall	－	66°	94．8 98.9	Clear about the Sun．	N
	14.30	Shade	70．6	73.9	3.3	$46 \cdot 2$	7			\cdots	9	＂	＂
	16． 0	Sun	110	$60 \cdot 7$	49.7	$46 \cdot 3$	，			．	97.8 103.0	＂	＂，
	17.30	Shade	67.0	70.5	$3 \cdot 5$	$46 \cdot 9$	$\}_{46 \cdot 7}$	2． 19.30	50	\cdots	104.0	＂	＂
	19． 0	Sun	$6 \cdot 0$	$57 \cdot 1$	$5 \mathrm{I} \cdot \mathrm{i}$	47.4	4677	2．19．30	50	．．	106．0	＂	＂
	20.30	Shade	64.2	$68 \cdot 1$	$3 \cdot 9$	$46 \cdot 7$				．	11000	＂	＂
	22． 0	Sun	$50 \cdot 0$	$100 \cdot 0$	50．0	$46 \cdot 0$				．	116%	＂	＂
	23.30	Shade	$30 \cdot 8$	34.9	4.1 53.5	477	J				\cdots	＂	＂
	2．25．O	Sun	$4 \mathrm{I} \cdot 5$	$95 \cdot 0$	53.5					$69 \cdot 9$	11200	＂	N
July 11	2．50． 0	Sun	$15 \cdot 6$	$74^{\circ} 2$	$58 \cdot 6$		7			$73 \cdot 0$	$\begin{aligned} & 92 \cdot 8 \\ & 95 \cdot 2 \end{aligned}$	Clear．	N
	51．30	Shade	81．0	$86 \cdot 0$	$5 \cdot 0$	$53 \cdot 7$				－		＂	＂
	53．○	Sun	$5 \cdot 8$	$64 \cdot 5$	$58 \cdot 7$	$53 \cdot 9$				．	$93 \cdot 5$ 94.8	＂	＂
	54.30	Shade	70\％	74.6	4.6	52.7	\} 53.0	2．55． 0	45		$94 \cdot 8$	＂	＂
	56．O	Sun	18.0	$73 \cdot 8$	$55 \cdot 8$	$5 \mathrm{I} \cdot 4$				－	$\begin{aligned} & 102 \cdot 9 \\ & 105 * 0 \end{aligned}$	＂	＂
	57.30	Shade	$80^{\circ} 0$	$84^{.2}$	4.2	$53 \cdot 3$	J			\cdots		＂	＂
	2．59．○	Sun	$19 \cdot 8$	79°	$59^{\circ} 2$					76＊0	$\begin{aligned} & 102.8 \\ & 106.0 \end{aligned}$	\％	N
July 12	2．52．O	Sun	11.8	$60 \cdot 6$	$48 \cdot 8$					$60^{\circ} 0$	94.6	Clear．	N
	53.30	Shade	67°	73.0	6．0					．．	97°	＂	＂
	55．○	Sun	$8 \cdot 2$	59°	$50 \cdot 8$	$44^{\circ} \mathrm{O}$	C 3.4			．	99\％	＂	＂
	56.30	Shade	72.0	79^{6}	$7{ }^{7} 6$	$43 \cdot 9$	\} 43.4	2．57． 0	45	．．	101．2	＂	＂
	58．○	Sun	$7{ }^{7 \circ}$	59.2	52.2	$43 \cdot 5$	）			．	$100 \cdot 5$	＂	＂
	2．59．30	Shade	67°	$76 \cdot 8$	9．8	42.0	J				103.6	＂	＂
	3．I．O	Sun	$23 \cdot 2$	74×7	51.5					$65 *$	$\begin{aligned} & 107.0 \\ & 101.2 \end{aligned}$	，	N
July 12	22．34． 0	Sun	11＊0	$45 \cdot 7$	34.7					53．0	$\begin{aligned} & 79.6 \\ & 81 \cdot 0 \end{aligned}$	Very cloudy：Sun seen oc－ casionally．	N
	35.30	Shade	$5 \mathrm{I} \cdot 8$	$56 \cdot 4$	$4 \cdot 6$	（20．4）				－	81.6		＂
	37． 0	Sun	$58 \cdot 6$	$73 \cdot 8$	15：2	$10 \cdot 7$	7			－	81.5 81.0	Sky entirely covered with dense cirro－stratus．	＂
	38.30	Shade	78.0	82.5	4.5	$9 \cdot 8$				－	77.7	＂	＂
	40． 0	Sun	$16 \cdot 0$	29.4	13.4	$8 \cdot 6$				．．	$75 \cdot 4$	＂	＂
	41.30	Shade	$3 \mathrm{I} \cdot 8$	$36 \cdot 9$	$5 \cdot \mathrm{I}$	$7 \cdot 3$				．	73.9	＂	＂
	43．○	Sun	39°	$50 \cdot 4$	11.4	$6 \cdot 6$	8			．	$72 \cdot 2$ 71.8	＂	＂
	44.30	Shade	$53^{\circ} \mathrm{O}$	57.5	4.5	7.5	\} 8.4	22．44．15	57	－	71.2	＂	＂
	46． 0	Sun	$60^{\circ} 0$	72.5	12．5	$8 \cdot 1$				．	72.0	＂	＂
											$72 \cdot 1$		
	47．30	Shade	$76 \cdot 0$		$4 \cdot 2$					\cdots	$7 \mathrm{7} \cdot 3$	＂	＂
	49．○	Sun	$82 \cdot 5$	$94 \cdot 5$	12.0	779				．	$70 \cdot 6$ 72.8	＂	＂
	50.30	Shade	$8 \cdot 5$	12.5	$4{ }^{\circ} 0$	$9 \cdot 4$	J			\cdots	－•	＂	＂
	22．52． 0	Sun	14.4	29^{2}	14.8					$56 \cdot 2$	74.6 75.2	＂	$\stackrel{ }{\prime \prime}$
July 13	23．6．O	Sun	$6 \cdot 8$	$48 \cdot 6$	$41 \cdot 8$					51.0	$78 \cdot 2$ 81.4	Cloudless．	N ．
	7.30	Shade	54.7	60°	$5 \cdot 3$	$36 \cdot 6$	7			－	$83 \cdot 4$	＂	＂
	9．0	Sun	$9 \cdot 6$	$5 \mathrm{I} \cdot 6$	$42 \cdot 0$	$36 \cdot 0$	$36 \cdot 2$		58	．	$88 \cdot 8$	＂	＂
	10.30	Shade	$58 \cdot 5$	$65 \cdot 3$	$6 \cdot 8$	$36 \cdot 2$	\} $36 \cdot 2$	23． 9.30	58	．	$94^{\circ} \mathrm{O}$	＂	＂
	23．12． 0	Sun	$2 \cdot 0$	$46 \cdot 0$	$44^{\circ} \mathrm{O}$	$36 \cdot 1$	\bigcirc			．	97% 100%	＂	N

[^3]at the Royal Observatory, Greenwich, in the Year 1864.
(xlix)

Observations with the Actinometer－continued．													
$\begin{gathered} \text { Day, } \\ 1864 . \end{gathered}$	Greenwich Mean Solar Time of the Initial Reading．		Readings of the Graduated Scale．			Apparent effect of the Sun＇s Radiationin parts of the Scale．	Mean Result of each Grou in parts of the Scale	Greenwich Mean Solar Time cor－ to the Mean of eachGroup．		Thermo－meter inthe fuid oftheActino－meter．	Blackened Bulb Thermo－ on Grass．	General Remarks．	发
			$\begin{aligned} & \text { Initial } \\ & \text { A. } \end{aligned}$	$\begin{array}{\|c} \text { Terminal } \\ \text { B. } \end{array}$									
July 20	h m．${ }^{\text {n }}$ ， 38.0	Sun	$\begin{aligned} & \text { div. } \\ & 9^{\circ} \end{aligned}$	$5{ }^{\text {div．}}$	div． 46.0	divi	div．	h m	－	$64^{\circ} \cdot$	$\begin{aligned} & \circ \circ \cdot 4 \\ & 96 \cdot 4 \\ & 96 \cdot 8 \end{aligned}$	Cloudless．	N
	3 g .30	Shade	62.0	$68^{\circ} \mathrm{O}$	6．0	$42 \cdot 3$				\cdots	$10 \cdot 0$	＂	＂
	41． 0	Sun	13.0	$63 \cdot 7$	50：7	$43 \cdot 7$				－•	101.0 101.6	＂	＂
	42.30	Shade	$70 \cdot 9$ 6.8	78.8 60.2	7.9 53.4	$44 \cdot 1$ $44 \cdot 9$				\cdots	$\stackrel{\square}{100} 8$	＂，	＂
	44.0										102.2		
	45.30	Shade	69.0	78.2	9.2 59	$43 \cdot 3$	3429	1．46．o	51	\because		＂	＂
	47． 0	Sun	$8 \cdot 2$	59.9	517	$41^{\circ} 9$				\cdots	109% 11.0.	＂	＂
	48.30	Shade	$69^{\circ} \cdot$	79.4 60.8	$10 \cdot 4$ 52.8	$41 \cdot 8$ $42 \cdot 8$				\cdots	105	＂	＂，
		Sun	$8 \cdot 0$		$52 \cdot 8$	$42 \cdot 8$				\cdots	102.5	＂	＂
	51.30	Shade	$70^{\circ} 9$	$80 \cdot 5$	$9 \cdot 6$	\％ 417	）			$\because 0$	\because	＂	
	1．53．O	Sun	12．8	$62 \cdot 7$	$49^{\circ} 9$					$70^{\circ} 0$	$98 \cdot$ $95 \cdot 5$	＂	N
Aug． 3	22．29． 0	Sun	49	51.0	46．1					64°	89.7 90.8	Cloudless．	N
	30.30	Shade	55.6	59.6		41.6				\cdots		＂	＂
	32． 0	Sun	$61 \cdot 6$	$106 \cdot 6$	45%	39.2				．	91.5 93.9	＂	＂
	33.30	Shade	$17^{\circ}{ }^{\circ}$	24.7	77	40°	$4^{1 \times 0}$	22．32．30	52	\cdots	\cdots	＂	＂
	35． 0	Sun	$27 \cdot 8$	78.2	$50 \cdot 4$	$43 \cdot 2$	\square			\cdots	$\underline{\square}$	＂	＂
	36.30	Shade	86.5	93.2	$6 \cdot 7$	$46 \cdot 0$				－•		＂	＂
	38． 0	Sun	10.8	$65 \cdot 8$	55.0	47^{6}				\cdots	${ }_{96}^{96}$	＂	＂
	39.30	Shade	72.5	80.6	8.1 58.	48.4	3474	22．40．45	52	\cdots	．．	＂	＂
	41． 0	Sun	$7{ }^{\circ}$	65°	58.0	$48 \cdot 6$				－	97.2 974	＂	＂
	42．30	Shade	$73 \cdot 5$ $23 \cdot 0$	884.2	$10 \cdot 7$ 56.7	$46 \cdot 6$	，					＂，	$\stackrel{N}{N}$
	22．44． 0	Sun	23.0	79×7	$56 \cdot 7$					72．0	$97 \cdot 2$ 98.2	＂	N
Aug． 4	3．7． 0	San	12.6	61.0	$48 \cdot 4$					$78 \cdot 8$	$95 \cdot 4$	Clear．	N
	8．30	Shade	65.2	$67 \cdot 1$	$1{ }^{1} 9$	35.5				\cdots			＂
	10． 11.30	Sun	67.6 9	94.0 12.2	26.4 2.5					\cdots	105%	Clouds over the Sun． Clouds somewhat broken．	＂
	11.30	Shade Sun	$\begin{array}{r}9.7 \\ \hline 130\end{array}$	12.2 51.8 5	2.5 38.8	$30 \cdot 1$ 35.6	$34^{\circ} 0$	3．12． 0	38	\cdots	1007 1014	Clouds somewhat broken． ＂	＂
	14．30	Shade	55.9	59.7	3.8 58.2	447				$80 \cdot 2$	102.7 104.6	Sun ${ }_{\text {free }}$ from clouds．	＂
	3．16． 0	Sun	9°	67.2	$58 \cdot 2$					$80 \cdot 2$	104.6	Sun free from clouds．	${ }^{\mathrm{N}}$
Aug． 5	2．58． 0	Sun	19°	63.0	44°					77°	97.4 98.5	Cloudless．	N
	2．59．30	Shade	$67 \cdot 6$	$72 \cdot 0$	$4 \cdot 4$		7			－	\cdots	＂	＂
	3．I．O	Sun	5.2	$52 \cdot 2$	47°	$42 \cdot 3$				－	103.0 103.4	＂	＂
	2.30	Shade	57.2	$62 \cdot 2$	$5 \cdot$	$42^{\circ} \mathrm{O}$	341.7	3．3． 0	39	\cdots	$\underset{1088}{ }$	＂	＂
	4． 0	Sun	4°	$50 \cdot 9$	$46 \cdot 9$	41.5					$108 \cdot 8$ 111.3	＂	＂
	5.30	Shade	57.0	62.8	$5 \cdot 8$	41.8	J			\because	ii	，	
	3．7．\circ	Sun	$5 \cdot 7$	54°	$48 \cdot 3$					81°	1110 11.0	＂	N
In every observation，whether in the Sun＇s rays or in the shade，the terminal reading was taken exactly one minute after the initial reading． The＂Apparent Effect of the Sun＇s Radiation＂is found by comparing each change（whether in the Sun＇s rays or in the shade）with the mean of that which immediately precedes and that which immediately follows it． The initial N is that of Mr．W．C．Nash．													

Observations with the Actinometer-continued.													
$\begin{aligned} & \text { Day } \\ & 1864 . \end{aligned}$	Greenwich Mean Solar Time of the Initial Reading.	Instrument exposed to the Sun's Rays, or in the Shade.	Readings of the Graduated Scale.			Apparent effect of the Sun's Radiation in parts of the Scale.	Mean Result of each Group in parts of the Scale.	Greenwich Mean Solar Time corresponding to the Mean of each Group.		Thermometer in the fluid of the Actiuometer	Blackened Bulb Thermometer on Grass.	General Remarks.	苞
			Initial A.	Terminal B.									
Aug. 29		Shade	$\begin{aligned} & \text { div. } \\ & 66.6 \end{aligned}$	${ }_{72 \cdot 6}^{\text {div. }}$	div. $6 \cdot 0$	${ }^{\text {div. }} 375$		$\begin{array}{llll}\text { b } & \mathrm{m} & s\end{array}$		$\stackrel{\circ}{\circ}$	\therefore	Light clouds.	N
cont.)	2. 43.0	Sun	2.0	$43 \cdot 0$	41.0	$33 \cdot 8$					$94^{\circ} 6$,	"
	44.30	Shade :	$46 \cdot 5$	$55^{\circ} \mathrm{O}$	8.5	$33 \cdot 3$	> $33 \cdot 5$						"
	46. 0	Sun	$6 \cdot 0$	$48 \cdot 6$	42.6	34.5	¢ 33.5	2. 45.45		.	$96 \cdot 0$	Cloudless near Sun.	"
	47.30	Shade	55*0	62.7	77	28.6				-•	949	Light clouds.	"
	2. 49										89.6 87.		
	2.49. 0	Sun	$66 \cdot 2$	$96 \cdot 2$	$30^{\circ} 0$					72.5	87.2	"	N
Aug. 30	3.21. 0	Sun	$6 \cdot 5$	50%	$43 \cdot 5$					72\%	$87 \cdot 2$ 87.2	Cloudless.	N
	22.30	Shade	54.3	58.0	3.7	$40 \cdot 6$)			-		"	"
	24.0	Sun	8.9	$54^{1} 1$	$45 \cdot 2$	$41^{1} 1$..	$83 \cdot 8$	"	"
	25.3						\% $1 \cdot 6$				877		
	25.30	Shade	$58 \cdot 5$	-63.0	4.5	$41^{\circ} 2$	\} 416	3.26. 0	- 30	.	\cdots	" Strong breeze.	"
	27. 0	Sun	$26 \cdot 0$	$72 \cdot 2$	$46 \cdot 2$	$42 \cdot$.	$\begin{aligned} & 90 \cdot 3 \\ & 88 \cdot 8 \end{aligned}$	"	"
	28.30	Shade	$77 \cdot 8$	81.6	$3 \cdot 8$	$4^{3} \cdot$	J			\because	\cdots	"	"
	3.30. o	Sun	$30 \cdot 7$	78'1	474					$76 \cdot 0$	$\begin{aligned} & 88 \cdot 4 \\ & 90 \cdot 8 \end{aligned}$	"	N
Sept. 14	1. 53. ○	Sun	21.6	$30 \cdot 6$	9°					63*	$\begin{aligned} & 65 \cdot 0 \\ & 65 \cdot 5 \end{aligned}$	Dense cirro-stratus clouds; strong wind.	N
	54.30	Shade	$32 \cdot 6$	35-1	2.5	$6 \cdot 6$	7			-		Occasional gleams of sunshine.	"
	56. ○	Sun	$36 \cdot 4$	$45 \cdot 5$	$9 \cdot 1$	$6 \cdot 5$.	$67^{\circ} 0$	"	"
	57.30	Shade	47*1	49.8	2.7	$5 \cdot 9$	$\} 6 \cdot 1$	I. 58. 0	34	. .	$67^{\circ} \mathrm{O}$	"	"
	1.59.0	Sun	$50 \cdot 8$	$58 \cdot 8$	$8{ }^{\circ}$	5*5	[$6 \cdot 1$	1.58. O	34	.	$66 \cdot 8$ $66 \cdot 3$	"	"
	2. 0.30	Shade	60:3	62.5	2.2	$6 \cdot 0$	J					"	"
	2. 2. 0	Sun	64°	$72 \cdot 4$	8.4					64°	$\begin{aligned} & 67 \cdot 1 \\ & 67 \cdot 2 \end{aligned}$	"	N
Sept. 14	21.57. 0	Sun	$6 \cdot 6$	55*	48.4					$56 \cdot 0$	$\begin{aligned} & 72 \cdot 5 \\ & 76 \cdot 0 \end{aligned}$	No clouds about the Sun.	N
	2 1. 58.30	Shade	$60 \cdot 2$	64.9	47					-			"
	22. 0. 0	Sun	$8 \cdot 4$	$52 \cdot 8$	$44^{\circ} 4$	$39^{\circ} 2$	$\} 40 \cdot 5$	21.59. 0	34	.	$78 \cdot 2$	Cirrus,cirro-cumulus, and cirrostratus in many directions.	",
	1.30	Shade	59.2	65°	5•8		7			\cdots	$80^{\circ} \mathrm{I}$	Light clouds passing over theSun.	",
	3.0	Sun	$7{ }^{5}$	$28 \cdot 2$	$21 \cdot 2$	15.4	\} $24 \cdot 4$	22. 3.30		..	$77 \cdot 7$ 71.4	Cirro-cumulus passing over the Sun.	",
		Shade	$32 \cdot 8$	$38 \cdot 6$	5•8	$30 \cdot 7$				-	714 .9		",
	6.0	Sun	41.4	93.2	$5 \mathrm{I} \cdot 8$	$45 \cdot 1$	7			.	72.4	Sun free from cloud.	",
			4				$43 \cdot 3$	22. 8. 0			74.4		
	7.30	Shade	5.0	12.6	7.6 49.3	$43 \cdot 0$	$\} 43 \cdot 3$			\cdots	$\ddot{75 \cdot 6}$	Light cirrus over the Sun.	",
	9. 0	Sun	147	$64 \cdot 0$	$49^{\circ} 3$	$41 \cdot 8$)				$\begin{aligned} & 75 \cdot 6 \\ & 78 \cdot 8 \end{aligned}$	Light cirrus over the Sun.	"
	10.30	Shade	$70 \cdot 4$	77.8	7×4	$37 \cdot 1$	\} 34.7	22. 12.30	35	.	. .	"	"
	12. 0	Sun	100	$49^{\circ} 6$	$39 \cdot 6$	$32 \cdot 3$	$\} 347$	22.12.30	35	-	73.7	"	"
	22.13.30	Shade	$56 \cdot 7$	$63 \cdot 9$	7.2					-	$73 \cdot 7$ $75 \cdot 5$	Sun partially covered with light clouds.	N
Sept. 5	2.41. 0	Sun	10:5	$36 \cdot 0$	$25 \cdot 5$		7			$64 \cdot 5$	$65 \cdot$	Sun shining through thin clouds.	
	42.30	Shade	38.0	$40 \cdot 0$	2.0					.	67.2	"	\%
	44. 0	Sun	$40 \cdot 5$	$55 \cdot 0$	14.5	12.9	¢ 14.5	2. 46.		-	67.9	Clouds denser ; strong breeze.	"
	45.30	Shade	57.3	58.5	$1 \cdot 2$	13.9	14:5	2. 46.		-	$66 \cdot 2$	Cirro-stratus clouds.	"
	47. 0	Sun	58.5	74.2	$15 \cdot 7$	14.4)				$65 \cdot 5$	33	"
	48.30	Shade	76.0	77.4	I'4	13.5	J			$65 \cdot 5$	65•8	"	$\stackrel{\prime}{\mathrm{N}}$
	2.50. ○	Sun	79°	$93 \cdot 0$	$14^{\circ} \mathrm{O}$.			$65 \cdot 5$	$65 \cdot 5$ $65 \cdot 1$		N
In e The im The	every observa " Apparent mmediately p initial N is	ation, wheth Effect of th precedes and that of Mr.	r in the Sun's F that whi W. C. Na	un's rays or diation" is immediat h.	in the found y follo	shade, the t by comparin ws it.	terminal read ng each chan	ding was take ge (whether		actly one mi Sun's rays	nute after t or in the	e initial reading. hade) with the mean of that which	

Readings of Thermometers sunk in the Ground.
(I.) -Reading of a Thermometer whose bulb is sunk to the depth of 25.6 feet (24 French feet) below the surface of the soil, at Noon on every Day, except Sundays, and Good Friday.

Days of the Month, 1864.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	0	\bigcirc	\bigcirc	\bigcirc	0	-	\bigcirc	-	\bigcirc	-
1	$51 \cdot 70$	$51 \cdot 18$	$50 \cdot 42$	$49 \cdot 55$	S	$48 \cdot 54$	$48 \cdot 81$	$49 * 47$	$50 \cdot 32$	51-24	51.82	$5 \mathrm{I} \cdot 99$
2	51-68	51-18	$50 \cdot 37$	$49 \cdot 53$	$48 \cdot 85$	$48 \cdot 54$	$48 \cdot 83$	$49 \cdot 50$	$50 \cdot 33$	S	5ı 84	$51 \cdot 98$
3	S	$5 \mathrm{I} \cdot 14$	$50 \cdot 35$	S	$48 \cdot 83$	$48 \cdot 55$	\boldsymbol{S}	$49 \cdot 52$	$50 \cdot 38$	5ı 5129	51.85	$52{ }_{S}^{\circ}$
4	51.65	$5 \mathrm{I} \cdot 10$	$50 \cdot 36$	$49^{\cdot 50}$	$48 \cdot 78$	$48 \cdot 57$	$48 \cdot 87$	$49 \cdot 55$	${ }_{5}$	5ı $\mathrm{I} \cdot 3 \mathrm{o}$	$51 \cdot 82$ 51.86	${ }_{52}{ }_{5}$
5	$51 \cdot 64$	$5 \mathrm{I} \cdot 07$	$50 \cdot 32$	$49 \cdot 43$	$48 \cdot 77$	\underline{S}	$48 \cdot 89$	$49 \cdot 59$	$50 \cdot 44$	$5 \mathrm{~L} \cdot 34$	5ı ${ }_{\text {S }}$	$52 \cdot 00$
6	51 51 - 58	$5 \mathrm{I} \cdot 04$	S 50.27	49.40	$48 \cdot 78$ $48 \cdot 77$	$48 \cdot 57$ $48 \cdot 58$	$48 \cdot 88$ $48 \cdot 92$	$49 \cdot 60$	$50 \cdot 47$ $50 \cdot 52$	$51 \cdot 38$ 51 51	${ }_{51}{ }_{5182}^{\text {S }}$	$52 \cdot 0$ $51 \cdot 98$
7	$51 \cdot 58$ $51 \cdot 58$	${ }_{\text {5I }}^{\boldsymbol{S} \cdot 00}$	$50 \cdot 27$ $50 \cdot 24$	$49 \cdot 39$ $49 \cdot 37$	${ }^{48} \cdot{ }^{77}$	$48 \cdot 58$ $48 \cdot 58$	$48 \cdot 92$ $48 \cdot 92$	S $49 \cdot 66$	$50 \cdot 52$ $50 \cdot 55$	$51 \cdot 41$ 51.44	5182 51.86	5198 519
8	$51 \cdot 58$ $51 \cdot 60$	51.00 $50 \cdot 93$	$50 \cdot 24$ $50 \cdot 18$	$49 \cdot 37$ $49 \cdot 35$	S $48 \cdot 70$	$48 \cdot 58$ $48 \cdot 58$	$48 \cdot 92$ $48 \cdot 85$	49 49	$50 \cdot 55$ $50 \cdot 58$	${ }^{51} S^{44}$	51.86 51.89	51.97
10	\boldsymbol{S}	$50 \cdot 93$	$50 \cdot 16$	S	$48 \cdot 71$	$48 \cdot 58$	S	$49 \cdot 68$	$50 \cdot 58$	$51 \cdot 48$	$51 \cdot 89$	$51{ }^{5} 95$
11	51.58	$50 \cdot 92$	$50 \cdot 16$	$49 \cdot 30$	$48 \cdot 70$	$48 \cdot 57$	$49{ }^{\circ} \mathrm{I}$	$49 \cdot 73$	S	51.49	51.88	
12	$51 \cdot 57$	$50 \cdot 91$	$50 \cdot 12$	$49 \cdot 28$	$48 \cdot 69$	\boldsymbol{S}	49.02	$49 \cdot 76$	$50 \cdot 64$	$51 \cdot 52$	$5 \mathrm{I} \cdot 89$	$51 \cdot 96$
13	51 $\cdot 53$	$50 \cdot 89$	S	$49 \cdot 25$	$48 \cdot 68$	$48 \cdot 58$	49.04	$49 \cdot 78$	$50 \cdot 67$	$51 \cdot 52$	51.	$51 \cdot 93$
14	51 52	S	$50 \cdot 08$	$49 \cdot 23$	$48 \cdot 68$	$48 \cdot 60$	49.06	S	$50 \cdot 72$	5ı ${ }^{1} \cdot 54$	$51 \cdot 94$	51.90
15	$5 \mathrm{I} \cdot 48$	$50 \cdot 83$	$50 \cdot 04$	$49^{\cdot 21}$	S	$48 \cdot 60$	49.09	$49 \cdot 84$	$50 \cdot 73$	$51 \cdot 57$	51•94	$51 \cdot 88$ 51.77
16	${ }_{51}{ }_{S} \mathbf{4 7}$	$50 \cdot 80$ $50 \cdot 76$	$50 \cdot 02$ 49		$48 \cdot 66$ $48 \cdot 65$	$48 \cdot 63$ $48 \cdot 64$	${ }_{49}^{49}{ }^{\circ} 9$	$49 \cdot 85$ 49	50.75 50.78	${ }_{51}{ }_{51} \cdot 62$	51.93 5195	51.77 51.83
17 18	$\underset{51}{\text { I }} 46$	$50 \cdot 76$ 50.73	49 49 9	S $49 \cdot 14$	$48 \cdot 65$ $48 \cdot 65$	$48 \cdot 64$ $48 \cdot 64$	${ }_{49}{ }^{\text {- }} 7$	49 49 9 9^{2}	$S^{\text {S }}$	$51 \cdot 63$	51 -96	S
19	51 $\cdot 46$	$50 \cdot 67$	$49 * 94$	$49 \cdot 13$	$48 \cdot 64$	S	$49 \cdot 17$	$49 * 94$	$50 \cdot 87$	$5 \mathrm{x} \cdot 67$	51.99	$5 \mathrm{I} \cdot 84$
20	51.44	$50 \cdot 75$	\boldsymbol{S}	$49 \cdot 12$	$48 \cdot 63$	$48 \cdot 68$	$49 \cdot 21$	$49 \cdot{ }^{\circ} 6$	$50 \cdot 88$	5ı 5167	S	51.86
21	$5 \mathrm{I} \cdot 42$	\boldsymbol{S}	$49 \cdot 87$	49 -8	$48 \cdot 59$	$48 \cdot 69$	$49 \cdot 22$	S	50.92	5ı 5168	51.97	$51 \cdot 83$
22	51.41	$50 \cdot 62$	$49 \cdot 84$	$49 \cdot 6$	\boldsymbol{S}	$48 \cdot 69$	$49 \cdot 24$	$50 \cdot 02$	$50 \cdot 97$	$51 \cdot 70$	5ı 98	$51 \cdot 81$ $51 \cdot 78$
23	5ı 38	$50 \cdot 68$	$49 \cdot 81$	$49^{\circ} \mathrm{O}$	$48 \cdot 58$	$48 \cdot 69$	$49{ }_{S}^{26}$	50.00 50.07	$50 \cdot 98$ $51 \cdot 04$		$51 \cdot 98$ $51 \cdot 96$	51.78 51.78
24	${ }_{5 \mathrm{~L} \cdot 34}^{\text {S }}$	$50 \cdot 56$ $50 \cdot 52$	49 ${ }^{\circ} 78$	S $48 \cdot 9$	$48 \cdot 58$ $48 \cdot 58$	$48 \cdot 72$ $48 \cdot 72$	\boldsymbol{S} $49 \cdot 30$	50.07 50.09	${ }_{51}{ }_{S}{ }^{\circ}$	$51 \cdot 73$ 51	$51 \cdot 96$ 51.97	${ }^{51} \mathrm{~S}^{78}$
25	51 $\cdot 34$ $5 \mathrm{I} \cdot 33$	$50 \cdot 52$ $50 \cdot 52$	GoodEriday. 49.71	$48 \cdot 98$ $48 \cdot 96$	$48 \cdot 58$ $48 \cdot 57$	${ }^{48}{ }^{\prime} 7^{2}$	$49 \cdot 30$ $49 \cdot 32$	$50 \cdot 09$ $50 \cdot 13$	5ı ${ }_{\text {- }}$	$51 \cdot 74$ $5 \mathrm{~s} \cdot 75$	51.97 51.97	${ }_{51}{ }^{\text {- }} 75$
27	51 51	$50 \cdot 48$	${ }^{49} \boldsymbol{S}$	$48 \cdot 94$	$48 \cdot 57$	48•74	49-36	$50 \cdot 17$	$5 \mathrm{I} \cdot 13$	51 76	S	5 x 73
28	51.28	S	$49 \cdot 65$	$48^{\circ} 9$	$48 \cdot 55$	$48 \cdot 76$	$49 \cdot 38$	S	$5 \mathrm{I} \cdot \mathrm{6}$	$51 \cdot 80$	52.02	$51 \cdot 73$
29	$51 \cdot 23$	$50 \cdot 44$	$49 \cdot 63$	$48 \cdot 90$	\boldsymbol{S}	$48 \cdot 79$	$49 \cdot 42$	$50 \cdot 24$	51 18	5ı ${ }^{79}$	$52 \cdot 00$	$51 \cdot 73$
30 31	${ }_{51} \mathrm{I}_{\mathbf{S}}^{\mathbf{S}}$		$49 \cdot 58$ $49 \cdot 58$	$48 \cdot 87$	$48 \cdot 54$ $48 \cdot 54$	$48 \cdot 80$	${ }^{49}{ }^{\circ} 44$	$50 \cdot 27$ $50 \cdot 28$	$51 \cdot 20$	$\begin{gathered} \boldsymbol{S}_{1} \cdot 8 \mathrm{I} \end{gathered}$	$52 \cdot 00$	$\begin{aligned} & 5 \mathrm{I} \cdot 7 \mathbf{1} \\ & 5 \mathrm{I} \cdot 68 \end{aligned}$
31	N		49.58		48.54							
Means.	$51 \cdot 48$	$50 \cdot 83$	$50 \cdot 02$	$49^{\circ} 19$	$48 \cdot 66$	$48 \cdot 64$	49^{11}	$49 \cdot 86$	$50 \cdot 76$	5ı 57	$51 \cdot 92$	$51 \cdot 86$

(II.)-Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the stirface of the soil, at the same times.

$\left\lvert\, \begin{gathered} \text { Days of } \\ \text { the Month, } \\ 1864 . \end{gathered}\right.$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	\bigcirc	\bigcirc	-	。	\bigcirc	\bigcirc	\bigcirc	。
1	$50 \cdot 65$	$48 \cdot 19$	$46 \cdot 71$	$45 \cdot 86$	S	$48 \cdot 65$	$50 \cdot 95$	$53 \cdot 13$	55.01	$55 \cdot 26$	$54 \cdot 35$	$52 \cdot 28$
2	- $50 \cdot 55$	$48 \cdot 17$	$46 \cdot 65$	$45 \cdot 86$	$46 \cdot 50$	$48 \cdot 72$	51-06	$53 \cdot 19$	55 \% 1	S	$54 \cdot 35$	$52 \cdot 20$
3	${ }_{5}$	$48 \cdot 11$	$46 \cdot 60$	${ }^{5}$	$46 \cdot 54$	$48 \cdot 84$	-S	$53 \cdot 27$	55×5	$55 \cdot 22$	$54 \cdot 31$	$52 \cdot 14$
4	$50 \cdot 45$	$48 \cdot 05$	$46 \cdot 58$	$45 \cdot 87$	$46 \cdot 57$	$48 \cdot 95$	51-19	$53 \cdot 39$	S	$55 \cdot 18$	$54 \cdot 20$	S
5	$50 \cdot 38$	48.00	$46 \cdot 48$	$45 \cdot 81$	$46 \cdot 67$	S	$5 \mathrm{~L} \cdot 28$	$53 \cdot 50$	55.05	55.18	${ }_{54}{ }^{\text {S } 23}$	52.01
6	$50 \cdot 25$ $50 \cdot 20$	${ }^{47} 9$	S $46 \cdot 40$	$45 \cdot 84$ $45 \cdot 82$	$46 \cdot 75$ $46 \cdot 80$	49 49 49 0	51.30 51.40	${ }^{53 \cdot 55}$	55-08	$55 \cdot 23$ $55 \cdot 26$	${ }_{54}{ }_{\text {S }}{ }^{\text {¢ } 5}$	51.92 51.84
8	50.15	$47 \cdot 87$	$46 \cdot 34$	$45 \cdot 82$	4	$\begin{array}{r}49 \\ 49 \\ \hline 20\end{array}$	51 44	$53 \cdot 68$	$55 \cdot 14$	$55 \cdot 19$	$54 \cdot 05$	5174
9	$50 \cdot 12$	$47 \cdot 78$	$46 \cdot 22$	$45 \cdot 78$	$46 \cdot 88$	$49 \cdot 33$	5 5 1 52	$53 \cdot 73$	$55 \cdot 15$	S	54.04	51.68
10	S	$47 \cdot 70$	$46 \cdot 18$	S	$46 \cdot 98$	$49 \cdot 38$	S	$53 \cdot 76$	$55 \cdot 12$	$55 \cdot 5$	54.00	$51 \cdot 57$
11	$50 \cdot 00$	47×75	$46 \cdot 16$	$45 \cdot 78$	$47 \cdot 05$		51 72	53.88	S	$55 \cdot 10$	53.88	S
12	$49{ }^{\circ} 92$	47%	$46 \cdot 12$	$45 \cdot 80$	$47 \cdot 14$	S	$51 \cdot 73$	$53 \cdot 97$	$55 \cdot 11$	$55 \cdot 09$	53.82	5147

(II.)-Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet ${ }_{2}^{*}(12$ French feet)—concluded.

Days of the Month 1864.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	\bigcirc	-	-	-	-	-
13	49.78	$47 \cdot 70$	s	45.79	$47 \cdot 19$	$49 \cdot 54$	51.79	54.97	$55 \cdot 14$	55.06	S	51.38
14	$49 \cdot 67$	S	$46 \cdot 06$	$45 \cdot 81$	$47 \cdot 27$	$49 \cdot 62$	51.87	S	$55 \cdot 17$	$55 \cdot 02$	53.75	$51 \cdot 26$
15	$49 \cdot 57$	$47 \cdot 55$	$46 \cdot 04$	$45 \cdot 83$	S	$49 \cdot 67$	$51 \cdot 95$	$54 \cdot 23$	$55 \cdot 15$	54.99	53.66	$51 \cdot 20$
16	$49 \cdot 50$	$47 \cdot 50$	$46 \cdot 02$	$45 \cdot 80$	$47 \cdot 39$	$49 \cdot 77$	$5 \mathrm{I} \cdot 97$	54.22	$55 \cdot 16$	S	$53 \cdot 57$	$51 \cdot 14$
17	S	$47 \cdot 43$	46.00	S	$47 \cdot 46$	$49 \cdot 87$	${ }^{\text {S }}$	54.30	$55 \cdot 17$	54.97	53.49	51.02
18	$49 \cdot 32$	$47 \cdot 34$	$45 \cdot 97$	$45 \cdot 86$	47.54	$49 \cdot 92$	$52 \cdot 15$	$54 \cdot 38$	${ }_{5}$	54.92	53.40	$\stackrel{S}{5}$
19	$49 \cdot 23$	$47 \cdot 27$	$45 \cdot 96$	45.90	47.60 47 67	S $50 \cdot 10$	$52 \cdot 25$ $52 \cdot 32$	54.43 54.47	$55 \cdot 23$ $55 \cdot 26$	54.92 54.85	$53 \cdot 35$ S	$50 \cdot 92$ 50.90
20	$49 \cdot 13$ 49 4	${ }^{47}{ }_{S}^{23}$	S $45 \cdot 94$	$45: 95$	47.67 47.67	$50 \cdot 10$ $50 \cdot 19$	$52 \cdot 32$ $52 \cdot 32$ 52	${ }^{54}{ }^{\text {S }}$ S 7	$55 \cdot 26$ $55 \cdot 25$	54.85 54.80	${ }_{53}{ }^{\text {S }} 14$	50.90 50.82
21 22	49.02 $48^{\circ} 93$		$4{ }^{45} 94$	$45 \cdot 95$ $45 \cdot 99$	${ }^{47 \cdot 6}$	$50 \cdot 19$ $50 \cdot 25$	$52 \cdot 32$ $52 \cdot 37$	${ }_{54} \stackrel{S}{58}$	55.25 55.29	54.80 54.77	$53 \cdot 14$ $53 \cdot 05$	50.82 $50 \cdot 72$
23	$48 \cdot 8$	$47 \cdot 07$	$45 \cdot 90$	$46 \cdot 00$	$47 \cdot 84$	$50 \cdot 30$	$52 \cdot 43$	54.56	$55 \cdot 27$	S	$52 \cdot 95$	50.64
24	S	$47 \cdot 1$	$45 \cdot 93$	S	$47 \cdot 89$	$50 \cdot 40$	S	54.68	$55 \cdot 32$	$54 \cdot 70$	$52 \cdot 75$	50.60
25	$48 \cdot 64$	$46 \cdot 95$	GoodFriday.	$46 \cdot 10$	48.00	50.47	$52 \cdot 55$	$54 \cdot 70$	S	54.66	52.72	S
26	$48 \cdot 55$	$46 \cdot 94$	$45 \cdot 87$	$46 \cdot 14$	48.08	S	$52 \cdot 63$	$54 \cdot 75$	$55 \cdot 25$	54.61	52.64	$50 \cdot 42$
27	$48 \cdot 52$	$46 \cdot 90$	S	$46 \cdot 20$	$48 \cdot 18$	$50 \cdot 73$	$52 \cdot 75$		$55 \cdot 32$	$54 \cdot 56$	S	$50 \cdot 35$
28	48.40	S	$45 \cdot 88$	$46 \cdot 22$	$48 \cdot 28$	$50 \cdot 72$	$52 \cdot 80$	${ }_{5}$ S	$55 \cdot 33$	54.59	$52 \cdot 55$	$50 \cdot 27$
29	48.32	$46 ’ 77$	$45 \cdot 85$	$46 \cdot 30$	S	50.83	$52 \cdot 82$	54.96	$55 \cdot 27$	54.50	52.47	50.21
30	$48^{4} \cdot 26$		$45 \cdot 85$	$46 \cdot 38$	48.44	50.88	$52 \cdot 98$	55.04	$55 \cdot 25$	\boldsymbol{S}	$52 \cdot 37$	$50 \cdot 12$
31	S		$45 \cdot 87$		$48 \cdot 54$		S	54.99		54.40		$50 \cdot 02$
Means.	$49 \cdot 47$	$47 \cdot 52$	$46 \cdot 13$	$45 \cdot 94$	$47 \cdot 42$	$49 \cdot 77$	51.98	$54 \cdot 16$	$55 \cdot 18$	$54 \cdot 93$	$53 \cdot 51$	$51 \cdot 14$

(III.)-Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at the same times.

Days of the Month, 1864.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc	\bigcirc
1	$48 \cdot 60$	$45 \cdot 97$	$43 \cdot 80$	$44 \cdot 80$	S	52.48	$55 \cdot 38$	58.38	58.40	$57 \cdot 53$	54.77	50.01
2	$48 \cdot 49$	$45 \cdot 93$	$43 \cdot 85$ $43 \cdot 80$	$44 \cdot 79$	$48 \cdot 50$ 48.58	$52 \cdot 50$ 52.51 52	$55 \cdot 43$ S^{3}	$58 \cdot 4 \mathrm{I}$ 58.53	58.38 58.41	S 57	54.71	49.94
3	S 8	$45 \cdot 78$	$43 \cdot 80$	S	48.58	52.51	${ }_{55}{ }^{\text {S }}$	$58 \cdot 53$	$\stackrel{58}{ } \stackrel{4}{4}$	57.37 57.26	54.59 54.36	$49 \cdot 8$
4	$48 \cdot 30$ 48.08	$45 \cdot 70$ $45 \cdot 62$		44.80	$48 \cdot 64$ 48.80	${ }^{52 \cdot 57}$	$55 \cdot 51$ $55 \cdot 60$	58.69 58.80	S 58 89	$57 \cdot 26$ 57.20	54.36 54.25	${ }_{\text {c }}^{\text {S }}$ S 63
6	$48 \cdot 0$ 47 85		S	44.79 44.86	48.80 48.99	${ }_{52} \cdot 58$	55.60 55.59	58.78	58.39 58.40	57.20 57.12	${ }^{54}{ }^{2}$	49.63 49.57
7	$47 \cdot 62$	S	$43 \cdot 95$	$44 \cdot 93$	$49{ }^{\circ} 9$	$52 \cdot 69$	$55 \cdot 68$	S	58.45	$56 \cdot 97$	53.84	$49 \cdot 50$
8	$47 \cdot 39$	$45 \cdot 50$	$44^{\circ} 0$	$45 \cdot 03$	S	$52 \cdot 75$	55.68	58.91	58.46	$56 \cdot 80$	$53 \cdot 54$	$49 \cdot 41$
9	$47 \cdot 15$	$45 \cdot 38$	$44 \cdot 08$	$45 \circ 9$	$49 \cdot 22$	$52 \cdot 89$	$55 \cdot 74$	$58 \cdot 96$	58.45	S	$53 \cdot 31$	49.42
10	S	$45 \cdot 29$	$44 \cdot 03$	S	$49 \cdot 40$	53.03	S	59.06	58.40	$56 \cdot 50$	$53 \cdot 10$	$49 \cdot 38$
11	$46 \cdot 63$	$45 \cdot 15$	$44 \cdot 20$	$45 \cdot 27$	49:50	$53 \cdot 16$	$55^{\circ} 91$	$59 \cdot 20$	S	$56 \cdot 36$	52.82	S
12	$46 \cdot 42$	44.98	$4{ }^{4} \cdot{ }_{S}{ }^{2}$	45.43	$49 \cdot 59$	$\stackrel{S}{5}$	55.90	$59 \cdot 29$ 59	588.48	$56 \cdot 25$ 56.16	$52 \cdot 37$	$49 \cdot 33$
13	$46 \cdot 18$ $45 \cdot 97$	44.84	S 44.30	$45 \cdot 58$	$49 \cdot 67$ $49 \cdot 74$	53.48 53.67	$55 \cdot 9$ $56 \cdot 08$	${ }^{59}{ }_{\text {S }}^{\text {S }}$	$58 \cdot 53$ $58 \cdot 52$	$56 \cdot 16$ $56 \cdot 07$	S $52 \cdot 09$	$49 \cdot 25$ $49 \cdot 16$
15	$45 \cdot 80$	$\stackrel{\text { S }}{4}$-59	44.30	$45 \cdot 94$	${ }^{49} \mathrm{~S}^{4}$	$53 \cdot 80$	$56 \cdot 22$	$59 \cdot 29$	58.41	$55 \cdot 98$	51.84	$49 \cdot 10$
16	$45 \cdot 71$	44.56	$44 \cdot 37$	46.06	$49 \cdot 98$	$53 \cdot 96$	$56 \cdot 30$	$59 \cdot 20$	$58 \cdot 35$	S	51.68	$49^{\circ} \mathrm{O}$
17	S	44.60	44.60	S	$50 \cdot 14$	54.09	S	$59 \cdot 25$	$58 \cdot 27$	$55 \cdot 85$	51.53	48.90
18	$45 \cdot 55$	$44 \cdot 63$	$44 \cdot 53$	$46 \cdot 33$	$50 \cdot 32$	$54 \cdot 16$	$56 \cdot 63$	$59 \cdot 28$	S	$55 \cdot 72$	5141	S
19	$45 \cdot 49$	$44 \cdot 63$	$44 \cdot 52$	$46 \cdot 50$	$50 \cdot 35$	S	$56 \cdot 76$	$59 \cdot 30$	$58 \cdot 20$	$55 \cdot 67$	$5 \mathrm{I} \cdot 30$	$48 \cdot 63$
20	$45 \cdot 42$	$44 \cdot 73$	s	$46 \cdot 63$	50.80	54.40	56.94	$59 \cdot 32$	$58 \cdot 11$	$55 \cdot 52$	S	$48 \cdot 48$
21	$45 \cdot 37$	S	44.69	$46 \cdot 80$	$51 \cdot 0$	$54 \cdot 52$	$57 \cdot 05$	S	58.02	55.50	$51 \cdot 14$	$48 \cdot 25$
22 23	$45 \cdot 40$	$44^{6} 6$	$44 \cdot 70$	$46 \cdot 95$	$\stackrel{S}{5}$	$54 \cdot 60$	57.20	$59 \cdot 33$	${ }^{57} 7^{\circ} 98$		$51 \cdot 10$ 51 5100	48.02
23 24	${ }^{4}{ }^{5} \stackrel{4}{4}^{4}$	44.50 44.39	$44 \cdot 72$ 44.79	${ }^{47}{ }^{1}{ }^{14}$	51.59 51 51	$54 \cdot 73$ 54.89	$57 \cdot 3$ S^{\prime}	$59 \cdot 20$ 59	57.84 57.85	S $55 \cdot 38$	51.00 50.59	47.84 47.72
25	$45 \cdot 65$	$44 \cdot 25$	GoodFriday.	$47 \cdot 50$	$52 \cdot 0$	55.00	$57 \cdot 62$	$59 \cdot 14$	${ }^{5}$	$55 \cdot 30$	$50 \cdot 61$	${ }^{4}$
26	$45 \cdot 79$	$44 \cdot 18$	44.83	47.58	$52 \cdot 14$	S	$57 \cdot 78$	59.08	57×9	$55 \cdot 20$	$50 \cdot 59$	$47 \cdot 39$

(III.)-Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet)—concluded.

Days of the Month 1864.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	\bigcirc	-	-	-	-	- 0	-	-	-	-	。	-
27	$45 \cdot 90$	$44 \cdot 05$	S	$47 \cdot 86$	$52 \cdot 25$	$55 \cdot 08$	$57 \cdot 95$	$58 \cdot 99$	$57 \cdot 72$	$55 \cdot 10$	S	$47 \cdot 25$
28	$45 \cdot 90$	S	$44 \cdot 85$	$48 \cdot 00$	$52 \cdot 33$	$55 \cdot 27$	$58 \cdot 03$	S	57.70	$55 \cdot 08$	$50 \cdot 39$	$47 \cdot 06$
29	$45 \cdot 93$	$43 \cdot 90$	$44 \cdot 85$	$4^{8 \cdot 17}$	\boldsymbol{S}	$55 \cdot 34$	$58 \cdot 16$	$58 \cdot 70$	$57 \cdot 60$	$54 \cdot 92$	$50 \cdot 28$	$46 \cdot 90$
30	$45 \cdot 93$		$44 \cdot 80$	$48 \cdot 29$	$52 \cdot 40$	$55 \cdot 36$	$58 \cdot 24$	$58 \cdot 60$	$57 \cdot 54$	S	$50 \cdot 11$	$46 \cdot 75$
31	S		$44 \cdot 84$		$52 \cdot 48$		S^{4}	$58 \cdot 47$		$54 \cdot 81$		$46 \cdot 60$
Means .	$46 \cdot 46$	44 93	$44 * 40$	$46 \cdot 19$	$50 \cdot 36$	$53 \cdot 83$	$56 \cdot 56$	$58 \cdot 99$	58•18	$56 \cdot 04$	$52 \cdot 20$	$48 \cdot 61$

At temperatures below $43^{\circ} \cdot 50$ the fluid of this thermometer descends below the scale; the readings on March 4 and 5 were both less than $43^{\circ} \cdot 50$, and the readings for two or three preceding days were subject to some uncertainty.
(IV.)-Reading of a Thermometer whose bulb is sunk to the depth of 3.2 feet (3 French feet) below the surface of the soil, at the same times.

Days of the Month, 1864	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-		-	-		。	-	-	-		-	-
1	$45 \cdot 03$	$42 \cdot 52$	$40^{\prime 2}$	$42 \cdot 34$	S	$53 \cdot 54$	57.47	$61 \cdot 75$	59.48	$57 \cdot 31$	$52 \cdot 90$	$46 \cdot 30$
2	$44 \cdot 68$	$42 \cdot 16$	$40 \cdot 42$	$42 \cdot 65$	49.40	53.46	$57 \cdot 56$	$61 \cdot 85$	$59 * 46$	${ }_{5}$ S	52.48	$46 \cdot 19$
3	S	$42 \cdot 10$	$40 \cdot 60$	S	$49 \cdot 69$	53.49	S	61.80	59.41	$56 \cdot 90$	$52 \cdot 0$	$45 \cdot 86$
4	$43 \cdot 33$	$42 \cdot 53$	$40 \cdot 70$	$42 \cdot 87$	$49 \cdot 92$	$53 \cdot 63$	$57 \cdot 67$	$61 \cdot 70$	S	$56 \cdot 51$	51.48	S
	$42 \cdot 95$	42.49	$4^{11}{ }^{10}$	$43 \cdot 24$	$50 \cdot 01$	S	$57 \cdot 63$	61.70	$59 \cdot 30$	$56 \cdot 10$	51.00	$45 \cdot 93$
6	$42 \cdot 35$	$42 \cdot 18$	S	$43 \cdot 59$	$50 \cdot 04$	54.00	$57 \cdot 65$	$6 \mathrm{~L} \cdot 88$	$59 \cdot 37$	$55 \cdot 79$	S	$46 \cdot 11$
7	41.85	S	41.83	43.59 43.80	$\stackrel{50 \cdot 10}{ }$	$54 \cdot 50$	57.79	S	$59 \cdot 37$	55.40	49.91	$46 \cdot 26$
8	$41 \cdot 31$	41.40	$42 \cdot 36$	$43 \cdot 80$	S 50.5	54.99	5775	62.44 62.53	$5{ }^{5} \cdot 60$	$55 \cdot 24$	$49 \cdot 35$	$46 \cdot 33$
9 10	$40 \cdot 90$ S	41.07 40.67	42.44 42.33 4	$\stackrel{44}{ } \stackrel{06}{ }$	$50 \cdot 57$ 50.49	55.39 55.80	${ }^{57}{ }^{7}{ }^{\text {S }}$	62.53 62.58	$59 \cdot 87$ $60 \cdot 09$	${ }_{55}{ }_{5}^{\text {c }} 03$	488.90	$46 \cdot 47$ 46.28
11	$40 \cdot 47$	$40 \cdot 32$	$42 \cdot 05$	44.94	$50 \cdot 30$	$56 \cdot 04$	57.85	$62 \cdot 25$	S	$54 \cdot 92$	$4.8 \cdot 05$	S
12	$40 \cdot 37$	$40 \cdot 03$	$42 \cdot 02$	$45 \cdot 40$	$50 \cdot 43$	S	$58 \cdot 12$	$61 \cdot 80$	$59 \cdot 70$	$54 \cdot 87$	$47 \cdot 58$	$45 \cdot 98$
13	$40 \cdot 37$	$40 \cdot 10$	S	$45 \cdot 87$	$50 \cdot 62$	$56 \cdot 41$	$58 \cdot 57$	61.51	$59 \cdot 20$	$54 \cdot 78$	${ }^{4} \mathrm{~S}$	46.00
14	$40 \cdot 55$	s	$42 \cdot 10$	$45 \cdot 94$	$51 \cdot 03$	$56 \cdot 61$	58.89	S	58.90	54.68	$47 \cdot 31$	$45 \cdot 78$
15	$40 \cdot 67$	41.02	42.42	$46 \cdot 02$	S	$56 \cdot 50$	$59 \cdot 14$	$6_{1} \cdot 54$	58.72	$54 \cdot 57$	$47 \cdot 53$	45.66
16	40'73	41.48	42.63	$46 \cdot 12$	$51 \cdot 99$	$56 \cdot 53$	$59 \cdot 30$	$61 \cdot 60$	$58 \cdot 60$	${ }_{5}{ }^{5}$	$47 \cdot 59$	$45 \cdot 34$
17		41.93	$42 \cdot 93$	S	$52 \cdot 55$	$56 \cdot 51$	5	$6_{1} \cdot 82$	$58 \cdot 50$	$54 \cdot 15$	$47 \cdot 63$	$44 \cdot 82$
18	$40 \cdot 75$	41.95	42.81	$46 \cdot 77$	$53 \cdot 11$	$56 \cdot 70$	$60 \cdot 04$	61.89	S	54.11	47.64	$\stackrel{S}{S}$
19 20	$40 \cdot 99$ $41 \cdot 36$	41 41 40 40	$42 \cdot 63$ S	$46 \cdot 99$ 47	$53 \cdot 75$ 54.45	\boldsymbol{S} ${ }_{57} \cdot 25$	$60 \cdot 23$ $60 \cdot 53$	61:77	$58 \cdot 14$ 57.00	$54 \cdot 24$ $54 \cdot 31$	${ }^{47}{ }^{\text {S }} \mathrm{S}$	$43 \cdot 62$ $43 \cdot 21$
21	4180	$\stackrel{S}{ }$	$42 \cdot 69$	$47 \cdot 70$	$54 \cdot 79$	57.48	$60 \cdot 78$	${ }^{\text {c }}$	${ }^{57} 9$	54.52	$47 \cdot 95$	$43 \cdot 10$
22	$42 \cdot 30$	$40 \cdot 40$	$42 \cdot 83$	$48 \cdot 19$	s	57.74	$61 \cdot 05$	$61 \cdot 11$	$57 \cdot 72$	$54 \cdot 52$	$4{ }^{8.00}$	$43 \cdot 23$
23	$42 \cdot{ }^{7}$	$40 \cdot 15$	$42 \cdot 89$	$48 \cdot 48$	$55 \cdot 9$	57.84	61.20	$60 \cdot 59$	57.77	S	4.8 .07	43.04
24	$\stackrel{S}{\text { S }}$	39.90	$42 \cdot 92$	${ }_{4}{ }^{\text {S }}$	54.98	57.89	${ }_{6}{ }^{\text {S }}$	60.27	$57 \stackrel{80}{\text { S }}$	${ }^{54} \cdot 111$	47.49	$4^{42} \cdot 89$
25	$43 \cdot 57$	39.50	Good Friday	$48 \cdot 92$	54.74	57.70	$61 \cdot 35$	$59 \cdot 69$	S	53.85	$47 \cdot 15$	S
26	$43 \cdot 37$	$39^{\circ} 40$	$42 \cdot 80$	49.07	54.45	S	61.41	$59 \cdot 19$	57.74	53.50	4.6 .70	$42 \cdot 5$
27	$43 \cdot 23$	39.45		$49 \cdot{ }^{\circ}$	54.28	57.70	61.44	58.85	57.80	53.48	S	41.85
28	$43 \cdot 23$	S	$42 \cdot 75$	$49 \cdot 10$	$54: 20$	$57 \cdot 58$	$61 \cdot 32$	S	57.79	53.67	$46 \cdot 20$	$41 \cdot 62$
29 30	43.40 43.37	$39 \cdot 87$	$42 \cdot 67$ $42 \cdot 50$	$49 \cdot 17$ $49 \cdot 15$	${ }_{5}^{S}$	57.46	61.38	$58 \cdot 60$	57.59	53:53	$46 \cdot 45$	41.53
30 31	${ }^{43 \cdot 3}{ }^{3}$		$42 \cdot 50$ $42 \cdot 39$	$49 \cdot 15$	$54 \cdot 05$ $53 \cdot 8 \mathrm{I}$	$57 \cdot 39$	$61 \cdot 48$	$58 \cdot 87$ 59.08	$57 \cdot 39$	S $53 \cdot 3$	$46^{6 \cdot 47}$	41.74
Means.	$42 \cdot 14$	$41 \cdot 03$	$42 \cdot$ ı 5	$46 \cdot 17$	$52 \cdot 26$	$56 \cdot 16$	$59 \cdot 43$	$61 \cdot 12$	$53 \cdot 26$	$54 \cdot 75$	48.55	$44 * 1$

At temperatures below $39^{\circ} \% 7$ o the fluid of this thermometer descends below the scale; the readings on February 25, 26, and 27, which are slightly below thisvalue, are estimated readings only, and therefore liable to some uncertainty.
Greenwich Observations, 1864.
(V.)-Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, within the case which covers the tops of the deep-sunk Thermometers, at the same times.

Days of the Month, 1864.	January.	February.	March.	Λ pril.	May.	June.	July.	August.	September.	October.	November.	December.
d	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc
1	$39 * 4$	$40 \cdot 3$	$41{ }^{1}$	$44^{\circ} 3$	S	$54 \cdot 2$	$59 \cdot 3$	$65 \cdot 9$	$60 \cdot 5$	$57{ }^{\circ} 2$	$48 \cdot 9$	$43 \cdot 8$
2	$36 \cdot 9$	$43 \cdot 7$	$38 \cdot 8$	$43 \cdot 5$	$55 \cdot 3$	$55 \cdot 0$	$6 \mathrm{I} \cdot 2$	$63^{\circ} \mathrm{O}$	$61 \cdot 2$	S	$48 \cdot 4$	$41^{\circ} 8$
3	S	$45 \cdot 7$	$40 \cdot 5$	S	$54 \cdot 9$	$55 \cdot 9$	S	$61 \cdot 5$	$61 \cdot 3$	54.7	$47^{\circ} 7$	$46 \cdot 2$
4	$34 \cdot 4$	$40 \cdot 4$	$45 \cdot 0$	49°	51.6	$56 \cdot 5$	$59 \cdot 3$	$65 \cdot 4$	S	$52 \cdot 4$	$43{ }^{\circ}$	S
5	$35 \cdot 2$	$38 \cdot 0$	$43 \cdot 8$	$44^{\circ} 0$	$5 \mathrm{I} \cdot 8$	S	$60 \cdot 1$	$68 \cdot 0$	$60^{\circ} 0$	$53 \cdot 5$	$45 \cdot 8$	$47 \cdot 1$
6	$30 \cdot 4$	38°	S	$45 \cdot 2$	$53 \cdot 5$	59:2	$59 \cdot 4$	$67 \cdot 8$	$60^{\circ} \mathrm{O}$	$53 \cdot 0$	S $4 \cdot 5$	$48 \cdot 2$ $47 \cdot 3$
7	$30^{\circ} \mathrm{O}$	S	$46 \cdot 3$	$45 \cdot 6$	$55 \cdot$	6i 5	$60 \cdot 2$ $58 \cdot 2$	S 68.3	$63 \cdot 9$	$54 \cdot 6$ $53 \cdot 5$	$44 \cdot 5$	$47 \cdot 3$ $46 \cdot 8$
8	33 -	$36 \cdot 4$	$46 \cdot 2$	$45 \cdot 5$	\boldsymbol{S}	$6 \mathrm{6} \cdot 6$	$58 \cdot 2$	$68 \cdot 3$	$65 \cdot 6$ $65 \cdot 3$	$53 \cdot 5$	$41 \cdot 3$	$46 \cdot 8$
9	$35 \cdot 3$	$34^{\circ} \mathrm{O}$	$41 \cdot 2$	$47_{S} 3$	$50 \cdot 2$	$61 \cdot 9$	$58 \cdot 4$	$64 \cdot 6$	$65 \cdot 3$	S	$43 \cdot 7$	$44^{\circ} 6$
10	S $38 \cdot 3$	$33 \cdot 3$ $35 \cdot 8$	$40^{\circ} 2$	S	$53 \cdot 0$ $52 \cdot 3$	60:8	${ }_{64}^{S}$	$60 \cdot 8$ $60 \cdot 7$	${ }_{61}{ }^{6}$	$54 \cdot 8$ $55 \cdot 7$	$41 \cdot 6$ $40 \cdot 3$	44^{46}
11	$38 \cdot 3$ $38 \cdot 9$	$35 \cdot 8$ $40 \cdot 3$	$44^{\circ} 4$	$51 \cdot 1$ $50 \cdot 5$	$52 \cdot 3$ $56 \cdot 3$	61. S	$64 \cdot 8$ $62 \cdot 2$	$6{ }^{6} 2^{\circ} \mathrm{O}$	$56 \cdot 2$	54.2	41.9	$46 \cdot 8$
13	$38 \cdot 6$	$45 \cdot 8$	${ }^{42}$	$48 \cdot 4$	$56 \cdot 4$	$60 \cdot 3$	$62 \cdot 2$	63.2	57%	54°	S	44°
14	$39^{\cdot 2}$	S	$46 \cdot 2$	$48 \cdot 8$	$56 \cdot 6$	$60 \cdot 6$	$61 \cdot 5$	S	$60 \cdot 5$	$53 \cdot 1$	48°	$43 \cdot 4$
15	$37^{\circ} 2$	$44^{\circ} 2$	$46 \cdot 8$	$50 \cdot 5$	S	$59 \cdot 1$	$64^{\circ} 0$	$65 \cdot 2$	$58 \cdot 1$	$51 \cdot 4$	$45 \cdot 3$	$40 \cdot 6$
16	39°	$45 \cdot 8$	$44^{\cdot 3}$	$50 \cdot 3$	$60 \cdot 6$	$59 \cdot 3$	63.4	$64 \cdot 1$	$59 \cdot 3$	S	$46^{\cdot 2}$	$39 \cdot 3$
17	S	$41 \cdot 3$	$42 \cdot 5$	S	$60 \cdot 8$	$6 \mathrm{x} \cdot 5$	S	64.9	$57 \cdot 1$	$54 \cdot 9$	$46 \cdot 4$	$35 \cdot 6$ S
18	$40 \cdot 6$	39°	$43 \cdot$	51.0	$62 \cdot 3$	$61 \cdot 3$	$66 \cdot 5$	$61 \cdot 5$	S $57 \cdot 2$	$55 \cdot 0$ 57.2	$49 \cdot 3$ $48 \cdot 7$	S $36 \cdot 4$
19	$43 \cdot 1$	$36 \cdot 4$	$44^{\circ} \mathrm{O}$	$53 \cdot 8$	$63 \cdot 7$	${ }_{62}{ }^{\text {S }}$	$67^{\circ} \mathrm{O}$	$61 \cdot 2$	57.2 55.8	$57 \cdot 2$ $55 \cdot 8$	$48 \cdot 7$	$36 \cdot 4$ 41.3
20	44.7	$35 \cdot 5$	S $4 \cdot 5$	56.7	$63 \cdot 9$ 57	$62 \cdot 5$ $63 \cdot 2$	67% 67	61.7 S	$55 \cdot 8$ $58 \cdot 4$	$55 \cdot 8$ $53 \cdot 5$	S $45 \cdot 9$	$41 \cdot 3$
21	$45^{\circ} \cdot 2$	S	$43 \cdot 5$	56 54.5	${ }^{5} 7{ }^{\circ} 8$	$63 \cdot 2$ 62.0	67 65	$60^{\circ} \mathrm{O}$	$58 \cdot 4$ 60.5	$54 \cdot 6$	$49 \cdot 3$	$39^{\circ} \mathrm{O}$
22 23	$47^{\circ} \mathrm{O}$ 48°	$36 \cdot$ 35%	$43 \cdot 4$ $43 \cdot 1$	$54 \cdot 5$ $53 \cdot 8$	$\stackrel{S}{\text { S }}$	$62 \cdot 0$ $60 \cdot 7$	$66 \cdot 9$	$56^{\circ} \mathrm{O}$	$57 \cdot 8$	${ }^{5}$	$45 \cdot 4$	$36 \cdot 7$
24	48	$36 \cdot 0$	$41 \cdot 5$	S	$55 \cdot 2$	$60 \cdot 0$	S	$55 \cdot 9$	$60 \cdot 3$	$53 \cdot 4$	$43 \cdot 5$	$36 \cdot 8$
25	$42^{\prime 7}$	$36 \cdot 9$	Good Friday.	$52 \cdot 1$	$56 \cdot 9$	$60 \cdot 7$	$63 \cdot 5$	$54 \cdot 8$	S	$52 \cdot 3$	$4^{1} \cdot 3$	S
26	$42 \cdot 2$	$38 \cdot 1$	$43 \cdot 5$	53 -	$55 \cdot 2$	S	$64 \cdot 5$	$56 \cdot 2$	$57 \cdot 8$	53.4	$42 \cdot 6$	37^{11}
27	$45 \cdot 6$	$38 \cdot 4$	S	$5 \mathrm{I} \cdot 8$	$55 \cdot 5$	$58 \cdot 9$	$64 \cdot 8$	$55 \cdot 9$	$59 \cdot 2$	$53 \cdot 9$	S	$36 \cdot 4$
28	$44^{\circ} 0$	S	$43 \cdot 3$	$49 \cdot 5$	$56 \cdot 3$	$59 \cdot 3$	$65 \cdot 3$	${ }_{6}^{S}$	$58 \cdot 3$ $56 \cdot 5$	54.7	$49^{\circ} 7$	$37^{\circ} 4$
29	$42 \cdot 2$	$41 \cdot 2$	$41 \cdot 9$	$50 \cdot 3$ $52 \cdot 5$	$\underset{52 \cdot 8}{\boldsymbol{S}}$	$6 \mathrm{CI} \cdot 8$	$65 \cdot 5$ $66 \cdot 7$	$62 \cdot 3$ $63 \cdot 2$	$56 \cdot 5$ $57 \cdot 6$	$53 \cdot 7$ S	$45^{\circ} \mathrm{O}$ 45°	42.4 41.5
30 31	$38 \cdot 3$		$40 \cdot 4$ 44°	$52 \cdot 5$	$\begin{aligned} & 52 \cdot 8 \\ & 55 \cdot 3 \end{aligned}$	$60 \cdot 1$	$66 \cdot 7$ s	$63 \cdot 2$ $65 \cdot 3$	$57^{\circ} 6$	S 49 I	$45^{\circ} 7$	$41 \cdot 5$ 379
Means.	$39 \cdot 6$	39°	$43 \cdot 2$	$50^{\circ} 0$	$56 \cdot 3$	$60^{\circ} 0$	$63 \cdot 2$	$62 \cdot 2$	$59 \cdot 5$	$54{ }^{\circ}$	$45^{\circ} 4$	$4^{1} \cdot 6$

(VI.)-Reading of a Thermometer within the case covering the deep-sunk Thermometers, whose bulb is placed on a level with their scales, at the same times.

Days of the Month, 1864.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-
1	$33 \cdot 7$	$43 \cdot 3$	$45 \cdot 7$	$49^{\circ} 6$	S	$60 \cdot 8$	$63 \cdot 9$	$72 \cdot 2$	$57^{\circ} 2$	61-8	$47 \times$	$47^{\circ} 2$
2	$30 \cdot 8$	$46^{\circ} 4$	$38 \cdot 2$	$47^{\circ} 9$	$60 \cdot 4$	$60 \cdot 3$	$66 \cdot 8$	67°	$63 \cdot 0$	S	$48 \cdot 2$	$43 \cdot 8$
3	\boldsymbol{S}	$47^{\circ} 2$	$39 \cdot 2$	S^{5}	$56 \cdot 5$	$57 \cdot 3$	S	$64 \cdot 7$	$66 \cdot 2$	57.4	$52 \cdot 6$ $38 \cdot 5$	48.8
4	$32 \cdot 5$	39°	$50 \cdot 8$	$58 \cdot 5$	$50 \cdot 3$	$67{ }^{1} 1$	$66 \cdot 5$	$75 \cdot 2$	S	$55^{\circ} \mathrm{O}$	$38 \cdot 5$	${ }_{5}$
5	31.0	$36 \cdot 7$	$45 \cdot 3$	$40 \cdot 3$	$53 \cdot 5$	S	68°	81.0	$63 \cdot 0$	$58 \cdot 3$	$46 \cdot 9$	$52 \cdot 2$ 51.5
6	$24 \cdot 8$	$34^{\circ} \mathrm{O}$	S	$47 \cdot 8$	$64 \cdot 5$	$69 \cdot 4$	62.4	$71 \cdot 7$	63.0	$61 \cdot 5$ $63 \cdot 2$	S	51.5 $48 \cdot 3$
7	22.9	S 33.6	$49^{\circ} \cdot 8$	$50 \cdot 6$	60% S	$73 \cdot 5$ 67.5	$65 \cdot 3$ $58 \cdot 8$	S $73 \cdot 3$	$67^{\circ} 9$ 7	$63 \cdot 2$ 61.0	$44^{\circ} 0^{\circ}$	$4{ }^{4} \cdot 8$
8	$30 \cdot 0$ $36 \cdot 7$	$33 \cdot 6$ $30 \cdot 8$	$47 * 8$ $34 \cdot 8$	$51 \cdot 8$ $56 \cdot 3$	s $47^{\circ} \mathrm{O}$	$67 \cdot 5$ $70 \cdot 8$	$58 \cdot 8$ $62 \cdot 7$	$73 \cdot 3$ $65 \cdot 1$	$73 \cdot 1$ $68 \cdot 1$	S	$48 \cdot 3$	$46 \cdot 6$
9	${ }^{36}$	${ }^{30} \cdot 1$	$4{ }^{3} \cdot 6$	${ }^{5}$	47 57	67.9	S	$62 \cdot 3$	$61 \cdot 1$	$59 * 4$	$45 \cdot 4$	$45 \cdot 3$
11	$44^{\circ} \mathrm{O}$	$35 \cdot 9$	$48 \cdot 5$	$58 \cdot 1$	$53 \cdot 0$	$68 \cdot 5$	$76 \cdot 4$	$65 \cdot 5$	S	$55 \cdot 7$	40°	\boldsymbol{S}
12	$40 \cdot 2$	46°	$46 \cdot 5$	$57 \cdot 6$	65 -	S	$68 \cdot 9$	71.8	$59 \cdot 6$	$57 \cdot 3$	$4{ }_{S}^{1 \cdot 1}$	$48 \cdot 5$
13	$38 \cdot 3$	$5 \mathrm{I} \cdot 8$	S	$55 \cdot 7$	$64 \cdot 9$	$62 \cdot 6$	67°	$75 \cdot 8$	$61 \cdot 2$	54.8	S	$44 \cdot 1$
14	$38 \cdot 2$	S	$53 \cdot 1$	$57 \cdot 5$	$67 \cdot 8$	$66 \cdot 5$	$68 \cdot 3$	S	$62 \cdot 6$	54.8	$52 \cdot 8$ 48.8	$40^{\circ} \mathrm{2}$
15	$35 \cdot 3$	$48 \cdot 0$	$50 \cdot 7$	$63 \cdot 2$	S	$63 \cdot 6$	$75 \cdot 3$	$73 \cdot 9$	$60 \cdot 1$	$55 \cdot 8$	$48 \cdot 8$	$34 \cdot 8$

(VI.)-Reading of a Thermometer within the case covering the deep-sunk Thermometers-concluded.

$\left\|\begin{array}{c} \text { Days of } \\ \text { the Month, } \\ \mathbf{1 8 6 4} \end{array}\right\|$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	\bigcirc	-	。	-	-	-	-	-	。	\bigcirc	-
16	$37 \cdot 7$	$47^{\circ} 7$	$47^{\circ} 8$	$5 \mathrm{I} \cdot 2$	$70 \cdot 5$	$68 \cdot 3$	70*9	$67 \cdot 8$	$60 \cdot 6$	S	$44^{\circ} 8$	$33 \cdot 7$
17	S	$42{ }^{\circ} \mathrm{O}$	$45 \cdot 8$	S	$73 \cdot 5$	$68 \cdot 4$	S	$71 \cdot 5$	$57 \cdot 5$	$59 \cdot 6$	$47 \cdot 7$	$28 \cdot 7$
18	$42^{\circ} 0$	$38 \cdot 8$	$48 \cdot 2$	$5 \mathrm{I} \cdot 3$	$77 \cdot 2$	$66 \cdot 2$	$75 \cdot 6$	$67 \cdot 9$	S	$59 \cdot 7$	$52 \cdot 5$	S
19	$45 \cdot 9$	$34 \cdot 2$	$54 \cdot 2$	$64 \cdot 1$	$75 \cdot 3$	S	$76 \cdot 2$	69°	$60 \cdot 7$	$64 \cdot 6$	$53 \cdot 8$	38°
20	$45 \cdot 8$	3I 5	S	$71 \cdot 1$	$75 \cdot 8$	$70 \cdot 5$	$78 \cdot 5$	$66 \cdot 4$	$62 \cdot 8$	59.4	S	$45 \cdot$
21	$45 \cdot 7$	\boldsymbol{S}	$44 \cdot 8$	$68 \cdot 2$	$54 \cdot 8$	$69 \cdot 5$	$75 \cdot 5$	S^{\prime}	$64 \cdot 8$	$56 \cdot 2$	$47^{\circ} 6$	$39 \cdot 7$
22	$51 \cdot 1$	$36 \cdot 8$	$44 \cdot 3$	$63 \cdot 9$	S	$66 \cdot 2$	$71 \cdot 8$	$59 *$	$65 \cdot 5$	$57 \cdot 7$	51.2	$34 \cdot 6$
23	$48 \cdot 6$	$34^{\circ} \mathrm{O}$	$48 \cdot 8$	$65 \cdot 6$	$62 \cdot 5$	$62 \cdot 2$	$72 \cdot 2$	$52 \cdot 2$	61.8	S	$4^{6} 0$	$32 \cdot 5$
24	\boldsymbol{S}	$39 \cdot 7$	$47{ }^{\circ} 9$	S	$60 \cdot 8$	$63 \cdot 6$	${ }_{\text {S }}$ S	$58 \cdot 5$	$65 \cdot 7$	$60 \cdot 2$	$40 \cdot 2$	$32 \cdot 8$
25	$40 \cdot 9$	37°	GoodFriday.	$60 \cdot 3$	$63 \cdot 2$	$63 \cdot 8$	$65 \cdot 1$	$58 \cdot 3$	S	$56 \cdot 6$	$43 \cdot 0$	\boldsymbol{S}
26	$44^{\circ} 7$	$37^{\circ} 8$	44.9	$57 \cdot 5$	$57 \cdot 5$	${ }^{\boldsymbol{S}}$	$68 \cdot 2$	$6 \mathrm{I} \cdot 8$	$6 \mathrm{I} \cdot 7$	$55 \cdot 1$	$44 \cdot 3$	$34 \cdot 6$
27	$49 \cdot 5$	$38^{\circ} \mathrm{O}$	S	$57 \cdot 5$	$60 \cdot 5$	$62 \cdot 3$	$72 \cdot 4$	$64^{\circ} \mathrm{O}$	$70^{\circ} 0$	$54 \cdot 7$	S 53.8	$32 \cdot 7$ 3
28	$46 \cdot 4$	\boldsymbol{S}	$45 \cdot 6$	$48 \cdot 0$	$60 \cdot 5$	$64 \cdot 9$	$71{ }^{\circ} \mathrm{O}$	S	$67{ }^{\circ} 9$	$60 \cdot 4$	$53 \cdot 8$	$39 \cdot 3$
29	$42 \cdot 8$	42°	$43 \cdot 0$	$55 \cdot 3$	$\underset{56}{\boldsymbol{S}}$	$68 \cdot 9$	$73 \cdot 5$	$72 \cdot 5$	$60 \cdot 6$	$53 \cdot 7$	$47^{\circ} 8$	$4 \mathrm{I} \cdot{ }^{\circ}$
30 31	$36 \cdot 8$ S		39 51 51	56 -	$\begin{aligned} & 56 \cdot 5 \\ & 62 \cdot 0 \end{aligned}$	$63 \cdot 6$	${ }^{74}{ }^{\circ} \mathrm{S}$	$75 \cdot$ $68 \cdot 4$	$60 \cdot 9$	$\begin{gathered} \boldsymbol{S}^{\prime} \\ 49^{\circ} 9 \end{gathered}$	$47^{\circ} 9$	$39 \cdot 5$ $36 \cdot 3$
Means.	$39 \cdot 1$	$39 \cdot 5$	$46 \cdot 1$	$56 \cdot 3$	62.0	$65 \cdot 9$	$69 \cdot 8$	$67^{\circ} 8$	$63 \cdot 3$	578	$46 \cdot 8$	$41^{\circ} 0$

(lx) Weekly Means of Readings of Deep-sunk Thermometers, and Changes of tee Direction of the Wind,

Weeily Means of Readings of Thermometers.						
Thermometers sunk in the ground.						Thermometer inclosed in the box which covers the scales of the deep-sunk Thermometers, and placed on a level with their scales.
1864. Period.	Bulb 24 French Feet deep.	Bulb 12 French Feet deep.	Bulb 6 French Feet deep.	Bulb 3 French Feet deep.	Bulb 1 Inch deep.	
	-	\bigcirc	-	\bigcirc	-	\bigcirc
	$51 \cdot 64$	$50^{\circ} 41$	$48 \cdot 16$	$43 \cdot 36$	34.4	$29^{\circ} 3$
	$5 \mathrm{I} \cdot 66$	$49^{\circ} 94$	$46 \cdot 62$	$40 \cdot 66$	$37 \cdot 2$	$37^{\circ} 9$
	$5 \mathrm{I} \cdot 45$	$49 \cdot 29$	$45 \cdot 56$	$4 \mathrm{I} \cdot 05$	$41 \cdot 6$	$42 \cdot 1$
	$5 \mathrm{I} \cdot 34$	$48 \cdot 64$	$45 \cdot 68$	$4^{3} \cdot 08$	$44^{\circ} 9$	$46 \cdot 9$
	51.18	$48 \cdot 18$	$45 \cdot 87$	$42 \cdot 68$	$41 \cdot 8$	$42 \cdot 6$
February 5 to 11	$50 \cdot 98$	$47 \cdot 84$	$45 \cdot 43$	41 35	$35 \cdot 9$	34.2
12 to , 18	$50 \cdot 82$	$47 \cdot 54$	$44 \cdot 70$	41.08	$42 \cdot 7$	$45 \cdot 7$
19 to 25	$50 \cdot 63$	$47^{\circ} 11$	$44 \cdot 52$	$40 \cdot 51$	$36 \cdot 0$	$35 \cdot 5$
26 to March 3	$50 \cdot 43$	$46 \cdot 76$	$4^{3} \cdot 9^{3}$	39*99	$39^{\circ} 7$	$40^{\circ} 1$
March 4 to 10	$50 \cdot 25$	$46 \cdot 37$	$44^{\circ} \mathrm{O}$	41•79	$43 \cdot 8$	$45^{\circ} 3$
11 to 17	$50 \cdot 06$	$46 \cdot 07$	$44 \cdot 33$	$42 \cdot 36$	$44 \cdot 5$	$48 \cdot 7$
18 to 24	$49 \cdot 86$	$45 \cdot 94$	$44 \cdot 66$	$42 \cdot 79$	$43 \cdot 1$	$48^{\circ} \mathrm{O}$
25 to 31	$49 \cdot 63$	$45 \cdot 86$	$44 \cdot 83$	$42 \cdot 62$	$42 \cdot 6$	$44^{\prime} 9$
April $\quad 1$ to April 7	$49^{\circ} 47$	$45 \cdot 84$	$44 \cdot 83$	$43 \cdot 05$	$45 \cdot 3$	$49^{\circ} \mathrm{I}$ $56 \cdot 2$
8 to 14	$49^{\circ} 30$	$45 \cdot 80$	$45 \cdot 36$	$45 \cdot 00$	$48 \cdot 6$	$56 \cdot 2$ 61.5
15 to 21	$49 \cdot 14$	$45 \cdot 88$	$46 \cdot 38$	$46 \cdot 81$	53.0	$61 \cdot 5$ $58 \cdot 8$
22 to 28	$48 \cdot 98$	$46 \cdot 11$	$47 \cdot 50$	$48 \cdot 8 \mathrm{I}$	52.4	$58 \cdot 8$ $55 \cdot 3$
29 to May 5	$48 \cdot 83$	$46 \cdot 44$	$48 \cdot 50$	$49 \cdot 56$	$52 \cdot 7$	$55 \cdot 3$
May 6 to 12	$48 \cdot 72$	$46 \cdot 93$	$49^{\cdot 30}$	$50 \cdot 32$	53.4	$57 \cdot 8$
13 to 19	$48 \cdot 66$	$47 \cdot 41$	$50 \cdot 03$	$52 \cdot 17$	$60^{\circ} 1$	71.5
20 to 26	$48 \cdot 59$	$47 \cdot 86$	$5 \mathrm{I} \cdot 56$	$54 \cdot 75$	$58 \cdot 1$	62.4
27 to June 2	$48 \cdot 55$	$48 \cdot 47$	$52 \cdot 41$	$53 \cdot 89$	$54 \cdot 8$	$60^{\circ} 1$
June 3 to 9	$48 \cdot 57$	$49^{\circ} 11$	52.66	$54 \cdot 33$	$59^{\circ} 4$	$67 \cdot 6$
10 to 16	$48 \cdot 59$	$49 \cdot 56$	$53 \cdot 52$	$56 \cdot 31$	$60 \cdot 2$	$66 \cdot 2$
17 to 23	$48 \cdot 67$	$50^{\circ} 10$	54.42	$57 \cdot 25$	$61 \cdot 9$	$67 \cdot 2$
24 to 30	$48^{\prime} 75$	$50 \cdot 67$	$55 \cdot 16$	$57 \cdot 62$	$60 \cdot 1$	$64 \cdot 5$
July $\quad 1$ to July 7	$48 \cdot 87$	51.20	55.53	57.63	59.9	$65 \cdot 5$
8 to 14	$48 \cdot 98$	$5 \mathrm{I} \cdot 68$	55.88	$58 \cdot 15$	$61 \cdot 2$	67°
15 to 21	$49 \cdot 16$	$52 \cdot 16$	$56 \cdot 65$	$60 \cdot 00$	$65^{\circ} \cdot 9$	$75 \cdot 3$
22 to 28	$49^{\circ} 31$	$52 \cdot 59$	57.65	6I.29	$65^{\circ} \mathrm{O}$	$70^{\circ} 1$
29 to August 4	49.48	53-13	58.40	6I•66	64.7	$71^{\circ} 1$
August 5 to 11	$49 \cdot 65$	$53 \cdot 68$	$58 \cdot 95$	$62 \cdot 23$	$65^{\circ} \mathrm{O}$	69.8
12 to 18	$49 \cdot 84$	$54 \cdot 19$	59.28	$61 \cdot 69$	$63 \cdot 5$	71.4
19 to 25	$50 \cdot 01$	$54 \cdot 57$	$59 \cdot 26$	$60 \cdot 83$	$58 \cdot 3$	$60 \cdot 6$
26 to September I	$50 \cdot 23$	54.94	58.71	59 -01	$60 \cdot 6$	$66 \cdot 5$
September 2 to 8	$50 \cdot 45$	$55 \cdot 08$	58.41	$59 * 42$	62.0	$66 \cdot 0$
9 to 15	$50 \cdot 65$	55•14	$58 \cdot 46$	59.41	59.9	$62 \cdot 1$
16 to 22	$50 \cdot 86$	$55 \cdot 23$	$58 \cdot 15$ 57	58.09 57.75	58.0 58.3	62.0 64.6
23 to 30 to October $\begin{array}{r}29\end{array}{ }^{2} \times 2$	5ı.09	$55 \cdot 29$ 55.22	$57 \cdot 73$	$57 \cdot 75$ $56 \cdot 67$	58.3	64.6 59.1
30 to October 6	$5 \mathrm{I} \cdot 29$	$55 \cdot 22$	$57 \cdot 34$	$56 \cdot 67$	$54 \cdot 7$	$59 \cdot 1$
October 7 to 13	$5 \mathrm{I} \cdot 48$	55.14	$56 \cdot 51$	55-04	$54 \cdot 5$	$58 \cdot 6$
14 to 20	$5 \mathrm{I} \cdot 62$	$54 \cdot 94$	$55 \cdot 80$	$54 \cdot 34$	54.6	$59^{\circ} \mathrm{O}$
21 to 27	$5 \mathrm{I} \cdot 73$	54.68	$55 \cdot 32$	54.00	$53 \cdot 5$	$56^{\circ} 8$
28 to November 3	$51 \cdot 82$	54.42	$54 \cdot 81$	$52 \cdot 99$	$50 \cdot 4$	$52 \cdot 1$
November 4 to 10	5I•86	54.11	$53^{\circ} 73$	$49 \cdot 86$	$43 \cdot 3$	$44^{\circ} \mathrm{O}$
11 to 17	51.92	53.69	$52 \cdot 05$	$47 \cdot 61$	$44^{\circ} 7$	$45^{\circ} \cdot 9$
18 to ${ }^{25}{ }^{24}$	$5 \mathrm{I} \cdot 97$	53.11	$5 \mathrm{I} \cdot 09$	$47^{\circ} 85$	$47^{\circ} \mathrm{O}$	48.5 $47^{\circ} 3$
25 to December 1	$51 \cdot 99$	$52 \cdot 50$	$50 \cdot 33$	$46 \cdot 54$	$44^{\circ} 7$	$47^{\circ} 3$
December 2 to 8	5r•99	51•97	$49 \cdot 65$	$4^{6 \cdot 11}$	$46 \cdot 2$	$48 \cdot 6$
9 to 15	$5 \mathrm{I} \cdot 93$	$51 \cdot 43$	$49^{\cdot 27}$	$4^{6} \cdot 03$	$43 \cdot 9$	$43^{\circ} 2$
16 to 22	$5 \mathrm{I} \cdot 82$	$50 \cdot 92$	$48 \cdot 55$	$43 \cdot 89$	$38 \cdot 9$	$36 \cdot 6$
23 to 31	$51 \cdot 74$	$50 \cdot 33$	$47^{\circ} 19$	$42 \cdot 08$	$38 \cdot 3$	$38 \cdot 1$

Abstract of the Changes of the Direction of the Wind, as derived from Osler's Anemometer.

By direct motion, in the following statements, is meant that the change of the direction of the wind was in the order N., E., S., W., N., \&c., by retrograde is meant in the order N., W., S., E., N., \&c.
d h
1863. Dec. 31.12. The direction of the wind was E.N.E.
1864. Jan. 31. 12. ,, \quad, S.S.W., which implies a direct motion of 135°.
 Therefore the whole excess of direct motion in the month of January was 855°.
1864. Jan. ${ }^{\text {d }}$ 1. ${ }^{\text {h }}$ 12. The direction of the wind was S.S.W.

Feb. 29. 12. , , , S., which implies a retrograde motion of $22 \frac{1}{2}^{\circ}$.
On Feb. 10. 22, the trace was shifted to the next set of lines upwards; on Feb. $27^{\text {d }} \mathbf{. 2 2 ^ { \mathrm { h } }}$, the trace was shifted to the next set of lines downwards, implying retrograde motion of 360°, and direct motion of 360°.
Therefore the whole excess of retrograde motion in the month of February was 22 $\frac{\mathrm{I}^{\circ}}{}{ }^{\circ}$.
1864. Feb. $\quad \underset{ }{29.12}$. . The direction of the wind was S.

March 31. 12. , , , W.S.W., which implies a direct motion of $67 \frac{1}{2}^{\circ}$.
On March 15. 22, the trace was shifted to the next set of lines downwards; on March 20d. $\circ^{\text {h }}$, the trace was shifted to the next set of lines upwards, implying direct motion of 360°, and retrograde motion of 360°.
Therefore the whole excess of direct motion in the month of March was $67 \frac{1}{2}^{\circ}$.
1864. March 31. 12. The direction of the wind was W.S.W.

April 30.12. ,, \quad, S.S.E., which implies a direct motion of 270°.
 trace was shifted to the next set of lines upwards, implying direct motion of 1440°, and retrograde motion of 720°.
Therefore the whole excess of direct motion in the month of April was 990°.
1864. April $30.1 \begin{gathered}\text { d } \\ \text { h. }\end{gathered}$. The direction of the wind was S.S.E.

May 31.12. \quad, \quad, \quad N.N.E., which implies a retrograde motion of 135°.
 next set of lines downwards ; on May $9^{\text {d }} \cdot 3^{\mathrm{h}}, 12^{\mathrm{d}} .22^{\mathrm{h}}, 16^{\mathrm{d}} .22^{\mathrm{h}}, 27^{\mathrm{d}} .22^{\mathrm{h}}$, the trace was shifted to the next set of lines upwards, implying direct motion of 3960°, and retrograde motion of 1440°.
Therefore the whole excess of direct motion in the month of May was 2385°.
1864. May ${ }_{3}{ }_{1}^{\text {d }} . \stackrel{\text { h }}{\text { h }}$. The direction of the wind was N.N.E. June 30.12. , , , W,S.W., which implies a retrograde motion of 135°.
On June 2. 3, $4^{\mathrm{d}} .6^{\mathrm{h}}, 6^{\mathrm{d}} .3^{\mathrm{h}}, 7^{\mathrm{d}} . \mathbf{2 2}^{\mathrm{h}}$, the tràce was shifted to the next set of lines downwards; on June $\mathbf{2}^{\mathrm{d}} . \mathbf{2 2}^{\mathrm{h}}$, the trace was shifted to the next set of lines upwards, implying direct motion of 1444°, and retrograde motion of 360°.
Therefore the whole excess of direct motion in the month of June was 945°.
1864. June $\stackrel{\text { d }}{30} \stackrel{\text { h }}{12}$. The direction of the wind was W.S.W.

July 31. 12. , , , S.W., which implies a retrograde motion of $22 \frac{10}{2}$.
On July 1. $3,8^{\mathrm{d}} \cdot 22^{\mathrm{h}}, 17^{\mathrm{d}} \cdot 22^{\mathrm{h}}, 27^{\mathrm{d}} \cdot 22^{\mathrm{h}}$, the trace was shifted to the next set of lines upwards; on July $6^{\mathrm{d}} \cdot 22^{\mathrm{h}}, 14^{\mathrm{d}} \cdot 9^{\mathrm{h}}$, $17^{\mathrm{d}} .1 \frac{1}{2}^{\mathrm{h}}, 18^{\mathrm{d}} .22^{\mathrm{h}}, 19^{\mathrm{d}} .22^{\mathrm{h}}$, the trace was shifted to the next set of lines downwards, implying retrograde motion of 144°, and direct motion of 1800°.
Therefore the whole excess of direct motion in the month of July was $337 \frac{1}{2}^{\circ}$.
1864. July ${ }_{3}^{\text {di. }} \stackrel{\text { I2 }}{\text { h }}$. The direction of the wind was S.W.

Aug. 31. 12. , , S.W., which implies no change.
 $3^{\text {d }} .22^{\mathrm{h}}, 21^{\mathrm{d}} .0^{\mathrm{h}}, 23^{\mathrm{d}} .22^{\mathrm{h}}$, the trace was shifted to the next set of lines upwards, implying direct motion of 2520°, and retrograde motion of 1080°.
Therefore the whole excess of direct motion in the month of August was 144°.
1864. Aug. $3_{\text {di. }}^{\text {d }}$ i2. . The direction of the wind was S.W.

Sept. 30. 12. , , , N.E., which implies a direct motion of 180°.
 set of lines downwards, implying retrograde motion of 720°, and direct motion of 360°.
Therefore the whole excess of retrograde motion in the month of September was 180°.
1864. Sept. 30 di. 12 . The direction of the wind was N.E.

Oct. 3I. 12. ,, , E.S.E., which implies a direct motion of $67 \frac{1}{2}$.
On Oct. 24.22, $28^{\text {d }} .22^{\text {h }}$, the trace was shifted to the next set of lines upwards, implying retrograde motion of $7 \mathbf{2 0}$.
Therefore the whole excess of retrograde motion in the month of October was $652 \frac{1}{2}^{\circ}$.
1864. Oct. ${ }_{3}^{\text {d }}$ I. ${ }_{12}^{\text {b }}$. The direction of the wind was E.S.E.

Nov. 30.12. ,, , S.S.W., which implies a retrograde motion of 270°.
 trace was shifted to the next set of lines upwards, implying direct motion of 1080°, and retrograde motion of 1080°.
Therefore the whole excess of retrograde motion in the month of November was 270°.
1864. Nov. $30.1 \begin{gathered}\text { h } \\ \text { h }\end{gathered}$. The direction of the wind was S.S.W.

Dec. 31. 12. , , , E.N.E., which implies a direct motion of 225°.
On Dec. 15. 3, the trace was shifted to the next set of lines upwards ; on Dec. $18^{d} . o^{\text {h }}$, the trace was shifted to the next set of lines downwards, implying retrograde motion of 360°, and direct motion of 360°.
Therefore the whole excess of direct motion in the month of December was 225°.

The whole excess of direct motion to the end of the year was 6120°.

The revolution-counter which is attached to the vertical spindle of the vane, whose readings increase with change of direction of the wind in the order N., E., S., W., \&c., or in direct motion, and decrease with change of direction in the order N., W., S., E., \&c. or in retrograde motion, gave the following readings:-

On 1863, December 3rd. $12^{\text {h }}$		-	-	-	.	-	.	.	.	
On 1864, December 31 ${ }^{\text {d }} 12^{\text {h }}$.	\cdots		-	-		

Implying an excess of direct motion, during the year, of $17 \cdot 20$ revolutions, or 6192°.

Amount of Rain collected in each Month of the Year 1864.

$1864,$ MONTH.	Monthly Amount of Rain collected in each Gauge.							
	Osler's Anemometer Gauge.	Second Gauge at Osler's Anemometer.	On the Roof of the Octagon Room.	On the Roof of the Library.	On the Roof of the Photographic Thermometer Shed.	Crosley's.	Cylinder partly sunk in the Ground read daily.	Cylinder partly sunk in the Ground read Monthly
	in.	in.	in.	in.	in.	in.	Iu.	in.
January.	0.45	0.51	0.59	0.65	0.81	0.65	$0 \cdot 88$	c.93
February.	- 30	$0 \cdot 34$	-. 39	0.58	$0 \cdot 72$	0.66	$0 \cdot 76$	- 84
March	1.47	1.60	$1 \cdot 97$	$2 \cdot 36$	$2 \cdot 53$	$2 \cdot 37$	$2 \cdot 53$	$2 \cdot 72$
April.	0.67	0.64	-. 59	0.83	0.83	- 82	- 82	$0 \cdot 70$
May.	I-3I	I $\cdot 3 \mathrm{I}$	1.57	1-87	$2 \cdot 03$	194	$2 \cdot 00$	1 94
June.	0.60	0.45	$0 \cdot 62$	$0 \cdot 78$	0.85	- 87	$0 \cdot 92$	$0 \cdot 88$
July...	$0 \cdot 18$	$0 \cdot 12$	- 19	$0 \cdot 24$	-.31	0.30	$0 \cdot 27$	$0 \cdot 30$
August	- 70	- $\cdot 75$	- $\cdot 93$	I 15	$1 \cdot 33$	I 15	I-31	1.40
September .	$2 \cdot 17$	$2 \cdot 10$	$2 \cdot 26$	$2 \cdot 16$	$2 \cdot 75$	$2 \cdot 25$	$2 \cdot 76$	$2 \cdot 80$
October .	- $\cdot 74$	- 72	- 79	0.85	1.04	- 96	1-06	I 13
November	1.57	1.58	1 77	$2 \cdot 1$	2.48	$2 \cdot 16$	2.57	$2 \cdot 65$
December	0.24	-. 28	-. 30	0.43	0.46	0.48	- . 50	0.60
Sums .	$10 \cdot 40$	$10 \cdot 40$	I 1 997	13.91	$16 \cdot 14$	14.61	$16 \cdot 38$	$16 \cdot 89$

The heights of the receiving surfaces are as follows:

	Above the Mean Level of the Sea. Ft. In.			Above the Ground. Ft. In.	
The Two Gauges at Osler's Anemometer	205	6		50	8
Gauge on the Roof of the Octagon Room				38	$4^{\frac{1}{2}}$
Gauge on the Roof of the Library	177	2		22	4
Gauge on the Roof of the Photographic Thermometer Shed				10	\bigcirc
Crosley's Gauge	156	6		1	8
The Two Cylinder Gauges partly sunk in the Ground . . .	155	3		\bigcirc	5

[^0]: In forming the mean value of P, the values for June 9 and July 6 have not been taken into account.

[^1]: The highest reading in the year was $30^{\text {in }} 496$ in the month of November.
 The lowest reading in the year was $28^{\text {in }} \cdot 606$ in the month of November. The range of reading in the year was $i^{\text {in }} 890$.

[^2]: In every observation, whether in the Sun's rays or in the shade, the terminal reading was taken exactly one minute after the initial reading

[^3]: In every observation，whether in the Sun＇s rays or in the shade，the terminal reading was taken exactly one minute after the initial readmg．
 The＂Apparent Effect of the Sun＇s Radiation＂is found by comparing each change（whether in the Sun＇s rays or in the shade）with the mean of that which immediately precedes and that which immediately follows it．
 The initial N is that of Mr．W．C．Nash．

