RESULTS

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS

MADE AT

THE ROYAL OBSERVATORY, GREENWICH,
IN THE YEAR
1881 :
UNDER THE DIRECTION OF
SIR GEORGE BIDDELL AIRY, K.C.B. M.A. LL.D. D.C.L., LATE ASTRONOMER ROYAL,
AND
W. H. M. CHRISTIE, M.A. F.R.S., ASTRONOMER ROYAL.
PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY IN OBEDIENCE TO HER MAJESTY'S COMMAND.

LONDON:
PRINTED BY GEORGE E. B. EYRE AND WILLIAM SPOTTISWOODE, printers to the queen's most excellent majesty.

FOR HER MAJESTY'S STATIONERY OFFICE.
$\overline{1883}$.

$$
\begin{aligned}
& C^{90} \\
& 18100^{3}
\end{aligned}
$$

INTRODUCTION. jaOE
Personal Establishment and Arrangements $i i$
General Description of the Buildings and Instruments $i i i$
The Magnetical and Meteorological Observatory iii
Positions of the Instruments ic and v
Subjects of Observation $v i$
Magnetic Instrunents.
Upper Declination Magnet $v i$
Its Suspension : Stand: Double Box: and Theodolite vi and rii
Its Collimator: Torsion Force of its Suspending Skein viii
Determination of the reading of the Azimuthal Circle of the Theodolite corresponding to the Astronomical Meridian $i x$
Method of Making and Reducing Observations for Magnetic Declination $i x$
Lower Declination Magnet \boldsymbol{x}
General principle of Photographic Registration x and $x i$
Arrangements for recording the Movements of the Declination Magnet $x i$ and xii
Determination of Scale for measurement of Ordinates of the Photographic Curve xii and xiii
Horizontal Force Magnet $x i i i$
Magnet Carrier: Suspension Skein: Suspension Pulleys xiii and xiv
Plane Mirror, Telescope, and Scale for Eye-observation $x i v$
Adjustment of the Magnet xiv to $x v i$
Eye-observations: Photographic Record xvii
Scale for measurement of Ordinates of the Photographic Curve xvii
Temperature coefficient xviii
Vertical Force Magnet xtiui
Supporting frame, Carrier, and Knife-edge xviii and xix
Plane Mirror, Telescope, and Scale for Eye-observation $x i x$
Time of Vibration in the Vertical and Horizontal Planes xid:
Determination of the value of the Scale $x x$
Eye-observations : Photographic Record $x x$
Scale for measurement of Ordinates of the Photographic Curve $x x i$
Temperature coefficient x.ri
Dip Instriment $x x i i$
Deflexion Instrament $x x i i$
R 990. Wt. 20446. $\left[\begin{array}{ll}a & 2\end{array}\right]$

INDEX.PAGE
INTRODUCTION—concluded.
Earth Current Apparatus $x x v$
Earth Connexions: Wire Circuits $x x v$
Arrangements for Photographic Registration $x x v i$
Magnetic Reductions $x x v i$
Treatment of the Photographic Curves $x x v i$ and $x x v i$
Measurement of Ordinates on Days of Magnetic Disturbance xxvii
Results in terms of Gauss's Magnetic Unit xxviii
Meteorological Instruments.
Standard Barometer xxviii
Its Position: Diameter of Tube: Correction for Capillarity . xxviii
Correction for Index Error: Comparison with Kew Standard xxix
Photographic Barometer $x x i x$
Arrangements for Photographic Registration xxix
Determination of the Scale $x x x$
Dry and Wet Bulb Thermometers $x x x$
Revotving Frame: Standard Thermometer $x x x$
Corrections for Index Error $x x x i$
Photographic Dry and Wet Bulb Thermomfters $x x x i$
Radiation Thermometers $x x x i$
Earth Thermometers $x x x i$
Osler's Anemometer xxxiii
Method of registering the Direction and Pressure of the Wind xxxiii
Its Rain-gauge xxxiv
Robinson's Anemometer xxxiv
Rain-Gauges xxxiv
Electrometer $x x x v$
Instrument employed : general description nxxvi
Method of collecting the Electricity of the Atmosphere $x x x v i$
System of Registration $x x x v i$
Sunshine Instrument xxxvi
Ozonometer xxxvii
Meteorological Reductions xxxvii
System of Reduction xxxviì
Deduction of the Temperature of the Dew-Point, and of the degree of Humidity xxxix
Rainfall: Clouds and Weather: Electricity $x l$ to $x l i i$
Meteorological Avcrages $x l i i$
Observations of Luminous Meteors $x l i i i$
Details of the Photographic Process $x l i i i$

I N DEX.

RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABULAR ARRANGEMENT:-

Reduction of the Magnetic Observations
Table 1.-Mean Western Declination of the Magnet on each Astronomical Day (iv)
Table II.-Mean Monthly Determination of the Western Declination of the Magnet at every Hour of the Day

Table III.—Mean Western Declination of the Magnet in each Month ; and excess of Western
Declination above 17°, converted into Westerly Force and expressed in terms of
Gauss's Unit measured on the Metrical System ; and Monthly Means of all the Diurnal
Ranges of the Western Declination

Table IV.-Mean Horizontal Magnetic Force expfessed in terms of the Mean Horizontal
Force for the Year, and diminished by a Constant (0.86000 nearly), uncorrected for
Temperaiure, on each Astronomical Day

Table V.-Daily Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnetometer, for each Astronomical Day
Table VI.-Mean Monthly Determination of the Horizontal Magnetic Force expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant ($0 \cdot 86000$ nearly), uncorretted for Temperature, at every Hour of the Day
Table VII.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnetometer at each of the ordinary Hours of observation

Table VIII.-Mean Horizontal Magnetic Force in each Month, uncorrected for Temperature, expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (0.86000 nearly), and also expressed in terms of Gauss's Unit measured on the Metrical System, and diminished by a Constant (1.55230 nearly) ; and Mean H.F. Temperature for each Month

Table IX.-Mean Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant (0.96000 nearly), uncorrected for Temperature, on each Astronomical Day

Table X.-Daily Means of Readings of the Thermometer placed within the box inclosing
the Vertical Force Magnetometer, for each Astronomical Day

Table XI.—Mean Monthly Determination of the Vertical Magnetic Force, expressed in
terms of the Mean Vertical Force for the Year, and diminished by a Constant
(0.96000 nearly), uncorrected for Temperature, at every Hour of the Day

Table XII.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Vertical Force Magnetometer at each of the ordinary Hours of observation

> Table XIII.-Mean Vertical Magnetic Force in each Month, uncorrected for Temperature, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant ($0 \cdot 96000$ nearly), and also expressed in terms of Gauss's Unit measured on the Metrical System, and diminished by a Constant $(4 \cdot 19889$ nearly $)$; and Mean V.F. Temperature for each Month

Table XIV.-Mean, through the Range of Months, of the Monthly Mean Determinations of the Diurnal Inequalities of Declination, Horizontal Force, and Vertical Force.

INDEX.

results of magnetical and meteorological observations-continued.
Indications of Magnetometers on three Days of Great Magnetic Disturbance (xiii)
Tables of the Values of Magnetic Declination, Horizontal Force, and Vertical Force, at numerous times, as inferred from the Measures of the Ordinates of the Photographic Curves, and corresponding expressions for these elements in terms of Gauss's Unit measured on the Metrical System ; with frequent Readings of the Horizontal Force and Vertical Force Thermometers (xiv)
Resulits of Observations of the Magnetic Dip (xix)
Dips observed (xx)
Monthly Means of Magnetic Dips (xxii)
Yearly Means of Magnetic Dips, and General Mean (xxiii)
Observations of Deflexion of a Magnet for Absolute Measure of Horizontal Force (xxv)
Abstract of the Observations of Deflexion of a Magnet, and of Vibrations of the Deflecting Magnet for Absolute Measure of Horizontal Force (xxvi)
Computation of the Values of Absolute Measure of Horizontal Force (xxvii)
Results of Meteorological Observations (xxix)
Daily Results of Meteorological Observations (xxx)
Highest and Lowest Readings of the Barometer (liv)
Absolute Maxima and Minima Readings of the Barometer for each Month (lvi)
Monthly Results of Meteorological Elements (lvii)
Monthly Mean Reading of the Barometer at every Hour of the Day (lviii)
Monthly Mean Temperature of the Air at every Hour of the Day (lviii)
Monthly Mean Temperature of Evaporation at every Hour of the Day (lix)
Monthly Mean Temperature of the Dew-Point at every Hour of the Day (lix)
Monthly Mean Degree of Humidity at every Hour of the Day (lx)
Total Amount of Sunshine registered in each Hour of the Day in each month (lx)
Earth Thermometers:-
(I.) Reading of a Thermometer whose bulb is sunk to the depth of $25 \cdot 6$ feet (24 Frenchfeet) below the surface of the soil, at Noon on every Day(lxi)
(II.) Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day (lxi)
(III.) Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day (lxii)
(IV.) Reading of a Thermometer whose bulb is sunk to the depth of $3 \cdot 2$ feet (3 French feet) below the surface of the soil, at Noon on every Day (lxiii)
(V.) Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day (lxiv)
(VI.) Reading of a Thermometer within the case covering the Deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day (lxv)
Abstract of the Changes of the Direction of the Wind, as derived from Osler's Anemometer (lxvi)
Mean Hourly Measures of the Horizoutal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from Robinson's Anemometer」 (lxviii)

INDEX.

RESUL'SS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS—concluded.Mean Electrical Potential of the Atmosphere, derived from Thomson's Electrometer, for
each Civil Day .Monthly Mean Electrical Potential of the Atmosphere, derived from Thomson's Electro-meter, at every Hour of the Day .(lxix)(lxx)
Amount of Rain collected in each Month by the different Rain Gauges (lxxi)
Observations of Luminous Meteors (lxxiii)Page

RESULTS

or

Magnetical and meteorological

OBSERVATIONS.

1881.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1881.

Introdoction.

The observations from January 1 to August 14, contained in the present volume, were made and partly reduced under the superintendence of Sir G. B. Airy, K.C.B., as Astronomer Royal, before his resignation of that office on 1881 August 15.

§ 1. Personal Establishment and Arrangements.

During the year 1881 the establishment of Assistants in the Magnetical and Meteorological Department of the Royal Observatory consisted of William Ellis, Superintendent, and William Carpenter Nash, Assistant, who had the aid usually of four Computers. The names of the Computers who were employed at different times during the year 1881 are, John A. Greengrass, William Hugo, Ernest E. McClellan, George W. Stafford, Edwin Jeffery, and William J. Sanders.

Mr. Ellis controls and superintends the whole of the work of the Department. Mr. Nash attends generally to instrumental adjustments, the determination of the values of instrumental constants, and makes the more delicate magnetic observations. The routine magnetical and meteorological observations have been in general made by the Computers.

§2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory.

The Magnetical and Meteorological Observatory was erected in the year 1838. Its northern face is distant about 170 feet south-south-east from the nearest point of the South-East Dome, and about 35 feet south from the carpenters' workshop. It is based on concrete and built of wood, united for the most part by pegs of bamboo; no iron was intentionally admitted in its construction, or in subsequent alterations. Its form is that of a cross, the arms of the cross being nearly in the directions of the cardinal magnetic points as they were in 1838. The northern arm is longer than the others, and is separated from them by a partition, and used as a computing room ; the stove which warms this room, and its flue, are of copper. The remaining portion, consisting of the eastern, southern, and western arms, is known as the Upper Magnet Room. The upper declination magnet and its theodolite for determination
of absolute declination, are placed in the southern arm, an opening in the roof allowing circumpolar stars to be observed by the theodolite for determination of the position of the astronomical meridian. Both the magnet and its theodolite are supported on piers built from the ground. In the eastern arm is placed the Thomson electrometer for photographic record of the variations of atmospheric electricity, its water cistern being supported by a platform fixed to the western side of the southern arm, near the ceiling. The Standard barometer is suspended near the point of junction of the southern and western arms. The Sidereal clock, Grimalde and Johnson, is fixed at the junction of the eastern and southern arms, and there is in addition a mean solar chronometer, McCabe No. 649, for general use.

Until the year 1863 the horizontal and vertical force magnets were also located in the Upper Magnet Room, the upper declination magnet being up to that time employed for photographic record of the variations of declination, as well as for absolute measure of the element. But experience having shown that the horizontal and vertical force magnets were subject in the upper room to too great variations of temperature, a room known as the Magnet Basement was in the year 1864 excavated below the Upper Magnet Room, and the horizontal and vertical force magnets, as well as a new declination magnet for photographic record of declination, were mounted therein, in order that they might be less exposed to changes of temperature. The Magnet Basement is of the same dimensions as the Upper Magnet Room. The lower declination magnet and the horizontal force and vertical force magnets, as now located in the Basement, are used entirely for record of the variations of the respective magnetic elements. The declination magnet is suspended in the southern arm, immediately under the upper declination magnet, in order that the position of the latter should not be affected thereby; the horizontal and vertical force magnets are placed in the eastern and western arms respectively, in positions nearly underneath those which they occupied when in the Upper Magnet Room. All are mounted on or suspended from supports carried by piers built from the ground. A photographic barometer is fixed to the northern wall of the Basement, and an apparatus for photographic registration of earth currents is placed near the southern wall of the eastern arm. A clock of peculiar construction for interruption of the photographic traces at each hour is fixed to the pier which supports the upper declination theodolite. The mean-time clock is attached to the western wall of the southern arm. On the northern wall, near the photographic barometer, is fixed the Sidereal standard clock of the Astronomical Observatory, Dent 1906, communicating with the chronograph and with clocks of the Astronomical Department by means of underground wires. This clock is placed in the Magnet Basement, because of its nearly uniform temperature.

The Basement is warmed when necessary by a gas stove (of copper), and ventilated
by means of a large copper tube nearly two feet in diameter, which receives the flues from the stove and all gas-lights and passes through the Upper Magnet Room to a revolving cowl above the roof. Each of the arms of the Basement has a well window facing the south, but these wells are usually closely stopped.

A platform erected above the roof of the Magnet House is used for the observation of meteors. The sunshine instrument and a rain gauge are placed on a table on this platform.

An apparatus for naphthalizing the gas used for the photographic registration is mounted in a small detached zinc-built room adjacent to the computing room on its western side.

To the south of the Magnet House, in what is known as the Magnetic Ground, is an open shed, consisting principally of a roof supported on four posts, under which is placed the photographic dry-bulb and wet-bulb thermometer apparatus. On the roof of this shed there is fixed an ozone box and a rain gauge, and close to its northwestern corner are placed the earth thermometers, the upper portions of which, projecting above the ground, are protected by a small wooden hut. About 25 feet to the west of the photographic thermometers is situated the thermometer stand carrying the thermometers used for eye observations, and adjacent thereto on the north side are several rain gauges.

The Magnetic Ground is bounded on its south side by a range of seven rooms, known as the Magnetic Offices. No. 1 is used as a general store room, and in it is placed the Watchman's Clock ; Nos. 2, 3, and 4 are used for photographic purposes in connexion with the Photoheliograph, placed in a dome adjoining No. 3, on its south side; Nos. 5 and 6 are store rooms. In No. 7 are placed the Dip Instrument and Deflexion apparatus.

To the south of the Magnetic Offices, in what is known as the South Ground, are placed the thermometers for solar and terrestrial radiation; they are laid on short grass, and freely exposed to the sky.

Two Anemometers, Osler's, giving continuous record of direction and pressure of wind and amount of rain, and Robinson's, giving continuous record of velocity, are fixed, the former above the north-western turret of the Octagon Room (the ancient part of the Observatory), the latter above the small building on the roof of the Octagon Room.

Regular observation of the principal magnetical and meteorological elements was commenced in the autumn of the year 1840, and has been continued, with some additions to the subjects of observation, to the present time. Until the end of the year 1847 observations were in general made every two hours, but at the beginning of the year 1848 these were superseded by the introduction of the method of photo-
graphic registration, by which means a continuous record of the various elements is obtained.

For information on many particulars concerning the history of the Magnetical and Meteorological Observatory, especially in regard to alterations not recited in this volume, which from time to time have been made, the reader is referred to the Introduction to the Magnetical and Meteorological Observations for the year 1880 and previous years, and to the Descriptions of the Buildings and Grounds, with accompanying Plans, given in the Volumes of Astronomical Observations for the years 1845 and 1862.

§ 3. Subjects of Observation in the year 1881.

These comprise determinations of absolute magnetic declination, horizontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force, and of the earth currents indicated in two distinct lines of wire; eye observation of the ordinary meteorological instruments, including the barometer, dry and wet bulb thermometers, and radiation and earth thermometers; continuous photographic record of the variations of the barometer, dry and wet bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine, and amount of ozone; observation of some of the principal meteor showers; and general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud.

§ 4. Magnetic Instruments.

Upper Declination Magnet and its Theodolite.-The upper declination magnet is by Meyerstein of Göttingen; it is a bar of hard steel, 2 feet long, $1 \frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick, and is employed solely for the determination of absolute declination. The magnet carrier was also made by Meyerstein, since however altered by Troughton and Simms; the magnet is fixed therein by two pinching screws. To a stalk extending upwards from the magnet carrier is attached the torsion circle, which consists of two circular brass discs, one turning independently on the other on their common vertical axis, the lower and graduated portion being firmly fixed to the stalk of the magnet carrier; to the upper portion carrying the vernier is attached, by a hook, the suspension skein. This is of silk, and consists of several fibres united by juxtaposition, without apparent twist; its length is about 6 feet.

The magnet, with its suspending skein, \&c., is carried by a braced wooden tripod stand, whose feet rest on slates covering brick piers, built from the ground and rising through the Magnet Basement nearly to the roof. The upper end of the suspension skein is attached to a short square wooden rod, sliding in the corresponding square hole of a fixed wooden bracket. To the upper end of the rod is fixed a leather strap, which, passing over two brass pulleys carried by the upper portion of the tripod stand, is attached to a cord which passes down to a small windlass fixed to the stand. Thus in raising or lowering the magnet, an operation necessary in determinations of its collimation error, no alteration is made in the length of the suspension skein. The magnet is inclosed in a double rectangular wooden box (one box within another), both boxes being covered with gilt paper on their exterior and interior sides, and having holes at their south and north ends, for illumination of the magnet-collimator and for viewing the collimator by the theodolite telescope respectively. The holes in the outer box are covered with glass. The magnet-collimator is formed by a diagonally placed cobweb cross, and a lens of 13 inches focal length and nearly 2 inches aperture, carried respectively by two sliding frames fixed by pinching screws to the south and north arms of the magnet. The cobweb cross is in the principal focus of the lens, and its image in the theodolite telescope is well seen. From the lower side of the magnet carrier a rod extends downwards, terminating below the magnet box in a horizontal brass bar immersed in water, for the purpose of checking small vibrations of the magnet.
The theodolite, by which the position of the upper declination magnet is observed, is by Troughton and Simms. It is planted about 7 feet north of the magnet. The radius of its horizontal circle is 8.3 inches, and the circle is divided to 5^{\prime}, and read, by three verniers, to $5^{\prime \prime}$. The theodolite has three foot-screws, which rest in brass channels let into the stone pier placed upon the brick pier which rises from the ground through the Magnet Basement. The length of the telescope is 21 inches, and the aperture of its object glass 2 inches : it is carried by a horizontal transit axis $10 \frac{1}{2}$ inches long, supported on Y's carried by the central vertical axis of the theodolite. The eye-piece has one fixed horizontal wire and one vertical wire moved by a micrometer-screw, the field of view in the observation of stars being illuminated through the pivot of the transit-axis on that side of the telescope which carries the micrometer-head. The value of one division of the striding level is considered to be equal to $\mathbf{1}^{\prime \prime} \cdot 05$. The opening in the roof of the Magnet House permits of observation of circumpolar stars as high as δ Ursæ Minoris above the pole and as low as β Cephei below the pole. A fixed mark, consisting of a small hole in a plate of metal, placed on one of the buildings of the Astronomical Observatory, at a distance of about 270 feet from the theodolite, is, in addition, provided by which to check the continued steadiness of the theodolite.

The inequality of the pivots of the axis of the theodolite telescope was found from several independent determinations made at different times to be very small. It appears that when the level indicates the axis to be horizontal the pivot at the illuminated end of the axis is really too low by $1^{\text {div }} \cdot 3$, equivalent to $1^{\prime \prime} \cdot 4$.

The value in arc of one revolution of the telescope-micrometer is $1^{\prime} .34^{\prime \prime} \cdot 2$.
The reading for the line of collimation of the theodolite telescope was found, by fifteen double observations, made on 1881 March 29, to be 100r.217: 10 double observations made on 1881 September 8, gave 100^{r}.178. The value used throughout the year 1881 was $100^{r} \cdot 202$, the same that was employed during the year 1880.

The error of collimation of the plane glass in front of the outer box of the declination-magnet at that end of the box towards the theodolite was determined by 10 double observations made on 1881 March 29 , which showed that in the ordinary position of the glass the theodolite readings were diminished by $19^{\prime \prime} \cdot 7$. Another set of observations made on 1881 September 8 , gave $18^{\prime \prime} \cdot 6$. The mean of these, $19^{\prime \prime} \cdot 1$, has been added to all readings throughout the year 1881.

The error of collimation of the magnet collimator is found by observing the position of the magnet, first with its collimator in the usual position (above the magnet), then with the collimator reversed (or with the magnet placed in its carrier with the collimator below), repeating the observations several times. The value used during the year 1881 was $26^{\prime} .7^{\prime \prime} \cdot 8$, being the mean of determinations made on 1878 December 10, 1879 December 9, 1880 October 26, and 1881 September 8, giving respectively $26^{\prime} .13^{\prime \prime} \cdot 6,26^{\prime} .2^{\prime \prime} \cdot 2,25^{\prime} .56^{\prime \prime} \cdot 6$, and $26^{\prime} .18^{\prime \prime} \cdot 9$. With the collimator in its usual position, above the magnet, the amount has to be subtracted from all readings.

The effect of torsion of the suspending skein is eliminated by turning the lower portion of the torsion-circle until a brass bar (of the same size as the magnet, and weighted with lead weights to be also of equal weight), inserted in place of the magnet, rests in the plane of the magnetic meridian. The brass bar is thus inserted from time to time as may appear necessary, and whenever the adjustment is found not to have been sufficiently close, the observed positions of the magnet are corrected for the amount by which the magnet is deflected from the meridian by the torsion force of the skein. Such correction is determined experimentally, with the magnet in position, by changing the reading of the torsion circle by a definite amount, usually 90°, thus giving the skein the same amount of azimuthal twist, and observing, by the theodolite, the displacement in the position of the magnet thereby produced, from which is derived the ratio of the torsion force of the skein to the earth's magnetic force. In this way the torsion force of the skein was, on 1879 December 9 , found to be $\frac{1}{176}$ th part of the earth's magnetic force: on 1881 September 8, it was found to be ${ }_{1} \frac{1}{74}$ th part. At all times of examination in the year 1881, however, the plane
in which the suspension skein was free from torsion so nearly coincided with the magnetic meridian that no correction of the absolute measures of magnetic declination for deviation of the plane of no torsion was at any time required.

The time of vibration of the upper declination magnet under the influence of terrestrial magnetism was found on 1880 December 29, to be $30^{s \cdot 78}$, and on 1881 September 9, 31 ${ }^{\text {s. }} 30$.

The reading of the azimuthal circle of the theodolite corresponding to the astronomical meridian is determined by occasional observation of the stars Polaris and δ Ursæ Minoris, made generally at the time at which the observer attends in the evening for other duties. The error of level is found by application of the spirit level at the time of observation.

Observations for determining the reading of the circle corresponding to the astronomical meridian are made about once in each month; the fixed mark is usually observed weekly. The concluded mean reading of the circle for the south astronomical meridian, used during the year 1881 for reduction of the observations of the declination magnet, was until August 4, $27^{\circ} .5^{\prime}$. $38^{\prime \prime} \cdot 7$; from August 5 until November 22, $27^{\circ} .4^{\prime} .23^{\prime \prime} \cdot 3$; from November 22 until November 24, $27^{\circ} .4^{\prime} .2^{\prime \prime} \cdot 6$; and from November 25 to the end of the year, $27^{\circ} .3^{\prime} .15^{\prime \prime} 0$.

In regard to the manner of making and reducing observations made with the upper declination magnet, the observer on looking into the theodolite telescope sees the image of the diagonally placed cross of the magnet collimator vibrating alternately right and left. The time of vibration of the magnet being about 30 seconds, the observer first applies his eye to the telescope about one minute, or two vibrations, before the pre-arranged time of observation, and, with the vertical wire carried by the telescope-micrometer, bisects the magnet-cross at its next extreme limit of vibration, reading the micrometer. He similarly observes the next following extreme vibration, in the opposite direction, and so on, taking in all,four readings. The mean of each pair of adjacent readings of the micrometer is taken, giving three means, and the mean of these three is taken as the adopted reading. In practice this is done by adding the first and fourth readings to twice the second and third, and dividing the sum by 6. Should the magnet be nearly free from vibration, two bisections only of the cross are made, one at the vibration next before the prearranged time, the other at the vibration following. The verniers of the theodolitecircle are then read. The excess of the adopted micrometer-reading above the reading for the line of collimation of the telescope being converted into arc and applied to the mean circle-reading, and also the corrections for collimation of the magnet and for collimation of the plane glass in front of its box, the concluded circle-reading corresponding to the position of the magnet is found. The difference
between this reading and the adopted reading of the circle for the south astronomical meridian gives, when, as is usually the case, no correction for torsion of the skein is necessary, the observed value of absolute declination, afterwards used for determining the value of the photographed base line on the photographic register of the lower declination magnet. The times of observation of the upper declination magnet are usually $1^{\mathrm{h}} .5^{\mathrm{m}}, 3^{\mathrm{h}} .5^{\mathrm{m}}, 9^{\mathrm{h}} .5$, and $21^{\mathrm{h}} .5^{\mathrm{m}}$ of Greenwich mean time.

Lower Declination Magnet.-The lower declination magnet is used simply for the purpose of obtaining photographic register of the variations of magnetic declination. It is by Troughton and Simms, and is of the same dimensions as the upper declination magnet, being 2 feet long, $1 \frac{1}{2}$ inch broad, and $\frac{1}{4}$ inch thick. The magnet is suspended, in the Magnet Basement, immediately below the upper declination magnet, in order that the absolute measure of declination by the upper magnet should not be affected by the proximity of the lower magnet.

The manner of suspension of the magnet is in general similar to that of the upper declination magnet, the suspension pulleys being carried by a small pier built on one of the crossed slates resting on the brick piers rising up from the ground. The length of free suspending skein is about 6 feet, but, unlike the arrangement adopted for the upper magnet, the skein is itself carried over the suspension pulleys. The position of the azimuthal plane in which the brass bar rests, when substituted for the magnet, is examined from time to time, and adjustment made as necessary, to keep this plane in or near the magnetic meridian, such exact adjustment as is required for the upper declination-magnet being not here necessary.

To destroy the small accidental vibrations to which the magnet would be otherwise liable, it is encircled by a damper consisting of a copper bar, about 1 inch square, which is bent into a long oval form, the plane of the oval being vertical; a lateral bend is made in the upper bar of the oval to avoid interference with the suspension piece of the magnet. The effect of the damper is to reduce the amplitude of the oscillation after every complete or double vibration of the magnet in the proportion of 5:2 nearly.

In regard to photographic arrangements, it may be convenient, before proceeding to speak of the details peculiar to each instrument, to remark that the general principle adopted for obtaining continuous photographic record is the same for all instruments. For the register of each indication an accurately turned cylinder of ebonite is provided, the axis of the cylinder being placed parallel to the direction of the change of indication to be registered. If, as is usually the case, there are two indications whose movements are in the same direction, both may be registered on the same cylinder: thus the movements in the case of magnetic declination and horizontal magnetic force, being both horizontal, can be registered on different parts of one cylinder with axis horizontal: so also can two different galvanic earth
currents. The movements in the case of vertical magnetic force, and of the barometer, being both vertical, can similarly be registered on different parts of one cylinder having its axis vertical, as also can the indications of the dry-bulb and wet-bulb thermometers. In the electrometer the movement is horizontal, for which a horizontal cylinder is provided, no other register being made on this cylinder.

The cylinder is in each case driven by chronometer or accurate clock-work to ensure uniform motion. The pivots of the horizontal cylinders turn on anti-friction wheels: the vertical cylinders rest on a circular plate turning on anti-friction wheels, the driving mechanism being placed below. A sheet of sensitized paper being wrapped round the cylinder, and a cylindrical glass cover, open at one end, slipped over it, the cylinder so prepared is placed in position, and connected with the clock-movement: it is then ready to receive the photographic record, the optical arrangements for producing which will be found explained in the special description of each particular instrument. The sheets are removed from the cylinders and fresh sheets supplied every day, usually at noon. On each sheet, where necessary, an invariable reference line is also photographed, the arrangements for which will be more particularly described in each special case. All parts of the apparatus and all parts of the paths of light are protected, as found necessary, by wood or zinc casings or tubes, blackened on the inside, in order to prevent stray exterior light from reaching the photographic paper.

Referring now specially to the lower declination magnet, there is attached to the magnet carrier, for the purpose of obtaining photographic register of the motions of the magnet, a concave mirror of speculum metal, 5 inches in diameter, which thus receives all the angular movements of the magnet. The revolving ebonite cylinder is $11 \frac{1}{2}$ inches long and $14 \frac{1}{4}$ inches in circumference: it is supported, in an approximately east and west position, on brass uprights carried by a metal plate, the whole being planted on a firm wooden platform, the supports of which rest on blocks driven into the ground. The platform is placed midway between the declination and horizontal force magnets, in order that the variations of magnetic declination and horizontal force may both be registered on the same cylinder, which makes one complete revolution in 26 hours.
The light used for obtaining the photographic record is that given by a flame of coal gas, charged with the vapour of coal naphtha. A vertical slit about $0^{\text {in }} \cdot 3$ long and $0^{\text {in }} \cdot 01$ wide, placed close to the light, is firmly supported on the pier which carries the magnet. It stands slightly out of the straight line joining the mirror and the registering cylinder, and its distance from the concave mirror of the magnet is about 25 inches. The distance of the axis of the registering cylinder from the concave mirror is $134 \cdot 4$ inches. Immediately above the cylinder, and parallel to its axis,
are placed two long reflecting prisms (each 11 inches in length) facing opposite ways towards the mirrors carried by the declination and horizontal force magnets respectively. The front surface of each prism is convex, being a portion of a horizontal cylinder. The light of the declination lamp, after passing through the vertical slit, falls on the concave mirror, and is thence reflected as a converging beam to form an image of the slit on the convex surface of the reflecting prism, by the action of which it is reflected downwards to the paper on the cylinder as a small spot of light. A small azimuthal adjustment of the concave mirror allows the position of the spot to be so adjusted that it shall fall not at the centre of the cylinder but rather towards its western side, in order that the declination trace shall not become mixed with that of horizontal force, which is made to fall towards the eastern side of the cylinder. The special advantage of the arrangement here described is that the registers of both magnets are made at the same part of the circumference of the cylinder, a line joining the two spots being parallel to its axis, so that when the traces on the paper are developed, the parts of the two registers which appear in juxtaposition correspond to the same Greenwich time.
By means of a small prism, fixed near to the registering cylinder, the light from another lamp is made to form a spot of light in a fixed position on the cylinder, so that, as the cylinder revolves, an invariable reference or base line is traced out on the paper, from which, in the interpretation of the records, the curve ordinates are measured.

A clock of special construction, arranged by Messrs. E. Dent and Co., acting upon a small shutter placed near the declination slit, cuts off the light from the mirror two minutes before each hour, and lets it in again two minutes after the hour, thus producing at each hour a visible interruption in the trace, and so ensuring accuracy as regards time scale. By means of another shutter the observer occasionally cuts off the light for a few minutes, registering the times at which it was cut off and at which it was again let in. The visible interruptions thus made at definite times in the trace obviate any possibility of error being made by wrong numeration of the hourly breaks.

The usual hour of changing the photographic sheet is noon, but on Sundays, and occasionally on other days, this rule is in some measure departed from. To obviate any uncertainty that might on such occasions arise from the mixing on the paper of the two ends of a trace slightly longer than 24 hours, it was, as has been mentioned, arranged that one revolution of the cylinder should be made in 26 hours. The actual length of 24 hours on the sheet is about $13 \cdot 3$ inches.

The scale for measurement of ordinates of the photographic curve is thus determined. The distance from the concave mirror to the surface of the cylinder,

Photographic Record of Declination ; Horizontal Force Magnet. xiii

in the actual path of the ray of light through the prism, is practically the same as the horizontal distance of the centre of the cylinder from the mirror, $134 \cdot 4$ inches. A movement of 1° of the mirror produces a movement of 2° in the reflected ray. From this it is found that 1° of movement of the mirror, representing a change of 1° of magnetic declination, is equal to 4.691 inches on the photographic paper. A small scale of pasteboard is therefore prepared, graduated on this unit to degrees and minutes. The ordinate of the curve as referred to the invariable base line being measured for the times at which absolute values of declination were determined by the upper declination magnet, usually four times daily, the apparent value of the invariable base line, as inferred from each observation, is found. The process assumes that the movements of the upper and lower declination magnets are precisely similar. The separate base line values being divided into groups, usually monthly, a mean base line value is adopted for use through each group. This adopted base line value is written upon every sheet. Then, by the same pasteboard scale, there is laid down, conveniently near to the photographic trace, a new base line, whose ordinate represents some whole number of degrees or other convenient quantity. Thus every sheet carries its own scale of magnetic measure.
On 1881 January 19, the suspension skein of the magnet gave way; it was replaced by a new one, and registration re-commenced on January 21. On June 28 the driving chronometer failed; it was in the hands of Messrs. E. Dent and Co. for repair until July 11, on which day registration was again commenced. From September 23 to 28 registration was again interrupted during alteration of the platform on which the registering apparatus is planted.

Horizontal Force Magnet.-The horizontal force magnet, for measure of the variations of horizontal magnetic force, was furnished by Meyerstein of Göttingen, and like the two declination magnets, is 2 feet long, $1 \frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick. For suppor ${ }_{\imath}{ }^{\wedge}$ of its suspension skein the back and sides of its brick pier rise through the eastern arm of the Magnetic Basement to the Upper Magnet Room, being there covered by a slate slab, to the top of which a brass plate is attached, carrying, immediately above the magnet, two brass pulleys, with their axes in the same east and west line, and at the back of the pier, and opposite to these pulleys, two others, with their axes similarly in an east and west line: these constitute the upper suspension piece, and support the upper portions of the two branches of the suspension skein. The two lower pulleys, having their axes in the same horizontal plane, and their grooves in the same vertical plane, are attached to a small horizontal bar which forms the upper portion of the torsion circle: it carries the verniers for reading the torsion circle, and can be turned independently of the lower and graduated portion of the torsion circle, below which, and in rigid connexion with it, is the magnet carrier.

The suspension skein is led under the two pulleys carried by the upper portion of the torsion circle, its two branches then rise up and pass over the front pulleys of the upper suspension piece, thence to and over the back pulleys, thence descending to a single pulley, round which the two branches are tied: from this pulley a cord goes to a small windlass fixed to the back of the pier. The effective length of each of the two branches of the suspension skein is about $7^{7 t} 6^{\text {in }}$. The distance between the branches of the skein, where they pass over the upper pulleys, is $\mathrm{I}^{\mathrm{in}} \mathbf{1 4}$: at the lower pulleys the distance between the branches is $0^{\text {in }} 80$. The two branches are not intended to hang in one plane, but are to be so twisted that their torsion force will maintain the magnet in a direction very nearly east and west magnetic, the marked end being west. In this state an increase of horizontal magnetic force draws the marked end of the magnet towards the north, whilst a diminution of horizontal force allows the torsion force to draw the marked end towards the south. An oval copper bar, exactly similar to that used with the lower declination magnet, is applied also to the horizontal force magnet, for the purpose of diminishing the small accidental vibrations.
Below the magnet carrier there is attached a small plane mirror to which is directed a small telescope for the purpose of observing by reflexion the graduations of a horizontal opal glass scale, attached to the southern wall of the eastern arm of the basement. The magnet, with its plane mirror, hangs within a double rectangular box, covered with gilt paper in the same way as was described for the upper declination magnet. The numbers of the fixed scale increase from east to west, so that when the magnet is inserted in its usual position, with its marked end towards the west, increasing readings of the scale, as seen in the telescope, denote increasing horizontal force. The normal to the scale that meets the centre of the plane mirror is situated at the division 51 of the scale nearly, the distance of the scale from the centre of the plane mirror being 90.84 inches. The angle between the normal to the scale, which coincides nearly with the normal to the axis of the magnet, and the axis of the fixed telescope is about 38°, the plane of the mirror is therefore inclined to the axis of the magnet by about 19°.
To adjust the magnet so that it shall be truly transverse to the magnetic meridian, which position is necessary in order that the indications of the instrument may apply truly to changes in the magnitude of horizontal magnetic force, without regard to changes of direction, the time of vibration of the magnet and the reading of the fixed scale are determined for different readings of the torsion circle. In regard to the interpretation of such experiments the following explanation may be premised.

Suppose that the magnet is suspended in its carrier with its marked end in a magnetic westerly direction, not exactly west but in any westerly direction, and suppose that, by means of the fixed telescope, the reading of the scale is taken. The
position of the axis of the magnet is thereby defined. Now let the magnet be taken out of its carrier, and replaced with its marked end easterly. The terrestrial magnetic force will now act, as regards torsion, in the direction opposite to that in which it acted before, and the magnet will take up a different position. But by turning the torsion circle, and thereby changing the amount and direction of the torsion force produced by the oblique tension of the two branches of the suspending skein, the magnet may be made to take the same position as before, but with reversed direction of poles, which will be proved by the reading of the scale, as seen in the fixed telescope, being the same. The reading of the torsion circle will now be different, the effect of the operation being to give the difference of torsion circle reading for the same position of the magnet axis, but with the marked end opposite ways, without however affording any information as to whether the magnet axis is accurately transverse to the magnetic meridian, inasmuch as the same operation can be performed whether the magnet axis be transverse or not.

But there is another observation which will indicate whether the magnet axis is or is not accurately transverse. Let the time of vibration be, in addition, taken in each position of the magnet. Resolve the terrestrial magnetic force acting on the poles of the magnet into two parts, one transverse to the magnet, the other longitudinal. In the two positions of the magnet, marked end westerly and marked end easterly, the magnitude of the transversal force is the same, and the changes which the torsion undergoes in a vibration of given extent are the same, and, if there were no other force, the time of vibration would also be the same. But there is another force, the longitudinal force, and when the marked end is northerly this tends from the centre of the magnet's length, and when it is southerly it tends towards the centre of the magnet's length, and in a vibration of given extent this produces force, in one case increasing that due to the torsion, and in the other case diminishing it. The times of vibration will therefore be different. There is only one exception to this, which is when the magnet axis is transverse to the magnetic meridian, in which case the longitudinal force vanishes.
The criterion then of the position truly transverse to the meridian is this. Find the readings of the torsion circle which, with the magnet in reversed positions, will give the same readings of the scale and the same time of vibration for the magnet. With such readings of the torsion circle the magnet is, in either position, transverse to the meridian, and the difference of readings is the difference between the position in which the terrestrial magnetism acting on the magnet twists it one way and the position in which the same force twists it the opposite way, and is therefore double of the angle due to the torsion force of the suspending lines when they, in either position, neutralize the force of terrestrial magnetism.
On 1880 December 30, the suspension skein, having shown signs of weakness,
was removed, and a new skein mounted. On December 31 the following observations were made.

1880, Day.	'The Marked End of the Magnet.							
	West.				East.			
	TorsionCircle Reading.	Scale Reading.	Difference of Scale Readings for change of 1° of TorsionCircle Reading.	Mean of the Times of Vibration.	TorsionCircle Reading.	Scale Reading.	Difference of Scale Readings for change of 1° of TorsionCircle Reading.	Mean of the Times of Vibration.
Dec. 31	\bigcirc	div.	div:	\bullet	-	div.	div.	8
				21.30	227	$32 \cdot 52$ $40 \cdot 07$	7-55	
	145	$45 \cdot 26$ $53 \cdot 15$	$7 \cdot 89$	$21 \cdot 12$ $20 \cdot 94$	228	$40 \cdot 07$ 47	$7 \cdot 28$	$20 \cdot 62$ 20.76
	146	$53 \cdot 15$ 62.09	8.94 8.96	20.94 20.74	229 230	$47 \cdot 35$ $55 \cdot 32$	- 7.97	$20 \cdot 76$ $20 \cdot 90$
	147 148	$62 \cdot 09$ $70 \cdot 15$	$8 \cdot 06$	$20 \cdot 74$ 20.54	230 231	$55 \cdot 32$ $63 \cdot 26$	7.94 8.67	20.90 21.00
					232	71*93	$8 \cdot 67$	21.12

From these observations it appeared that the times of vibration and scale readings were sensibly the same when the torsion circle read $146^{\circ} .15^{\prime}$, marked end west, and $230^{\circ} .0^{\prime}$, marked end east, the difference being $83^{\circ} .45^{\prime}$. Half this difference, or $41^{\circ} .52^{\prime} 5$, is therefore the angle of torsion when the magnet is transverse to the meridian. The value similarly found from another set of observations made 1882 January 3 , was $42^{\circ} .9^{\prime} \cdot 0$. The value adopted in the reduction of the observations during the year 1881 was $42^{\circ} .0^{\prime}$.
The adopted reading of torsion-circle, for transverse position of the magnet, the marked end being west, was 146° throughout the year.
The angle through which the magnet turns to produce a change of one division of scale reading, and the corresponding variation of horizontal force in terms of the whole horizontal force, is thus found.
The length of $30^{\text {div. }} 85$ of the fixed scale is exactly 12 inches, and the distance of the centre of the face of the plane mirror from the scale 90.84 inches; consequently the angle at the mirror subtended by one division of the scale is $14^{\prime} .43^{\prime \prime} \cdot 2$, or for change of one division of scale-reading the magnet is turned through an angle of $7^{\prime} .21^{\prime \prime} \cdot 6$.

The variation of horizontal force, in terms of the whole horizontal force, producing angular motion of the magnet corresponding to change of one division of scale reading $=$ cotan. angle of torsion \times value of one division in terms of radius. Using the numbers above given, the change of horizontal force corresponding to change of one division of scale-reading was found to be $0 \cdot 002378$, which value has
been used throughout the year 1881 for conversion of the observed scale-readings into parts of the whole horizontal force.

In regard to the manner of making observations with the horizontal force magnet. -A fine vertical wire is fixed in the field of view of the observing telescope, across which the graduations of the fixed scale, as reflected by the plane mirror carried by the magnet, are seen to pass alternately right and left as the magnet oscillates, and the scale reading for the extreme points of vibration is easily taken. The hours of observation are usually $1^{h}, 3^{h}, 9^{h}$, and 21^{h} of Greenwich mean time. Remarking that the time of vibration of the magnet is about 20 seconds, and that the observer looks into the telescope about 40 seconds before the pre-arranged time, the manner of making the observation is generally similar to that already described for the upper declination magnet.

A thermometer, the bulb of which reaches considerably below the attached scale, is so planted in a nearly upright position on the outer magnet box that the bulb projects into the interior of the inner box containing the magnet. Readings of this thermometer are usually taken at $0^{\mathrm{h}}, 1^{\mathrm{h}}, 2^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}, 21^{\mathrm{h}}, 22^{\mathrm{h}}$, and 23^{h}. Its index error is insignificant.

The photographic record of the movements of the horizontal force magnet is made on the same revolving cylinder as is used for record of the motions of the lower declination magnet. And as described for that magnet, there is also attached to the carrier of the horizontal force magnet a concave mirror, 4 inches in diameter. The arrangements as regards lamp, slit, and other parts are precisely similar to those for the lower declination magnet already described, and may be perfectly understood by reference to that description (pages $x i$ and $x i i$), in which was incidentally included an explanation of some parts specially referring to register of horizontal force. The distance of the vertical slit from the concave mirror of the magnet is about 21 inches, and the distance of the axis of the registering cylinder from the concave mirror is 136.8 inches, the slit standing slightly out of the straight line joining the mirror and the registering cylinder. The same invariable base line is used for measure of the horizontal force ordinates, and the register is similarly interrupted at each hour by the clock, and occasionally by the observer, for determination of time scale, the length of which is of course the same as that for declination.

The scale for measure of ordinates of the photographic curve is thus constructed. The distance from the concave mirror to the surface of the cylinder, in the actual path of the ray of light through the prism is (as for declination) practically the same as the horizontal distance of the centre of the cylinder from the mirror, or 136.8 inches. But, because of the reflexion at the concave mirror, the double of this measure, or 273.6 inches, is the distance that determines the extent of motion on
the cylinder of the spot of light, which, in inches, for a change of 0.01 part of the whole horizontal force will therefore be $273.6 \times$ tan. angle of torsion $\times 0.01$. Taking for angle of torsion 42°. 0^{\prime} the movement of the spot of light on the cylinder for a change of 0.01 of horizontal force is thus found to be 2.464 inches, and with this unit the pasteboard scale for measure of the curve ordinates for the year 1881 was prepared. The ordinates being measured for the times at which eye observations of the scale were made, combination of the measured ordinates with the observed scale readings converted into parts of the whole horizontal force, gives an apparent value of the invariable base line for each observation. These being divided into groups, mean base line values are adopted, written on the sheets, and new base lines laid down, exactly in the same way as described for declination.

The indications of horizontal force are in a slight degree affected by the small changes of temperature to which the Magnetic Basement is subject. The temperature coefficient of the magnet was determined by artificially heating the Magnetic Basement to different temperatures, and observing the change of position of the magnet thereby produced. This process seems preferable to others in which was observed the effect which the magnet, when inclosed within a copper trough or box and artificially heated by hot water or hot air to different temperatures, produced on another suspended magnet, since the result obtained includes the entire effect of temperature upon all the various parts of the mounting of the magnet, as well as on the magnet itself. Referring to previous volumes for details, it is sufficient here to state that from a series of experiments made in the early part of the year 1868 on the principle mentioned, it appeared that when the marked end of the horizontal force magnet was to the west (its ordinary position) a change of 1° of temperature (Fahrenheit) produced a change of 000174 of the whole horizontal force, a smaller number of observations made with the marked end of the magnet east indicating that a change of 1° of temperature produced a change of 000187 of horizontal force, increase of temperature in both cases being accompanied by decrease of magnetic force.
From June 28 to July 10 and from September 23 to 28 the register of horizontal force was interrupted for reasons which will be found mentioned on page xiiii.

Vertical Force Magnet.-The vertical force magnet, for measure of the variations of vertical magnetic force, is by Troughton and Simms. It is lozenge shaped, being broad at the centre and pointed at the ends, and is mounted on a solid brick pier capped with stone, situated in the western arm of the basement, its position being nearly symmetrical with that of the horizontal force magnet in the eastern arm. The supporting frame consists of two pillars, connected at their bases, on whose tops are the agate planes upon which rest the extreme parts of the continuous steel knife edge, attached to the magnet carrier by clamps and pinching screws. The knife
edge, eight inches long, passes through an aperture in the magnet. The axis of the magnet is approximately transverse to the magnetic meridian, its marked end being east; its axis of vibration is thus nearly north and south magnetic. The magnet carrier is of iron ; at its southern end there is fixed a small plane mirror for use in eye observations, whose plane makes with the axis of the magnet an angle of $52 \frac{3}{4}^{\circ}$ nearly. A telescope fixed to the west side of the brick pier supporting the theodolite of the upper declination magnet is directed to the mirror, for observation by reflexion of the divisions of a vertical opal glass scale fixed to the pier that carries the telescope, very near to the telescope itself. The numbers of this fixed scale increase downwards, so that when the magnet is placed in its usual position with the marked end east, increasing readings of the scale, as seen in the telescope, denote increasing vertical force.

The magnet is placed excentrically between the bearing parts of its knife edge, nearer to the southern side, leaving a space of about four inches in the northern part of the iron frame, in which the concave mirror used for the photographic register is planted. Two screw stalks, carrying adjustible screw weights, are fixed to the magnet carrier, near its northern side; one stalk is horizontal, and a change in the position of the weight affects the position of equilibrium of the magnet; the other stalk is vertical, and change in the position of its weight affects the delicacy of the balance, and so varies the magnitude of its change of position produced by a given change in the vertical force of terrestrial magnetism.

The whole is enclosed in a rectangular box, resting upon the pier before mentioned, and having apertures, covered with glass, opposite to the two mirrors carried by the magnet.

The time of vibration of the magnet in the vertical plane is observed usually about once in each week, or more often should it appear to be desirable. From observations made on 30 days between January 1 and May 31, the time of vibration was found to be $16^{s} \cdot 157$, and from observations made on 35 days between June 1 and December 31, $15^{5 \cdot 584 .}$
The time of vibration of the magnet in the horizontal plane was taken to be $17^{\mathrm{s} \cdot 255}$, as determined from 500 vibrations on 1879 December 31, when the magnet with all its attached parts was suspended from a tripod in the Magnetic Office No.6, its broad side being in a plane parallel to the horizon, so that its moment of inertia was the same as when it is in observation. A telescope, with a wire in its focus, being directed to the plane mirror carried by the magnet, a scale of numbers was placed on the floor, at right angles to the long axis of the magnet, which scale, by reflexion, could be seen in the fixed telescope. The magnet was observed only when swinging through a small arc.

The length of the normal to the fixed vertical scale that meets the face of the plane mirror is 186.07 inches, and $30^{\text {div. }} 85$ of the scale correspond to 12 inches.

Consequently the angle which one division of the scale subtends, as seen from the mirror, is $7^{\prime} .11^{\prime \prime} \cdot 2$, or the angular movement of the normal to the mirror, corresponding to a change of one division of scale reading, is 3^{\prime}. $35^{\prime \prime} 6$.

But the angular movement of the normal to the mirror is not the same as the angular movement of the magnet, but is less in the proportion of unity to the cosine of the angle which the normal to the mirror makes with the magnet, or in the proportion of unity to the sine of the angle which the plane of the mirror makes with the magnet. This angle, as already stated, is $52 \frac{3^{\circ}}{4}$, therefore dividing the result just obtained, $3^{\prime} .35^{\prime \prime} \cdot 6$, by Sin. $522^{\frac{3^{\circ}}{}}$, the angular motion of the magnet corresponding to a change of one division of scale reading is found to be $4^{\prime} .30^{\prime \prime} \cdot 9$.

The variation of vertical force, in terms of the whole vertical force, producing angular motion of the magnet corresponding to change of one division of scale reading $=$ Cotan. dip $\times\left(\frac{T^{\prime}}{T}\right)^{2} \times$ value of one division in terms of radius, in which T^{\prime} is the time of vibration of the magnet in the horizontal plane, and T that in the vertical plane. From January 1 to May 31 , assuming $T^{\prime}=17^{\mathrm{s}} \cdot 255, T=16^{\mathrm{s}} 157$, and dip $=67^{\circ} .35^{\prime}$, the change of vertical force corresponding to change of one division of scale reading was found to be 0.000618 ; from June 1 to December 31, with the same value for $T^{\prime \prime}$, and assuming $T=15^{\circ} \cdot 584$, and dip $=67^{\circ} .34_{4}^{1^{\prime}}$, it was found to be 0.000664 . These values have been severally used during the periods mentioned for conversion of the observed scale readings into parts of the whole vertical force.

Remarking that the time of vibration of the vertical force magnet is about 16 seconds, the method of observing is precisely similar to that described for the horizontal force magnet, and the hours of observation are the same. The wire in the fixed telescope is here horizontal, and as the magnet oscillates the divisions of the scale are seen to pass upwards and downwards in the field of view.
In the same way as described for the horizontal force magnet a thermometer is provided whose bulb projects into the interior of the magnet box. Readings are taken usually at $0^{\mathrm{h}}, 1^{\mathrm{h}}, 2^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}, 21^{\mathrm{h}}, 22^{\mathrm{h}}$, and 23^{h}. Its index error is insignificant.
The photographic register of the movements of the vertical force magnet is made on a cylinder of the same size as that used for declination and horizontal force, driven also by chronometer movement. The cylinder is here placed vertical instead of horizontal, and opportunity is taken to register on the same cylinder the variations of the barometer. The slit is horizontal, and other arrangements are generally similar to those already described for declination and horizontal force. The concave mirror carried by the magnet is 4 inches in diameter, and the slit is distant from it about 22 inches, being placed a little out of the straight line joining the mirror and the registering cylinder. There is a slight deviation in the further optical
arrangements. Instead of a reflecting prism (as for declination and horizontal force) the converging horizontal beam from the concave mirror falls on a system of plano-convex cylindrical lenses, placed in front of the cylinder, with their axes parallel to that of the cylinder. The trace is made on the western side of the cylinder, the position of the magnet being so adjusted that the spot of light shall fall also on the lower part of the sheet. An invariable base line is photographed, and the record is interrupted at each hour by the clock, and occasionally by the observer, for establishment of time scale, in the same way as for the other magnets. The length of the time scale is the same as that for the other magnetic registers.
The scale for measure of ordinates of the photographic curve is determined as follows:-The distance from the concave mirror to the surface of the registering cylinder is $100 \cdot 2$ inches. But the double of this measure, or 200.4 inches, is the distance that determines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0.01 part of the whole vertical force, will therefore $\mathrm{b}_{\mathrm{e}}=200.4 \times \tan . \operatorname{dip} \times\left(\frac{\mathrm{T}}{\mathrm{T}^{\prime}}\right)^{2} \times 0.01$. Using the values of $\mathrm{T}, \mathrm{T}^{\prime}$, and of dip, before given (page x_{x}), the movement of the spot of light on the cylinder for a change of 0.01 of vertical force is thus found to be, for the period January 1 to May 31, 4.258 inches, and for the period June 1 to December 31, 3.959 inches, and with these units the scales for measure of the curve ordinates were constructed. Base line values are then determined, and written on the sheets, exactly in the same way as was described for horizontal force.
In regard to the temperature correction of the vertical force magnet, it is only necessary here to say that, according to a series of experiments made at the same time as, and in a similar manner to those for the horizontal force magnet (page xoviii), it appeared that an increase of 1° of temperature (Fahrenheit) produced an apparent increase of 000880 of the whole vertical force. This is an amount of change not only much larger than has ever been before found, but it is also one which does not follow the usual law of increase of temperature producing loss of magnetic power. Yet since the effect produced is that due to the action of temperature on the various parts of the mounting of the magnet as well as on the magnet itself, the result should be superior to those found by action on the magnet alone, as in all former experiments. There would appear, therefore, to be no doubt of its accuracy in the actual case. And it is easy to see that an instrument, subjected to the effects of gravity working differentially on its two ends, is liable to great changes depending on temperature which have no connection with magnetism. For instance, if the point at which the magnet is grasped by its carrier is not absolutely coincident with its centre of gravity, a sensible change in the space intervening between the grasping point and the centre of gravity may be
sxii Introduction to Greenwich Magnetical Observations, 1881.
produced by a small change of temperature, and a disturbance of equilibrium and a great change of apparent magnetic position will follow. In practice a nearly uniform temperature is as far as possible maintained.

Dip Instrument.-The instrument with which the observations of magnetic dip have been made during the year 1881 is that which is known as Airy's instrument. It is mounted on a stout block of wood in the Magnetic Office No. 7. The plan of the instrument was arranged by Sir G. B. Airy so that the points of the needles should be viewed by microscopes, and if necessary observed whilst the needles were in a state of vibration, that there should be power of employing needles of different lengths, and that the field of view of each microscope should be illuminated from the side opposite to the observer, in such way that the needle point should form a dark image in the bright field.

The instrument is adapted to the observation of needles of 9 inches, 6 inches, and 3 inches in length. The main portion of the instrument, that in which the needle under observation is placed, consists of a square box made of gun metal (carefully selected to ensure freedom from iron), with back and front of glass. Six microscopes, so planted as to command the points of the three different lengths of needles, are attached to a horizontal axis which allows them to be turned round in the vertical plane so as to follow the points of the needles in the different positions which in observation they take up. The object glasses and field glasses of the microscopes are within the front glass plate, their eye glasses being outside, and turning with them on the same axis. Upon the plane side of each field glass (the side next the object glass and on which the image of the needle point is formed) a scale is etched. And on the inner side of the front glass plate is etched the graduated circle, divided to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$. The verniers (thin plates of metal, with notches instead of lines, being thus adapted to transmitted light) are carried by the horizontal axis, inside of the front glass plate, their reading lenses, attached to the same axis, being outside. Proper clamp with slow motion is provided. The microscopes and verniers are illuminated by one gas lamp, the light from which falling on eight corresponding prisms is thereby directed to each separate microscope and vernier. The prisms are carried behind the back glass plate on a circular frame in such way that, on reversion of the instrument in azimuth, the whole set of prisms can at one motion of the frame be shifted so as to bring each one again opposite to its proper microscope or vernier.

The whole of the apparatus is planted upon a circular horizontal plate, admitting of rotation in azimuth : a graduated circle near the circumference of the plate is read by two fixed verniers.

A brass zenith point needle, having points corresponding in position to the three different lengths of dip needles, is used to determine the zenith point for each particular length of needle.

The instrument carries two levels, one parallel to the plane of the vertical circle, the other at right angles to that plane, by means of which the instrument is from time to time adjusted in level. The readings of the first-mentioned level are also regularly employed to correct the apparent value of dip for any small outstanding error of level: the correction seldom exceeds a very few seconds.
The needles in regular use are of the ordinary construction, they are two 9 -inch needles, B_{1} and B_{2}, two 6 -inch needles, C_{1} and C_{2}, and two 3 -inch needles, D_{1} and D_{2}.
During the year 1881 the Naylor equatoreal occupied the same position in the South Ground as in the year 1880. Its proximity to the Dip and Deflexion instruments has, however, been shown (see Introduction, 1880, p. vi.) to exercise no appreciable influence on the indications of these instruments.

Deflexion Instrument.-The observations of deflexion of a magnet in combination with observations of vibration of the deflecting magnet, for determination of the absolute intensity of magnetism, are made with a unifilar instrument, which, with the exception of some slight modification of the mechanical arrangements, is similar to those issued from the Kew Observatory. It is mounted on a block of wood in the Magnetic Office No. 7, on the south side of the Dip instrument.

The deflected magnet, whose use is merely to ascertain the proportion which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism, is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to and rotating with the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflexion the deflecting magnet is placed on the transverse deflection rod, carried by the rotating frame at the distances 1.0 foot and $1 \cdot 3$ foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter : it is graduated to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$.
It will be convenient in this case to include with the description of the instrument an account of the method of reduction employed, in which the Kew precepts and generally the Kew notation are followed. Previous to the establishment of the instrument at the Royal Observatory the values of the various instrumental constants, as determined at the Kew Observatory, were kindly communicated by Professor Balfour Stewart, and have been since used in the reduction of all observations made with the instrument at Greenwich.

The instrumental constants as thus furnished are as follows :-
The increase in the magnetic moment of the deflecting magnet produced by the inducing action of a magnetic force equal to unity of the English system of absolute measurement $=\mu=0.00015587$.
The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35° Fahrenheit $=q=0.00013126$ $(t-35)+0.000000259(t-35)^{2}: t$ representing the temperature at which the observation is made.
Moment of inertia of the deflecting magnet $=K$. At temperature 30°, log. $K=0.66643:$ at temperature $90^{\circ}=0.66679$.
The distance on the deflection rod from $1^{\text {tr. }} 0$ east to $1^{\text {tr. }} 0$ west of the engraved scale, at temperature 62°, is too long by 0.0034 inch, and the distance from $1^{\text {tt. }} 3$ east to $1^{\text {tt. }} 3$ west is too long by 0.0053 inch.
The adopted value of K was confirmed in the year 1878 by a new and entirely independent determination made at the Royal Observatory, giving log. K at temperature $30^{\circ}=0 \cdot 66727$.
If, in the deflection observation, $r=$ apparent distance of centre of deflecting magnet from deflected magnet, corrected for scale error and temperature (taking expansion of scale for $1^{\circ}=00001$), and $u=$ observed angle of deflexion, then putting $\mathrm{A}_{1}=\frac{1}{2} r^{3}$ sin. $u\left\{1+\frac{2 \mu}{r^{3}}+q\right\}$, in which $r=1.0$ foot, and $\mathrm{A}_{2}=$ corresponding expression for $r=1 \cdot 3$ foot; $\mathrm{P}=\frac{A_{1}-A_{2}}{A_{1}-\frac{A_{2}}{(1.3)^{2}}}$; but this is not convenient for logarithmic computation, especially as the logarithms of A_{1} and A_{2} are, in the calculation, first obtained. The difference between A_{1} and A_{2} being small, P may be taken equal to $\left(\log . A_{1}-\log . A_{2}\right) \frac{1 \cdot 69}{(1 \cdot 69-1) \text { modulus }}=\left(\log . A_{1}-\log . A_{2}\right) \times 5 \cdot 64 . \quad \mathrm{A}$ mean value of P is adopted from various observations; then m being the magnetic moment of the deflecting magnet, and X the Horizontal component of the Earth's magnetic force, $\frac{m}{X}=A_{1} \times\left(1-\frac{P}{1}\right)$ from observation at distance 1.0 foot, or $=A_{2} \times\left(1-\frac{P}{1.69}\right)$ from that at distance 1.3 foot. The mean of these is adopted for the true value of $\frac{m}{X}$.

For determination, from the observed vibrations, of the value of $m X$, let $T_{1}=$ time of vibration of the deflecting magnet corrected for rate and arc of vibration, then $T^{2}=T_{1}^{2}\left\{1+\frac{H}{F}+\mu \frac{X}{m}-q\right\}$, in which $\frac{H}{F}$ is the ratio of the torsion force of the suspension thread of the deflecting magnet to the earth's directive force. And $m X=\frac{\pi^{2} K}{T^{2}}$. The adopted time of vibration is the mean of 100 vibrations observed immediately before, and 100 observed immediately after the observations of deflexion.

Absolute Measure of Horizontal Magnetic Force ; Earth Currents. xxv

From the combination of the values of $\frac{m}{\bar{X}}$ and $m X, m$ and X are immediately found. The computation is made with reference to English measure, taking as units the foot and grain, but it is desirable to express X also in metric measure. If the English foot be supposed equal to α times the millimètre and the grain equal to β times the milligramme, then for reduction to metric measure $\frac{m}{\bar{X}}$ and $m X$ must be multiplied by α^{3} and $\alpha^{2} \beta$ respectively, or X must be multiplied by $\sqrt{\frac{\beta}{\alpha}}$. Taking the mètre as equal to $39 \cdot 37079$ inches, and the gramme as equal to $15 \cdot 43249$ grains, the factor by which X is to be multiplied in order to obtain X in metric measure is $0 \cdot 46108=\frac{1}{2 \cdot 1689}$. The values of X in metric measures thus derived from those in English measure are given in the proper table. Values of X in terms of the centimètre and gramme, known as the C.G.S. unit (centimètre-gramme-second unit), are readily obtained by dividing those referred to the millimetre and milligramme by 10 .

Earth Current Apparatus.-For observation of the spontaneous galvanic currents which in some measure are almost always discoverable in the earth, and which are occasionally very powerful, two insulated wires having earth connexions at Angerstein Wharf (on the bank of the River Thames near Charlton) and Lady Well for one circuit; and at the Morden College end of the Blackheath Tunnel and the North Kent East Junction of the South-Eastern Railway for the other circuit, have been employed. The connecting wires pass from the Royal Observatory to the Greenwich Railway Station and thence, by kind permission of the Directors of the South-Eastern Railway Company, along the lines of the South-Eastern Railway to the respective earths, in each case a copper plate. The direct distance between the earth plates of the Angerstein Wharf-Lady Well circuit is 3 miles, and the azimuth of the line, reckoning from magnetic north towards east, 50°; in the Blackheath-North Kent East circuit the direct distance is 2 $\frac{1}{2}$ miles, and the azimuth, from magnetic north towards west, 46°. The actual lengths of wire in the circuitous courses which the wires necessarily take in order to reach the Observatory registering apparatus are about $7 \frac{1}{2}$ miles and 5 miles respectively. The identity of the four branches is tested from time to time as appears necessary. The Lady Well and North Kent East branches were not employed in the first part of the year 1881, the Angerstein Wharf and Blackheath branches, connected to earth at the Royal Observatory, being alone used until June 4. The registering apparatus was then dismantled for the purpose of making a change in the apparatus for photographic registration. On recommencing registration in November, the complete circuits, Angerstein Wharf-Lady Well and Blackheath-North Kent East, were again employed.

Greenwich Magnetical and Meteorological Observations, 1881. d

In each circuit at the Royal Observatory there is placed a horizontal galvanometer, having its magnet suspended by a hair. Each galvanometer coils contains 150 turns of No. 29 copper wire, or the double coil of each instrument consists of 300 turns of wire. For information in regard to the photographic arrangements as existing before the dismantling of the apparatus on June 4, see the Introduction for 1880. The following is a description of the improved arrangement brought into operation in November. The galvanometers are placed on opposite sides of the registering cylinder, which is of course horizontal. One galvanometer stands towards one end of the cylinder, and the other towards the other end, and each carries, on a light stalk. extending downwards from its magnet, a small plane mirror. Immediately above the cylinder are placed two long reflecting prisms which, except that they are each but half the length of the cylinder, and are placed end to end, are generally similar to those used for magnetic declination and horizontal force, the front convex surface facing opposite ways, each one towards the mirror of its respective galvanometer. In each case the light of a gas lamp, passing through a vertical slit and a vertical cylindrical lens, falls upon the galvanometer mirror, which reflects the converging beam to the convex surface of the reflecting prism, by whose action it is made to form on the paper on the cylinder a small spot of light; thus all the azimuthal motions of the galvanometer magnet are registered. The extent of trace for each galvanometer is thus confined to half the length of the cylinder, which is of the same size as those used for the magnetic registers. The arrangements for turning the cylinder, automatically determining the time scale, and forming an invariable base line are similar to those which have been before described. When the traces on the paper are developed the parts of the registers which appear in juxtaposition correspond, as for declination and horizontal force, to the same Greenwich time, and the scale of time is of the same length as for the magnetic registers.

§ 5. Magnetic Reductions.

The results given in the Magnetic Section refer in general to the astronomical day. Before proceeding to discuss the photographic records of magnetic declination, horizontal force, and vertical force, they were divided into two groups, one including all days on which the traces showed no particular disturbance, and which therefore were suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces were so irregular that it appeared impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are three days in the year 1881 which have been classed as days of great
disturbance, January 31 and September 12 and 13. There were no days of lesser disturbance requiring distinct mention.
Separating the days of great disturbance, the photographic sheets for the remaining quiet days (excepting January 7 for declination and horizontal force, and April 24 and October 20 for vertical force, when the photographic process failed) were thus treated. Through each photographic trace a pencil line was drawn representing the general form of the curve, without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour, the measures being entered in a form having double argument, the vertical argument ranging through the 24 hours of the astronomical day, and the horizontal argument through the days of a calendar month, the means of the numbers standing in the vertical columns giving the mean daily value of the element, and the means of the numbers in the horizontal columns the mean monthly value at each hour of the day.
The temperature of the horizontal and vertical force magnetometers was maintained so nearly uniform through each day that the final determination of the diurnal inequalities of horizontal and vertical force should possess great exactitude, although in regard to vertical force the magnitude of the temperature co-efficient introduces an element of some uncertainty. It was not possible under the circumstances to maintain similar uniformity of temperature through all the seasons. Following the principle adopted in recent years, the results are given uncorrected for temperature; corresponding tables of mean temperature being in all cases added. It is deemed best that in the yearly volumes the results should be thus given, as more easily admitting of independent examination. When, as is done from time to time, the results for series of years are collected for general discussion, the temperature corrections are duly taken into account.
In regard to the measurement of ordinates on disturbed days, it is only necessary to explain that the assistant charged with the translation of the curve ordinates into numbers, remarking the salient points of the curve, or the points which if connected by straight lines would produce a polygon not sensibly differing from the photographic curve, applies to each of these the scale proper for the element under consideration: its position on the time-scale determines the time, and the reading of the scale for the point of the photographic curve gives the quantity which is to be applied to the value of the new base-line; the ordinate reading so formed is printed in the tables without alteration, and, as regards horizontal and vertical force, is not corrected for temperature. The temperatures referring to the measures of horizontal and vertical force on days of disturbance are given for the ordinary hours of observation on the right-hand page of the section.
The variations of declination are given in the sexagesimal division of the circle,
xxviii Introduction to Greenwich Meteorological Observations, 1881.
and those of horizontal and vertical force in terms of the whole horizontal and vertical forces respectively. They are also expressed in terms of Gauss's magnetic unit, as referred to the metrical system of the millimètre-milligramme-second.

The factors for conversion from the former to the latter system of measures are as follows:-

For variation of declination, expressed in minutes, the factor is

$$
\text { H.F. metrical } \times \sin \mathrm{I}^{\prime}=1.805 \times \sin 1^{\prime}=0.0005251 \text {. }
$$

For horizontal force
Variation of H.F. metrical $=\frac{\text { H.F.metrical }}{\text { Former H.F. }} \times$ former variation $=1.805 \times$ former variation, the former H. F. being $=1$.

For vertical force

$$
\text { Variation of V.F. metrical }=\frac{\text { V.F. metrical }}{\text { Former V.F. }} \times \text { former variation. }
$$

The former V.F. $=1$, but the V.F. metrical $=$ H. F. metrical $\times \tan$ dip, hence, taking dip $=67^{\circ} .34 \frac{1_{2}^{\prime}}{}$,

$$
\begin{aligned}
\text { Variation of V. F. metrical } & =1 \cdot 805 \times \tan 67^{\circ} .34 \frac{1}{2}^{\prime} \times \text { former variation } \\
& =4.3738 \times \text { former variation. }
\end{aligned}
$$

The values given in Tables III., VIII., and XIII. have also been converted into metrical values.
The measures as referred to the metrical unit (millimètre-milligramme-second) are convertible into measures on the centimètre-gramme-second (C. G .S.) system by dividing by 10 .
In the Tables of magnetic dip, the result of each separate observation of dip with each of the six needles in ordinary use is given, and also the concluded monthly and yearly values for each needle.
The results of the observations for absolute measure of horizontal force require no special remark, the method of reduction and all necessary explanation having been given with the description of the instrument.
No discussion of earth current records is contained in the present volume.

§ 6. Meteorological Instruments.

Standard Barometer.-The standard barometer, mounted in 1840 on the southern wall of the western arm of the upper magnet room, is Newman No. 64. Its tube is $0^{\text {in }} .565$ in diameter, and the depression of the mercury due to capillary action is $0^{\text {in. }} 002$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass ; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected
image of the point as seen in the mercury. The scale is divided to $0^{\text {in }} 05$, subdivided by vernier to $0^{\text {in. }} 002$.

The readings of this barometer until 1866 August 20 are considered to be coincident with those of the Royal Society's flint-glass standard barometer. It then became necessary to remove the sliding rod, for repair of its slow motion screw, which was completed on August 30. Before the removal of the rod the barometer had been compared with three other barometers, one of which, during repair of the rod, was used for the daily readings. After restoration of the rod comparison was again made with the same three barometers with the result that (all three auxiliary barometers giving accordant results) the readings of the standard, in its new state, required a correction of $-0^{\text {in. }} 006$, which correction has been applied to every observation, commencing on 1866 August 30.

An elaborate comparison of the standard barometers of the Greenwich and Kew Observatories, made, under the direction of the Kew Committee, by Mr. Whipple, Superintendent of the Kew Observatory, in the spring of the year 1877, showed that the difference between the two barometers (after applying to the Greenwich barometer readings the correction $-0^{\text {in. }} 006$) did not exeeed $0^{\text {in }} 001$. (Proceedings of the Royal Society, vol. 27, page 76.)
The height of the barometer cistern above the mean level of the sea is 159 feet, being $5^{\text {ft }} 2^{\text {in }}$ above Mr. Lloyd's reference mark in the then transit room, now the Astronomer Royal's official room (Philosophical Transactions, 1831).
The barometer is usually read at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}$ (astronomical). Each reading is corrected by application of the index correction above mentioned, and reduced to the temperature 32° by means of Table II. of the "Report of the Committee of Physics" of the Royal Society. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

Photographic Barometer.-The barometric record is made on the same cylinder as is used for magnetic vertical force, the register being arranged to fall on the upper half of the cylinder, on its eastern side. A syphon barometer fixed to the northern wall of the Magnetic Basement is employed, the bore of the upper and lower extremities of the tube being about $1 \cdot 1$ inch. A metallic float is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of blackened mica, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet.

An invariable base line is traced on the sheet, and the record is interrupted at each hour by the clock and occasionally by the observer in the same way as for the magnetic registers. The length of the time scale is also the same.
The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found $=4^{\text {in }} 39$ on the paper. Ordinates measured for the times of observation of the standard barometer, combined with the corrected readings of the standard barometer, give apparent values of the invariable base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, as for the magnetic registers.

As regards the effect of temperature, it will be understood from the construction of the apparatus that the photographic record is influenced only by the expansion of the column of mercury (about 4 inches in length) in the lower tube of the barometer, and from this circumstance, in combination with the near uniformity of temperature in the basement, no appreciable differential effect is produced on the photographic register.

Dry and Wet Bulb Thermometers.-The dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. A vertical axis fixed in the ground, in a position about 35 feet south of the south-west angle of the Magnetic Observatory, carries the frame, which consists of a horizontal board as base, of a vertical board projecting upwards from it connected with one edge of the horizontal board, and of two parallel inclined boards (separated about 3 inches) connected at the top with the vertical board and at the bottom with the other edge of the horizontal board: the outer inclined board is covered with zinc, and the air passes freely between all the boards. The dry and wet bulb thermometers are mounted near the centre of the vertical board, with their bulbs about 4 feet from the ground; the maximum and minimum thermometers for air temperature are placed towards one side of the vertical board, and those for evaporation temperature towards the other side, with their bulbs at about the same level as those of the dry and wet bulb thermometers. A small roof projecting from the frame protects the thermometers from rain. The frame is turned in azimuth as necessary to keep the inclined side always towards the sun.
The corrections to be applied to all thermometers in ordinary use are determined from time to time as seems necessary, usually once each year, by comparison with the standard thermometer, No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society.
The dry and wet bulb thermometers are Negretti and Zambra, Nos. 45354 and 45355 respectively. They require no correction.

The self-registering thermometers for temperature of air and evaporation are all by Negretti and Zambra. The maximum thermometers are on Negretti and Zambra's principle, the minimum thermometers are of Rutherford's construction. To the readings of No. 8527 for maximum temperature of the air has been applied a correction of $-0^{\circ} .9$; those of No. 4386 for minimum temperature of the air required no correction. The readings of No. 44285 for maximum temperature of evaporation received until April 16 no correction below 55°, and a correction of $-0^{\circ} 1$ above 55°; from April 17, a correction of $-0^{\circ} \cdot 4$ has been applied to all readings. The readings of No. 3627 for minimum temperature of evaporation, until April 16, have been corrected by $+0^{\circ} \cdot 9$; and from April 17 , by $+1^{\circ} \cdot 2$.

The dry and wet bulb thermometers are usually read at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}, 9^{\mathrm{h}}$ (astronomical). Readings of the maximum and minimum thermometers are usually taken at 21^{h} and 9^{h}. Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.

Photographic Dry and Wet Bulb Thermometers.-About 28 feet south-south-east of the south-east angle of the Magnetic Observatory, and about 25 feet east-northeast of the stand carrying the thermometers for eye-observation already described, is an open shed, 10 ft .6 in . square, standing upon posts 8 feet high, under which are placed the photographic thermometers, the dry-bulb towards the east and the wet-bulb towards the west. Their bulbs are 8 inches in length and 0.4 inch internal bore, and their centres are about 4 feet above the ground. A registering cylinder of ebonite, 10 inches long and 19 inches in circumference, is placed with its axis vertical between the stems of the two thermometers. The registers are made simultaneously on opposite sides of the cylinder, and to avoid any accidental overlapping of the two registers the cylinder is made to revolve once in about 52 hours. The thermometer frames are covered by metal plates having longitudinal slits, so that light can pass through the slit only above the surface of the mercury. At each degree a fine cross wire is placed, thicker at the decades of degrees, and also at $32^{\circ}, 52^{\circ}$, and 72°. A gas lamp is placed about 9 inches from each thermometer (east of the dry-bulb and west of the wet-bulb), and in each case the light, condensed by a cylindrical lens with axis vertical, shines through the tube above the mercury, and forms a well-defined line of light upon the paper. As the cylinder revolves horizontally under the light passing through the thermometer tube, the paper thus receives a broad sheet of photographic trace, whose breadth, in the direction of the axis of the cylinder, varies with the varying height of the mercury in the thermometer tube. When the sheet is developed the whole of that part of the paper which in each case passed the slit above the mercury will show photographic trace, with thin white lines corresponding to the degrees, the lower part of the paper remaining white; thus the boundary of the photographic trace indicates the varying
temperature. The time scale is determined by interruption of the traces made by the observer at registered times. The length of 24 hours on each of the thermometer traces is about 9 inches.

Radiation Thermometers.-During the year 1881 the radiation thermometers were exposed on the grass south of the magnetic offices, in what is known as the South Ground. The thermometer for solar radiation is a self-registering mercurial maximum thermometer by Negretti and Zambra, No. 38592 ; its bulb is blackened, and the thermometer is enclosed in a glass sphere from which the air has been exhausted. The thermometer for radiation to the sky is a self-registering spirit minimum thermometer of Rutherford's construction, by Horne and Thornthwaite, No. 3120. The thermometers are laid on short grass; they require no correction for index error.

Earth Thermometers.-These thermometers were made by Adie, of Edinburgh, under the superintendence of Professor J. D. Forbes. They are placed at the northwest corner of the photographic thermometer shed.

The thermometers are four in number, placed in one hole in the ground, the diameter of which in its upper half is 1 foot and in its lower half about 6 inches, each thermometer being attached in its whole length to a slender piece of wood. The thermometer No. 1 was dropped into the hole to such a depth that the centre of its bulb was 24 French feet ($25 \cdot 6$ English feet) below the surface, then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the centre of its bulb was 12 French feet below the surface; Nos. 3 and 4 till the centres of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes carrying the scales were left projecting above the surface; No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, $8 \cdot 5,10 \cdot 0,11 \cdot 0$, and 14.5 inches respectively are in each case tube with narrow bore. The length of 1° on the scales is 1.9 inch, $1 \cdot 1$ inch, 0.9 inch, and 0.5 inch in each case respectively. The ranges of the scales are for No. $1,46^{\circ} .0$ to $55^{\circ} .5$; No. $2,43^{\circ} .0$ to $58^{\circ} \cdot 0$; No. $3,44^{\circ} \cdot 0$ to $62^{\circ} \cdot 0$; and for No. $4,37^{\circ} \cdot 0$ to $68^{\circ} .0$.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long, and 2 or 3 inches in diameter. The bore of the principal part of each tube, from the bulb to the graduated scale, is very small, in that part to which the scale is attached it is larger; the fluid in the tubes is alcohol tinged red; the scales are of opal glass.

In consequence of the ranges of scale having in previous years been found insufficient, fluid has at times been removed from or added to the thermometers as necessary, proper corresponding alteration being made in the positions of the

Radiation Thermometers; Earth Thermometers; Osler's Anemometer.

$x x x i i i$
attached scales. Information in regard to these changes will be found in previous Introductions.

The parts of the tubes above the ground are protected by a small wooden hut fixed to the ground; the sides of the hut are perforated with numerous holes, and it has a double roof; in the north face is a plate of glass, through which the readings are taken. Within the hut are two small thermometers, one, No. 5, with bulb one inch in the ground, another, No. 6, whose bulb is freely exposed in the centre of the hut.

These thermometers are read every day at noon, and the readings are given without correction. The index errors of Nos. 1, 2, 3, and 4 are unknown; No. 5 appears to read too high by $0^{\circ} \cdot 2$, and No. 6 by $0^{\circ} \cdot 4$.

Osler's Anemometer. - This self-registering anemometer, devised by A. Follett Osler, is fixed above the north-western turret of the ancient part of the Observatory. For direction of the wind a large vane, from which a vertical shaft proceeds down to the registering table within the turret, gives motion, by a pinion fixed at its lower end, to a rack-work carrying a pencil. A collar on the vane shaft bears upon anti-friction rollers, running in a cup of oil, rendering the vane very sensitive to changes of direction in light winds. The pencil marks a paper fixed to a board moved horizontally and uniformly by a clock, in a direction transverse to that of the motion of the pencil. The paper carries lines corresponding to the positions of N., E., S., and W. of the vane, with transversal hour-lines. The vane is 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board.
For the pressure of the wind the construction is as follows. At a distance of 2 feet below the vane there is placed a circular pressure plate having an area of $1 \frac{1}{3}$ square feet, or 192 square inches, which, moving with the vane, and being thereby kept directed towards the wind, acts against a combination of springs in such way that, with a light wind, slender springs are first brought into action, but, as the wind increases, stiffer springs come into play. For a detailed account of the arrangement adopted the reader is referred to the Introduction for the year 1866. A short flexible chain, fixed to a cross bar in connexion with the pressure plate, passing over a pulley in the upper part of the shaft, is then attached to a copper wire running down the centre of the shaft to the registering table, just before reaching which the wire communicates with a short length of silk cord, which, led round a pulley, gives horizontal motion to the arm carrying the pressure pencil. The scale for pressure, in lbs. on the square foot, is experimentally determined from

xxxiv Introduction to Greenwich Meteorological Observations, 1881.

time to time as appears necessary; the pressure pencil is brought to zero by a light spiral spring.

A rain gauge of peculiar construction forms part of the apparatus: this is described under the heading "Rain Gauges."

A new sheet of paper is applied to the instrument every day at noon. The scale of time is equal in length to that of the magnetic registers.

Robinson's Anemometer.-This instrument, mounted above the small building on the roof of the Octagon Room, is constructed on the principle described by the late Dr. Robinson in the Transactions of the Royal Irish Academy, Vol. XXII. The revolving hemispherical cups are 56 feet above the adjacent ground, and 211 feet above the mean level of the sea. The motion is given by the pressure of the wind on four hemispherical cups, each 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The foot of the axis is a hollow flat cone bearing upon a sharp cone, which rises up from the base of a cup of oil. An endless screw acts on a train of wheels furnished with indices for reading off the amount of motion of the air in miles, and a pinion on the axis of one of the wheels draws upwards a rack, to which is attached a rod passing down to the pencil, which marks the paper placed on the vertical revolving cylinder in the chamber below. A motion of the pencil upwards through a space of one inch represents horizontal motion of the air through 100 miles.

The cylinder is driven by a clock in the usual way, and makes one revolution in 24 hours. A new sheet of paper is applied every day at noon. The scale of time is equal in length to that of Osler's Anemometer and the magnetic registers.

It is assumed, in accordance with the experiments made by Dr. Robinson, that the horizontal motion of the air is three times the space described by the centres of the cups. To verify this conclusion experiments were made in the year 1860 in Greenwich Park with the anemometer then in use, not the same as that now employed. The instrument was fixed to the end of a horizontal arm, which was made to revolve round a vertical axis. For more detailed account of these experiments see the Introduction for 1880 . With the arm revolving in the direction N., E., S., W., opposite to the direction of rotation of the cups, for movement of the instrument through one mile $1 \cdot 15$ was registered; with the arm revolving in the direction N., W., S., E., in the same direction as the rotation of the cups, 0.97 was registered. This was considered to confirm sufficiently the accuracy of the theory.

Rain Gauges.-During the year 1881 eight rain-gauges were employed, placed at different elevations above the ground, complete information in regard to which will be found at page (lxxi) of the Meteorological Section.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The receiving surface is a rectangular opening 10×20 inches, equal to 200 square inches. The collected water passes into a vessel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected, the water then discharges itself by means of the following modification of the syphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube there is loosely placed, in the receiver, a larger tube, closed at the top. The accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe-the only outlet. The water filling the bore of the pipe creates a partial vacuum in the globe sufficient to cause the longer leg of the syphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a corresponding trace to be made on the paper fixed to the moving board of the anemometer. The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record thus gives complete information on the rate of the fall of rain.
Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily.

Gauges Nos. 3, 4, and 5 are eight-inch circular gauges, placed respectively on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily.

Gauges Nos. 6, 7, and 8 are also eight-inch circular gauges, placed on the ground south of the Magnetic Observatory; No. 6 is the old daily gauge, No. 7 the old monthly gauge, and No. 8 an additional gauge brought into use in July 1881, as a check on the readings of Nos. 6 and 7, the monthly amounts collected by these gauges showing occasionally greater differences than seemed proper. All three gauges have been read daily since the beginning of July 1881.

The gauges are also read at midnight on the last day of each calendar month.
The action of the Crosley self-registering gauge, of which description will be found in the Introduction to 1880 , became so unsatisfactory that the use of the gauge was discontinued in the year 1881.

Electrometer.-The electricity of the atmosphere is collected by means of a Thomson self-recording electrometer, constructed by Mr. White of Glasgow.
For a very full description of the principle of the electrometer reference may be

xxxvi Introduction to Greenwich Meteorological Obsertations, 1881.

made to Sir William Thomson's "Report on Electrometers and Electrostatic Measurements," contained in the British Association Report for the year 1867. It will be sufficient here to give a general description of the instrument which, with its registering apparatus, is planted in the Upper Magnet Room on the slate slab which carries the suspension pulleys of the Horizontal Force Magnet. A thin flat needle of aluminium, carrying immediately above it a small light mirror, is suspended, on the bifilar principle, by two silk fibres from an insulated support within a large Leyden jar. A little strong sulphuric acid is placed in the bottom of the jar, and from the lower side of the needle depends a platinum wire, kept stretched by a weight, which connects the needle with the sulphuric acid, that is with the inner coating of the jar. A positive charge of electricity being given to the needle and jar, this charge is easily maintained at a constant potential by means of a small electric machine or replenisher forming part of the instrument, and by which the charge can be either increased or decreased at pleasure. A gauge is provided for the purpose of indicating at any moment the amount of charge. The needle hangs within four insulated quadrants, which may be supposed to be formed by cutting a circular flat brass box into quarters, and then slightly separating them. The opposite quadrants are placed in metallic connexion.

The electricity of the atmosphere is collected by means of Sir William Thomson's water-dropping apparatus. For this purpose a rectangular cistern of copper, capable of holding above 30 gallons of water, is placed near the ceiling on the west side of the south arm of the Upper Magnet Room. The cistern rests on four pillars of glass, each one encircled and nearly completely enclosed by a glass vessel containing sulphuric acid. A pipe passing out from the cistern, through the south face of the building, extends about six feet into the atmosphere, the nozzle from which the water flows being about ten feet above the ground; the water passing out through a very small hole, and breaking almost immediately into drops, the cistern is brought to the same electrical potential as that point of the atmosphere, which potential is, by means of a connecting wire, communicated to one of the pairs of electrometer quadrants, the other pair being connected to earth. The varying atmospheric potential thus influences the motions of the included needle, causing it to be deflected from zero in one direction or the other, according as the atmospheric potential is greater or less than that of the earth, that is according as it is positive or negative as respects that of the earth.

The small mirror carried by the needle is used for the purpose of obtaining photographic record of its motions. The light of a gas-lamp, falling through a slit upon the mirror, is thence reflected, and by means of a plano-convex cylindrical lens is brought to a focus at the surface of a horizontal cylinder turned by clock-work. A brass cylinder was used until March 1881, since which time an ebonite cylinder, nearly 7 inches long and 16 inches in circumference, has been employed, A second fixed mirror, by means of the same gas-lamp, causes an invariable reference line to be traced round the \cdot cylinder. The actual zero is
found by cutting off the cistern communication, and placing the pairs of quadrants in metallic connexion with each other and with earth. The break of register at each hour is made by the driving-clock of the electrometer cylinder itself. Other photographic arrangements are generally similar to those which have been described for other instruments.

On June 7 the bifilar suspension of the needle gave way; the suspension threads were renewed on June 13. The excursion of the needle for a given potential would since seem to be somewhat greater than before.

The scale of time is equal in length to that of the magnetic registers.
Inconvenience is sometimes caused by cobwebs making connexion between the cistern or its pipe and the walls of the building, and in winter, interruptions occasionally occur owing to the freezing of the water in the exit pipe.

Sunshine Instrument.-This instrument, contrived by Mr. J. F. Campbell, and kindly given by him to the Royal Observatory, consists of a very accurately formed sphere of glass, nearly 4 inches in diameter, supported concentrically within a well turned hemispherical metal bowl in such a manner that the image of the sun, formed when the sun shines, falls always on the concave surface of the bowl. A strip of blackened millboard being fixed in the bowl, the sun, when shining, burns away the surface at the points at which the image successively falls, by which means the record of periods of sunshine is obtained. The strip is removed after sunset, and a new one fixed ready for the following day. The place of the meridian is marked on the strip before removing it from the bowl. A series of time scales, suitable for different periods of the year, having been prepared, the proper scale is selected and placed against the record, which is then easily transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums during each hour (reckoning from apparent noon) through the month are thus readily formed. The recorded durations are to be understood as indicating the amount of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud, neither is any register usually obtained when the sun's altitude is less than 5°. The instrument is placed on a table upon the platform above the Magnetic Observatory.

Ozonometer.-This apparatus is fixed on the south-west corner of the roof of the Photographic Thermometer shed, at a height of about 10 feet from the ground. The box in which the papers are exposed is of wood: it is about 8 inches square, blackened inside, and so constructed that there is free circulation of air through the box, without exposure of the paper to light. The papers exposed at $21^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h} are collected respectively at $3^{\mathrm{h}}, 9^{\mathrm{h}}$, and 21^{h}, and the degree of tint produced is compared with a scale of graduated tints, numbered from 0 to 10 . The value of

xxxviii Introduction to Greenwich Meteorological Observations, 1881.

ozone for the civil day is determined by taking the degree of tint obtained at each hour of collection as proportional to the period of exposure. Thus to form the values for any given civil day, three-fourths of the value registered at 21^{h}, the values registered at 3^{h} and 9^{h}, and one-fourth of that registered at the following 21^{h}, are added together, the resulting sum (which appears in the tables of "Daily Results") being taken as the value referring to the civil day. The means of the $21^{h}, 3^{h}$, and 9^{h} values, as observed, are also given for each month in the foot notes.

§ 7. Meteorological Reductions.

The results given in the Meteorological section refer in general to the civil day.
All results in regard to atmospheric pressure, temperature of air and of evaporation and deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye-observation of the ordinary maximum and minimum thermometers. The hourly readings of the photographic traces for the elements mentioned are entered into a form having double argument, the horizontal argument ranging through the 24 hours of the civil day, and the vertical argument through the days of a calendar month. It should be mentioned that before measuring out the electrometer ordinates, a pencil line was first drawn through the trace to represent the general form of the curve in the way described for the magnetic registers (page æxvii), excepting thai all days are included, no day being omitted on account of unusual electrical disturbance, it having been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. The ordinates of the pencil curve, drawn as described, were measured by a scale of inches, calling the zero 10.00 to avoid negative values: the scale is thus arbitrary. Numbers greater than 10.00 indicate positive potential. Then, for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value.

To correct the photographic values of barometer and dry and wet bulb thermometer for small instrumental error, the means of the photographic readings at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h} in each month are compared with the corresponding corrected mean readings of the standard barometer and standard dry and wet bulb thermometers, as given by eye-observation. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb thermometers exposed on the free stand.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and evaporation by use of Glaisher's Hygrometrical Tables. The factors by which the dew-point given in these tables is calculated were found by Mr. Glaisher from the comparison of a great number of dew-point determinations obtained by use of Daniell's hygrometer, with simultaneous observations of dry and wet bulb thermometers, combining observations made at the Royal Observatory, Greenwich, with others made in India and at Toronto. The factors are given in the following table.

Table of Factors by which the Difference between the Readings of the Dry-Bulb and WetBulb Thermometers is to be Multiplied in order to produce the Corresponding Difference between the Dry-Bule Temperature and that of the Dew-Point.

In the same way the mean hourly values of the dew-point and degree of humidity in each month (pages (lix) and (lx)) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages (lviii) and (lix)).
The excess of the mean temperature of the air on each day above the average of 20 years, given in the "Daily Results," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the numbers given in Table LXXVII. of the " Reduction of Greenwich Meteorological Observations, 1847-1873," which are similarly deduced from photographic records. The smoothed numbers are given in the following table.

Adopted Values of Mean Temperature of the Air，deduced from Twenty－four Hourly Readings on each Day，for every Day of the Year，as obtained from the Photographic Records for the Period 1849－1868．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Day of the Month． \& 突
菏 \& 薦
䔍
0 \& $$
\begin{aligned}
& \text { 를 } \\
& \text { تِ }
\end{aligned}
$$ \& 跑 \& $$
\dot{\overrightarrow{y y}}
$$ \& － \& 官 \& \& $$
\begin{aligned}
& \text { 这 } \\
& \text { 麀 } \\
& \text { 2 } \\
& \text { Un }
\end{aligned}
$$ \& 迨 \& \&

\hline 1 \& $38^{\circ} 1$ \& $40 \cdot 5$ \& 40\％3 \& $45^{\circ} \cdot 3$ \& $48^{\circ} \cdot 7$ \& $57^{\circ} \cdot 5$ \& 61.6 \& $62^{\circ} \cdot 6$ \& $60^{\circ} 1$ \& $54^{\circ} 7$ \& $47^{\circ} \mathrm{O}$ \& $41^{\circ} \cdot 5$

\hline 2 \& $37 \cdot 9$ \& $40 \cdot 6$ \& $40 \cdot 4$ \& $45 \cdot 7$ \& $48 \cdot 9$ \& 57.7 \& 61.5 \& $62 \cdot 7$ \& $60 \cdot 0$ \& $54^{\circ} 4$ \& $4{ }^{6 \cdot} 7$ \& 41.8

\hline 3 \& $37 \cdot 8$ \& $40 \cdot 7$ \& $40 \cdot 5$ \& $46 \cdot 1$ \& 49° \& 57.9 \& 61.4 \& $62 \cdot 7$ \& $59 \cdot 8$ \& $54^{\circ} \mathrm{O}$ \& $46 \cdot 4$ \& $42^{\cdot 1}$

\hline 4 \& 37.7
37.6 \& $40 \cdot 7$ \& $40 \cdot 5$ \& $46 \cdot 4$ \& 49.4 \& $58 \cdot 1$ \& 61.4 \& $62 \cdot 7$ \& $59^{\circ} 7$ \& 53.7 \& $46 \cdot 0$ \& 42.4

\hline 5 \& 37.6 \& $40 \cdot 6$ \& $40 \cdot 5$ \& $46 \cdot 6$ \& $49 \cdot 7$ \& 58．2 \& 61.5 \& 62.7 \& 59.5 \& 53.4 \& $45 \cdot 6$ \& $42 \cdot 6$

\hline 6 \& 37.6 \& $40 \cdot 4$ \& $40 \cdot 5$ \& $46 \cdot 7$ \& 50° \& $58 \cdot 3$ \& $61 \cdot 7$ \& $62 \cdot 7$ \& $59 \cdot 3$ \& $53 \cdot 0$ \& $45 \cdot 2$ \& $42 \cdot 7$

\hline 7 \& 37.6 \& $40 \cdot 2$ \& $40 \cdot 6$ \& $46 \cdot 8$ \& $50 \cdot 3$ \& 58.4 \& $61 \cdot 9$ \& $62 \cdot 7$ \& $59^{\circ} 0$ \& $52 \cdot 7$ \& 44.7 \& $42 \cdot 8$

\hline 8 \& 377 \& 39.9 \& $40 \cdot 6$ \& $46 \cdot 8$ \& $50 \cdot 6$ \& $58 \cdot 5$ \& 62.2 \& $62 \cdot 7$ \& $58 \cdot 8$ \& $52 \cdot 5$ \& $44 \cdot 3$ \& 42.8

\hline 9 \& 37×7 \& 39.6 \& $40 \cdot 7$ \& $46 \cdot 9$ \& $50 \cdot 8$ \& $58 \cdot 5$ \& 62.5 \& $62 \cdot 7$ \& $58 \cdot 5$ \& $52 \cdot 3$ \& $43 \cdot 8$ \& $42 \cdot 8$

\hline 10 \& $37 \cdot 8$ \& $39 \cdot 3$ \& 40% \& $46 \cdot 9$ \& $5 \mathrm{r} \cdot 1$ \& $58 \cdot 6$ \& 62.7 \& $62 \cdot 7$ \& $58 \cdot 3$ \& $52 \cdot 1$ \& 43.4 \& $42 \cdot 7$

\hline 11 \& $37 \cdot 9$ \& 39^{1} \& $40 \cdot 8$ \& 47° \& 51.4 \& $58 \cdot 7$ \& $62 \cdot 9$ \& 62.7 \& 58．1 \& $5 \mathrm{I} \cdot 9$ \& $43 \cdot 0$ \& $42 \cdot 5$

\hline 12 \& $38 \cdot 1$ \& $38 \cdot 9$ \& $40 \cdot 8$ \& $47^{\circ} 1$ \& $51 \cdot 8$ \& $58 \cdot 8$ \& 63； 1 \& $62 \cdot 6$ \& $58 \cdot 0$ \& $51 \cdot 7$ \& $42 \cdot 6$ \& $42 \cdot 2$

\hline 13 \& $38 \cdot 2$ \& $38 \cdot 8$ \& $40 \cdot 9$ \& $47^{\circ} 2$ \& 52．1 \& $58 \cdot 9$ \& $63 \cdot 3$ \& 62.5 \& $57 \cdot 8$ \& 51．6 \& $42 \cdot 3$ \& $41 \cdot 8$

\hline 14 \& $38 \cdot 3$ \& 38.7 \& 41° \& $47^{\circ} 4$ \& $52 \cdot 5$ \& $59 \cdot 1$ \& $63 \cdot 4$ \& 62.4 \& 57.6 \& 51.4 \& $42 \cdot 0$ \& 41.5

\hline 15 \& $38 \cdot 4$ \& $38 \cdot 7$ \& $41 \cdot 1$ \& 47.5 \& 52.9 \& $59 \cdot 3$ \& 63.4 \& $62 \cdot 3$ \& 57.4 \& $5 \mathrm{~L} \cdot 3$ \& $41 \cdot 8$ \& $41 \cdot 1$

\hline 16 \& $38 \cdot 5$ \& $38 \cdot 8$ \& $41 \cdot 2$ \& $47^{\circ} 6$ \& 53.3 \& $59 \cdot 5$ \& $63 \cdot 5$ \& $62 \cdot 1$ \& 57.3 \& $5 \mathrm{I} \cdot 2$ \& 41.6 \& $40 \cdot 8$

\hline 17 \& 38.6 \& $38 \cdot 9$ \& $41 \cdot 3$ \& $47 * 8$ \& 53.7 \& 59.7 \& $63 \cdot 5$ \& $61 \cdot 9$ \& 57^{1} \& 51.1 \& 41.5 \& $40 \cdot 5$

\hline 18 \& $38 \cdot 8$ \& $39^{\circ} \mathrm{O}$ \& $41 \cdot 4$ \& $47 \cdot 9$ \& $54^{\circ} \mathrm{I}$ \& $59^{\circ} 9$ \& $63 \cdot 4$ \& 61．8 \& $56 \cdot 9$ \& 51．0 \& $41 \cdot 5$ \& $40 \cdot 2$

\hline 19 \& $38 \cdot 9$ \& 39.2 \& 41.4 \& $48 \cdot 0$ \& 54.4 \& $60 \cdot 2$ \& $63 \cdot 3$ \& 61.6 \& $56 \cdot 8$ \& $50 \cdot 8$ \& $41 \cdot 4$ \& $40 \cdot 0$

\hline 20 \& 39^{-1} \& $39 \cdot 3$ \& $41 \cdot 5$ \& $48 \cdot 1$ \& 54.7 \& $60 \cdot 5$ \& $63 \cdot 2$ \& $61 \cdot 4$ \& $56 \cdot 6$ \& $50 \cdot 6$ \& $41 \cdot 3$ \& $39 \cdot 8$

\hline 21 \& $39 \cdot 3$ \& $39 \cdot 5$ \& 41.6 \& $48 \cdot 2$ \& 55＊ \& $60 \cdot 8$ \& $63 \cdot 0$ \& $61 \cdot 3$ \& 56.4 \& $50 \cdot 4$ \& $41 \cdot 2$ \& 39.6

\hline 22 \& 39.5 \& $39 \cdot 6$ \& $41 \cdot 7$ \& $48 \cdot 2$ \& $55 \cdot 3$ \& $61 \cdot 1$ \& $62 \cdot 9$ \& $6 \mathrm{I} \cdot 3$ \& $56 \cdot 2$ \& $50 \cdot 1$ \& $41 \cdot 1$ \& 39.4

\hline 23 \& 39.6 \& 397 \& $41 \cdot 8$ \& $48 \cdot 3$ \& $55 \cdot 5$ \& 61.4 \& 62.8 \& $61 \cdot 2$ \& $56 \cdot 1$ \& $49^{\circ} 7$ \& $41^{\circ} 0$ \& 39.3

\hline 24 \& 39

3 \& $39 \cdot 8$ \& $42 \cdot 0$ \& $48 \cdot 3$ \& $55 \cdot 7$ \& $61 \cdot 7$ \& $62 \cdot 7$ \& $61 \cdot 1$ \& $55 \cdot 9$ \& $49^{\circ} 4$ \& $41^{\circ} \mathrm{O}$ \& $39 \cdot 3$

\hline 25 \& $39 \cdot 8$ \& $39 \cdot 9$ \& $42 \cdot 3$ \& $48 \cdot 4$ \& $55 \cdot 9$ \& 61．9 \& $62 \cdot 7$ \& 61.0 \& $55 \cdot 8$ \& $49^{\circ} \mathrm{I}$ \& $40 \cdot 9$ \& $39 \cdot 2$

\hline 26 \& $39^{\circ} 9$ \& $40^{\circ} 0$ \& $42 \cdot 6$ \& 48.4 \& $56 \cdot 1$ \& 62.0 \& 62.7 \& $60 \cdot 9$ \& $55 \cdot 7$ \& $48 \cdot 8$ \& $40 \cdot 8$ \& $39^{\prime} 1$

\hline 27 \& $40^{\circ} \mathrm{O}$ \& $40 \cdot 1$ \& $43 \cdot 0$ \& 48.4 \& $56 \cdot 3$ \& $62 \cdot 0$ \& $62 \cdot 6$ \& $60 \cdot 8$ \& $55 \cdot 5$ \& $48 \cdot 5$ \& $40 \cdot 8$ \& $39^{\circ} \mathrm{O}$

\hline 28 \& $40^{\circ} \mathrm{I}$ \& $40 \cdot 2$ \& 43.4 \& $48 \cdot 5$ \& $56 \cdot 5$ \& $61 \cdot 9$ \& $62 \cdot 6$ \& $60 \cdot 7$ \& 55.4 \& $48 \cdot 2$ \& $40 \cdot 9$ \& $38 \cdot 8$

\hline 29 \& $40 \cdot 2$ \& \& $43 \cdot 8$ \& 48.5 \& $56 \cdot 8$ \& $61 \cdot 8$ \& $62 \cdot 6$ \& $60 \cdot 6$ \& 55.2 \& 47.9 \& $41^{\circ} \mathrm{O}$ \& $38 \cdot 7$

\hline 30
31 \& $40 \cdot 3$
$40 \cdot 4$ \& \& $44 \cdot 3$
$44 \cdot 8$ \& $48 \cdot 6$ \& $57 \cdot 0$

57.3 \& 617 \& $$
\begin{aligned}
& 62 \cdot 6 \\
& 62 \cdot 6
\end{aligned}
$$ \& $60 \cdot 4$ $60 \cdot 3$ \& 54.9 \& $47 \cdot 6$

47 \& $41 \cdot 2$ \& $38 \cdot 5$
$38 \cdot 3$

\hline Means \& $38 \cdot 7$ \& 397 \& 41•5 \& $47^{\circ} 5$ \& $53 \cdot 1$ \& $59 \cdot 8$ \& $62 \cdot 6$ \& $61 \cdot 9$ \& $57 \cdot 5$ \& $51 \cdot 0$ \& $42 \cdot 7$ \& $40 \cdot 8$

\hline \multicolumn{13}{|c|}{The mean of the twelve monthly values is $49^{\circ} \cdot 7$.}

\hline
\end{tabular}

The daily register of rain contained in column 18 is that recorded by the gauge No． 6 ，whose receiving surface is 5 inches above the ground．This gauge is usually read at 21^{h} and 9^{h} ．The continuous record of Osler＇s self－registering gauge shows whether the amounts measured at 21^{h} are to be placed to the same，or to the preceding civil day；and in cases in which rain fell both before and after midnight， also gives the means of ascertaining the proper proportion of the 21^{h} amount which should be placed to each civil day．The number of days of rain given in the foot． notes，and in the abstract tables，pages（lvii）and（lxxi），is formed from the records of this gauge．In this numeration only those days are counted on which the fall amounted to or exceeded $0^{\text {in．}} 005$ ．

The indications of electricity are derived from Thomson's Electrometer. On some days, not necessary to be specified, during interruption or failure of photographic registration, the results depend on eye observations.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration.
The mean amount of cloud given in a foot note on the right-hand page, and in the abstract table, page (lvii), is the mean found from observations made usually at $21^{\mathrm{h}}, 0^{\mathrm{h}}, 3^{\mathrm{h}}$, and 9^{h}, of each day.
For understanding the divisions of time under the headings "Clouds and Weather" and "Electricity," the following remarks are necessary :-In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6 а.м., and those following it to the interval from 6 а.м. to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).
The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10 .

a	denotes	aurora borealis
ci	\ldots	cirrus
ci-cu	\ldots	cirro-cumulus
ci-s	\ldots	cirro-stratus
cu	\ldots	cumulus
$\mathrm{cu}-\mathrm{s}$	\ldots	cumulo-stratus
d	\ldots	dew
hy-d	\ldots	heavy dew
f	\ldots	fog
slt-f	\ldots	slight fog
tk-f	\ldots	thick fog
fr	\ldots	frost
ho-fr	\ldots	hoar frost
g	\ldots	gale
hy-g	\ldots	heavy gale
glm	\ldots	gloom
gt-glm	\ldots	great gloom

h	denotes	haze
$\mathrm{slt-h}$	\ldots	slight haze
hl	\ldots	hail
l	\ldots	lightning
li-cl	\ldots	light clouds
lu-co	\ldots	lunar corona
lu-ha	\ldots	lunar halo
m	\ldots	mist
slt-m	\ldots	slight mist
n	\ldots	nimbus
$\mathrm{p}-\mathrm{cl}$	\ldots	partially cloudy
r	\ldots	rain
$\mathrm{c}-\mathrm{r}$	\ldots	continued rain
$\mathrm{fr}-\mathrm{r}$	\ldots	frozen rain
$\mathrm{fq-r}$	\ldots	frequent rain
$\mathrm{hy}-\mathrm{r}$	\ldots	heavy rain
$\mathrm{c}-\mathrm{hy}-\mathrm{r}$	\ldots	continued heavy rain

Grbenfici Magnetical and Metroroloaical Observations, 1881.

m-r	denotes	misty rain	sc	denotes scud	
fq-m-r	\ldots	frequent misty rain	li-sc	\ldots	light scud
oc-m-r	\ldots	occasional misty rain	sl	\ldots	sleet
oc-r	\ldots	occasional rain	sn	\ldots	snow
sh-r	\ldots	shower of rain	oc-sn	\ldots	occasional snow
shs-r	\ldots	showers of rain	slt-sn	\ldots	slight snow
slt-r	\ldots	slight rain	so-ha	\ldots	solar halo
oc-slt-r	\ldots	occasional slight rain	sq	\ldots	squall
th-r	\ldots	thin rain	sqs	\ldots	squalls
fq-th-r	\ldots	frequent thin rain	fq-sqs	\ldots	frequent squalls
oc-th-r	\ldots	occasional thin rain	hy-sqs	\ldots	heavy squalls
hy-sh	\ldots	heavy shower	fq-hy-sqs	\ldots	frequent heavy squalls
slt-sh	\ldots	slight shower	oc-sqs	\ldots	occasional squalls
fq-shs	\ldots	frequent showers	t	\ldots	thunder
hy-shs	\ldots	heavy showers	t-sm	\ldots	thunder storm
fq-hy-shs	\ldots	frequent heavy showers	th-cl	\ldots	thin clouds
oc-hy-shs	\ldots	occasional heavy showers	v	\ldots	variable
li-shs	\ldots	light showers	vv	\ldots	very variable
oc-shs	\ldots	occasional showers	W	\ldots	wind
s	\ldots	stratus	st-w	\ldots	strong wind

The following is the notation employed for Electricity :-

N denotes negative	w denotes weak
P ... positive	strong
moderate	able

The duplication of the letter denotes intensity of the modification described, thus, s s, is very strong; v v , very variable. 0 indicates no electricity, and a dash " -" accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in $\S 6$.
In regard to the comparisons of the extremes and means, \&c. of meteorological elements with average values, contained in the foot notes, it may be mentioned that the photographic barometric results are compared with the corresponding barometric results, 1854-1873, and the photographic thermometric results and deductions therefrom with the corresponding thermometric results, 1849-1868 (see "Reduction of Greenwich Meteorological Observations 1847-1873"). Other deductions, from eye observations, are compared with averages for the period 1841-1880.

The tables of Meteorological Abstracts following the tables of "Daily Results," and the Observations of Luminous Meteors, require no particular explanation. In general only special meteor showers are watched for, such as those of August and November. The observers of meteors in the year 1881 were Mr. Ellis, Mr. Nash, Mr. Greengrass, Mr. Hugo, Mr. Stafford, and Mr. Jeffery ; their observations are distinguished by the initials $\mathrm{E}, \mathrm{N}, \mathrm{G}, \mathrm{H}, \mathrm{S}$, and J respectively.

§ 8. Details of the Photographic Process.

The paper used in 1881 was that known as Whatman's royal, a paper not specially prepared for photographic purposes.

First Operation.-Preliminary Preparation of the Paper.

The chemical solutions used in this process are the following :-
(1.) Sixteen grains of iodide of potassium are dissolved in one ounce of distilled water.
(2.) Twenty-four grains of bromide of potassium are dissolved in one ounce of distilled water.
(3.) When the crystals are dissolved, the two solutions are mixed together, forming the bromo-iodising solution. The mixture will keep through any length of time. Immediately before use, it is filtered through filtering paper.

A quantity of the paper, sufficient for the consumption of several weeks, is treated in the following manner, sheet after sheet.

The sheet of paper is pinned by its four corners to a horizontal board. Upon the paper, a sufficient quantity (about 50 minims, or $\frac{5}{48}$ of an ounce troy) of the bromo-iodising solution is applied, by pouring it upon the paper in front of a glass rod, which is then moved to and fro till the whole surface is uniformly wetted by the solution. Or, the solution may be evenly distributed by means of a camel-hair brush.
The paper thus prepared is allowed to remain in a horizontal position for a few minutes, and is then hung up to dry in the air; when dry, it is placed in a drawer, and may be kept through any length of time.

Second Operation.-Rendering the Paper sensitive to the Action of Light.

A solution of nitrate of silver is prepared by dissolving 50 grains of crystallized nitrate of silver in one ounce of distilled water. Since the magnetic basement has been used for photography, 15 minims of acetic acid have always been added to the solution.

Then the following operation is performed in a room illuminated by yellow light.
The paper is pinned upon a board somewhat smaller than itself, and by means of a glass rod its surface is wetted with 70 minims of the nitrate of silver solution. It is allowed to remain a short time in a horizontal position, and, if any part of the paper still shines from the presence of a part of the solution unabsorbed into its texture, the superfluous fluid is taken off by the application of blotting paper.
The paper, still damp, is immediately placed upon the cylinder, and is covered by the exterior glass tube, and the cylinder is mounted upon the revolving apparatus, to receive the spot of light formed by the mirror, which is carried by the magnet; or to receive the line of light passing through the thermometer tube.

Third Operation.—Development of the Photographic Trace.
When the paper is removed from the cylinder, it is placed as before upon a board, and a saturated solution of gallic acid, to which a few drops of aceto-nitrate of silver are occasionally added, is spread over the paper by means of a glass rod, and this action is continued until the trace is fully developed. The solutions are kept in the magnetic basement, and are always used at the temperature of that room. When the trace is well developed, the paper is placed in a vessel with water, and repeatedly washed with several changes of water ; a brush being passed lightly over both sides of the paper to remove any crystalline deposit.

Fourth Operation.-Fixing the Photographic Trace.

The photograph is placed in a solution of hyposulphite of soda, made by dissolving four or five ounces of the hyposulphite in a pint of water; it is plunged completely in the liquid, and allowed to remain from one to two hours, until the yellow tint of the iodide of silver is removed. After this the sheet is washed repeatedly with water, allowed to remain immersed in water for 24 hours, and afterwards placed within folds of cotton cloths till nearly dry. Finally it is either ironed, or placed between sheets of blotting-paver and pressed.

Royal Observatory, Greenwich,
W. H. M. CHRISTIE.

1882 December 19.

ROYAL OBSERVATORY, GREENWICH.

R E S U L T S

OF

MAGNETICAL OBSERVATIONS.

1881.

REDUCTION

OF THE

MAGNETIC OBSERVATIONS

(EXCLUDING THE DAYS OF GREAT MAGNETIC DISTURBANCE).
1881.

1881.												
Days of	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	Deceniber.
Montl.	18°											
1	30.1	31.8	$28 \cdot 2$	28.3	26.7	26.6	.	$26^{\prime} 2$	$26 \cdot 5$	25.0	25.9	${ }_{2} 5^{\circ} 4$
2	$29 \cdot 8$	30.4	28.9	$28 \cdot 1$	27.3	26.5	.	25.7	$26 \cdot 1$	$24^{\circ} 9$	26.4	24.6
3	$30 \cdot 2$	29.8	29^{1}	$27 \cdot 7$	26.9	27.7	.	$25^{\circ} 4$	$26 \cdot 8$	$24^{\circ} 9$	$25 \cdot 7$	25^{1} I
4	$30 \cdot 7$	$3 \mathrm{I} \cdot 0$	$30 \cdot 8$	27.9	$26 \cdot 5$	$26 \cdot 6$		26.2	$26 \cdot 0$	24.5	25.9	$25 \cdot 3$
5	$30 \cdot 4$	$30 \cdot 3$	29.6	27.8	26.5	28.4		$26 \cdot 5$	$26 \cdot 4$	$25^{\circ} \mathrm{O}$	$25 \cdot 5$	$25 \cdot 9$
6	29.9	$31 \cdot 3$	$28 \cdot 7$	27.7	$26 \cdot 7$	$27 \cdot 2$	-	$27 \cdot 6$	$26 \cdot 1$	$25 \cdot 9$	25.4	$25 \cdot 3$
7	\cdots	30°	$30 \cdot 3$	$27^{\circ} 2$	$27^{\circ} \mathrm{O}$	26.7		$26 \cdot 9$	$26 \cdot 6$	$24^{\circ} 9$	25.4	$25 \cdot 8$
8	$30 \cdot 0$	$29^{6} 6$	$30 \cdot 2$	27.7	$25 \cdot 8$	$26 \cdot 9$.	$26 \cdot 3$	$26 \cdot 6$	$25^{\circ} \mathrm{I}$	$26 \cdot 0$	26.4
9	29.6	29.6	29.4	28.0	$28 \cdot 0$	$27 \cdot 2$		$26 \cdot 3$	$27 \cdot 3$	$25 \cdot 0$	$26 \cdot 5$	$26 \cdot 2$
10	$30 \cdot 0$	29.5	29.6	$28 \cdot 1$	$26 \cdot 9$	$27^{1} 1$	-	$26 \cdot 3$	$26 \cdot 8$	25.0	$26 \cdot 0$	25.0
11	$30 \cdot 0$	$29^{\circ} 8$	29.7	27.7	$26 \cdot 6$	27.7	27.2	$26 \cdot 6$	$25 \cdot 7$	25*2	25.4	$25 \cdot 6$
12	$30 \cdot 2$	$30 \cdot 1$	$28 \cdot 8$	$26 \cdot 8$	$26 \cdot 4$	27.5	$25 \cdot 4$	$25 \cdot 6$. .	24.9	$25 \cdot 6$	$26 \cdot 1$
13	$29^{\circ} 9$	29.5	$30 \cdot 3$	$28 \cdot 2$	$26 \cdot 8$	$26 \cdot 9$	$26 \cdot 7$	$26 \cdot 5$	5	$25 \cdot 8$	$25 \cdot 6$	$25 \cdot 4$
14	29.4	$30 \cdot 0$	29.7	27.7	$26 \cdot 4$	27°	$25 \cdot 9$	$26 \cdot 1$	$25 \cdot 7$	$25 \cdot 8$	25.4	$26 \cdot 3$
15	$29 \% 7$	$30 \cdot 5$	29.5	27.8	$25 \cdot 2$	$26 \cdot 9$	27°	$26 \cdot 1$	$26 \cdot 3$	$26 \cdot 0$	$25 \cdot 7$	25.2
16	$29^{\circ} 2$	$30 \cdot 3$	29.6	27.4	27.4	$26 \cdot 3$	$26 \cdot 2$	$26 \cdot 6$	26.4	$26 \cdot 7$	$25 \cdot 5$	$25 \cdot 9$
17	29.5	$30 \cdot 5$	29.7	27.5	$27 \cdot 6$	$25 \cdot 7$	$27^{1} 1$	$26 \cdot 1$	$25 \cdot 5$	$25 \cdot 5$	26°	$25 \cdot 5$
18	29.7	$30 \cdot 6$	27.4	28.5	$26 \cdot 9$	$25 \cdot 8$	$25 \cdot 7$	25.9	$25 \cdot 6$	24.5	$25 \cdot 5$	$25 \cdot 7$
19	,	$30 \cdot 6$	$29^{\circ} 8$	28.6	$26 \cdot 9$	$27 \cdot 0$	$26 \cdot 3$	$26 \cdot 8$	$25 \cdot 3$	$25^{\circ} 9$	$24^{\circ} 9$	$26 \cdot 6$
20	-	$30 \cdot 6$	29.3	$26 \cdot 4$	$26 \cdot 9$	27.4	$26 \cdot 8$	271	24.9	$25 \cdot 6$	$25 \cdot 5$	25.5
21	32.4	$30 \cdot 1$	29.7	27.2	$27 \cdot 3$	$26 \cdot 4$	$26 \cdot 2$	$26 \cdot$	24^{1}	$25 \cdot 1$	$25 \cdot 8$	25.5
22	$30 \cdot 8$	29.9	$29^{\circ} 9$	$26 \cdot 9$	$26 \cdot 6$	27.1	$26 \cdot 2$	$25 \cdot 7$	$24 \cdot 8$	$25 \cdot 0$	$26 \cdot 2$	$25 \cdot 9$
23	$32 \cdot 5$	29.8	29.2	$26 \cdot 5$	$26 \cdot 1$	$27^{1} 1$	$26 \cdot 2$	$26 \cdot 4$. .	249	$25 \cdot 1$	$23 \cdot 9$
24	$29^{1} 1$	$30 \cdot 1$	29.2	$26 \cdot 4$	$26 \cdot 4$	$27^{\circ} \mathrm{O}$	$26 \cdot 4$	$26 \cdot 6$	-	24.6	$26 \cdot 0$	$25 \cdot 9$
25	29.2	$30 \cdot 7$	29.7	$26 \cdot 7$	$25 \cdot 4$	$25 \cdot 8$	$26 \cdot 8$	$26 \cdot 5$.	$25 \cdot 8$	$25 \cdot 6$	24.9
26	28.4	$3 \mathrm{I} \cdot 3$	$29^{\circ} 2$	27.1	$24^{5} 5$	26.4	$26 \cdot 5$	$26 \cdot 8$.	28.0	$25 \cdot 6$	24.6
27	$3 \mathrm{I} \cdot 6$	28.6	29.3	29.3	$25 \cdot 2$	$26 \cdot 6$	$26 \cdot 7$	$26 \cdot 2$	-	$26 \cdot 8$	$25 \cdot 0$	25.0
28	31.7	${ }^{29} 7$	$28 \cdot 7$	$26 \cdot 9$	24.5	. .	$26 \cdot 9$	$26 \cdot 1$	\cdots	$26 \cdot 6$	$25 \cdot 8$	24.6
29	$30 \cdot 5$		28.9	26°	24.2	.	$26 \cdot 0$	$25 \cdot 2$	$24^{\circ} 2$	$26 \cdot 3$	$25 \cdot 4$	$24^{\circ} 9$
30	29.9		29°	27°	24.7	.	25.5	$25 \cdot 5$	24.4	$27 \cdot 5$	$25 \cdot 2$	$25 \cdot 2$
31	. -		27×7		25°		$25 \cdot 9$	$25 \cdot 2$		$26 \cdot 2$		$25 \cdot 1$
Table 1I.-Mean Monthly Determination of the Western Declination of the Magnet at every Hour of the Day; obtained by taking the Mean of all the Determinations at the same Hour of the Day through the Month.												
1881.												
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	18°											
h	$32 \cdot 7$	$33 \cdot 6$	$34^{\prime} 0$	$32 \cdot 3$	31.5	32.0	31.8	$32^{\prime} \cdot 4$	$3{ }^{\prime} \cdot 8$	30.6	29.5	$28^{\prime} \cdot 0$
	$33 \cdot 7$	34.6	35.6	$33 \cdot 9$	32.0	$33 \cdot 2$	33.0	$33 \cdot 6$	$32 \cdot 8$	$31 \cdot 1$	29.5	$28 \cdot 8$
2	$32 \cdot 7$	34.5	$35 \cdot 4$	$33 \cdot 5$	31.6	33.4	$32 \cdot 7$	$32 \cdot 7$	317	$30 \cdot 6$	29°	$28 \cdot 3$
3	31.5	33.4	$34 \cdot 3$	3 I 9	$30 \cdot 3$	$32 \cdot 7$	$30 \cdot 9$	$30 \cdot 8$	29.8	29°	27.5	$27 \cdot 5$
4	31.4	31.6	$31 \cdot 9$	$30 \cdot 4$	29°	$31 \cdot 1$	$29 \cdot 3$	$28 \cdot 5$	$28 \cdot 1$	27.5	$26 \cdot 7$	$26 \cdot 7$
5	31.0	$31 \cdot 1$	$30 \cdot 2$	28.7	27.9	$29^{1} 1$	$28 \cdot 0$	$26 \cdot 6$	$26 \cdot 6$	$26 \cdot 3$	25.7	25.5
6	$30 \cdot 3$	$30 \cdot 8$	29°	27.5	$26 \cdot 9$	$27 \cdot 8$	27.1	$25 \cdot 9$	26.0	$25 \cdot 7$	25.7	$25 \cdot 0$
7	29.5	$30 \cdot 0$	$28 \cdot 8$	27°	26^{1}	27.2	27.1	$26 \cdot 0$	$25 \cdot 5$	$25 \cdot 3$	$24 \cdot 8$	$24^{\circ} 4$
8	$28 \cdot 9$	29^{2}	28.6	26.9	$25 \cdot 8$	$26 \cdot 9$	$27 \cdot 2$	$25 \cdot 7$	25°	$24 \cdot 3$	$23 \cdot 6$	$23 \cdot 4$
9	$28 \cdot 7$	28.5	28.4	$26 \cdot 9$	$25 \cdot 7$	$26 \cdot 8$	$26 \cdot 8$	$25 \cdot 4$	$24^{\circ} 6$	$23 \cdot 5$	$23 \cdot 7$	22.9
10	$28 \cdot 3$	$28 \cdot 1$	$28 \cdot 1$	$26 \cdot 4$	25.5	$26 \cdot 7$	$26 \cdot 1$	$25 \cdot 4$	24.3	$23 \cdot 7$	23.2	$23 \cdot 0$
11	$28 \cdot 5$	$28 \cdot 2$	$27 \cdot 5$	26°	$25 \cdot 6$	$26 \cdot 4$	$26 \cdot 0$	$25 \cdot 4$	24.3	$23 \cdot 8$	23.4	$23 \cdot 3$
12	28.5	28.7	27.4	$26 \cdot 0$	$25 \cdot 7$	$25 \cdot 9$	25.0	$25 \cdot 0$	24.2	$24^{\circ} 1$	23.9	$23 \cdot 6$
13	$29^{\circ} \mathrm{O}$	$28 \cdot 9$	27.4	$26 \cdot 2$	$25 \cdot 5$	$25 \cdot 4$	$24^{\circ} 4$	24.8	$24^{\circ} 2$	$24^{\circ} \mathrm{O}$	$24^{\circ} 4$	23.9
14	$29^{\circ} 4$	$29 \cdot 3$	$27 \cdot 6$	$26 \cdot 4$	$25 \cdot 4$	25.4	24.6	24.5	23.9	$24^{\circ} \mathrm{O}$	24.7	$24 \cdot 8$
15	$29^{\circ} 7$	$29^{\circ} 2$	27.9	$26 \cdot 0$	$25 \cdot 2$	$25 \cdot 2$	24.5	24.3	$23 \cdot 7$	$24^{\circ} \mathrm{O}$	$25 \cdot 3$	$25 \cdot 6$
16	29.6	29.3	27.5	$25 \cdot 8$	$24^{\circ} 4$	24.2	$23 \cdot 6$	$23 \cdot 7$	$23 \cdot 8$	24.4	$25 \cdot 2$	$25 \cdot 8$
17	29.8	29.3	27.7	$25 \cdot 7$	23.1	22.5	$21 \cdot 9$	22.9	$23 \cdot 7$	$24 \cdot 3$	25.1	$25 \cdot 6$
18	$29^{\circ} 9$	29^{2}	$28 \cdot 0$	$25 \cdot 3$	22.0	21.4	21.6	21.9	23.1	$24^{1} 1$	$25 \cdot 0$	$25 \cdot 6$
19	$29^{\circ} 9$	$29^{\circ} 2$	$27 \cdot 5$	24.2	21.5	$21 \cdot 2$	21.7	$21 \cdot 5$	22.3	$23 \cdot 5$	$25 \cdot 3$	$25 \cdot 7$
20	29.6	28.7	$26 \cdot 0$	23.3	21.9	21.9	21.8	22.0	$21 \cdot 9$	22.7	$25 \cdot 1$	$25 \cdot 4$
21	29^{6}	28.6	$26 \cdot 0$	24.2	23.5	$23 \cdot 3$	$23 \cdot 5$	$23 \cdot 7$	$23 \cdot 1$	23.0	$25 \cdot 0$	24^{-8}
22	$30 \cdot 4$	29.8	28.0	$26 \cdot 3$	$26 \cdot 0$	26°	$25 \cdot 6$	$26 \cdot 7$	$25 \cdot 8$	$25 \cdot 5$	$26 \cdot 1$	$25 \cdot 7$
23	315	31×7	$30 \cdot 9$	29°	29^{11}	$29 \cdot 3$	28.9	30°	29.2	28.7	$28 \cdot 1$	2,7•1

Table III.				
1881.				
Month.	Mean Western Declination of the Magnet in each Monti.	Excess of Western Declination above 17°, converted into Westerity Force, and expressed in terms of Gauss's Unit measured on the Metrical System.	Monthly Means of all the Diurnal Ranges of the Western Declination, as deduced from the Twenty-four Hourly Measures of each day.	
	- ,		,	
January....................	18.30.2	0.04736	7.0	
February March	$18.30 \cdot 2$ 18.29 .3	-04736	8.5 1.8	
April .	18.27.5	-04595	11.4	
May.	18.26.3	- 045332	$1{ }^{1 / 1}$	
June	18.26.9	-04563	13.4	
July \ldots.......................	18.26 .4 18.26 .2	$\bigcirc \cdot 04537$	$\begin{aligned} & 127 \\ & 12.7 \end{aligned}$	
September.	18.25 .8	-04505	12.4	
October.....................	18.25.6	${ }^{-} .4495$	$10 \cdot 3$	
	$\begin{aligned} & 18.25 \cdot 6 \\ & 18.25{ }_{4} \end{aligned}$	$\begin{array}{r} \because 04495 \\ \cdot 04484 \end{array}$	$\begin{aligned} & 9 \cdot 3 \\ & 8 \cdot 0 \end{aligned}$	
Mean .	18.2711	-0.04574	107	
The unit adopted in column 3 is the Millimètre-Milligra numbers must he divided	mme-Second Unit. To exp by 10 , equivalent to shifting	ress the forces on the Centi the decimal point one step t	nètre-Gramme-Second (C.G wards the left.	.) system, the

Table IV.-Mean Horizontal Magnetic Force, expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (0.86000 nearly), uncorrected for Temperature, on each Astronomical Day; as deduced from the Mean of Twenty-four Hourly Measures of Ordinates of the Photographic Register on that Day.

Table V.-Daily Means of Readings (usually eight on each Day) of the Thermometer placed within the box inclosing the Horizontal Force Magnetometer, for each Astronomical Day.

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }_{\text {d }}$	$60^{\circ} 7$	$5 \stackrel{0}{\circ} 8$	$5{ }^{\circ} \mathrm{O}$	$6{ }^{\circ} \cdot 1$	63.0	$68 \cdot 1$	\bigcirc	$65^{\circ} \cdot$	$63 \cdot 9$	$63 \cdot 2$	$58^{\circ} \cdot 6$	$65^{\circ} \cdot 2$
2	$61 \cdot 6$	61.0	59°	60°	$63 \cdot 3$	$67 \cdot 7$	\cdots	$65 \cdot 4$	$64^{\circ} \mathrm{I}$	$62 \cdot 2$	$60 \cdot 7$	64.7
3	61.5	$62 \cdot 8$	$59 \cdot 1$	$58 \cdot 0$	$62 \cdot 3$	68.5	-	$65 \cdot 8$	$64 \cdot 9$	$62 \cdot 7$	$63 \cdot 3$	64.5
4	61.1	$62 \cdot 9$	$60 \cdot 7$	$59 \cdot 6$	$63 \cdot 1$	68.0	.	$67 \cdot 2$	$65 \cdot 4$	$63 \cdot 2$	$65 \cdot 1$	$63 \cdot 6$
5	60.2	61.0	$62 \cdot 9$	$60 \cdot 8$	$63 \cdot 7$	64.7		$67 \cdot 8$	$65 \cdot 6$	62.4	$65 \cdot 2$	$63 \cdot 5$
6	59°	$58 \cdot 5$	$63 \cdot 1$	$60 \cdot 8$	$65 \cdot 3$	$63 \cdot 8$		$67 \cdot 1$	$65 \cdot 6$	$64 \cdot 3$	64.6	$63 \cdot 1$
7		$58 \cdot 0$	62.2	$60 \cdot 8$	$65 \cdot 4$	62.9	.	67°	$65 \cdot 6$	65°	64°	$64 \cdot 6$
8	$60 \cdot 7$	$59 \cdot 8$	$61 \cdot 2$	$62 \cdot 2$	$64 \cdot 5$	$62 \cdot 5$		$65 \cdot 9$	$66 \cdot 3$	$64 \cdot 1$	$64^{\circ} 4$	$64 \cdot 8$
9	$61 \cdot 2$	$60 \cdot 8$	$61 \cdot 9$	$62 \cdot 7$	$62 \cdot 9$	$62 \cdot 7$.	$64 \cdot 3$	$65 \cdot 8$	$63 \cdot 6$	$63 \cdot 7$	64.6
10	60.9	$60 \cdot 7$	$63 \cdot$	$62 \cdot 7$	61.7	62.9		64.2	$65 \cdot 5$	64.6	$64^{\circ} 4$	64.0
11	$60 \cdot 6$	59.7	$63 \cdot$	$63 \cdot 8$	$62 \cdot 7$	$63 \cdot 8$	67.6	$64 \cdot 1$	$65 \cdot 4$	$65 \cdot 0$	65°	$63 \cdot 8$
12	$58 \cdot 8$	$59 \cdot 7$	$6 \mathrm{I} \cdot 3$	64°	63.9	64.6	68.9	$64^{\circ} 4$. .	64.7	64.8	$63 \cdot 2$
13	$55 \cdot 5$	59.9	59.8	$64^{\circ} \mathrm{I}$	$65 \cdot$	64.2	$69 \cdot 3$	$64 \cdot 3$	\cdot	$64^{\circ} 4$	$64 \cdot 8$	$62 \cdot 3$
14	54.4	$60 \cdot 2$	$60 \cdot 3$	$63 \cdot 4$	$65 \cdot 7$	63.9	$70 \cdot 7$	64°	$66 \cdot 6$	$63 \cdot 4$	$64 \cdot 8$	62.9
15	$55 \cdot 4$	60.9	$60 \cdot 4$	$62 \cdot 3$	$65^{\circ} \mathrm{O}$	64.7	71.9	64.7	$65 \cdot 9$	61.0	$63 \cdot 8$	62.7
16	$53 \cdot 8$	$60 \cdot 8$	$60 \cdot 5$	$63 \cdot 2$	64.2	$65 \cdot 8$	71.7	$66 \cdot 3$	$65 \cdot 3$	$61 \cdot 5$	$63 \cdot 3$	62.5
17	$52 \cdot 8$	$61 \cdot 5$	$61 \cdot 0$	$64 \cdot 1$	64.3	$66 \cdot 5$	$70 \cdot 8$	66^{1} I	$66 \cdot 3$	$61 \cdot 3$	$63 \cdot 5$	$61 \cdot 9$
18	53.7	62.9	62°	$63 \cdot 9$	$65 \cdot 1$	$65 \cdot 2$	71.0	$65 \cdot 6$	$67 \cdot 1$	$60 \cdot 9$	$63 \cdot$	61.6
19	54.4	$60 \cdot 8$	$61 \cdot 7$	62.5	64.4	64.5	71.2	$65 \cdot 2$	$66 \cdot 6$	$60 \cdot 7$	$62 \cdot 8$	$62 \cdot 8$
20	$53 \cdot 3$	$60 \cdot 1$	$60 \cdot 9$	$62 \cdot 3$	64.4	$65^{\prime} 1$	$67 \cdot 6$	$65^{1} 1$	67.9	$62 \cdot 2$	$63 \cdot 0$	$62 \cdot 9$
21	$5 \mathrm{r} \cdot 8$	$59 \cdot 8$	$59 \cdot 8$	$62 \cdot 2$	$65 \cdot 3$	$65 \cdot 5$	66.2	64%	$67 \cdot 9$	63.4	$63 \cdot 5$	$63 \cdot 2$
22	$52 \cdot 8$	59.2	$59^{\circ} 9$	63.2	$66 \cdot 3$	64.6	$65 \cdot 3$	$64^{\circ} 9$	$66 \cdot 3$	$63 \cdot 0$	64.7	61.6
23	$54 \cdot 1$	59.7	61.0	$63 \cdot 3$	$67 \cdot 3$	64.5	$67 \cdot 1$	$65^{\circ} 9$. .	$63 \cdot 3$	65°	59.2
24	54°	$60^{\circ} \mathrm{I}$	$61 \cdot 2$	$64 \cdot 1$	$66^{\circ} 4$	64.8	66.7	$65 \cdot 1$.	$62 \cdot 6$	$64^{\circ} 4$	57.9
25	$51 \cdot 7$	60°	$60 \cdot 9$	$64 \cdot 8$	$66 \cdot 4$	64.4	$64^{\circ} 7$	$65 \cdot 6$.	$61 \cdot 3$	$64 \cdot 1$	$57 \cdot 8$
26	$51 \cdot 6$	$59 \cdot 6$	$60 \cdot 5$	63.1	$66 \cdot 7$	$65 \cdot 1$	64*	$65 \cdot 3$		$6 \mathrm{I} \cdot 5$	$63^{\circ} 4$	$59 \cdot 8$
27	$56 \cdot 0$	59°	59.5	62.9	67.2	64.9	$63 \cdot 1$	63.7	\cdots	$6 \mathrm{I} \cdot 3$	$63 \cdot 9$	$60 \cdot 9$
28	58.4	58.5	$60 \cdot 9$	63.6	67.8		64.6	63.7		$61 \cdot 3$	64.9	$60 \cdot 7$
29	6 I 4		$61 \cdot 3$	64.3	$66 \cdot 2$.	66.4	63.9	$63 \cdot 8$	$60^{\circ} 9$	$64 \cdot 2$	$60 \cdot 6$
30 31	61.2		$60 \cdot 2$ 60.5	64.2	$66 \cdot 5$ $67 \cdot 6$	\cdots	$65 \cdot 8$ 65%	$63 \cdot 6$ 63	$63 \cdot 7$	$60 \cdot 0$ 57.7	$64 \cdot 8$	$\begin{aligned} & 61 \cdot 0 \\ & 61 \cdot 1 \end{aligned}$
31	.		$60 \cdot 5$		67.6		65 \%	63°		577		61

Table VI.-Mean Monthly Determination of the Horizontal Magnetic Force, expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant ($0 \cdot 86000$ nearly), uncorrected for Temperature, at every Hour of the Day; obtained by taking the Mean of all the Determinations at the same Hour of the Day through each Month.

1881.												
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
h	$0 \cdot 12839$	0.12790	- 12905	0.12900	0.12962	0.13155	$0 \cdot 13628$	0.13991	0×13930	0.13921	$0 \cdot 13905$	0.13913
1	-12868	- 12822	-12936	- 12944	- 12988	${ }^{-13187}$	-13698	$\cdot 14042$	-13987	-13955	- 13929	-13927
2	-12879	- 12854	-12971	-12989	-13016	-13240	-13755	-14057	-14017	-13994	-13942	-13g23
3	- 12883	- 12879	-12993	$\cdot 13025$	-13053	-13277	-13795	-14077	-14041	$\cdot 14004$	-13948	-13921
4	$\cdot 12876$	-12884	-12996	-13041	-13080	$\cdot 13295$	-13799	- 14094	-14047	-14013	-13962	-13927
5	- 12870	-12888	-12998	$\cdot 13047$	-13109	-13316	-13784	$\cdot 14109$	-14056	-14020	-13970	-13935
6	-12865	$\cdot 12892$	$\cdot 13004$	$\cdot \mathrm{I} 3057$	-13119	${ }^{1} 13324$	$\cdot 13783$	-14123	- 14078	$\cdot 14038$	-13979	-13936
7	$\cdot 12860$	- 12889	-13006	-13063	-13114	-13319	- 13787	-14133	- 14082	- 14050	-13980	-13931
8	- 12856	-12891	$\cdot 13009$	-13063	-13097	-133c6	$\cdot 13788$	-14135	-14078	-14045	-13979	-13929
9	- 12858	-12894	-13016	- 13053	-13084	-13286	-13790	$\cdot 14131$	-14070	$\cdot 14043$	- 13983	-13934
10	- 12866	- 12900	$\cdot 13016$	$\cdot 13039$	-13075	$\cdot 13273$	$\cdot 13786$	-14124	- 14062	-14053	-13992	-13938
11	-12863	- 12900	$\cdot 13010$	-13027	-13060	-13272	-13780	-14115	-14059	- 14063	- 13986	-13943
12	-12861	-12898	$\cdot 13003$	-13015	-13055	-13272	$\cdot 13771$	-14110	-14053	-14062	-13980	-13947
13	-12859	- 12897	-13003	-13008	-13050	-13270	-13772	$\cdot 14109$	-14047	-14062	-13987	-13962
14	-12862	- 12898	-12997	-13005	-13047	$\cdot 13273$	$\cdot 13771$	-14099	-14047	-14058	-13988	-13g56
15	$\cdot 12871$	- 12906	-13003	-13006	-13045	-13281	-13773	-14099	-14043	-14046	-13993	-13961
16	$\cdot 12877$	-12919	-13002	$\cdot 13009$	-13047	-13283	$\cdot 13764$	-14096	-14043	-14050	-14011	-13976
17	-12891	-12933	$\cdot 13004$	$\cdot 13009$	-13050	-13266	-13757	- 14085	-14047	-14056	- 14021	-13996
18	-12902	- 12937	-13011	-1301 1	$\cdot 13025$	$\cdot 13231$	-13732	- 14065	-14029	${ }^{-1} 4054$	-14025	-14012
19	-12901	-12928	$\cdot 13003$	-12992	- 12999	-13193	-13698	$\cdot 14031$	-13991	-14030	-13995	-14002
20	-12885	- 12900	-12973	$\cdot 12955$	- 12972	-13148	$\cdot 13637$	- 13986	- I3938	-13975	-13959	-13977
21	-12849	-12852	-12915	- 12901	- 12943	$\cdot 13107$	-13594	-13950	-13890	$\cdot 13921$	-1392 ${ }^{1}$	-13945
22	$\cdot 12828$	$\cdot 12807$	-12880	- 12862	-12927	-13096	-13570	-13930	-13868	-13880	-13890	-13914
23	$\cdot 12827$	$\cdot 12791$	-12871	- 12862	$\cdot 12934$	-13127	-13585	$\cdot 13950$	-13881	$\cdot 13885$	-13887	:13908

Table VII.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnetometer, at each of the ordinary Hours of Observation.

The unit adopted in column 3 is the Millimètre-Milligramme-Second Unit. 'To express the forces on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10 , equivalent to shifting the decimal point one step towards the left
The value $0 \cdot 86000$ of Horizontal Force corresponds to $1 \cdot 55230$ of Gauss's Unit on the Metrical (Millimètre-Milligramme-Second) system, and to 0.15523 on the C.G.S. system.

Table IX.-Mean Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant ($\circ \cdot 06000$ nearly), uncorrected for Temperature, on each Astronomical Day; as deduced from the Mean of Twenty-four Hourly Measures of Ordinates of the Photographic Register on that Day.

188 I .												
$\left\lvert\, \begin{gathered} \text { Days of } \\ \text { the } \\ \text { Month. } \end{gathered}\right.$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
$\stackrel{\text { d }}{1}$		$0 \cdot 02648$	$0 \cdot 02385$	0.02624	$0 \cdot 02788$	$0 \cdot 03461$	0.03117	0*03096	0.02836	$0 \cdot 02868$	$0 \cdot 02197$	$0 \cdot 02692$
2	$\cdot 02875$	$\cdot 02798$	$\cdot 02521$	$\cdot 02513$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc \cdot 0315$	$\cdot \cdot 2887$	$\bigcirc \cdot 2770$	$\cdot 02321$	$\bigcirc \cdot 02685$
3	- 02849	${ }^{\circ} 22961$	-22508	-02419	${ }^{\circ} \mathrm{O} 2724$	-03527	-03351	.03164	-02934	-02814	-02612	-02618
4	$\cdot 02795$	-02984	$\cdot 02645$	${ }^{-02567}$	$\cdot 02784$	-03520	-03531	-03246	$\cdot 02952$	-02768	-02823	${ }^{-02532}$
5	-02660	$\cdot{ }^{\circ} 2723$	-02815	-02641	- 28850	-03194	-03666	-03364	-29994	-02690	-02860	$\cdot 02542$
6	- 02597	$\cdot 02537$	-02846	- 02605	-03034	-03119	-03335	-03212	-03028	-22869	-02783	${ }^{-2522}$
7	-02668	${ }^{-} \mathbf{0} 2456$	-02752	$\cdot 02599$	-02993	-02963	-03048	-03164	-03039	-02917	-02724	$\cdot 02598$
8	-02705	$\cdot 02637$	$\stackrel{-2690}{ }$	$\cdot 02724$	$\cdot 2875$	-02977	-03066	-03167	-03071	-02830	-02792	-02642
9				$\cdot 02801$	$\cdot 2742$	-22956	-03189	-03014	-03048	$\cdot 02795$	$\cdot 02780$	-02635
10	$\cdot 02678$	-02697	-02881	$\cdot{ }^{02816}$	- 02640	-02929	-03288	-02981	-03004	$\cdot 02849$	-02803	$\cdot 02577$

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d I d	0.02638	0.02599	0.02885	0.02827	$0 \cdot 02685$	0.03038	0.03380	0^02997	$0 \cdot 02982$	0002934	$0 \cdot 02856$	0.02477
12	. 02495	-02635	$\cdot .02745$	$\cdot .02852$	-02797	-03129	-03511	-03018		-02917	-02828	-02483
13	-02401	-02608	-02630	-02867	-02903	-03037	$\cdot 03545$	-02973	-	-02852	-02826	-02409
14	$\cdot 02265$	-02620	-02678	$\cdot 02870$	-03023	-02996	-03670	-02911	-03111	-02770.	-02802	$\cdot 02482$
15	-02238	-02718	-02694	-02822	-02918	-03063	$\cdot .03769$	$\cdot 02969$	-03035	-02615	. 22711	-02441
16	-02064	-02685	-02719	-02854	-0286I	-03188	-03755	-03137	-02993	. 02522	-02678	. 02417
17	- 01998	-02678	-02733	-02923	-02791	-03263	-03642	$\cdot 03095$	-03103	-02536	-02667	$\cdot 02413$
18	-02025	-02814	-02808	-02871	-02852	-03138	-03675	-03082	-03194	-02465	-02652	-02304
19	-02077	-02620	-02795	-02723	-02832	-03084	-03745	-03025	-03153	-02483	-02610	-02415
20	-01970	$\cdot 02578$	-02739	-02708	-02828	-03150	-03395	-03042	-03247		-02640	-02385
21	-01871	-02518	-02588	- 02743	-02898	-03217	-03195	-03019	-03172	.02701	-02660	-02410
22	- 1942	. 02504	$\cdot 02555$	-02780	-02995	$\cdot 03119$ $\cdot 03105$	-03104	.03012	-03008	.02711 .02762	-02648	-02237
23	-02078	-02544	-02595	-02790	-03093	-03105	-03228	$\stackrel{.03101}{.03002}$	-03074	.02762 .02691	$\cdot \cdot 02610$	-02060
24 25	-02067	-02597	-02653	-02942	-02977	-03088	-02982	-03073	-03125	$\cdot 02603$	-02658	- 01903
26	-01912	-25888	$\cdot 02592$	$\cdot 02769$	-03095	-03147	-02975	$\cdot 02982$	-03089	$\bigcirc .02568$	-02572	-02108
27	-02291	$\cdot 02572$	-02520	-02718	-03123	-03123	$\cdot 02871$	$\cdot 02911$	-03060	-02414	-02557	-02204
28	-02500	-02470	$\cdot 02624$	-02809	-03246	-03108	$\cdot 03007$	$\cdot 02882$	-02993	$\cdot 02410$	-02647	$\cdot 02176$
29	-02655		-0263I	-02881	-03013	-03075	-03162	$\cdot 02873$	-02957	-02407	-02619	-02189
30	-02678		$\cdot .02547$	-02888	$\begin{array}{r}\cdot 02988 \\ \cdot \\ - \\ \hline\end{array}$	-03006	-.03153	.02897	-02934	.02294 .02136	'02660	.02199 .02195
31			-02562		-03130			-2793				-299

Table X.-Daily Means of Readings (usually eight on each Day) of the Thermometer placed within the box inclosing the Vertical Force Magnetometer, for each Astronomical Day.

1881.												
$\begin{aligned} & \text { Days of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	January.	February.	March.	A pril.	May.	June.	July.	August.	September.	October.	November.	December.
${ }_{\text {d }}$	$6 \stackrel{0}{\circ} \cdot 5$	$5{ }^{\circ} \cdot 8$	$57^{\circ} 4$	$6^{\circ} \cdot 8$	$63^{\circ} \mathrm{O}$	$68^{\circ} \cdot 9$	$65^{\circ} 7$	$65^{\circ} \cdot 4$	$63 \cdot 3$	$63^{\circ} 9$	58.5	$6{ }^{\circ} \cdot$
1	6i.6	$61 \cdot 3$	59.6	59.6	$63 \cdot 1$	$68 \cdot 9$	$66 \cdot 2$	$65 \cdot 7$	64°	$63 \cdot 0$	$60 \cdot 3$	$63 \cdot 8$
3	61.5	$63 \cdot 2$	59.6	$58 \cdot 8$	$62 \cdot 2$	$69^{\circ} 4$	$67 \cdot 2$	$65 \cdot 9$	$64^{\circ} 4$	$63 \cdot 6$	63.2	$63 \cdot 2$
4	$61 \cdot 2$	$63 \cdot 1$	$60 \cdot 8$	$60 \cdot 5$	$62 \cdot 8$	68.9	69.3	$67 \cdot 2$	$64^{\circ} 7$	$63 \cdot 5$	$65 \cdot 1$	$62 \cdot 5$
5	59.5	$61^{\circ} \mathrm{O}$	62.4	$61 \cdot 3$	$63 \cdot 8$	$65 \cdot 6$	$70 \cdot 3$	68.0	$65 \cdot 1$	$62 \cdot 7$	$65 \cdot 3$	62.6
6	$59 \cdot 0$	$58 \cdot 7$ $58 \cdot 3$	$62 \cdot 5$	$60 \cdot 9$ 6.9	$65 \cdot 5$ $65 \cdot 1$	$64 \cdot 6$ $63 \cdot 4$	$67 \cdot 6$ 64.6	$67 \cdot 0$ 66.6	$65 \cdot 2$ 65%	$64^{\circ} 4$ 650	64.6 64.1	62.4 63.3
7	$59 \cdot 8$ $60 \cdot 2$	$58 \cdot 3$ $60 \cdot 1$	$61 \cdot 7$ $60 \cdot 7$	$61 \cdot 1$ 62.3	$65 \cdot 1$ 64.2	63.4 63.3	64.6 64.6	$66 \cdot 6$ $65 \cdot 8$	$65 \cdot 2$ $65 \cdot 8$	65° 6 6	64.1 64.4	$63 \cdot 3$ $63 \cdot 3$
8	$60 \cdot 2$ $60 \cdot 3$	601 614	61.5	63.2	$62 \cdot 8$	$63 \cdot 1$	66.2	64.4	$65 \cdot 7$	$63 \cdot 6$	$63 \cdot 8$	$63 \cdot 2$
10	$60 \cdot 1$	$6 \mathrm{I} \cdot \mathrm{4}$	$62 \cdot 5$	63.4	61.6	$63 \cdot$	67.5	$64: 2$	65°	$64^{\circ} 3$	$64^{\circ} 3$	62.4
11	$59 \cdot 6$	$59 \cdot 8$	$62 \cdot 9$	63.4	$62 \cdot 2$	$64 \cdot 3$	68.7	$64^{\circ} 1$	64.9	$65 \cdot 1$	64.8	62.0 61.8
12	58.4	$59^{\circ} 9$	61.6	$63 \cdot 5$ $63 \cdot 7$	63.5	$65 \cdot 2$ 64.6	69.6 69.8	64.3 64.0		64.7 64.2	64.6 64.6	$61 \cdot 8$ 61.1
13	$55 \cdot 2$ $53 \cdot 8$	$60 \cdot 0$ $60 \cdot 6$	60% 60.6	$63 \cdot 7$ 63.6	$64 \cdot 7$ $65 \cdot 8$	64.6 64.3	69.8 $70 \cdot 9$	64. 63	95%	63.4	64.7	62.0
14	55*	$60 \cdot 6$ 61.1	60% 61.0	$63 \cdot 1$	$65 \cdot 1$	64.9	71.8	$64^{\circ} 4$	65°	$61 \cdot 7$	63.6	$62 \cdot 0$
16	$53 \cdot 3$	$60 \cdot 8$	$61 \cdot 3$	$63 \cdot 6$	64.4	$65 \cdot 8$	71.8	$65 \cdot 8$	$64^{\circ} 7$	$60^{\circ} 9$	$63 \cdot 1$	$61 \cdot 6$
17	$52 \cdot 4$	$60 \cdot 9$	$6 \mathrm{I} \cdot 3$	$63 \cdot 8$	$63 \cdot 9$	$66 \cdot 4$	$70^{\circ} 9$	65.4	$65^{\circ} 8$	$61^{\circ} \mathrm{O}$	$63 \cdot 2$ $63 \cdot 2$	$61 \cdot 1$
18	$53 \cdot 3$	$62 \cdot 2$	$6 \mathrm{Cr} \cdot 8$	$63 \cdot 6$	$64 \cdot 5$	$65 \cdot 3$	71.2 71.2	$65 \cdot 4$ $65 \cdot 3$	$66 \cdot 9$ 66.6	60% 610	$63 \cdot 2$ 63.0	60% 61.4
19	$54 \cdot 2$ $53 \cdot 2$	$60 \cdot 5$ $50 \cdot 8$	$61 \cdot 8$ $61 \cdot 2$	62.4 62.3	$63 \cdot 9$ 64.0	64.9 65.5	71.2 68.0	$65 \cdot 3$ $65 \cdot 1$	$66 \cdot 4$	610	63.2	614 61.3
20	$53 \cdot 2$ $51 \cdot 7$	$59 \cdot 8$ 59	61.2 $60 \cdot 1$	$62 \cdot 3$ $62 \cdot 1$	64° 65°	66°	$66 \cdot 7$	64.9	67.1	63.5	63.6	$61 \cdot 4$
22	52.6	58.9	$59 \cdot 8$	$62 \cdot 8$	$66 \cdot 2$	65.5	$65 \cdot 6$	$65 \cdot 2$	$65^{\circ} \cdot 4$	63.4	63.9	$60 \cdot 0$
23	54^{1}	59.7	60.7	63.0	$67 \cdot 1$	$65 \cdot 4$	$66 \cdot 8$	$65^{\circ} 9$	$65^{\circ} 9$	$63 \cdot 5$	63.2	57.5
24	53.9	$60 \cdot 1$	$60 \cdot 8$		$66 \cdot 3$	$65 \cdot 3$	$66 \cdot 1$ 6.3	$65 \cdot$ $65 \cdot 6$	$67 \cdot 2$ $66 \cdot 7$	$63 \cdot 2$ 62.3	$63 \cdot 3$ $63 \cdot 5$	$56 \cdot 1$ $56 \cdot 4$
25	51.5	$60 \cdot 1$	$60 \cdot 5$ $60 \cdot 6$	64.4 62.6	$66 \cdot 4$ $66 \cdot 9$	64.9 65.5	64° 64.0	$65 \cdot 6$ $65 \cdot 1$	66**	62. 62	63.5 62.4	58.6
26	$52 \cdot 2$ 56.4	$60 \cdot 0$ 50.5	$60 \cdot 6$ 50.8	62.6 62.6	$66 \cdot 9$ $67 \cdot 3$	$65 \cdot 5$ $65 \cdot 6$	$64{ }^{\circ}$ 634	$63 \cdot 7$	$65 \cdot 8$	60.5	62.5	59.6
27 28	56.4 58.8	59.8 58.8	$50 \cdot 8$ 60	63.1	68.3	$65 \cdot 6$	64:6	63.6	$65 \cdot 2$	$60 \cdot 4$	$63 \cdot 5$	$59 \cdot 3$
29	$60 \cdot 8$		$61 \cdot 3$	$63 \cdot 5$	$66 \cdot 5$	$65 \cdot 6$	$66 \cdot 2$	$63 \cdot 9$	64.7	$60^{\circ} 4$	$63 \cdot 3$	$59 \cdot 6$
30	$60 \cdot 1$		$60 \cdot 3$ $60 \cdot 5$	$63 \cdot 8$	$66 \cdot 6$ 68.3	65*	66% 65%	64° 63	64.5	59.2 57.5	$63 \cdot 9$	59.9 59.7
31												

Table XI.—Mean Monthly Determination of the Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant (0.96000 nearly), uncorrected for Temperature, at every Hour of the Dar; obtained by taking the Mean of all the Determinations at the same. Hour of the Day through each Month.

1881.												
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
n	$0 \cdot 02331$	0.02624	$0 \cdot 02591$	0.02672	$0 \cdot 02834$	-003074	$\bigcirc \cdot 03244$	-02968	-0.02977	$0 \cdot 02629$	$\bigcirc \cdot 02639$	0.02366
1	-02352	-02641	-02616	$\cdot 02698$	$\cdot 02874$	-03115	-03285	-03008	-03008	-0265ı	-02663	$\cdot 02388$
2	-02369	$\cdot{ }^{-2654}+$	-02644	$\cdot 02730$	-02911	-03155	-03326	-03042	-03030	-02671	$\cdot 02684$	$\cdot 02407$
3	-02380	-02665	$\cdot \cdot 02675$	$\cdot 02757$	$\cdot \cdot 2939$	-03191	-0.3360	-03075	-03051	$\cdot 02692$	-02700	$\cdot 02419$
4	$\bullet 02388$	$\cdot{ }^{02675}$	-02698	${ }^{-02776}$	$\cdot 02967$	-03223	-03388	-03099	-03069	-02708	-02702	$\cdot 02427$
5	-02403	$\cdot{ }^{\circ} 2678$	-02713	${ }^{-} 2797$	$\cdot 02987$	-03243	-03398	-03112	-03085	$\cdot 02711$	-02708	$\cdot{ }^{-2431}$
6	-02412	$\cdot 02580$	$\cdot 02719$	$\cdot 02806$	-02996	-03256	-03408	-03115	-03093	$\cdot 02718$	-02709	- 22435
7	$\cdot 22414$	-02680	-02722	$\cdot 02809$	-02997	-03258	-03414	-03116	-03100	$\cdot 02723$	-02710	${ }^{-} 2^{2} 3^{3} 4$
8	$\cdot 02410$	$\cdot{ }^{-2672}$	$\cdot 02715$	$\cdot 02814$	-02993	-03256	$\cdot 03415$	${ }^{\circ} \mathrm{O} 3122$	-03106	- 02720	-02707	${ }^{\cdot} 22428$
9	$\cdot 02401$	$\cdot 02654$	-02693	$\cdot 02806$	$\cdot 02982$	-03248	-03414	-03117	-03100	-22715	-02700	$\cdot 02415$
10	$\cdot 02395$	$\cdot 02646$	$\cdot 02687$	-02794	-02970	${ }^{\circ} \mathrm{O} 232$	-03396	-03106	-03093	-02708	-02694	${ }^{\circ} 22401$
11	-02399	$\cdot 02651$	$\cdot 02694$	-02800	-02966	-03211	-03377	-03095	-03088	$\cdot 2701$	-02694	$\cdot{ }^{-2397}$
12	-02395	$\cdot 02654$	-02696	-02805	-02955	-03180	-03356	-03082	-03080	-02695	-02690	-02393
13	-02395	-02653	-02692	-02797	$\cdot 02939$	-03145	-03325	-03065	-03064	-22680	-2680	-02377
14	-02389	-02649	-02685	-02786	-02920	-03117	-03302	-030.50	- 03050	-2666	-02667	-02366
15	-02386	$\cdot 02644$	$\cdot 22672$	-02771	-02903	-03093	-03283	-03033	-03042	-02653	-02658	-02359
16	-02380	-02640	-02662	$\cdot 02760$	$\cdot 02886$	-03076	-03268	-03018	-03031	- 02644	-02652	$\cdot 02350$
17	$\cdot 02372$	-02633	-02657	${ }^{\circ} 02748$	$\cdot 02871$	-03062	-03253	-03005	$\bullet 03023$	-2633	-26645	${ }^{\circ} \mathrm{O} 348$
18	-02363	-02628	-02650	-02740	-02855	-03048	-03236	-02994	-03018	-02628	-02643	$\cdot 02344$
19	-02360	-02629	-02651	$\cdot 02731$	$\cdot 02844$	-03042	-03230	-02982	-03012	-02629	-02647	$\cdot{ }^{\circ} 2343$
20	-02352	$\cdot 02631$	$\cdot 02648$	$\cdot 02718$	$\cdot 02834$	-03038	-03225	- 22969	-03001	-02622	- 02650	$\cdot 02345$
21	$\cdot 02343$	-02625	${ }^{-02637}$	$\cdot 02702$	$\cdot{ }^{-2831}$	-03037	-03225	-02955	-02985	-02608	-22653	${ }^{-} 22343$
22	$\cdot 02332$	$\cdot 02613$	-02612	-02682	$\cdot 02828$	-03036	-03224	-02947	-02971	-22588	-02648	${ }^{\circ} \mathrm{O} 2341$
23	$\cdot 02321$	$\cdot 02605$	$\cdot 02593$	-02663	$\cdot 02824$	-03041	-03223	-02943	-02963	$\cdot 02577$	-02647	${ }^{\circ} \mathrm{O} 339$

Table XiI.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Vertical Force Magnetometer, at each of the ordinary Hours of Observation.

Greenwich Magnetical and Meteorological Observations, 1881.

Table XIII.

I881.

The unit adopted in column 3 is the Millimètre-Milligramme-Second Unit. To express the forces on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10 , equivalent to shifting the decimal point one step towards the left.
The value $0 \cdot 96000$ of Vertical Force corresponds to $4^{\bullet} 19889$ of Gauss's Unit on the Metrical (Millimètre-Milligramme-Second) system, and to 0.41989 on the C.G.S. system.

Commencing with the month of June a different value of the time of vibration of the magnet in the vertical plane was adopted in the reduction of the observations.

Table XIV.-Mean, through the Range of Months, of the Monthly Mean Determinations of the Diurnal Ineqlalities of Declination, Horizontal Force, and Vertical Force, for the Year i88i.
(The Results for Horizontal Force and Vertical Force are not corrected for Temperature.)

January to December.

The unit adopted in columns 3, 5 , and η is the Millimètre-Milligramme-Second Unit. To express the inequalities on the Centimètre-Gramine-Second (C.G.S.) system, the numbers must be divided by 10 , equivalent to shifting the decimal point one step towards the left.

ROẎAL OBSERVATORY, GREENWICH.

INDICATIONS of

M. A GNETOMETERS

ON THREE DAYS OF GREAT MAGNETIC DISTURBANCE.
1881.

	Western Declination.			Horizontal Force(diminished by a Constant) uncorrected for			Vertical Force Constant) a corrected for Temperature.			Western Declination.			Horizontal Force (diminished by a Constant) uncorrected for Temperature.			Vertical Force(diminished by a Constant) uncorrected for Temperature.	
Jan. 31			31			Jan. 3 I			J								
$\begin{array}{ll} \mathrm{h} & \mathrm{~m} \\ 0 . & 0 \end{array}$	18.32. ${ }^{\prime}{ }^{\prime \prime}{ }^{\prime \prime}$		$\begin{array}{ll}\text { b } & \text { m } \\ \mathrm{o} . & 0\end{array}$	- 1248	2252	$\begin{array}{lll}\text { h } & \mathrm{m} \\ \mathrm{o} & 0 \\ 0\end{array}$	-0262	46	7.30	$\stackrel{\circ}{17.56 .310}$	-0297	h. 7 7 15	-1202	$\cdot 2170$	II. $4^{\text {m }}$	-0267	1168
-. 8	30.50	-0477	o. 2	-1246	- 2249	0. 30	-0265	-1159	7.34	18. 1.20	-0322	7.20	$\cdot 1233$	$\cdot 2225$	11.54	-0268	-1172
o. 14	31.55	-0483	0. 29	-1269	-2290	0. 45	-0265	$\cdot \mathrm{-} 159$	7.37	17.57.25	-0301	7.30	-1186	$\cdot 2141$	12. 5	-0266	-1163
-. 19	3 r .0	$\cdot 0478$	0.46	-1250	$\cdot 2256$	o. 57	-0267	-1168	7.43	18. 3.55	-0336	7.39	122	$\cdot 2213$	3	-0268	-1172
0.33	36.30	- 0507	o. 54	-1257	$\cdot 2269$	I. 8	- 0267	-1168	7.46	17.53. ○	-0278	$7 \cdot 46$	-1182	$\cdot 2134$	12.29:	-0256	-1119
0.40	37. 5	-0509	1. 6	-1246	-2249	1. 22	-0270	-1181	8. 6	18.39. 25	-0522	7.50	- 1205	$\cdot 2175$	12.45	0266	-1163
0. 47	36. 5	-0504	. 15	$\cdot 1252$	- 2260	1. 37	-0269	$\cdot 1176$	8. 8	34.10	$\cdot 0495$	7.52	1201	$\cdot 2168$	13.15	-0270	-1181
o. 57	3 g .50	-0524	1. 19	$\cdot 1248$	-2252	I. 48	-0274	- 1198	8.12	44.50	- 0550	7.58	$\cdot 1231$	- 2222	13. 39	-0271	-1185
1. 6	36.40	-0508	1.23	-1250	. 2256	2. 0	-0271	-1185	8. 25	7. 0	-0352	8. 5	$\cdot 1195$	$\cdot 2157$	13.53	$\cdot 0272$	- 1190
1. 13	40. 0	$\cdot 0525$	1. 30	$\cdot 1243$	-2243	2.37	-0276	-1207	8.30	21. ○	-0425	8. 8	-1217	-2197	14. 12	-0271	-1185
1.18	39.15	$\cdot 0521$	I. 36	-1252	-2260	3. 5	-0283	-1238	8.38	9. 15	-0363	8. 14	$\cdot 1154$	- 2083	14. 28	$\cdot 0272$	-1190
I.	41.45	-0534	1.40	-1249	-2254	3. 13	-0283	- 1238	8.51	19. 0	-0415	8.24	-1193	$\cdot 2153$	15. 7	-0271	-1185
1. 36	37. 0	-0509	1. 50	$\cdot 1272$	-2296	3.56	-0309	$\cdot 1351$	9. 5	22.45	$\cdot 0435$	8.27	-1176	-2123	15. 25	$\cdot 0272$	-1190
1. 42	36. 15	-0505	2. 0	-1244	$\cdot 2245$	4. 5	-0304	-1329	9. 8	22. 0	$\cdot 0431$	8.32	-1196	-2159	16. 23	-0271	-1185
1.52	46. 0	- 0557	2.19	-1265	- 2283	4.12	-0305	$\cdot \mathrm{I} 334$	9.12	24. 5	-0441	8. 43	-1212	-2188	16.37	$\cdot 0272$	-1190
2. 6	37.55	-0514	2.36	-1261	-2276	4.26	-0317	$\cdot \mathrm{-} 387$	9.19	23.20	-0438	9. 4	-1225	. 2211	17.47	$\cdot 0272$	-1190
2.23	4 I .35	-0533	2.57	-1288	. 2324	4.34	-0320	$\cdot 1400$	9.24	24.35	-0444	9. 6	1	- 22204	19. 7	-0274	-1198
2.30	41.50	-0534	3. 26	-1261	- 2276		(\dagger)		9.30	21.55	-0430	9.10	1	. 22	19.36	-0274	-1198
2. 38	38.40	-0519	3.31	-1267	- 2287	4.57	-0319	-1395	9.32	24. 0	-044 1	9. 14	-1223	- 22207	20. 7	-0275	-1203
2.45	39. 25	$\cdot 0522$	3. 36	$\cdot 1262$	-2278	5. 9	-0316	-1382	9.41	22. 20	$\cdot 0433$	9.17	-1226	$\cdot 2213$	21. 50	-0272	-1190
3. 0	46.30	- 056	3. 49	1300	$\cdot 2347$	5.16	-0320	- 1400	9.45	24. 25	-0443	9.25	- 1219	-2200	23. 22	00271	-1185
3. 22	40. 5	$\cdot 0525$	3.55	-1222	-2206	5. 25	-0307	-1343	9. 48	21.20	-0427	9.30 9.38	-1226 $\cdot 1219$	$\cdot 2213$ $\cdot 2200$		(\dagger)	
3.36	42.55	-0541	3.57	$\cdot 1227$ -1210	-2215	5.33	-0303	-1325	9.54	23.25	-0438	9.38	+1219 -1227	$\cdot 2200$ $\cdot 2215$			
3. 44	33. 15	-0489	$4 \cdot 1$	-1210	$\cdot 2184$	5. 43	-0309	-1351	10. 6	23. 0	$\cdot 0436$	9.40 9.45	$\begin{array}{r}+1227 \\ \cdot 1218 \\ \hline 12\end{array}$	-2215			
3.50	48. 25	- 0569	4.10	$\cdot 1260$	$\cdot 2274$	5.50	-0308	-1347	10. 12	21.20	-0427	9.45 9.55	$\cdot 1218$ $\cdot 1232$	$\cdot 2198$ $\cdot 2224$			
3.56	32. 0	-0483	4.15	-1248	-2252	6. 0	-0320	$\cdot 1400$	10.17	21.40	-0429	9. 55	$\xrightarrow{-1232} \times$	-2224			
$\begin{array}{r}3.58 \\ 4 . \\ \hline\end{array}$	32.45	-0487	4. 18	60	$\cdot 2274$		(\dagger)		10.28	18.50	.0414		-1233	.2225			
4. 4 4.15	25. 25	-0448	4.22	-1241	- 2240	6. 43	-0284	-1242 $\cdot 1356$	10.30 10.44	18.35 16.50	-0418	10.25 10.37	-1233	-2225			
4.15 4.17	42.50 38.40	-0540	4.24 4.26	+1245 -1240	$\cdot 2247$ -2238	6.47 6.50	-0310	+1356 $\cdot 1325$	10. 44 I 1.4	16.50 23.25	-0403	10.37 II. 0	$\cdot 1220$ $\cdot 1223$	$\cdot 2202$ $\cdot 2207$ 224			
4.17 4.19	38.40 42.45	-05I9	4.26 4.35	-1240 -1269	- 22238	6.50 6.58	-0303	-1325 $\cdot 1365$	$\begin{array}{lll}\text { III. } & \\ \text { II. } & 5 \\ \text { II }\end{array}$	23.25 22.55	-0438	11. 11.25	-1225	. 2247			
4.32	3 I .30	-0481	4.39	-1243	-2243	7. 4	-0296	-1294	II. 13	25. \bigcirc	-0446	II. 46	-1231	- 2222			
4.39	40.50	-0529	4.46	-1264	-2281	7.17	-0316	-1382	II. 24	22.30	-0434	II. 59	-1246	2249			
4.45	28.35	-0465	4.50	${ }_{-} \cdot 1234$	$\cdot 2227$	7.29	-0335	-1465	11.30	25. 5	-0446	12. 7	-1233 -1271	$\cdot 2225$ $\cdot 2294$			
4.50	35. 15	-0500	4.59 5.12	-1252	-2260	7.37	-0295	$\cdot 1290$ $\cdot 1299$	I1. 48	19.15	-0416	12.15 12.34	+1271 $\cdot 1226$	$\cdot 2294$ $\cdot 2213$			
4. 58	28. 5	-0462	5. 12	-1210	-2184 -2254	7.43	-0297	-1299	II. 53	17.40 28.35	-0408						
5. 10 5.20	39.20 19.0	-0522	5.24 5.30	121248 -1231 -1318	.2252 .2222	7.52 8.6	$\cdot 0279$ $\cdot 0253$	-1220 -1106	12. i2. i2	28.35 42.55	$O 046$	12.46 12.50	$\cdot 1258$ $\cdot 1263$	$\cdot 2270$ $\cdot 2279$			
5.32	33. 5	-0488	5. 47	-1313	-2370	8. 8	-0266	-1163	12. 42	21.35	-0428	12.55	-1259	$\cdot 2272$			
5.42	18.26.25	-0454	5. 56	- 1245	-2247	8. 12	-0262	-1146	12.55	23.20	-0438	12.57	-1264	-2281			
5.55	19.7. 25	. 0669	5.59	-1260	$\cdot 2274$	8. 18	-0276	-1207	13. 9	19.35	-0418	13. 8	-1256	$\cdot 2267$			
6. 7	18.25.30	-0449	6. 5	-1241	- 2240	8. 26	-0264	-1154	13. 20	20. 0	-0420	13. 15	-1257	$\cdot 2269$			
6. 12	30. 45	-0477	6. 8	-1249	$\cdot 2254$	8. 36	-0281	-1229	13.34	23.30	-0439	13.25 13.38	-1253	-226I			
6. 16	23.50	-0440	6.15	- 1228	-2216	8.38	-0280	$\cdot 1225$	13.40	22. 0	$\cdot 0431$	13.38 13.46	$\cdot 1241$ \cdot \cdot 1247	- 2240			
6.28	35.25	-050I	6.24	-1260	-2274	8.46	-0282	-1234	13.54	26.40	$\stackrel{.0456}{\cdot 0453}$	13.46 14.14	$\cdot 1247$ $\cdot 1236$	$\stackrel{\cdot 2251}{\cdot 2231}$			
6.36	14. 25	-0391	6. 26	-1256	$\cdot 2267$	9. 5	-0281	-1229 -1203	14. 1	26. 10	-0453	14.14 14.19	$\cdot 1236$ $\cdot 1242$	$\cdot 2231$ $\cdot 2242$			
6.45 6.47	29.35	-0470	6.36	-1339	- 2417	9. 23	.0275	-1203	14. 6	27. 0	-0457	14.19 14.21	$\cdot 1242$ $\cdot 1238$ $\cdot 124$	$\cdot 2242$ $\cdot 2234$			
6. 47	19. 0	-0415	6. 4^{6}	+1156 -1238	- 2087	9.30	.0276	-1207	14.12	25.45 26.40	-.0450	14.21 14.28	$\cdot 1238$ $\cdot 1244$	$\begin{aligned} & 2234 \\ & .2245 \end{aligned}$			
6.58	23. 15	-0437	6.54 6.56	$\begin{array}{r}-1238 \\ -1224 \\ \hline\end{array}$.2234 .2209	9.488 10. 5	.0273	$\cdot 1194$ -1212	14.17 14.24	26.40 26.0	-0456	14.28 14.42	-1244	-2243			
7. 8	50.40	-0582	6.59	-12.44	-2245	10.36	-0274	-1198	14.32	27. 10	$\cdot 0458$	14.49	-1240	$\cdot 2238$			
7.10	45. 10	- 0552	7. 6	-1205	$\cdot 2175$	Io. 59	$\cdot 0275$	-1203	14.38	25.55	-0451	15. 8	+1243 $\cdot 1238$	$\cdot 2243$ $\cdot 2234$			
7.12	46.55	-0562	7.11	-1219	. 2200	11. 16	-0274	- 1198	14.48	26.35	$\cdot 0455$	15.29	-1238	-2234			

The indications are taken from the sheets of the Photographic Record. The Symbol ${ }^{* * *}$ denotes that the magnet has been generally in a state of slight agitation, and the Symbol (\dagger) that the register has failed between the preceding and following readings.
For the Horizontal and Vertical Forces, increasing readings denote increasing forces.
The constant by which the values of Horizontal Force are diminished is 0.8600 nearly, as expressed in parts of the whole Horizontal Force, equivalent to $1 \cdot 5523$ in terms of Gauss's Unit measured on the Metrical (Millimètre-Milligramme-Second) system. The corresponding constant for Vertical Force is $0 \cdot 9600$ nearly, equivalent to $4^{\prime} 1989$ in terms of Gauss's Unit. To express the Metrical measures on the C.G.S. (Centimètre-Gramme-Second) system, the numbers must be divided by 10 , equivalent to shifting the decimal point one step towards the left.
January 3I. The spot of light for Vertical Force was off the sheet in the direction of increasing force from $4^{\mathrm{h}} .34^{\mathrm{m}}$. till $4^{\mathrm{h}} .57^{\mathrm{m}}$., and again from $6^{\mathrm{h}} .0^{\mathrm{m}}$. till $6^{\mathrm{h}} .43^{\mathrm{m}}$. : the value at $7^{\mathrm{h}} .29^{\mathrm{m}}$. for Vertical Force has been inferred.

	Western Declination.			Horizontal Force Constant) uncorrected for			Vertical Force (diminished by a Constant) uncorrected for memperature.			Western Declination.			Horizontal Force (diminished by a Constant) Temperature ature.			Vertical Force (diminished by a Constant) Temperature.										
Sept. 12			Sept. 12			Sept. 12						Sept. 12														
16. ${ }^{\text {m }}$	18.17. ${ }^{\circ} 3^{\prime \prime}$	0407	${ }_{13 .}{ }^{\text {m }} 36$	-1393	-2514	23. ${ }^{\text {h }}{ }^{\text {m }}$	-0306	${ }^{1} 1338$				22. ${ }_{\text {h }}{ }^{\text {m/ }}$	-1317.	-2378												
16. 18	17.20	$\cdot 0406$	13.54	-1379	$\cdot 2489$	23. 27	-0305	$\cdot 1334$				22. 12	-1330	-2401												
16.22	16. 5	-0399	13.58	$\cdot 1382$	-2495	23. 42	-0306	$\cdot 1338$				22. 17	-1323	- 2388												
16.29	17.30	-0407	14. 3	-1378	- 2487	23. 59	-0304	-1329				22.24	-1332	-2405												
16.35	16.35	$\cdot 0402$	14.22	$\cdot 1402$	-2531							22.27	1328	-2397												
16.40	18.20	$\cdot 0412$	14.39	-1392	$\cdot 2513$							22. 42	-1364	$\cdot 2462$												
16. 48	17.20	-0406	14.45	-1402	-2531							22.47	$\cdot 1359$	$\cdot 2453$												
16. 53	18.25	$\cdot 0412$	14.49	- 1396	$\cdot 2520$							22.50	- 1364	- 2462												
16.56	17.30	$\cdot 0407$	15. 3	$\cdot 1408$	$\cdot 2541$							22.52	$\cdot 1357$	$\cdot 2450$												
17.13	21.20	$\cdot 0427$	15. 15	-1404	$\cdot 2534$							23. 3	-1382	${ }^{2} 2495$												
17.25	21. 5	-0425	15.21	-1408	-2541							23. 5	$\cdot 1351$	$\cdot 2439$												
17.41	29. 0	$\cdot 0467$	15. 25	-1405	- 2536							23.20	-1386	$\cdot 2502$												
17.47	25.30	-0449	15. 28	-1408	$\cdot 2541$							23.29	-1374	$\cdot 2480$												
17.54	27.50	-0461	15.38	-1402	$\cdot 2531$							23.46	- I397	$\cdot 2522$												
17.56	26.25	$\cdot 0454$	15.46	-1406	- 2538							23. 50	-1390	- 2509												
18. 4	31.45	$\cdot 0482$	15. 53	-1398	- 2523							23.59	-1405	-2536												
18. 8	30.45	$\cdot 0477$	15.55	-1405	$\cdot 2536$																					
18.14	39.25	-0522	15.59	-1399	- 2525				Sept. 13			Sept. 13			Sept. 13											
18.19	36. 15	- 0505	16. 7	- 1403	$\cdot 2532$				o. o	18.29.30	-0470	o. o	-1405	$\cdot 2536$	o. o	-0304	$\cdot 1329$									
18.27	42. 10	-0537	16. 45	- 396	$\cdot 2520$				-. 9	28.25	-0464	0. 1	-1392	$\cdot 25 \mathrm{I} 3$	1.	-0303	-1325									
18.40	36.45	- 0508	16.48	-1400	$\cdot 2527$				-. 18	29.30	-0470	0. 19	-1398	-2523	1. 6	-0307	$\cdot 134.3$									
19. 1	59.10	-0626	16.54	-1396	:2520				0. 24	28.40	-0466	0. 26	- 1394	$\cdot 2516$	I. 18	-0304	-1329									
19. 7	55.55	-0609	16.59	-1399	$\cdot 2525$				0.30	29. 30	-0470	0. 29	- 1398	$\cdot 2523$	1. 33	-0308	-1347									
19. 12	59.5	-0625	17.10	-1396	- 2520				0.37	29. 5	$\cdot 0467$	0.36	-1392	$\cdot 2513$	1.36	-0306	-1338									
19.24	40.45	-0529	17. 26	-1414	$\cdot 2552$				0. 47	30.30	-0476	0. 40	- 1397	- 2522	I. 44	-0310	-1356									
19.33	44. 20	-0548	17.52	-1339	-2417				o. 56	30. 40	-0477	o. 44	-1388	$\cdot 2505$	1. 52	-0305	$\cdot 1334$									
19.43	36.30	-0507	17.57	-1346	-2430				I. O	30. 5	$\cdot 0473$	0. 48	-1398	$\cdot 2523$	2. 3	-0310	-1356									
19.55	54.40	-0603	18. 6	-1332	$\cdot 2405$				1. 10	36.20	-0506	o. 56	-1388	$\cdot 2505$	2. 6	-0310	-1356									
20. 5	44. 35	-0549	18. 10	${ }_{-13}{ }^{1} 42$	$\cdot 2423$				I. 18	33. 40	-0492	I. 10	-1432 -1375	$\cdot 2585$	2. 13	-0313	- 1369									
20. 11	44.45	-0550	18. 15	-1329	$\cdot 2399$				1. 22	33.35	-0491	1.27	$\cdot 1375$	$\cdot 2482$	2.30	-0310	-1356									
20.20	55.30	-0607	18. 19	$\cdot 1347$	-2432				1. 30	37.40	-0513	1.37	-1408	.2541	2.36	-0313	-1369									
20.26	52. ○	- 0588	18. 24	- I341	2421				I. 37	35.	-0499	1. 40	-1379	$\cdot 2489$	2. 46	-0311	-1360									
20.30	53. ○	$\cdot 0593$	18.27	-1348	-2433				I. 45	40. 0	-0525	1. 46	$\cdot 1401$	-2529	3. 3	-03ı3	-1369									
20.40	44. 20	-0548	18.37	-1308	-2361				1. 53	34.5	-0494	I. 48	$\cdot 1389$	$\cdot 2507$	3. 36	-0310	-1356									
20.47	42. 10	-0537	18.49	-1288	-2324				2. 3	38. 25	-0517	1. 50	$\cdot 1410$	$\cdot 2545$	3.40	-0312	-1365									
20.50	43. ○	-0541	19. 2	-1314	$\cdot 2372$				2. 10	37.30	-0512	1.57	-1361	$\cdot 2457$	3.46	-0311	-1360									
21. ○	41. 0	-0530	19.10	- 1280	- 2310				2.21	46. 25	-0559	2. 6	$\cdot 1376$	- 2484	3.50	-0315	-1378									
21. 9	43.50	-0545	19.15	-1287	- 2323				2. 32	39.20	-0522	2. 14	-1378	$\cdot 2487$	3.57	-0311	-1360									
21.10	4 I .55	-0535	19. 18	- 1272	$\cdot 2296$				2.38	38.40	- 0519	2.17	-1393	$\cdot 2514$	4. 8	-0321	-1404									
21.29	48.50	$\cdot 0571$	19. 25	$\cdot 1287$	-2323				2.52	3 I .40	$\cdot 0482$	2.20	-1386	-2502	4.16	-0318	$\cdot \mathrm{I} 391$									
21.47	42.40	-0540	19.30	$\cdot 1276$	$\cdot 2303$				3. 8	30. 5	$\cdot 0473$	2. 25	-1391	-2511	4.30	-0320	$\cdot 1400$									
22. 5	3 g .30	-0523	19.32	-1285	$\cdot 2319$				3. 24	29.30	-0470	2.35	$\cdot 1342$ $\cdot 1356$	$\cdot 2423$	4. 36	-0319	-1395									
22.10	40.35	-0528	19.39	-1254	-2263				3.32	27.25	-0459	2.40	-1356	- 2448	5. 18	-0332	$1{ }^{1} 452$									
22.35	33.40	-0492	19.54	-1306	- 2358				3.37	28.20	-0464	2. 49	- 1335	-2410	5. 27	-0332	-1452									
	37. 20	-05II	20. 3	- 1274	$\cdot 2299$				3. 45	28. 10	-0463	3. 6	-1354	- 2444	6. 3	$\cdot 0341$	-1491									
22.55	33.55	-0493		(\dagger)					3. 52	33. 0	-0488	3.22	-1362	$\cdot 2459$	6. 15	-0338	-1478									
23. 2	36. 0	-0504	20. 16	- 1274	- 2299				3.57	29. 0	-0467	3. 29	-1371	-2475	6. 18	-0339	$\cdot 1482$									
23. 8	32.50	-0487	20.22	-1292	$\cdot 2332$				4. 7	36.30	-0507	3. 37	-1358	$\cdot 2451$	6. 31	-0335	$\cdot 1465$									
23. 16	32. 0	$\cdot 0483$	20.31	- 1280	$\cdot 2310$				4. 13	32.45	-0487	3. 48	-1376	$\cdot 2484$	6. 40	-0337	-1474									
23. 22	33.25	-0490	20. 47	-1311	$\cdot 2367$				4. 26	37.50	-0513	3.50	$\cdot 1371$	$\cdot 2475$	6. 48	-0333	-1456									
$\text { 23. } 37$	30. ${ }^{\circ}$	-0473	21. 2	- 1298	$\cdot 2342$				4.32	36.30	$\cdot 0507$	3. 56	-1413	$\cdot 2550$	6. 53	-0335	-1465									
23.59	29.35	$\cdot 0470$	5	****					4.40	37.45	-05ı3	3.59	-1379	$\stackrel{-2489}{ }$	6.57	\bigcirc	$\cdot 1452$									
			21.54	-1324	-2390				4.43	37. 5	-0509	4.16	-1444	-2606	7. 3	.0334	-1460									
The indications are taken from the sheets of the Photographic Record. The Symbol *** denotes that the magnet has been generally in a state of slight agitation, and the Symbol (\dagger) that the register has failed between the preceding and following readings. For the Horizontal and Vertical Forces, increasing readings denote increasing forces. The constant by which the values of Horizontal Force are diminished is 0.8600 nearly, as expressed in parts of the whole Horizontal Force, equivalent to $1 \cdot 5523$ in terms of Gauss's Unit measured on the Metrical (Millimètre. Milligramme-Second) system. The corresponding constant for Vertical Force is 0.9600 nearly, equivalent to 4.1989 in terms of Gauss's Unit. To express the Metrical measures on the C.G.S. (Centimètre-Gramme-Second) system, the numbers must be divided by 10 , equivalent to shifting the decimal point one step towards the left.																										
September 12. The value at $19^{\mathrm{h}} \cdot 39^{\mathrm{m}}$. for Horizontal Force has been inferred: from $20^{\mathrm{h}} .3^{\mathrm{m}}$. till $\mathbf{2 0} 0^{\mathrm{h}} . \mathbf{1 6}^{\mathrm{m}}$. the Horizontal Force spot of light was off the sheet in the direction of decreasing force. September 13. The value for Western Declination at $6^{\mathrm{h}} .59^{\mathrm{m}}$. is somewhat uncertain on account of faintness of the photographic trace.																										

ROYAL OBSERVATORY, GREENWICH.
RESULTSOF
O B S E R V A T I O N SOF THE
MAGNETIC DIP.
1881.

Yearly Means of Magnetic Dip for each of the Needles, and General Mean for the Year 1881.

OBSERVATIONSor
DEFLEXION OFA MAGNETFOR
ABSOLUTE MEASUREOF
H O R I Z O N T A L F ORCE.

1881.

Abstract of the Observations of Deflexion of a Magnet for Absolute Measure of Horizontal Force.

$\begin{gathered} \text { Month and Day, } \\ 188 \mathrm{I} . \end{gathered}$	Distances of Centres of Magnets.	Temperature.	Observed Deflexion.	Mean of the Times of Vibration of Deflecting Magnet	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Vibrations. } \end{gathered}$	Temperature.	范
January 28	$\begin{aligned} & \text { f. } \\ & 1.0 \\ & 1.3 \end{aligned}$	$39 \cdot 6$	$\begin{array}{r} 10.47 .56 \\ 4.54 .2 \end{array}$	$\begin{aligned} & 5 \cdot 630 \\ & 5 \cdot 630 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{gathered} \circ \\ 38 \cdot 9 \\ 40 \cdot 1 \end{gathered}$	N
February 26	$\begin{aligned} & 1 \circ 0 \\ & 1.0 \end{aligned}$	$46 \cdot 8$	$\begin{array}{r} 10.47 .15 \\ 4.53 .39 \end{array}$	$\begin{aligned} & 5 \cdot 63 \mathrm{I} \\ & 5 \cdot 635 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 47^{\circ} 1 \\ & 48^{\circ} 9 \end{aligned}$	N
March $\quad 29$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$53 \cdot 1$	$\begin{array}{r} 10.45 .39 \\ 4.52 .46 \end{array}$	$\begin{aligned} & 5 \cdot 632 \\ & 5 \cdot 632 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 53 \cdot 4 \\ & 57 \cdot 8 \end{aligned}$	N
April 29	$\begin{aligned} & 1 \cdot 0 \\ & 1.0 \end{aligned}$	57.9	10.44 .49 4.52 .36	$\begin{aligned} & 5.635 \\ & 5.635 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58 \cdot 8 \\ & 59 \cdot 2 \end{aligned}$	N
May 3ı	$\begin{aligned} & 1 \circ 0 \\ & 1: 3 \end{aligned}$	$78 \cdot 9$	$\begin{array}{r} 10.41 .58 \\ 4.51 .14 \end{array}$	$\begin{aligned} & 5 \cdot 640 \\ & 5 \cdot 643 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 79.1 \\ 81.4 \end{array}$	N
June 30	$\begin{aligned} & 100 \\ & 1.0 \end{aligned}$	$73 \cdot 2$	$\begin{array}{r} 10.43 .12 \\ 4.5 \mathrm{I} .46 \end{array}$	$\begin{aligned} & 5 \cdot 634 \\ & 5.644 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 74 \cdot 9 \\ & 75 \cdot 5 \end{aligned}$	N
July 29	$\begin{aligned} & 1 \circ \\ & 10 \end{aligned}$	$73 \cdot 1$	$\begin{array}{r} 10.42 .11 \\ 4.5 \mathrm{I} .26 \end{array}$	$\begin{aligned} & 5 \cdot 638 \\ & 5 \cdot 643 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 73 \cdot 4 \\ & 74 \cdot 3 \end{aligned}$	N
August 31	$\begin{aligned} & 1.0 \\ & 1.4 \end{aligned}$	$59 \cdot 5$	$\begin{array}{r} 10.44 . \\ 4.52 . \\ 4 \end{array}$	$\begin{aligned} & 5 \cdot 645 \\ & 5 \cdot 639 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 59 \cdot 3 \\ & 59 \cdot 5 \end{aligned}$	N
September 27	$\begin{aligned} & 1 \circ 0 \\ & 1.3 \end{aligned}$	61.4	$\begin{array}{r} 10.43 .35 \\ 4.51 .52 \end{array}$	$\begin{aligned} & 5 \cdot 633 \\ & 5 \cdot 634 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58 \cdot 4 \\ & 64 \cdot 9 \end{aligned}$	N
October 29	$\begin{aligned} & 1 \circ \\ & 1.0 \end{aligned}$	$46 \cdot 3$	$\begin{array}{r} 10.44 .21 \\ 4.52 .25 \end{array}$	$\begin{aligned} & 5 \cdot 638 \\ & 5 \cdot 638 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 45 \cdot 1 \\ & 47 \cdot 4 \end{aligned}$	N
November 29	$\begin{aligned} & 1 \circ 0 \\ & 1.0 \end{aligned}$	$50 \cdot 4$	$10.44 .5 \mathrm{I}$ $4.52 .29$	$\begin{aligned} & 5 \cdot 648 \\ & 5 \cdot 643 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 53 \cdot 1 \\ & 5 \mathrm{I} \cdot 3 \end{aligned}$	N
December 23	$\begin{aligned} & 100 \\ & 1.3 \end{aligned}$	$36 \cdot 3$	$\begin{array}{r} 10.45 .30 \\ 4.52 .49 \end{array}$	$\begin{aligned} & 5 \cdot 645 \\ & 5 \cdot 640 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 36 \cdot 9 \\ & 38 \cdot 0 \end{aligned}$	N

The Deflecting Magnet is placed on the East side of the suspended Magnet, with its marked pole alternately E. and W., and it is placed on the West side with its pole alternately E. and W.; and the deflexion in the table above is the mean of the four deflexions observed in those positions of the magnets.

The lengths of r foot and $\mathrm{i} \cdot 3$ foot correspond to $304 \cdot 8$ and $396 \cdot 2$ millimètres respectively.
The initial N is that of Mr. Nash.
In the following calculations every observation is reduced to the temperature 35°.

Computation of the Values of Absolute Measure of Horizontal Force in the Year 1881.

The value of \mathbf{X} in column 10 is referred to the unit Foot-Grain-Second, and that in column 11 to the unit Millimètre-Milligramme-Second. To obtain X in the Centimètre-Gramme-Second (C.G.S.) unit, the value given in column II must be divided by 10 , equivalent to shifting the decimal point one step towards the left.

R E S U LTS

or

METEOROLOGICAL OBSERVATIONS.

1881.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in aud 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on January 7 and 8 for Air and Evaporation Temperatures depend partly on values inferred from eye-observations, on account of accidental loss of photographic register.
The values given in Columns $3,4,5,14$, and 15 , are derived from eye-readings of self-registering thermometers.
January 18. Violent snow-storm, with heavy gale of wind. The amount entered as rain (column 18) was estimated by afterwards ascertaining the average depth of snow on the ground, and making corresponding allowance.
The Electrometer was not in action from January 13 to 3 1.
The mean reading of the Barometer for the month was $29^{\text {in }}$. 712 , being $0^{\text {in }} \cdot 017$ lower than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $50^{\circ} \cdot 0$ on January 31; the lowest in the month was $12^{\circ} \cdot 7$ on January 17 ; and the range was $37^{\circ} \cdot 3$.
The mean of all the highest daily readings in the month was $36^{\circ} \cdot 2$, being $7^{\circ} \cdot \circ$ lower than the average for the 40 years, 1841-1880.
The mean of all the lowest daily readings in the month was $27^{\circ} \cdot 3$, being $6^{\circ}{ }_{3}$ lower than the average for the 40 years, 1841-1880.
The mean daily range was $8^{\circ} \cdot 9$, being $0^{\circ} \cdot 7$ less than the average for the 40 years, 1841-1880.
The mean for the month was $31^{\circ} \%$, being 7°. 1 lower than the average for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was $30^{\circ} \cdot 6$, being $6^{\circ} \cdot 8$ lower than
The moan Temperature of the Dew Point for the month was $28^{\circ} \cdot 0$, being $7^{\circ} \cdot 4$ lower than
The mean Degree of Humidity for the month was $86 \cdot 3$, being $1 \cdot \circ$ less than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 153$, being $o^{\text {in }} \cdot 054$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $1 \mathrm{gr} \cdot 8$, being ogr 6 less than
The mean Weight of a Cubic Foot of Air for the month was 5^{61} grains, being 9 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.8 .
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was $0 \cdot 12$. The maximum daily amount of Sunshine was 5.8 hours on January 21 .
The highest reading of the Solar Radiation Thermometer was $99^{\circ} \cdot 8$ on January 31; and the lowest reading of the Terrestrial Radiation Thermometer was $10^{\circ} \cdot 2$ on January 20.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $1 \cdot 1$; for the 6 hours ending 3 p.m., $0 \cdot 4$; and for the 6 hours ending 9 p.ru., $0 \cdot 2$.
The Proportions of Wind referred to the cardinal points were N. 10, E. 9, S. 6, and W. 6.
The Greatest Pressure of the Wind in the month was ${ }_{5}{ }^{1 \text { lbs }}{ }_{5}$ 號 the square foot on January 18. The mean daily Horizontal Movement of the Air for the month was 256 miles ; the greatest daily value was 860 miles on January 18 ; and the least daily value 68 miles on January 2 .
Rain fell on 9 days in the month, amounting to $i^{\text {th }} \cdot 663$, as measured by gauge No. 6 partly sunk below the ground; being $0^{\text {ta }} .409$ less than the average fall for the 40 years, 1841 - 1880 .

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Colamn 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on February 6 and 7 for Evaporation Temperature depend partly on values inferred from eye-observations, on account of accidental loss of photographic register.
The values given in Columns $3,4,5,14$, and 15 are derived from eye-readings of self-registering thermometers.
The Electrometer was not in action on February 1 .
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 661$, being $o^{\text {in }} \cdot 17 \mathrm{r}$ lower than the average for the 20 years, $1854-1873$.
I emperature of the Air.
The highest in the month was $54^{\circ} \cdot \mathrm{O}$ on February 3; the lowest in the month was $26^{\circ} \cdot 1$ on February 7 ; and the range was $27^{\circ} \cdot 9$.
The mean of all the highest daily readings in the month was $42^{\circ} \cdot 5$, being $3^{\circ} \cdot \circ$ lower than the average for the 40 years, 1841-1880.
The mean of all the lowest daily readings in the month was $33^{\circ} \cdot 5$, being $0^{\circ} .8$ lower than the average for the 40 years, 1841-1880.
The mean daily range was $9^{\circ} \cdot 0$, being $\mathbf{2}^{\circ} \cdot 1$ less than the average for the 40 years, 1841-1880.
The mean for the month was $3^{\circ} \cdot 0$, being $1^{\circ} \cdot 6$ lower than the average for the 20 years, 1849-1868.

MONTHandDAY,188r.	Wind as deduced from Self-registering Anemombters.						CLOUDS AND WEATHER.		
	Osler's.					$\begin{gathered} \text { Robins- } \\ \text { son's. } \end{gathered}$			
	General Direction.		Pressure on the Square Foot.			\square			
	A.M.	P.M.						А.М.	P.M.
			1bs.	lbs.	1bs.	miles.			
Feb. 1	WSW: SW		\bigcirc	$0 \cdot 0$	$0 \cdot 0$	131	Io, f	: r 0 , f	
2	SSE	SSW	$5 \cdot 0$	$0 \cdot 0$	$0 \cdot 2$	311		: 10, sc, oc.-th.-r	$\text { 10, th.-r }: v$
3	SSW	S : SSE	$2 \cdot 1$	$0 \cdot 0$	$\bigcirc \cdot 3$	368	10	: 10	9, se, m.-r \quad : $10, \mathrm{r}$
	SSE : S : SSW	SSW : SW	$2 \cdot 5$	$0 \cdot 0$	$0 \cdot 1$	364		: so, oc.-m.-r	10 : v : v, slt.-r
5	SW:W	WSW : NW	$7 \cdot 1$	$0 \cdot 0$	$\circ \cdot 9$	513	$\text { p. }-\mathrm{cl}$: p.-cl, shs.-r, glm	9,cu.-s,ci.-cu,shs.-r : 10 , li.-shs
6	NNW	NNW: SW	$6 \cdot 0$	$0 \cdot 0$	$\bigcirc \cdot 9$	371		: $\quad \mathrm{I}, \mathrm{ci}$	4, ci.-cu, ci : o, ho.-fr, m
	$\mathbf{S}: \mathbf{S S E}$	S: SSW : SW	18.0	$0 \cdot 0$	$2 \cdot 0$	480	o, m, ho.fir	: 10, slt.-sn	10, sn, w : ıo, r, st.-w : v, w,fq.-shs
8	WSW	WSW: W: WNW	28.0	$0 \cdot 0$	$6 \cdot 9$	958	$\mathrm{v}, \text { st.-w }$: 10, sc, g	7,ci,ci.-s,cu.-s,st.-w : v, li.-shs
9	$\mathbf{W}: \mathbf{N W}$	NNW: SE	$5 \cdot 2$	$0 \cdot 0$	$0 \cdot 5$	369	p.-cl	: 2, th.-cl	7, ci.-cu,cu.-s: $10, r \quad:$ ıo, fq.-r
10	SW	WSW	26.0	$0 \cdot 1$	$4 \cdot 3$	773	IO, ${ }^{\text {r }}$: 10, r	10, n, sc, st.-w : ı0, shis.r, lu.-ha
11	SW: NNE	$\mathbf{N}: \mathbf{N} \mathbf{N W}$	21.0	$0 \cdot 0$	- $0 \cdot 8$	466	shs.-r	$\text { : } \mathrm{I} 0 \text {, slt.-r, glm }$	9, sc, cu.-s, ci.-cu, oc.-sn: 1, li.-cl, oc.-sn
12	NNW	N: NNE: S	$2 \cdot 9$	$0 \cdot 0$	0. 5	289		: ı, ci.-cu, cu.-s	6, ci.-cu, cu.-s, cu : 3, th.-cl, m, lu.-ha
13	SSE	S : SSE	$5 \cdot 1$	$0 \cdot 0$	0.1	277	th.-cl, m, ho.-fr	: 6, ci.-cu, ci.-s, ci	$10 \quad: 10$, slt.-sn
14	SSE : SE	SE : SSE	7×4	$0 \cdot 0$	$0 \cdot 4$	296	10	: 10, slt.-r	10, r : 10, fa.-r
15	SSE: SE	ESE : Calm	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	117	10, c.-r	: 10, c.-r	9, cu.-s, ci.-cu : \quad, cu.-s, f
16	Calm	E: ESE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	109	f	: 10, f	9, slt.-f : v : 0
17	Calm: ENE : E	ENE: E : Calm	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	79	-	: $10, \mathrm{f}$	10, slt.-f : 10, tk.-f $: 10, f$
18	ESE : Calm	NE: ENE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	74	10, f	: $10, \mathrm{f}$	$10 \quad 10$
19	ENE: NE	NE: NNE	$0 \cdot 5$	$0 \cdot 0$	$0^{\circ} 0$	243	10	: $10, \mathrm{~m} .-\mathrm{r}$	10 : 10 : $10, \mathrm{r}$
20	NNE: NE	$\underset{\mathbf{N E}}{ }$	I.8	$0 \cdot 0$	c. 1	331	10, r	: 10	10, hy.-sh : $10 \quad: 10$, sh.-r
21	NE	N	1.2	$0 \cdot 0$	$0 \cdot 0$	319	10, sn	: $10, \mathrm{sn}, \mathrm{sl}$	10 : 10 : v
22	NW: W	NE: N	$0 \cdot 0$	00°	$0 \cdot 0$	163	10	: so, glm, m.-r, f	10, slt.-f, m.-r: 10 : 10
23	N: NNE	NNE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	212	10	$: \mathrm{IO}, \mathrm{sn}, \mathrm{sl}$	$10, \underline{s n} \quad: 10, \underline{s n}$
24	NNE	NNE	1.4	$0 \cdot 0$	$0 \cdot 0$	287		: 10	$9, \overline{\mathrm{ci}}-\mathrm{cu}, \mathrm{cu} .-\mathrm{s} \quad: 10$
25	NNE: NE	NE: N: SW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	169	10	: 10	10 : v, ho.-fr : 10, slt.-f
26	SW	SSW: SSE: ESE	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	160	10	: 3, ci.-cn, ho.-fr	3, ci, ci.-cu : $10 \quad: 10$
27	ENE: NE	ENE: NE:N	$3 \cdot 5$	$0 \cdot 0$	$0 \cdot 1$	227	10	$: 10, \mathrm{si}$	$10, \underline{\text { sn }} \quad: \mathrm{v}$, th.-cl, ho.-fr
28	N: NNW	N: NNW	1.5	0.0	0.1	253	p.-cl	: 10, 00.-sn	8, cu, cu.-s, oc.-sn : 0
Means	. \cdot	. .	-•	.	$0 \cdot 7$	311			
Number of Column for Reference.	21	22	23	24	25	26		27	28

The mean Temperature of Evaporation for the month was $3^{\circ} \cdot 6$, being $1^{\circ} \cdot 3$ lower than
The mean Tenperature of the Dew Point for the month was $34^{\circ} \cdot 5$, being $0^{\circ} \cdot 9$ lower than
The mean Degree of Humidity for the month was $87^{\circ} 2$, being 2.4 greater than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 199$, being $0^{\text {in }} \cdot 008$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2^{\mathrm{grs}} \cdot 3$, being ogr. I less than
The mean Weight of a Cubic Foot of Air for the month was 55^{2} grains, being 2 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 8.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 09$. The maximum daily amount of Sunshine was 6.3 hours on February 26.
The highest reading of the Solar Radiation Thermometer was $102^{\circ} \cdot 5$ on February 26 ; and the lowest reading of the Terrestrial Radiation Thermometer was $23^{\circ} \cdot 2$ on February 13 .
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 2.5 ; for the 6 hours ending 3 p.m., 0.4 ; and for the 6 hours ending 9 p.m., 0.5 .
The Proportions of Wind referred to the cardinal points were N. 8, E. 6, S. 7, and W. 5. Two days were calm.
The Greatest Pressure of the Wind in the month was $28^{\text {lis }} .0$ on the square foot on February 8. The mean daily Horizontal Movement of the Air for the month was 31 miles; the greatest daily value was 958 miles on February 8; and the least daily value 74 miles on February 18 .
Rain fell on 18 days in the month, amounting to $2^{\text {in }} \cdot 446$, as measured by gauge No. 6 partly sunk below the ground; being oin. 979 greater than the average fall fur the 40 years, $184 \mathrm{r}-1880$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columis 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic tecords from 1849 to 1868 . The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Etaporation by means of Glaisher's Hygrometrical Tables: The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columns 6 and g, and the Greatest and Least Differences (Columns if and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The result on March 27 for Evaporation Temperature depends partly on values inferred from eye-observations, on account of accidental loss of photographic register.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 7^{2} 5$, being $o^{\text {in }} \cdot 003$ higher than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $59^{\circ} \cdot 8$ on March 16 and 18 ; the lowest in the month was $24^{\circ} \cdot 6$ on March 27 ; and the range was $35^{\circ} \cdot 2$
The mean of all the highest daily readings in the month was $5^{\circ} \cdot 1$, being $1^{\circ} \cdot 2$ higher than the average for the 40 years, 1841-188c.
The mean of all the lowest daily readings in the month was $35^{\circ} \cdot 5$, being $0^{\circ} \cdot 2$ higher than the average for the 40 years, 1841-1880.
The mean daily range was $15^{\circ} \cdot 6$, being $1^{\circ} \cdot 0$ greater than the average for the 40 years, 1841-1880.
The mean for the month was $42^{\circ} \cdot 6$, being $1^{\circ} \cdot \circ$ higher than the average for the 20 years, $1849-1868$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference betweeu the 1 ir and Dew Point Temperatures (Column 10) is the difference between the numbers in Columms 6 and 9 , and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on April 24 and 25 for the Barometer depend partly on values inferred from eye-observations, on account of accidental loss of photographic register.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 774$, being $0^{\text {in }} \cdot 029$ lower than the average for the 20 years, 1854-1873.
Temperature of the Mir.
The highest in the month was $66^{\circ} \cdot 1$ on April ${ }_{13}$; the lowest in the month was $29^{\circ} \cdot 3$ on April 4; and the range was $36^{\circ} \cdot 8$.
The mean of all the highest daily readings in the month was $55^{\circ} \cdot 6$, being $2^{\circ} \cdot \circ$ lower than the average for the 40 years, 184^{1-1880}.
The mean of all the lowest daily readings in the month was $37^{\circ} \cdot 5$, being $1^{\circ} \cdot 7$ lower than the ąverage for the 40 years, 1841-1880.
The mean daily range was $18^{\circ} \cdot 1$, being $0^{\circ} \cdot 3$ less than the average for the 40 years, 1841-1880.
'The mean for the month was $45^{\circ} \cdot 8$, being $\mathrm{I}^{\circ} \cdot 7$ lower than the average for the 20 years, 1849^{-1868}.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { I88I. } \end{gathered}$	Wind as deduced from Self-regitiering Anemometers.						CLOUDS AND WEATHER.		
	Osler's.					RobinSon's.			
	General Direction.		Pressure on the Square Foot.				A.M.		P.M.
	A.3.	P.M.		$\begin{aligned} & \dot{3} \\ & \stackrel{y y}{3} \end{aligned}$					
April 123		ENE: NE	${ }^{16}{ }^{\text {1bs. }}$	lbs.	ibs.	miles. 49 I		: 2, ci, ci.-s	3, ci.-s, ci, ci.-cu, w: 8, cu.-s
	$\begin{aligned} & \mathbf{N E} \\ & \mathbf{N E} \end{aligned}$			$0 \cdot 0$	$2 \cdot 1$				
			23.0	$0 \cdot 1$	$5 \cdot 2$	748	$\stackrel{\circ}{\text { p.-cl }}$: 2, ci, ci. ci.-s ${ }^{\text {a }}$, ci.-cu, w	3, ci, ci.-cu, cu, st.-w: 6, st.-w
	NE: ENE	ENE: NE	29°	1.0	6.2	740	p.-cl, w	: 4, ci, ci.-cu, st.-w	3 , ci, ci.-s, y : \quad v
	NE: ENE	ENE	$20^{\circ} 0$	$0 \cdot 0$	$5 \cdot 2$	623	v, w	: 1, ci.-s, st.-w	2, ci.-s, ci, ci.-cu, so.-ha, st.w: 6, th.-cl
	NE: ENE	ENE: NE	12.0	$\bigcirc \cdot$	2.1	515	p.-cl	: 7, ci.-s, so.-ha, w	7, ci.-cu, ci.-s, ci, w: 8, cu.-s, ci.-cu
	NE: ENE	ENE: NE	9°	$0 \cdot 0$	I•8	497	10	: 7, ci.-cu, cu.-s, w	$4, \mathrm{ci}, \mathrm{ci} .-\mathrm{cu}, \mathrm{cu} .-\mathrm{s}, \mathrm{w}: \quad \mathrm{o}$
	NE: ENE	ENE: NE	$17^{\circ} 0$	00	$3 \cdot 3$	568	\bigcirc	: 5, ci.-cu, ci.-s, so.-ha, w	3,ci.-cu, ci, ci.-s,sc,st.-w: o
8	NNE: NE:ENE	ENE	13.5	-0	1.2	406	li.-cl	: 4, ci, ci.-cu, w	6, ci, ci.-cu, cu.-s : 10
9	ENE	ENE: E: NE	$3 \cdot 0$	$0 \cdot 0$	0.2	260		: 7, ci.-cu, ci	$5, \mathrm{cu}, \mathrm{ci} .-\mathrm{cu}, \mathrm{ci}$: 0
10	NNE: NE: E	E: ESE	I•9	$0 \cdot 0$	$0{ }^{\circ}$	190	\bigcirc	: 9, cu, ci.-cu, h	o, h : o, h, hy.-d
11	E:SE:S	SSW SWW	$2 \cdot 3$	$0 \cdot 0$	0.2	201		: 8, ci.-cu, ci.-s, slt.-r	10, slt.-r . 10
12	SSW: S	SSW : SSE : SE	1.2	$0 \cdot 0$	0.1	240	10, r	: $10, \mathrm{c} . \mathrm{rr}$	9, cu.-s, ci.-cu : 6, ci.-s, ci, lu.-ha
13	ESE	E: ENE	7.7	$0 \cdot 0$	$0 \cdot 7$	244	ci.-s	: 7, ci, ci.-cu	6,ci.-s,ci,ci.-cu,cu.-s: 7, ci.-s, th.-cl, s
14	ENE: $\underset{\text { S }}{\text { E }}$: SSE		\bigcirc	$0 \cdot 0$	$0 \cdot 0$	172	p.-cl, ci.-s, s	: 10, m.-r	$10, \text { slt.-r } \quad: 8$
15	SW	Variable	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	181	10	: 9	7, cu.-s, ci.-cu, h : 10, m
16	S: NE: E	$\text { -. } \underset{\mathbf{E} \cdot \underset{\mathbf{E}}{\mathbf{E}}}{ }$	0.2 1.8	$0 \cdot 0$	$0 \cdot 0$	159	10, m	: ı, cu.-s	9, cu.-s, ci.-cu : o, hy.-d
178	$\begin{aligned} & \text { ENE: NE } \\ & \text { ENE: NE } \end{aligned}$	$\begin{gathered} \text { E. }: ~=\mathbf{N N E}_{\mathbf{N N E}} \\ \text { NE: } \end{gathered}$	1.8	$0 \cdot 0$	$0 \cdot 2$	242	\bigcirc	: 2, ci, ci.-s	
18	ENE: NE	NE: NNE	12.0	$0 \cdot 0$	$1 \cdot 9$	517	th.-cl, m	: 8, ci, ci.-s, ci.•cu	$\mathrm{I}, \mathrm{ci}, \mathrm{ci} \cdot-\mathrm{cu}, \mathrm{w}: \quad 6, \mathrm{~d}$
19	NNE	NNE	$10 \cdot 7$	$0 \cdot 0$	$3 \cdot 1$	639	10, w	: 10, w	10, w : 10
20	N	N: NNW	$4^{\circ} \mathrm{O}$	$0 \cdot 0$	0.6	300	10	: 1o, oc.-sn	9,ci.-cu,cu.-s: 10 , oc.-sn : o
21	NNW	NNW: N: NE	3.2	$0 \cdot 0$	0.2	230		: 9, ci.-s	7, ci.-cu,cu.-s,ci,r,sn: 10, oc.-r
22	WSW: N	NW ${ }^{\mathbf{N}} \mathbf{S W}, \mathbf{W}$	2.2	$0 \cdot 0$	$0 \cdot 3$	217	10	: $10, \mathrm{glm}$	10, slt.-r : v, m
23	NNW	NW: SW: W	$3 \cdot 3$	$0 \cdot 0$	$0 \cdot 1$	231	10	: 5, ci.-cu, ci.-s, h	9, ci.-cu, cu.-s, h : 10, fq.-r
24	NW:NNW	NNW: WNW: SW	$1 \cdot 7$	$0 \cdot 0$	$0 \cdot 1$	264	p.-cl	: 10	9, ci.-cu, ci \quad : $\quad \mathbf{,}$ m
25	$\begin{gathered} \text { SW } \\ \mathbf{W s W} \cdot \mathbf{W} \mathbf{N} \end{gathered}$		$4 \cdot 3$	$0 \cdot 0$	$1 \cdot 4$	462	10	: 10, oc.-slt.-r	10, shs.-r, t : 10
26	WSW: WNW	NW: NNW	7.0	$0 \cdot 0$	$0 \cdot 4$	348	p.-cl	: 10, li.-shs	7, cu.-s, cu, shs.-r, sil hl, $1, \mathrm{t}$: $\quad 0$
27	W: WSW: NW	NW: SE: Calm	1.0	$\bigcirc \cdot 0$	$\bigcirc \bigcirc$	178	v	: 10, ci.-cu, cu.-s	IO, slt.-f : v
28	Calm and Variable	S : SSW	0.8	$0 \cdot 0$	$0 \cdot 0$	153	v		8,ci.-cu,ci,cu.-s,glm: v
29	SSW : SW	$\mathbf{S W}$	2.4	$0 \cdot 0$	0.2	315	10	$: 10$	9, cu.-s, ci.-cu : $10, r$
30	SW : SSW	$\mathbf{S}: \mathbf{S W}$	4.4	$0 \cdot 0$	$0 \cdot 7$	375	10, slt.-r	: 5, cu, cu.-s, ci.-s	8, cu, ci.-s, th.-el, so.-ha: v, shs.-r
Means	\ldots	\ldots	1.2	357			
Number of Column for Reference.	21	22	23	24	25	26		27	28

The mean Temperature of Evaporation for the month was $42^{\circ} \cdot 4$, being $\mathrm{I}^{\circ} \cdot 5$ lower than
The mean Temperature of the Dew Point for the month was $3^{\circ} \cdot 5$, being $1^{\circ} \cdot 8$ lower than
The mean Degree of Humidity for the month was $76 \cdot 1$, being $0 \cdot 8$ less than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 233$, being ${ }^{\text {tn }} \cdot 0$ or 7 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grr}^{\mathrm{r}} \boldsymbol{7}$, being ogr 2 less than
The mean Weight of a Cubic Foot of Air for the month was 546 grains, being 2 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was 6.7 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0^{\circ} 30$. The maximum daily amount of Sunshine was $11 \cdot 0$ hours on April 4 and 17 .
The highest reading of the Solar Radiation Thernometer was 121 ${ }^{\circ} \cdot 3$ on April 1_{3}; and the lowest reading of the Terrestrial Radiation Thermometer was $24^{\circ} \cdot 3$ on April 4.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $1 \cdot 6$; for the 6 hours ending 3 p.m., $0 \cdot 6$; and for the 6 hours ending 9 p.m., 0.5 .
The Proportions of Wind referred to the cardinal points were N. 9, E. 11, S. 5, and W. 4. One day was calm.
The Greatest 1 'ressure of the Wind in the month was $29^{1 \mathrm{bs}} .0$ on the square foot on April 3. The mean daily Horizontal Movement of the Air for the month was 357 miles; the greatest daily value was 748 miles on April 2; and the least daily value 153 miles on April 28.
Rain fell on 8 days in the month, amounting to $0^{i n} \cdot 623$, as measured by gauge No. 6 partly sunk below the ground ; being $\mathrm{i}^{\text {in }} \cdot 0 \mathrm{of}_{2}$ less than the average fall for the 40 years, 1841-1880.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1881. } \end{gathered}$	Phases of the Moon．	Baro． MEtER． \square 范 \qquad定家志 	Temperature．							Difference between the Air Temperature and Dew PointTemperature．				Temprrature．							
			Of the Air．					$\begin{gathered} \text { of } \\ \text { Evapo } \\ \text { ration. } \end{gathered}$	$\begin{gathered} \text { Of the } \\ \text { ow } \\ \text { Doint. } \end{gathered}$												
					$\begin{aligned} & \text { Daily } \\ & \text { Range. } \end{aligned}$		Excess of Mean above Average of 20 Years．	Mean of 24 Hourly Values．	$\begin{gathered} \text { De- } \\ \text { duced } \\ \text { Mean } \\ \text { Daily } \\ \text { Value. } \end{gathered}$	Mean Daily Value．	$\left\lvert\, \begin{gathered} \text { Greatest } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{gathered}\right.$	Least of 34 Hourly Values．									
		in．	\bigcirc	\bigcirc	o	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	hours．	hours．	in．		
May 1	${ }_{\text {dectinatiest }}^{\text {Great }}$ ．	29.504	$61 \cdot 9$	42°	19.9	50.2	＋1．5	$47^{\circ} 2$	$44^{\circ}{ }^{\circ}$	$6 \cdot 2$	$14^{\circ} 6$	$0 \cdot 4$	80	115.8	38.5	$5 \cdot 2$	14.8	$0 \cdot 152$			
May 1	Decirination N ．	$29^{\circ} 48 \mathrm{c}$	$59 \cdot 3$	$44 \cdot 3$	15%	$50 \cdot 2$	＋13	48.2	$46 \cdot 1$	$4 \cdot 1$	11.0	$0 \cdot 0$	86	104．0	$41 \cdot 1$	$0 \cdot 1$	14.8	0.231	$3 \cdot 7$	$\mathrm{sP}, \mathrm{sN}: \mathrm{mP}: \mathrm{vN}, \mathrm{vP}$	
3		29^{-802}	50.4	36.3	$14^{\circ} 1$	44.3	-4.8	41.2	$37 \cdot 6$	6.7	11．8	$0 \cdot 7$	77	109°	32.0	2.0	149	$0 \cdot 000$	$0 \cdot 0$	$\mathrm{mP}: \mathrm{vP}$	
4	Apogee	29．888	$55 \cdot 1$	31.4	23.7	$4^{6 \cdot}$	-3.4	$44^{\circ} 1$	$41^{\circ} 9$	$4 \cdot 1$	$9 \cdot 6$	0×0	87	$110 \cdot 3$	26.5	3.1	$14^{\circ} 9$	$0 \cdot 029$	$5 \cdot 0$	$\mathrm{vP}: \mathrm{vP}, \mathrm{sN}$	
5	Apo	$30 \cdot 16$	$66 \cdot 9$	$40^{\circ} 2$	$26 \cdot 7$	$51 \cdot 9$	＋ 2.2	48.2	$44 \cdot 5$	$7 \cdot 4$	1711	$00^{\circ} 0$	76	122.2	$35 \cdot 2$	$4^{4 \cdot 3}$	15.0	$0 \cdot 000$	$2 \cdot 3$ 8.7	ssP：wP，wN ：mP $\mathrm{mP}: \vee \mathrm{P}$	
6	First Qr．	$30 \cdot 127$	69.4	498	$19 \cdot 6$	577	＋ 77	$54 \cdot 5$	51.6	$6 \cdot 1$	13.3	0.8	80	127.8	$46 \cdot 1$	7×4	$15 \cdot 1$	$0 \cdot 000$	$8 \cdot 7$	mP ： vP	
		30．389	$69^{\circ} 2$	43.6	25.6	56.4	＋6．1	$50 \cdot 3$	44.7	1177	20.5	1－3	65	112.8	38.7	10.7	15•1	$0 \cdot 000$	$0 \cdot 0$	$s \mathrm{P}, \mathrm{wN}: \mathrm{w}^{\text {m }} \mathrm{N}, \mathrm{vP}$	
8		30.454	$66^{\circ} 2$	41.6	$2{ }^{2} \cdot 6$	53.3	＋ 27	$47^{\circ} 6$	$41 \cdot 9$	11.4	21.4	2.4	66	121.0	$32 \cdot 3$	12.8	$15 \cdot 2$	$0 \cdot 000$	$0 \cdot 0$		
9	In Equator	$30 \cdot 426$	$59 \cdot 3$	37.0	$22 \cdot 3$	$48 \cdot 4$	－ 2.4	$44^{\circ} 2$	$39 \cdot 6$	$8 \cdot 8$	$16 \cdot 6$	$0 \cdot 0$	72	124°	$27 \cdot 5$	$8 \cdot 6$	15.2	$0 \cdot 000$	1－5		
10		$30 \cdot 449$	54.7	37＊0	177	$45 \cdot 5$	－ $5 \cdot 6$	411	$36 \cdot 1$	$9{ }^{9} 4$	$15 \circ$	$3 \cdot 2$	70	101＊0	28.5	$4^{\circ} 0$	15.3	0.000	$7 \cdot 5$		
11		30.415	$59^{\circ} 3$	30.9	28.4	$45 \cdot 8$	-5.6	420	$37 \cdot 6$	8.2	$19^{\circ} 2$	$0 \cdot 0$	73	115.0	21.9	7.4	$15 \cdot 3$	$0 \cdot 000$	3.0	ssP：vP，wN：sP	
12		30．231	66	$36 \cdot$	30．0	$51 \cdot 1$	－0．7	$46 \cdot 8$	$42 \cdot 3$	$8 \cdot 8$	16.2	$0 \cdot 0$	72	$129^{\circ} 2$	28.2	6.7	15.4	$0 \cdot 000$	$0 \cdot 0$	$s P: w N, m P: m P$	
13	Full	29.999	$73 \cdot 8$	$40 \cdot 7$	$33 \cdot 1$	$56 \cdot 2$	＋411	$49^{\circ} 9$	44°	12.2	$22^{\prime} 1$	2.4	64	121.9	33.0	11.1	15.4	$0 \cdot 000$	$5 \cdot 5$	P, wN	
14		29.823	69.7	41.8	27.9	$55 \cdot 7$	＋3．2	50.2	45°	107	$16 \cdot 7$	$2 \cdot 2$	67	123.6	$35 \cdot 8$	3.9	$15 \cdot 5$	$0 \cdot 000$	7.7	vP, wN	
15	（Greatest	29.575	$64 \cdot 2$	47.2	17.0	53．9	$+1.0$	50°	$46 \cdot 2$	77	18.6	0.2	75	115．1	$44^{\circ} 2$	$0 \cdot 8$	15.5	0.007	12.3	：vN，mP	
16	Perigee	29.451	$58 \cdot 2$	$42 \cdot 6$	15.6	$50 \cdot 7$	-2.6	$47^{\prime 1}$	$43 \cdot 3$	$7{ }^{\circ} 4$	$14^{\circ} \mathrm{I}$	$2 \cdot 6$	76	$9.3 \cdot 8$	37°	2.4	15.6	0．069	4.5	$\begin{aligned} & w P, w N: v N, v P \\ & s P: w P, w N: m P \end{aligned}$	
17	Perige	29749	61．4．	$36 \cdot 8$	24.6	$49^{\circ} 9$	－3．8	47 47° 4	44.5 5	5．4	16.3	$0 \cdot 2$	83	118.3 115.5	28.2 47.9	2.2 1.8	15.6 15.7	0．068	9.5 17.8	sP：wP，wN：mP $w P, w N: ~ v P, w N$	
18		29.465	$67 * 4$	49.4	$18 \cdot 0$	54%	$0 \cdot 0$	$52 \cdot 8$	51．5	$2 \cdot 6$	10.6	$0 \cdot 0$	91	115.5	$47^{\circ} 9$	1＊8	157	0.217	178	wP，wN：vP，wN	
19		$29^{\circ} 488$	$63 \cdot 7$	478	15.9	53．9	－0．5	$50 \cdot 4$	47°	$6 \cdot 9$	13.9	$0 \cdot 0$	77	118.0	$44^{\circ} \mathrm{O}$	$10 \cdot 8$	15.7	$0 \cdot 056$	$8 \cdot 2$	$\mathrm{mP}, \mathrm{wN}: ~ v P, w N$	
20	Last Qr．	29.752	$66 \cdot 6$	45.5	21.1	$53 \cdot 1$	-1.6	$49^{\cdot 3}$	$45 \cdot 5$	$7 \cdot 6$	18.2	$1 \cdot 9$	75	129.5	$40^{40} 5$	10.0	$15 \cdot 8$ 15.8	－0．100	11.2 7.3	$\begin{aligned} & \mathrm{vP}: \mathbf{v P}, \mathrm{vN} \\ & \mathrm{mP}: \mathrm{vP} \cdot \mathrm{wN} \end{aligned}$	
21	In Equator	30．122	70.1	$40 \cdot 6$	29.5	54.6	-0.4	$49^{\circ} 8$	$45 \cdot 2$	9.4	$20^{\circ} 0$	$0 \cdot 7$	70	129.9	$35^{\circ} 9$	$10 \cdot 3$	15.8	$0 \cdot$	$7 \cdot 3$		
22		30．236	$69^{\circ} 9$	$4{ }^{\prime \prime} 7$	27.2	$56 \cdot 6$	$+1.3$	$5 \mathrm{I}^{1} 1$	46°	10.6	22.3	0.8	67	138.0	$33 \cdot 1$ $38 \cdot 3$	13.9 	15.9 159	0.000	4.8 14.2		
23		$30 \cdot 076$	71.1	47.5	23.6	59.5	$+4^{\circ}$	$53 \cdot$	$47 \cdot 3$	12.2	$24 \cdot 3$	0.4 0	64	$135 \cdot 7$ $135 \cdot 3$	$38 \cdot 3$ 37.3	13.6	150 16%	$0 \cdot 000$	14.2	$\mathrm{mP}: \mathbf{v N}, \mathrm{mP}$ mP	
24	．	29.892	68.0	48.4	19.6	579	＋ 2.2	$52 \cdot 1$	$46 \cdot 9$	11.0	$20 \cdot 7$	$3 \cdot 2$	67	$135 \cdot 3$	$37 \cdot 3$	12.7	16°	$0 \cdot 000$	12.5		
25		29.666	73.7	$49 \cdot 3$	24.4	58．7	＋ 2.8	$55 \cdot 1$	$51^{\circ} 9$	$6 \cdot 8$	22.1	$0 \cdot 0$	78	134%	$43 \cdot 0$	$5 \cdot 2$	$16 \cdot 0$	0.050	$5 \cdot 5$	$\mathrm{mP}: \mathrm{vP}, \mathrm{mN}$	
26		29.623	$68 \cdot 7$	$50 \cdot 9$	17.8	59.5	＋ 3.4	$57^{\circ} 6$	$55^{\circ} 9$	3.6	$8 \cdot 3$	$0 \cdot 0$	89	108．0	$43 \cdot 0$ 55.3	$1 \cdot 3$		0	0	sP，sN：wP，wN wP，wN	
27	New	$29^{\circ} 662$	$66 \cdot 1$	$56 \cdot 1$	10.0	$60 \cdot 8$	$+4^{5}$	$58 \cdot 7$	$56 \cdot 9$	$3 \cdot 9$	$7{ }^{\circ}$	$1 \cdot 7$	87	83.9	$53 \cdot 3$	$0 \cdot 0$	16.1	0＇000	$0 \cdot 0$		
28	${ }_{\text {Decilinationt }}^{\text {Grat }}$	$29^{\circ} 748$	$71 \cdot 8$	$55 \cdot 8$	16.0	$61 \cdot 5$	$+5 \cdot 0$	58.8	$56 \cdot 5$	$5 \cdot 0$	12.6	00°	84	121.7	$53 \cdot 1$	3.2	$16 \cdot 1$	0.271	$0 \cdot 0$	P ${ }^{\text {N }}$ ： $\mathrm{PP}^{\text {w }}$	
29		29.873	$66 \cdot 5$	$49 \cdot 3$	$17^{\circ} 2$	56.2	－ 0.6	54.7	53.3	$2 \cdot 9$	7.6 23.8	$0 \cdot 0$	90	113.3	$43 \cdot 0$ 37	－ $0 \cdot 1$	$16 \cdot 1$ 16.2	0.287 0.000	0．0	$\mathrm{vP}, \operatorname{ssN}: \mathbf{v P}, \mathrm{wN}$ mP	
30		30．105	$72 \cdot 6$	$44 \cdot 6$	28.0	59.0	＋ 2.0	53．0	477	11•3	$23 \cdot 8$	$0 \cdot 0$	66	$130 \cdot 2$	37.8	12.9	16.2	$0 \cdot 000$	$0 \cdot 0$		
3I		30．165	$78 \cdot 3$	$44^{\circ} 6$	33.7	62.9	$+5 \cdot 6$	$54 \cdot 3$	$46 \cdot 9$	$16 \cdot 0$	28.2	3.8	56	134.2	39°	13.5	16.2	c＊000	$0 \cdot 0$	sP ：vP	
Means		29．925	$65 \cdot 8$	$43 \cdot 6$	22.2	54°	＋ 0.9	50\％	$4^{6 \cdot 1}$	7×9	16.6	$0 \cdot 9$	$75 \cdot 2$	119.1	$37 \cdot 6$	$6 \cdot 5$	15.6	1－611	$5 \cdot 2$	．	
Number of Column for Reference．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records．The average temperature（Column 7）is that determined from the reduction of the photographic records from 1849 to 1868 ．The temperature of the Dew Point（Column 9 ） and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． and the Degree of Humidity（Column 13）are deduced from the corresponumg tomp is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least The mean difference between the Air and Dew Point temperatures（Columaphice measures of the Dry－bulb and Wer－bulb Thermometers．
The values given in Columns 3，4，5，14，and ${ }_{5}$ are derived from eye－readings of selfregistering thermometers．
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 925$ ，being $0^{\text {in }} \cdot 148$ higher than the average for the 20 years，1854－1873．
Temperature of the Air．
The highest in the month was $78^{\circ} \cdot 3$ on May 3I；the lowest in the month was $30^{\circ} .9$ on May 11 ；and the range was $47^{\circ} \cdot 4$ ．
The mean of all the highest daily readings in the month was $65^{\circ} \cdot 8$ ，being $1^{\circ} \cdot 6$ higher than the average for the 40 years， $1845-1880$
The mean of all the lowest daily readings in the month was $43^{\circ} \cdot 6$ ，being $0^{\circ} \cdot 1$ lower than the average for the 40 years，1841－1880，
The mean daily range was $22^{\circ} \cdot 2$ ，being $1^{\circ} \cdot 8$ greater than the average for the 40 yeara，184I－188e．
The mean for the month was $54^{\circ} \cdot 0$ ，being $0^{\circ} 9$ higher than the average for the 20 years，1849－1868．

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 188ı. } \end{gathered}$	Wind as deduced prom Self-reaistering Antmometris.						CLOUdS AND WEATHER.		
	Oster's.								
	General Direction.		Pressure on the Bquare Foot.						
	A.M.	P.M.						A.M.	P.M.
			lbs.	1bs.	${ }^{\text {b }}$ s.	miles.			
May 1	SW	SSW	$5 \cdot 7$	$0 \cdot 0$	$0 \cdot 7$	382	\bigcirc	: 10, shs..r	10 : 10, r
May	Calm: NE: ENE	E: ENE: NNE	$2 \cdot 1$	$0 \cdot 0$	0.1	205	10, sh.-r	: 9, s	9, ci, ei.-cu, eu.-s, h, oc.-r: 10, r
3	NNE: N	N: NNE	3.7	$0 \cdot 0$	0.4	285	10	: 6, cu, ci.-cu, cu.-s	$9, \mathrm{cu}, \mathrm{cu} . \mathrm{s}$ - ${ }^{\text {g }}$: 8
	Calm : S : SSW	SSW : WSW	$3 \cdot 1$	$0 \cdot 0$	0.2	299	p.-cl	: 7,ci,cu.-s,ci.-cu,li.-shs	10, li.-shs : v, 1
5	WSW: SW	$\dot{\mathbf{S}} \mathbf{W}$	3.7	$0 \cdot 0$	$0 \cdot 3$	302	$0 \quad:$	p.ecl, m, d : 7, ci.-cu, ci	8, cu, cu.-s, ci.-cu, so.-ha: v, th.-cl, lu.-ha
6	SW	SW: WSW	4.6	$0 \cdot 0$	$0 \cdot 8$	399	10	: 8, ci.*cu, cu.-s	2, cu, cu.-s, ci.-cu : p.-cl, d
7	WSW: N: NW	NNW: N: NE	$0 \cdot 0$	$0 \cdot 0$	O०	174	o, m	: 1, th. cl cl, h	$0 \quad: \quad 0,1 u .-c o$
8	NE: NNE	N:E	1.8	$0 \cdot 0$	$0 \cdot 1$	207		: 1, eu	$0 \quad: \quad 0$
9	NNE: N	N: NNE	$5 \cdot \mathrm{c}$	$0 \cdot 0$	- 0	344	p.-cl, s, ci.-s	: v, ci.-cu, ci.-s	$4, \mathrm{ci} .-\mathrm{cu}, \mathrm{cu} .-\mathrm{s}$: 8, ci.-cu, cu.-s
10	NNE: NE	NE: ENE	$3 \cdot 3$	$0 \cdot 0$	$0 \cdot 4$	349	10	: 9, ci.-cu, cu.-s	g, $\mathrm{cu}, \mathrm{cu} .-\mathrm{s} \quad: \mathrm{o}$
11	NNE: N	NNE: ESE: SE	0.1	$0 \cdot 0$	$0 \cdot 0$	157	-	: 1,ci.-s,ci.-cu,h,so.-ha	3, ci, ci.-s, h, so.-ha : o
12	NE	ESE: SE	$0 \cdot 0$	0.0	$0 \cdot 0$	124	-	: 4, ci, h, so.-ha	6, ci.-cu, ci, cu : o
13	SW	SW	1.2	000	$0 \cdot 0$	233	O, m	: I, ci	0 : 0
14	SW:WSW	WSW: SW	$1 \cdot 6$	$0 \cdot 0$	$0 \cdot 0$	282	li.-cl	: 10, th.-cl, so.-ha	9, ci, ci.-s, th.-cl : 10
15	SW : SSW	SSW	10.0	$0 \cdot 0$	$1 \cdot 9$	459	10	: 10, th.-cl, so.-ha	10, w : v, ci.-s, sh.-r
16	SW: WSW	WSW:WNW:NNW	9.6	$0 \cdot 0$	2.6	545	10, li.-shs	: 10, li.-shs, sqs	9, cu.-s, cu, li.-shs, w: $\quad \mathrm{v}, \mathrm{cu} .-\mathrm{s}, \mathrm{m}$
17	WSW: S : SSW	SSW: SW	$10^{\circ} 0$	$0 \cdot 0$	$2 \cdot 3$	464	p.-cl	: 8, ci, ci.-cu	10, li.-shs, w : 10, m.-r, w
18	SSW	SSW	$9 \cdot 5$	$0 \cdot 0$	$2 \cdot 0$	497	10, w	: $10, \mathrm{r}$	8,ci.-cu,ci.-s,cu.-s: 9, cu.-s, r : 10
19	SSW : SW	$\mathbf{S W}$	$9 \cdot 1$	$0 \cdot 0$	2.4	501	10, r	: 4, cu	6, cu, cu.-s, ci, so.-ha, w: o
20	SW:WSW	$\mathbf{S W}$	$6 \cdot 0$	$0 \cdot 0$	$\bigcirc \cdot 9$	368	\bigcirc	: 6, ci.-cu, cu.-s	8, cu.-s, cu, hy.-sh, hl: o
21	SW: WSW	WSW: SSW	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	180		: 3, th.-cl, cu	5 , ci.-cu, ci, cu.-s : 3, ci.-s, cu.-s
22	SSW: ESE: ENE	E: ENE	$6 \cdot 0$	$0 \cdot 0$	0.6	292	o, slt.-m	: 0	$0 \quad: 0$
23	ENE: E	E: ENE	16.0	$0 \cdot 0$	1.6	386	0	: 0	o, w $\quad: 0$
24	ENE: E	E: ENE	6.1	$0 \cdot 0$	$\bigcirc \cdot 9$	315	-	: 0	$1, \mathrm{ci}$: p.-cl, cu.-s
25	ENE	ESE	0.3	$0{ }^{\circ} 0$	00°	59	10	: 3, ci.-cu, ci	9, ci.-s, cu, so.-ha, hy.-sh: 2, m, th.-f
26	Calm: NW	NW:W	-0	$0 \cdot 0$	\bigcirc	99	p.-cl, f	: 10, r	9, cu.-s, hy.-sh $\quad 10$
27	NNW: NW	NNW: NW: WNW	$0 \cdot 0$	$0 \cdot 0$	$0 \circ$	161	10	: 10	$10: 10, \mathrm{li} .-\mathrm{shs}: 10$
	$\mathbf{W S W}: \mathbf{N N W}$	NNE:SE	$1 \cdot 2$	O'0	$c^{\circ} \mathrm{O}$	172			8,eu.-s,ci,th.-cl : hy.-r, l, t : 10
29	N: ENE	$\mathbf{E}: \mathbf{N} \mathbf{E}$	$3 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	228	10, ${ }^{\text {\% }}$ slt.-r	: 10, hy.-r : 10, slt.-r	9,eu.-s, ci.ecu,fq.-th.-r: hy.-sh : v
30	NE:E	ENE: E	3.4	$0 \cdot 0$	$0 \cdot 1$	255		: 0	O $: 0$
31	NE	NNE: SE	1 '0	0%	0	154	0	: 0	t, th.-el, ci.-cu : 0
Means	\ldots	-••	.	\ldots	0.6	286			
Number of Column for Reference.	21	22	23	24	25	26		27	28

The mean Temperature of Evaporation for the month was $50^{\circ} \cdot 0$, being $x^{\circ} \cdot 1$ higher than
The mean Temperature of the Dew Point for the month was $4^{\circ} \cdot 1$, being $1^{\circ} \cdot 0$ higher than
The mean Degree of Humidity for the month was $95^{\circ} \mathbf{2}$, being $0 \cdot \frac{1}{2}$ less than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 312$, being $0^{\text {in }} \cdot$ oll greater that the average for the 20 years, $1849-1868$.
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grs }} \cdot 3$, being osr $\cdot 1$ greater than
The mean Weight of a Cubic Foot of Air for the month was 539 grains, being a grain greater than
The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast gky by 10) was $5 \cdot 4$
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.42 . The maximum daily amount of Sunshine was $\mathbf{1 3} 9 \mathbf{9}$ hours on May $\mathbf{2 2}$,
The highest reading of the Solar Radiation Thermometer was $138^{\circ} \cdot 0$ on May 22 ; and the lowest reading of the Terrestrial Radiation Thermometer was $21^{\circ} \cdot 9$ on May 11 .
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $3 \cdot 0$; for the 6 hours ending 3 p.m., $i^{\prime} 5$; and for the 6 hours ending 9 p.m., $0 \cdot 7$.
The Proportions of Wind referred to the cardinal points were N. 8, E. 7, S. 8, and W. 7. One day whs calm.
Ihe Greatest Pressure of the Wind in the month was $16^{163} \cdot 0$ on the equare foot on May 3.3. The meata daily Horitental Movement of the Air for the month wak 286 miles; the greatest daily value was 545 miles on May 16; and the least daily value 59 miles on May 2 j .
Rain fell on 13 days in the month, amounting to $\mathrm{I}^{\text {in }} 611$, as measured by gange No. 6 partly suak below the ground; being ein-4i8 leos than the average fall for the 40 years, 1841-1880.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The (7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least The mean difference between (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns $3,4,5,14$, and ${ }_{5} 5$ are derived from eye-readings of self-registering thermometers.
The amount of Sunshine on June 19 was in part estimated, on account of wrong adjustment of the instrument.
The Electrometer was not in action from June 8 to $\mathbf{j} 2$.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 806$, being $0^{\text {in }} \cdot 022$ lower than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $83^{\circ} \cdot 9$ on June 4 ; the lowest in the month was $38^{\circ} \cdot 5$ on June 9 ; and the range was $45^{\circ} \cdot 4$.
The mean of all the highest daily readings in the month was $70^{\circ} \circ$, being $1^{\circ} \cdot \circ$ lower than the average for the 40 years, 1841-1880.
The mean of all the lowest daily readings in the month was $49^{\circ} \cdot 7$, being $0^{\circ} \cdot 2$ lower than the average for the 40 years, 1841-1880.
The mean daily range was $20^{\circ} 3$, being $0^{\circ} 8$ less than the average for the 40 years, 1841-1880.
The mean for the month was $5^{\circ} \cdot 6$, being $1^{\circ}{ }^{\circ}$ lower than the average for the 20 years, 1849-1868.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 188r. } \end{gathered}$	Wind as dedoced from Selp-registerina Anemometers.						CLOUDS AND WEATHER.		
	Osler's.					$\begin{gathered} \text { Robin- } \\ \text { son's. } \end{gathered}$			
	General Direction.		Pressure on the Square Foot.						
	A.M.	P.M.		$\begin{gathered} \text { 蔦 } \\ \text { H} \end{gathered}$.M.	P.M.
			1 lb .	lbs.	ibs.	millos.			
June I	Variable	NE: E	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	96	-	: ı0, th.-cl, h, m	1, ci, so.-ha : o, d
	E: NE	E: ESE	$1 \cdot 4$	$0 \cdot \circ$	$\bigcirc \circ$	162	-	: I, ci.-cu, ci	3, ci.-cu, cu, ci : 3, cu.-s, ci.-s, s
3	Calm: SW: \mathbf{N}	N:NNW:Variable	0.0	$0 \cdot 0$	$0 \cdot 0$	127	-	: o, h	O, h : v, th.-cl
4	NW: SW	SW	$2 \cdot 8$	$0 \cdot 0$	$0 \cdot 3$	300	\bigcirc	7, th.-cl	4, ci, ci.-s, th.-cl : p.-cl, ci, th.-cl, s, m
5	SW	SSW: SW: NE	$4 \cdot 3$	$0 \cdot 0$	0.5	366	$\text { p. }-\mathrm{cl}, \mathrm{~s}, \mathrm{a}$	10	$10, \mathrm{r}, \quad: 10, \text { c.-r }$
6	N: NNW	NNW: W: WSW	$5 \cdot 0$	$0 \cdot 0$	$0 \cdot 1$	244	$10, \text { fq. } \cdot \mathrm{r}$	10, oc.-r	9,cu.-s,ci.-cu,oc.-shs,t: 10 , hy.-r, hl, t
	NNW: N	NE: \mathbf{N}	2.9	$0 \cdot 0$	0.1	251		: $10, \mathrm{r}$	ı0, cu.-s, fq.-shs : 7, ci.-cu, li.-cl
8	N: NNE	NNE: N	4.1	$0 \cdot 0$	0.3	363	p.ecl	6, cu, slt.-r, hl	8, cu, ci.-cu, slt.-sh : 1 , ci.-s, d
9	NNW: N	NNW: NE	$5 \cdot 0$	$0 \cdot 0$	0.2	284	p.-cl	7, ci.-cu, cu, ci.-s	6, cu.-s, cu, ci, slt.-sh : 10
10	NNW	SW: S	$0 \cdot 1$	00°	00°	158	10	- v, ci.-cu, ci, h	9, cu.-s, ci.-cu, glm : 10
11	SE: SSE	SE: S : SW	$0 \cdot 0$	$0 \cdot 0$	$\bigcirc \circ$	102	10	7, li.-cl, ci.-cu	8,ci,ci.-cu,cu.-s,th.-cl : 10
12	SW: WSW	WSW : W	2.5	$0 \cdot 0$	$0 \cdot 0$	233		7, cu.-s, th.-cl	6, cu.-s, ci.-cu, ci : 8, ci, ci.-cu
13	NNW: NW	N: ENE	00°	$0 \cdot 0$	$0 \cdot 0$	178	v, s, ci, li.-cl	3, ci.-s, th.-cl, h	6, cu, cu.-s, h : 5, cu.-s, s, th.-cl
14	ENE	E:SE:SW	$0 \cdot 0$	\bigcirc	$\bigcirc \circ$	134	10	2, cu, li.-cl	7, cu, ci.-cu, cu.-s : 10
15	SW : SSW	SW : SSW	$0 \cdot 0$	$0 \cdot 0$	$\bigcirc \circ$	136	10, li.-cl	8, ci	9 , cu.-s, cu : i, s, ci.-s, d
16	S: SSE	SSE: SE	$\bigcirc \cdot 5$	$0 \cdot 0$	$0 \cdot 0$	143	p.-cl, ci.-s, th.-cl	10, ci.-s	9,cu.-s,cu,ci.-s,slt.-r : io, slt.-r
17	SSE: SSW	SSW: SSE: ESE	2.1	$0 \cdot 0$	$0 \cdot 1$	225	10, sh.-r	10, cu.-s	10,cu.-s,th.-cl,so.-ha : $10, \mathrm{hy}$.-r
18	SE: SSE	S : SSE	0.5	$0 \cdot 0$	$0 \cdot 0$	174	10	10, r	io, li.-shs : 10 , oc.-r
19	SW	SW	$2 \cdot 1$	$0 \cdot 0$	0.2	293	10	9, cu.-s, ci.-cu	4, cu, cu.-s, : 1, cu.-s
20	SW: SSW	SSW : SE	2.1	$0 \cdot 0$	$0 \cdot 1$	307	$\mathrm{p} .-\mathrm{cl}$	6,cu.-s, th.-cl, so.-ha	$6, \mathrm{cu} .-\mathrm{s}, \mathrm{cu}, \mathrm{ci}: 10$
21	SE: SSW	SSW	$6 \cdot 5$	$0 \cdot 0$	0.7	395	10	8, cu, cu.-s, li.-shs	7, cu.-s, cu : 8,cu.-s,ci.-cu,li.-shs
22	SSW	SW	$7 \cdot 3$	$0 \cdot 0$	$0 \cdot 7$	437	10	9, shs.-r	
23	SW: WSW	WSW: NW: N	$\bigcirc .5$	$0 \cdot 0$	$0 \cdot 0$	264	\bigcirc	7, cu, cu.-s	$8, \mathrm{cu} .-\mathrm{s}, \mathrm{n}, \mathrm{ci} .-\mathrm{cu}: 5, \mathrm{ci} .-\mathrm{s}$, th.-cl, m
24	Variable	S	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	117	p.-cl	3, ci.-cu, cu.-s, h	5, cu, cu.-s \quad : o
25	Calm:SSW:WSW	SW	$0 \cdot 9$	-0.0	$0 \cdot 0$	249	-	9, ci.-s, th.-cl, r	10, fq.-th.-r \quad : 0
26	WSW: NW: WNW	NW: WSW: SW	$0 \cdot 0$	\bigcirc	$0 \cdot 0$	168		9, li.-cl, m, h	8, cu.-s, ci.-cu: p.-cl : 10
27	SW : SSW	SSW: SW: WSW	$0 \cdot 3$	$\bigcirc \circ$	$0 \cdot 0$	224	10	$10, r$	10, cu.-s, n, oc.-r : IO, oc.-slt.-r
28	NW: NNW	WNW: WSW	$0 \cdot 0$	-०	$0 \cdot 0$	242	$10: 0, h$: 4, cu.-s, ci.-cu	8, cu.-s, ci.-cu : 9, th.-cl, s
29	WSW SW: SSW	$\mathbf{W}: \mathbf{W} \mathbf{S W}$		$0 \cdot 0$	$0 \cdot 0$	244	10	∇, ci.-cu, h	$7 \text {, ci.-cu, cu.-s, ci : } 1 \text {, th. -cl }$
30	SW : SSW	SSW : S	1.5	$\bigcirc \cdot$	$0 \cdot 1$	27^{2}	1, s	6, ci.-cu, ci	5, ci, ci.-s, ci.-cu : 3, ci, s, ci.-s
Means	0.1	230			
Number of Column for Reference.	21	22	23	24	25	26		7	28

The mean Temperature of Evaporation for the month was $54^{\circ} \cdot 0$, being $I^{\circ \cdot}{ }_{2}$ lower than
The mean Temperature of the Dew Point for the month was $49^{\circ} \cdot 9$, being $\mathrm{I}^{\circ} \cdot 3$ lower than
The mean Degree of Humidity for the month was $73^{\circ} 4$, being $0^{\circ} 1$ greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 360$, being $0^{\text {in }} \cdot 017$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs}} \cdot 0$, being $\mathrm{ogr}^{2} \cdot 2$ less than
The mean Weight of a Cubic Foot of Air for the month was 53^{2} grains, being 1 grain greater than
the average for the 20 years, 1849-1868.

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was $6 \cdot 6$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 38$. The maximum daily amount of Sunshine was $13 \cdot 0$ hours on June 4 .
The highest reading of the Solar Radiation Thernometer was $145^{\circ} \cdot 3$ on June 3°; and the lowest reading of the Terrestrial Radiation Thermometer was $3^{\circ} \cdot 8$ on June 10.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $2 \cdot 9$; for the 6 hours ending 3 p.m., 1.4; and for the 6 hours ending 9 p.m., $1 \cdot 1$.
The Proportions of Wind referred to the cardinal points were N. 6, E. 4, S. II, and W. 8. One day was calm.
The Greatest Pressure of the Wind in the month was $7^{\mathrm{lb} \cdot} \cdot 3$ on the square foot on June 22. The mean daily Horizontal Movement of the Air for the month was 230 miles; the greatest daily value was 437 miles on June 22; and the least daily value 96 miles on June 1 .
Rain fell on 9 days in the month, amounting to $1^{\text {in }} .863$, as measured by gauge No. 6 partly sunk below the ground; being otr $\cdot 188$ less than the average fall for the 40 years, 1841 -1880.

Greenwich Magnetical and Meteorological Observations, 1881.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The uction of the photographic records from 1849 to $\mathbf{1 8 6 8}$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on July 5 , 11, 18, are deduced entirely from eye-observations, on account of accidental loss of photographic register.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Burometer for the month was $29^{\text {in }} \cdot 828$, being $0^{\text {tn }} \cdot$ ol 9 higher than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $97^{\circ} \cdot 1$ on July 15 ; the lowest in the month was $43^{\circ} \cdot 9$ on July 28 ; and the range was $53^{\circ} \cdot 2$.
The mean of all the highest daily readings in the month was $77^{\circ} \cdot 7$, being $3^{\circ} \cdot 5 \mathrm{higher}$ than the average for the 40 years, $1841-1880$.
The mean of all the lowest daily readings in the month was $54^{\circ} \cdot 9$, being $1^{\circ} \cdot 7$ higher than the average for the 40 years, $1841-1880$.
The mean daily range was $22^{\circ} \cdot 8$, being $1^{\circ} .8$ greater than the average for the 40 years, $1841-1880$
The mean for the month was $65^{\circ} \cdot 5$, being $2^{\circ} \cdot 9$ higher than the average for the 20 years, $184^{-1868 .}$

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The (and the Degree of Humidity (Column The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 11 and i2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, and 1_{5} are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 673$, being $0^{\text {in }} \cdot 126$ lower than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $85^{\circ} \cdot 4$ on August 5 ; the lowest in the month was $43^{\circ} \cdot 1$ on August 28 ; and the range was $42^{\circ} \cdot 3$.
The mean of all the highest daily readings in the month was $69^{\circ} \cdot 7$, being $3^{\circ} \cdot 3$ lower than the average for the 40 years, 1841-1880.
The mean of all the lowest daily readings in the month was $5^{\circ} \cdot 6$, being $1^{\circ} \cdot \eta^{\circ}$ lower than the average for the 40 years, 1841-1880.
The mean daily range was $18^{\circ} \cdot 2$, being $1^{\circ} \cdot 5$ less than the average for the 40 years, 1841-1880.
The mean for the month was $59^{\circ} \cdot 2$, being $2^{\circ} \cdot 6$ lower than the average for the 20 years, 1849-1868.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 188I. } \end{gathered}$	Phases of the Moon.		Temprrature.							Difference between the Air Temperature Temperature. Temperature.				Temprrature.					Daily Amount of Ozone.	Electricily.	
			Of the Air.					$\|$Of Evapo- ration. Mean of 24 Hourly Values.	Of the Dew Point. De- duced Mean Daily Value.					E.							
				$\begin{gathered} \text { 灾 } \\ \stackrel{y y y y y}{e g} \end{gathered}$	Daily Range.	$\begin{array}{\|c\|} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{array}$	$\begin{gathered} \text { Excess } \\ \text { of Mean } \\ \text { above } \\ \text { Average } \\ \text { of } \\ \text { of Years. } \end{gathered}$			Mean Daily Value.	Greatest of 24 Hourly Values.	Least of 24 Hourly Values.									
		in.	-	-	-	-	-	\bigcirc	-	-	-	-				-	hous	hours.	in.		
Sept. I	First Qr.	30.000	57°	49°	$8 \cdot 0$	$52 \cdot 1$	- 8.0	50.0	$47 * 9$	4.2	$9 \cdot 4$	1.2	85	$95 \cdot$	$44^{\circ} 8$	$0 \cdot 9$	13.5	0.003	$0 \cdot 0$	mP: $\mathrm{vP}^{\text {P }}$ wN	
	Decirinatiost s .	29.956	59.2	$50 \cdot 4$	$8 \cdot 8$	53.9	-6.1	52.1	$50 \cdot 3$	3.6	$8 \cdot 2$	0.6	87	$76 \cdot 6$	$49^{\circ} 5$	$0 \cdot 1$	13.4	$0 \cdot 000$	$0 \cdot 0$	wP: vP	
		29.847	62.0	$49^{\circ} 8$	$12 \cdot 2$	$55 \cdot 4$	-4.4	$53 \cdot 6$	5ı.9	$3 \cdot 5$	$7 \cdot 4$	$0 \cdot 2$	89	80°	$43 \cdot 5$	0.2	13.4	$0 \cdot 001$	$0 \cdot 0$	$\mathrm{mP}: \mathrm{wP}, \mathrm{wN}: \mathrm{mP}$	
		29.724	63.0	$44^{\circ} 2$	18.8	$54^{\cdot 1}$	- 5.6	52.4	50.7	3.4	$8 \cdot 6$	$0 \cdot 0$	88	$93 \cdot 0$	38.9	2.2	13.3	$0 \cdot 000$	$0 \cdot 0$	P	
4 5		29.542	$62 \cdot 7$	49°	13.7	56.0	- $3 \cdot 5$	$54 \cdot 3$	$52 \cdot 7$	$3 \cdot 3$	8.4	$0 \cdot 0$	89	1000	$39^{\circ} 6$	$0 \cdot 0$	13.2	$0 \cdot 188$	$2 \cdot 0$	$\mathrm{vP}: \mathrm{mP}, \mathrm{wN}$	
6	Perigee	29.375 29	$66 \cdot 9$	54°	$12 \cdot 9$	$58 \cdot 3$	- 1.0	$55 \cdot 2$	52.4	$5 \cdot 9$	14.2	$0 \cdot 4$	8 I	I 18.3	50.7	97	13.2	0.200	13.0	$w P, w N: ~ v P, s N: m P$	
7		29.481	$67 \cdot 6$	52.2	15.4	$57 \cdot 5$	- 1.5	55.5	53.7	$3 \cdot 8$	12.8	$0 \cdot 2$	87	103.9	47°	$2 \cdot 6$	13.1	$0 \cdot 012$	$0 \cdot 0$	$-: w N, v P$	
8	In Fquato	29.574	65°	$47^{\circ} 8$	17.2	56.7	- 2.1	$54^{\circ} 2$	$51 \cdot 9$	4.8	11.3	$\bigcirc \cdot 2$	84	$95 \cdot 3$	$41^{\circ} 7$	$0 \cdot 0$	13.0	$0 \cdot 010$	$0 \cdot 0$	$\mathrm{wP}: \mathrm{vP}$	
9	In Equato	29.704	$66 \cdot 1$	$47^{\circ} 4$	18.7	$56 \cdot 9$	- 1.6	54.4	$52 \cdot 1$	$4 \cdot 8$	11•2	0.8	84	97°	39:2	0.5	13.0	0.008	$0 \cdot 0$	-: wN, wP: vP	
10		29.823	58.5	$47 \cdot 5$	1100	53.9	- 4 * 4	52.5	51.1	$2 \cdot 8$	57	$0 \cdot 4$	90	82.7	$39^{\circ} 2$	$0 \cdot 3$	$12{ }^{\circ} 9$	$0 \cdot 068$	$0 \cdot 0$	$\mathrm{mN}: \mathrm{wP}, \mathrm{wN}: \mathrm{wP}$	
11		29.792	$58 \cdot 9$	$5 \mathrm{I} \cdot 2$	77	54.1	-4\%	$53 \cdot 2$	$52 \cdot 3$	1.8	$4 \cdot 2$	$0 \cdot 2$	94	$76 \cdot 6$	$50 \cdot 5$	$0 \cdot 0$	12.9	$\bigcirc \cdot 109$	\bigcirc	$\stackrel{\text { wP }}{\text { w }}$ (${ }_{\text {w }}$	
12	.	29.833	$58 \cdot 2$	53.4	$4 \cdot 8$	$55 \cdot 3$	-2.7	54.2	53.1	$2 \cdot 2$	$6 \cdot 1$	$\bigcirc \circ$	93	$73 \cdot 2$	$52 \cdot 0$	$0 \cdot 0$	12.8	0.022	$0 \cdot 0$	-: wP,wN: wN, vP	
13		29.927	68•1	$51^{\circ} \mathrm{O}$	$17^{\prime} 1$	56.0	- 1.8	54.1	$52 \cdot 3$	$3 \cdot 7$	11-3	1×0	88	108.4	$46 \cdot 0$	1×7	12.7	$0 \cdot 000$	$0{ }^{\circ}$	vP	
14	Declinatiost N .	29.943	68.4	$49^{\circ} 2$	19.2	$56 \cdot 8$	-0.8	53.6	$50 \cdot 6$	$6 \cdot 2$	14.9	$1 \bigcirc 0$	80	$110 \cdot 3$	$42 \cdot 0$	$7 \cdot 1$	12.7	$0 \cdot 000$	$0 \cdot 0$	mP : vP, wN	
15	Last Qr.	$29^{\circ} 955$	$64^{\circ} 1$	$47^{\circ} 6$	16.5	$54^{1} 1$	-3.3	$52 \cdot 8$	51.5	2.6	1192	$0 \cdot 0$	91	98.6	$40 \cdot 3$	1.6	12.6	$0 \cdot 008$	$0 \cdot 0$	vP, vN: wN, vP	
16		30.013	$63 \cdot 1$	40°	$23 \cdot 1$	51.6	$-5 \cdot 7$	$50 \cdot 0$	$48 \cdot 4$	3.2	11.6	$0 \cdot 0$	89	85. 1	35.5	$4 \cdot 6$	12.6	$0 \cdot 000$	$0 \cdot 0$		
17		29.839	$67 \cdot 9$	$48 \cdot 0$	$19^{\circ} 9$	57.7	$+0.6$	$54 \cdot 6$	$51 \cdot 8$	$5 \cdot 9$	17.5	$0 \cdot 0$	81	113.6	39°	$5 \cdot 4$	12.5	$0 \cdot 004$	$2 \cdot 0$	$\mathrm{mP}: \mathrm{sP}, \mathrm{vN}$	
18	Apogee	29.521	$72 \cdot 9$	54°	18.9	61.1	+ 4.2	58.8	$56 \cdot 8$	$4 \cdot 3$	13.1	$0 \cdot 4$	86	112.3	$49^{\circ} 2$	$4 \cdot 3$	12.4	$\bigcirc \cdot 155$	$6{ }^{\circ}$	ssP, ssN : mP	
19		29.650	$69^{1} 1$	$51 \cdot 3$	17.8	60.1	$+3 \cdot 3$	58.1	$56 \cdot 3$	$3 \cdot 8$	$10 \cdot 3$	$\bigcirc \cdot 8$	88	110°	44°	$1 \cdot 3$	$12 \cdot 3$	$0 \cdot 000$	$0 \cdot 0$	wP, wN: vP	
20		29.626	$70 \cdot 4$	$49^{\circ} 9$	20.5	$59 \cdot 6$	+ 3.0	57°	54.7	4.9	11.7	\bigcirc	84	125.4	$43 \cdot 3$	4.0	12.3	$0 \cdot 050$	$4{ }^{\circ}$	$v P: m P: ~ w P ~$	
21		29.309	$66 \cdot 1$	$52 \cdot 2$	13.9	$59^{\prime} 1$	+ 27	57.7	$56 \cdot 5$	2.6	$8 \cdot 4$	$0 \cdot 0$	92	$93 \cdot 4$	$4^{8 \cdot}$	$0 \cdot 0$	12.2	$0 \cdot 470$	3.0		
22	In Equator	$29^{\circ}{ }^{21}$	597	49°	$10 \cdot 7$	$53 \cdot 5$	-2.7	$5 \mathrm{I}^{\circ} 9$	$50 \cdot 4$	$3 \cdot 1$	$7 \cdot 2$	$\bigcirc \circ$	89	$70^{\circ} 1$	$46 \cdot 0$	$0 \cdot 0$	12.2	0.236	$0 \cdot 0$	$\mathrm{mP}: \mathrm{wP}, \mathrm{wN}: \mathrm{sN}, \mathrm{vP}$	
23	New	29.777	61.8	53.0	8.8	55.9	- 0.2	$55^{\circ} \mathrm{I}$	$54^{\circ} 4$	1.5	$4 \cdot 6$	$0 \cdot 0$	94	82.2	$49^{\circ} 8$	$0 \cdot 0$	12.1	$0 \cdot 000$	$0 \cdot 0$		
24	..	29.989	$66 \cdot 1$	$54 \cdot 8$	11.3	$57 \cdot 9$	$+2.0$	$56 \cdot 5$	$55 \cdot 2$	$2 \cdot 7$	$7 \% 4$	$0 \cdot 0$	91	$105 \cdot 6$	$49^{\prime} 5$	- 05	12°	0.278	2.3	wP : wP, wN	
25		29.879	$70 \cdot 4$	50*0	$20 \cdot 4$	59.7	$+3.9$	$57 \cdot 3$	$55 \cdot 2$	4.5	12.4	$0 \cdot 0$	86	117.2	$4^{5} \circ$	4.4	119	$0 \cdot 364$	$9 * 7$	WP:	
26		29.926	$65 \cdot 4$	$47 \cdot 3$	18.1	$55 \cdot 0$	- 0.7	$52 \cdot 8$	$50 \cdot 7$	$4 \cdot 3$	11.8	0.6	86	117.5	$40^{\circ} 2$	$2 \cdot 9$	11.9	$0 \cdot 000$	$0^{\circ} \mathrm{O}$	$\mathrm{mP}: ~ \mathrm{vP}, \mathrm{wN}$	
27	.	$30 \cdot 014$	$64^{\circ} 2$	47%	$16 \cdot 8$	$53 \cdot 0$	-2.5	$51 \cdot 2$	$49^{\circ} 4$	3.5	$10 \cdot 3$	$0 \cdot 0$	87	105.1	39.8	1.4	11.8	$0 \cdot 002$	$0 \cdot 0$	w	
28		$30 \cdot 143$	64.1	$42 \cdot 5$	21.6	$52 \cdot 3$	-3.1	$50 \cdot 3$	$48 \cdot 3$	$4{ }^{\circ} \mathrm{O}$	12.8	0*o	86	115.0	$34 \cdot 8$	$7 \cdot 3$	117	$0 \cdot 000$	$0^{\circ} 0$	WP: vP	
29	$\underset{\text { Greatest }}{\text { drination } \mathrm{S}}$.	$30 \cdot 215$	$65 \cdot 8$	$40 \cdot 5$	25.3	51.5	- 37	$49^{\circ} 8$	$48 \cdot 1$	$3 \cdot 4$	11.5	$0 \cdot 0$	89	115.2	$36 \cdot 0$	$5 \cdot 5$	11×7	$0 \cdot 000$	$0 \cdot 0$	$\mathrm{vP}: \mathrm{mP}$	
30	First Qr.	30.196	64.9	39°	25.9	$50 \cdot 5$	-4.4	49°	$47^{\circ} 4$	$3 \cdot 1$	13.1	$\bigcirc \bigcirc$	90	$117{ }^{\circ}$	$3 \mathrm{I} \cdot 7$	$5 \cdot 3$	11.6	$0 \cdot 000$	$0 \cdot 0$		
Means		29.800	64.6	48•8	15.8	55.7	- I.8	53.7	5ı9	$3 \cdot 7$	$10 \cdot 3$	$\bigcirc \cdot 3$	$87 \cdot 6$	$99^{\circ} 8$	$43 \cdot 2$	2.5	12.6	2.188	14		
Number of Column for Reference.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

The results apply to the civil day.
The mean reading of the Sarometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 800$, being $0^{\text {in }} \cdot 013$ higher than the average for the 20 years, 1854-1873.

Temperature of the Air.

The highest in the month was $72^{\circ} \cdot 9$ on September 18 ; the lowest in the month was $39^{\circ} \cdot 0$ on September 30 ; and the range was $33^{\circ} \cdot 9$.
The mean of all the highest daily readings in the month was $64^{\circ} \cdot 6$, being $3^{\circ} \cdot \circ$ lower than the average for the 40 years, 1841-1880.
The mean of all the lowest daily readings in the month was $48^{\circ} \cdot 8$, being $0^{\circ} \cdot 4$ lower than the average for the 40 years, 1841-1880.
The mean daily range was $15^{\circ} \cdot 8$, being $2^{\circ} \cdot 6$ less than the average for the 40 years, 184i-1880.
The mean for the month was $55^{\circ}{ }^{\circ}$, being $1^{\circ} \cdot 8$ lower than the average for the 20 years, 1849-1868.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point T'emperatures (Column ro) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least The mean difference between the Air and Dew Point Temperatures (Colomaphic measures of the Dry-bulb and Wet-bulb Thermometers. The results on October 18, 19, Differences (Columns 11 and 12) are deduced from tor Evaporation Temperature depend party values inferred from eye-observations, on account of accidental loss of photographic register.
20, and 3I for Evaporation
The Electrometer was not in action from October 14 to 19 and again from October 22 to 24.
The mean reading of the Baroneter for the month was $29^{\text {in }} \cdot 829$, being $0^{\text {in }} \cdot \mathbf{1 0 9}$ higher than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $63^{\circ} \cdot 0$ on October 1 ; the lowest in the month was $26^{\circ} \cdot 2$ on October 17 ; and the range was $36^{\circ} \cdot 8$.
The mean of all the highest daily readings in the month was $52^{\circ} \cdot 4$, being $5^{\circ} .8$ lower than the average for the 40 years, 1841-1880.
The mean of all the lowest daily readings in the month was $39^{\circ} \cdot 0$, being $4^{\circ} \cdot 6$ lower than the average for the 40 years, 1841-1880.
The mean daily range was $13^{\circ} 4$, being $\mathrm{I}^{\circ} \cdot 2$ less than the average for the 40 years, $184 \mathrm{I}-1880$.
The mean for the month was $45^{\circ} \cdot 4$, being $5^{\circ} \cdot 7$ lower than the average for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was $43^{\circ} \cdot 5$, being $5^{\circ} \cdot 4$ lower than
The mean Temperature of the Dew Point for the month was $41^{\circ}{ }^{\circ} 4$, being $5^{\circ} \cdot 4$ lower than
The mean Degree of Humidity for the month was $86 \cdot 6$, being 0.5 greater than
The mean Elastic Force of Vapour for the month was $0^{\ln } \cdot 26 \mathrm{t}$, being $\mathrm{o}^{\text {in }} \cdot 060$ less than the average for the 20 years, 1849-1868.
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\mathrm{grr}} \cdot 0$, being $\mathrm{ogr}^{\mathrm{gr}} 6$ less than
The mean Weight of a Cubic Foot of Air for the month was 547 grains, being 8 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by 10) was $6 \cdot 1$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 29$. The maximum daily amount of Sunshine was 9.3 hours on October 2 . The highest reading of the Solar Radiation Thermometer was $125^{\circ} \circ$ on October 3; and the lowest reading of the Terrestrial Radiation Thermometer was $19^{\circ} .6$ on October 31 .
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $1 \cdot 0$; for the 6 hours ending 3 p.m., 0.2 ; and for the 6 hours ending 9 p.m., 0.4 .
The Proportions of Wind referred to the cardinal points were N. 10, E. 10, S. 4, and W. 6. One day was calm.
The Greatest Pressure of the Wind in the month was $53^{\text {lbs. }} \mathrm{O}$ on the square foot on October 14. The mean daily Horizontal Movement of the Air for the month was 306 miles; the greatest daily value was 999 miles on October 14 ; and the least daily value 102 miles on October 17 .
Rain fell on 13 days in the month, amounting to $2^{\text {in }} \cdot 711$, as measured by gauge No. 6 partly sunk below the ground; being oin. 227 less than the average fall for the 40 years, 1841 -1880.

The results apply to the cinvil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic record average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temperature of the Dew Point (Columale and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of and and ane Greatest and Least The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers Thermometers. Differences (Columns 11 and 12) are deduced from the 24 hourly photographic meres
The values given in Columns 3, 4, 5, 14, and ${ }_{5}$ are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot \boldsymbol{7 8}^{2}$, being $0^{\text {in }} \cdot$ or I higher than the average for the 20 years, 1854-1873.
Temperature of the Air.
The highest in the month was $63^{\circ} \cdot 3$ on November 5; the lowest in the month was $30^{\circ} \cdot 1$ on November 1 ; and the range was $33^{\circ} \cdot 2$.
The mean of all the highest daily readings in the month was $54^{\circ} \cdot 0$, being $5^{\circ} \cdot 3$ higher than the average for the 40 years, 184i-1880.
The mean of all the lowest daily readings in the month was $4^{\circ} \cdot 8$, being $5^{\circ} .6$ higher than the average for the 40 years, 1841-1880.
The mean daily range was $11^{\circ} \cdot 2$, being $0^{\circ} \cdot 3$ less than the average for the 40 years, $184^{x}-1880$.
The mean for the month was $49^{\circ} \cdot 0$, being $6^{\circ} \cdot 3$ higher than the average for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was $47^{\circ} \cdot 4$, being $6^{\circ} \cdot 2$ ligher than
The mean Temperature of the Dew Point for the month was $45^{\circ} \cdot 6$, being $6^{\circ} \cdot 3$ higher than
The mean Degree of Humidity for the month was $88^{\cdot 2}$, being $0^{\circ} 9$ greater than
The mean Elastic Force of Vapour for the month was $0^{1 n} \cdot 306$, being $0^{\text {in }} \cdot 066$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{815 \cdot} 5$, being ogr. 7 greater than
The mean Weight of a Cubic Foot of Air for the month was 542 grains, being 7 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.4 .
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was 0.20 . The maximum daily amount of Sunshine was 5.6 hours on November 12.
The highest reading of the Solar Radiation Thermometer was $93^{\circ} \cdot 5$ on November 26; and the lowest reading of the Terrestrial Radiation Thermometer was $22^{\circ} \cdot 1$ on November I.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., $2 \cdot 9$; for the 6 hours ending 3 p.m., 0.4 ; and for the 6 hours ending 9 p.m., $0 \cdot 7$.
The Proportions of Wind referred to the cardinal points were N. o, E. 4, S. 16, and W. 9. One day was calm.
The Greatest Pressure of the Wind in the month was $37^{\text {liss. }} 5$ on the square foot on November 2\%. The mean daily Horizontal Movement of the Air for the month was 361 miles; the greatest daily value was 815 miles on November 27 ; and the least daily value 109 miles on November 9 .
Rain fell on 16 days in the month, amounting to $2^{\text {ta }} \cdot 265$, as measured by gauge No. 6 partly sunk below the ground; being. $0^{\text {tn }} \cdot 037$ greater than the average fall for the 40 years, 1841-1880.

The results apply to the civil day
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868 . The temper of Glaisher's Hygrometrical Tables. and the Degree of Humidity (Column 13) are deduced from the corresponding The mean difference between the Air and Dew Point Temperatures (Chotographic measures of the Dry-bulb and Wet-bulb Thermometers. Differences (Columns 11 and 12) are deduced from the 24 hour 1 , and 1 有

的
Temperature of the Air.
The highest in the month was $53^{\circ} .7$ on December 2 ; the lowest in the month was $21^{\circ} .6$ on December 24 ; and the range was $32^{\circ} \cdot 1$.
The mean of all the highest daily readings in the month was $44^{\circ} \cdot$, being $0^{\circ} \cdot 4$ lower than the average for the 40 years, $1841-1880$.
The mean of all the lowest dally readings in the monn
The mean daily range was $9^{\circ} \cdot 1$, being $\circ^{\circ} \cdot 3$ less than the average forage for the 20 years, 1849-1868.

The mean Temperature of Evaporation for the month was $38^{\circ} \cdot 7$, being $0^{\circ} \cdot 6$ lower than
The mean Temperature of the Dew Point for the month was $37^{\circ} \cdot 2$, being $\circ^{\circ} \cdot 2$ lower than
The mean Degree of Humidity for the month was $90 \cdot 8$, being $3 \cdot \circ$ greater than
The mean Elastic Force of Vapour for the month was $\mathrm{o}^{\text {in }} \cdot 222$, being $\mathrm{o}^{\text {in }} \cdot 002$ less than
the average for the 20 years, $1849-1868$.
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2^{\mathrm{grs}} \cdot 6$, being the sane as
The mean Weight of a Cubic Foot of Air for the month was 553 grains, being 2 grains greater than J
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was $7 \cdot 1$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.15. The maximum daily amount of Sunshine was $\mathbf{5 . 2}$ hours on December 3, 18 , and 19 .
The highest reading of the Solar Radiation Thernometer was $93^{\circ} .8$ on December 3; and the lowest reading of the Terrestrial Radiation Thermometer was $17^{\circ} \cdot \mathbf{2}$ on December $\mathbf{2 5}$.
The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.4 ; for the 6 hours ending 3 p.m., 0.2 ; and for the 6 hours ending 9 p.m., 0.6 .
The Proportions of Wind referred to the cardinal points were N. 3, E. 3, S. 15, and W. 10.
The Greatest Pressure of the Wind in the month was $21^{\text {1bs }} \cdot 0$ on the square foot on December ${ }_{17}$. The mean daily Horizontal Movement of the Air for the month was 297 miles ; the greatest daily value was 759 miles on December 18; and the least daily value 63 miles on December 9 .
Rain fell on ${ }^{15}$ days in the month, amounting to $2^{\text {in }} \cdot 495$, as measured by gauge No. 6 partly sunk below the ground ; being ola. 706 greater than the average fall for the 40 years, $\mathbf{1 8 4 1 - 1 8 8 0 .}$

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records-continued.

The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period, the symbol : denoting that the reading has been sensibly the same through a period of more than one hour. The reading at April $24^{\mathrm{d}} .8^{\mathrm{h}} . \circ^{\mathrm{m}}$. has been inferred, on account of partial loss of photographic register.

Absolute Maxima and Minima Readings of the Barometer for each Month in the Year 188i. [Extracted from the preceding Table.]

The highest reading in the year was $30^{\mathrm{in} \cdot} 497$ on May 10.
The lowest reading in the year was $28^{\text {in }} \cdot 571$ on December 18. The range of reading in the year was $\mathbf{i n}^{\mathrm{in}} \boldsymbol{0} \mathbf{9 2 6}$.

Monthly Results of Meteorological Elements for the Year 1881.

$1881 \text {, }$ Month.	Mean Reading of the Barometer.	Temperature of the Air.														Mean Temperature of Evaporation.		Mean Temperature of the Dew Point.	Mean Degree of Humidity. (Saturation $=100$.)		
		Highest.		Lowest.	Range in the Month	$\begin{gathered} \text { Mean of all } \\ \text { the } \\ \text { Highest. } \end{gathered}$				Mean Daily Range.		Monthly Mean.		Excess of Mean above Average of 20 Years.							
January ..	in. $29^{\circ} 712$	$50 \cdot 0$		12.7	$37 \cdot 3$	$36 \cdot 2$		$27 \cdot 3$		$8 \cdot 9$		$31 \cdot 7$		-7.1		$30 \cdot 6$		$28 \cdot 0$	86•3		
February..	$29 \cdot 661$	54.0		$26^{1} 1$	$27 \cdot 9$	$42 \cdot 5$		$33 \cdot 5$		9°		$38 \cdot 0$		- 1.6		$36 \cdot 6$		$34 \cdot 5$	$87 \cdot 2$		
March . . .	$29^{\circ} 725$	$59 \cdot 8$		$24 \cdot 6$	35.2	$5 \mathrm{I} \cdot 1$		$35 \cdot 5$		$15 \cdot 6$		$42 \cdot 6$		+1.0		$40 \cdot 2$		$37^{\prime} 1$	811		
April	29*774	66.1		$29^{\cdot} 3$	$36 \cdot 8$	$55 \cdot 6$		$37 \cdot 5$		18.1		$45 \cdot 8$		- 1.7		$42 \cdot 4$		$38 \cdot 5$	$76 \cdot 1$		
May	$29 \cdot 925$	$78 \cdot 3$		$30 \cdot 9$	$47 \cdot 4$	$65 \cdot 8$		$43 \cdot 6$		$22 \cdot 2$		$54^{\circ} \mathrm{O}$		+ 0.9		$50 \cdot 0$		$46 \cdot 1$	$75 \cdot 2$		
June	29.806	$83 \cdot 9$		$38 \cdot 5$	$45 \cdot 4$	$70 \cdot 0$		$49 \cdot 7$		$20 \cdot 3$		$58 \cdot 6$		--1.		$54 \cdot 0$		$49 \cdot 9$	$73 \cdot 4$		
July......	29.828	$97^{1} 1$		$43 \cdot 9$	$53 \cdot 2$	$77^{\circ} 7$		54		22.8		$65 \cdot 5$		+ 2.9		$59 \cdot 7$		55.1	$70 \cdot 2$		
August . .	29.673	$85^{\cdot 4}$		$43 \cdot 1$	$42 \cdot 3$		$69 \cdot 7$	51.6		18.2		$59 \cdot 2$		$-2 \cdot 6$		$55 \cdot 9$		53.0	$80 \cdot 3$		
September.	$29 \cdot 800$	$72 \cdot 9$		$39^{\circ} \mathrm{O}$	$33 \cdot 9$	$64 \cdot 6$		$48 \cdot 8$		$15 \cdot 8$		55•7		- 1.8		$53 \cdot 7$		$5 \mathrm{I} \cdot 9$	$87 \cdot 6$		
October . . .	29.829	$63^{\circ} \mathrm{O}$		$26 \cdot 2$	$36 \cdot 8$	52				13.4		$45 \cdot 4$		$-5 \cdot 7$		$43 \cdot 5$		$41 \cdot 4$	$86 \cdot 6$		
November .	$29^{\circ} 782$	$63 \cdot 3$		$30 \cdot 1$	$33 \cdot 2$	54.0		42		11.2		$49^{\circ} 0$		$+6 \cdot 3$		$47 \cdot 4$		$45 \cdot 6$	$88 \cdot 2$		
December	29.821	53.7		21.6	$32 \cdot 1$	$44^{\circ} 0$		34.9		9^{11}		$39 \cdot 9$		- 0.9		$38 \cdot 7$		$37 \cdot 2$	$90 \cdot 8$		
Means . . .	29'778	$\begin{aligned} & \text { Highest. } \\ & 97^{\circ} 1 \end{aligned}$		$\begin{aligned} & \text { Lowest. } \\ & 12.7 \end{aligned}$	Annual Range 84.4	$57 \cdot 0$		$41 \cdot 6$		$15 \cdot 4$		$4^{8 \cdot 8}$		- 0.9		$4^{6 \cdot 1}$		$43 \cdot 2$	8I'9		
188! Montif.	Mean Elastic Force of Vapour.	Mean Weight of Vapour in a Cubic Foot of Air.	Mean Weight of a Cubic Foot of Air.	Mean Amoun of Ozone.	MeanAmountofCloud.$(0-10$.	Rain.			Wind.												
						Number of Rainy Days.	Amount collected in a Gauge whose receiving Surface is 5 Inches above the Ground.		From Osler's Anemometer.												
									Number of Hours of Prevalence of each Wind, referred to different Points of Azimuth.									$\begin{array}{\|c} \text { Mean Daily } \\ \text { Pressure } \\ \text { on } \\ \text { the Square } \\ \text { Foot. } \end{array}$			
									N.	N.E.	E.	S.E.	S.	S.W.	W.	N.W.					
January...	$\begin{aligned} & \text { in. } \\ & 0 \cdot 153 \end{aligned}$	$\begin{aligned} & \text { grs. } \\ & 1.8 \end{aligned}$	$\begin{gathered} \text { grs. } \\ 561 \end{gathered}$	$1 \cdot 7$	6•8	9	in. I•	663	$\begin{gathered} \text { h } \\ 118 \end{gathered}$	$\begin{gathered} \mathrm{h} \\ 190 \end{gathered}$	$\begin{gathered} h \\ 98 \end{gathered}$	$\begin{gathered} h \\ 51 \end{gathered}$	$\begin{gathered} h \\ 52 \end{gathered}$	$\begin{gathered} h \\ 145 \end{gathered}$	$\begin{aligned} & \mathrm{h} \\ & 5_{4} \end{aligned}$	$\begin{array}{l\|l} & \mathrm{h} \\ 4 & 36 \end{array}$	h ${ }^{\text {¢ }}$	$\begin{gathered} \text { lbs. } \\ 0 \cdot 5 \text { i } \end{gathered}$	miles. 256		
February..	- 199	$2 \cdot 3$	552	$3 \cdot 4$	$8 \cdot 5$	18	2.4	446	106	117	42	78	82	111	37	60	39	0.69	311		
March	0.221	$2 \cdot 6$	548	3.1	$5 \cdot 9$	11	1.8	835	27	99	123	44	26	212	149	36	28	$0 \cdot 64$	336		
April.....	0.233	$2 \cdot 7$	546	$2 \cdot 7$	$6 \cdot 7$	8	$0 \cdot 6$	623	84	230	127	19	67	99	35	- 47	12	1.25	357		
May	$0 \cdot 312$	$3 \cdot 5$	539	$5 \cdot 2$	$5 \cdot 4$	13	1.6	611	99	134	98	21	40	238	50	33	31	0.62	286		
June.	0.360	$4^{\circ} 0$	532	$5 \cdot 4$	$6 \cdot 6$	9	1.8	863	83	42	33	68	115	233	53	62	31	$0 \cdot 11$	230		
July	0.434	$4 \cdot 8$	525	$3 \cdot 0$	6.1	12	$2 \cdot 1$	137	7 I	49	11	37	47	326	142	-53	8	$0 \cdot 12$	259		
August . .	0.403	$4 \cdot 5$	529	$4^{1} 1$	$7{ }^{\circ} 4$	17	$3 \cdot 8$	888	50	11	4	41	89	349	147	53	0	$0 \cdot 28$	302		
September.	$0 \cdot 386$	$4 \cdot 3$	535	1.4	$7{ }^{1}$	15	$2 \cdot 1$	188	131	68	52	54	80	${ }_{156}$	48	91	40	$0 \cdot 07$	195		
October...	$0 \cdot 261$	3.0	547	1.6	$6 \cdot 1$	13	$2 \cdot 7$		135	184	132	53	19	104	75	28	14	0.69	306		
November .	$0 \cdot 306$	$3 \cdot 5$	542	$4^{\circ} \mathrm{O}$	$7{ }^{\circ} 4$	16	$2 \cdot 2$	65	0	3	72	54	189	335	36	2	29	$0 \cdot 88$	361		
December .	$0 \cdot 222$	2.6	553	$2 \cdot 2$	$7{ }^{1}$	15	2.	495	38	36	15	78	188	266	88	-26	9	0.44*	297		
Sums	\cdots	-	-	\cdots	-	156	25*7	25	942	1163	807	598	994	2574	914	4527	241	-•	-•		
Means . . .	$0 \cdot 291$	$3 \cdot 3$	542	$3 \cdot 2$	$6 \cdot 8$	-			\cdots		.		\cdots		-	\cdots	\cdots	0.53	291		
The greatest recorded pressure of the wind on the square foot in the year was 53 lbs . on October 14. The greatest recorded daily horizontal movement of the air " " 999 miles on October 14. The least recorded daily horizontal movement of the air " 59 miles on May 25.																					

* Mean for 30 days.

Greenwich Magnetical and Meteorological Observations, 1881.

Hour, Greenwich Mean Solar reckoning).	1881.												Yearly Means.
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$\begin{aligned} & \text { in. } \\ & 29^{\circ} 724 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 2966 \end{aligned}$	29726	$29 \cdot 788$	1	811		'668	$\stackrel{\text { in. }}{29} 8$			$\stackrel{\text { in. }}{29}$	5
$1^{\text {b }}$. a.m.	29721	29.661	29.724	29.783	29.918	29.809	29.842	29.666	29.794 29	29.839	29.787 29	29.832 29.825	29.785 29.780
2 "	29.718	29.656	29719	29.778	29.916	29.803	29.835	29.664	29793	29.833	29776	29.822	29.776
3 "	29775	29.649	29.715	29.776	29.914	$29 \cdot 802$	29.834	29.661	$29 \cdot 787$	29.828	29.767	29.814	29.772
4 "	29.712	29.645	29713	29.772	29.914	$29 \cdot 803$	29.830	29.662	29.784	29.826	29.764	29.807	29.769
5 "	29'708	$29 \cdot 645$	29.713	29.773	29.920	$29 \cdot 805$	29.831	29.666	$29 \cdot 786$	29.825	29764	29.802	29.770
6 "	29706	29.644	29717	29.779	29.926	29.810	29.834	29.674	29790	29.824	29.764	29.806	$29^{*} 773$
7 "	29.710	29.647	29.727	29.785	29.931	29.813	29.838	29.680	$29 \cdot 797$	29.829	$29^{\prime} 770$	29.810	$29^{\prime} 778$
8 "	29719	29.654	29.732	29.786	29.934	29.815	29.841	29.686	29.804	29.835	$29^{\prime} 778$	29.819	$29^{\prime} 784$
9 "	29.725	29.661	29.737	29.789	29.935	29.816	29.841	29.688	29.809	29.837	29.786	29.827	$29 \cdot 788$
10 "	29.730	29.666	29.743	29787	29.936	29.817	29.838	29.687	29.811	29.838	$29^{\prime} 79^{3}$	29.835	29.790
11	29729	29.673	29.746	29.783	29.933	$29 \cdot 816$	29.834	29.684	29.808	29.832	29.794	29.832	29.789
Noon	$2{ }^{1} 721$	29.672	29740	29.775	29.928	29.812	29.829	29.679	29.804	29.829	29.786	29.824	$29 \cdot 783$
$1^{\text {l }}$. p.m.	29709	29.667	29.731	29.770	29.925	29.807	29.822	29.675	29.798	29.821	29.780	29.817	$29 \cdot 777$
2 "	29'700	29.659	29.718	29.762	29.921	29.805	29.819	29.672	29.795	29.815	29.776	29.813	29.771
3 "	29.699	29.657	29.710	29.755	29.915	29.799	29.814	29.666	29.791	29.812	29776	29.814	29.767
4 "	29.700	29.657	29.708	29.752	29.911	29793	29.809	29.663	29.792	29.812	29.778	29.818	29.766
5 "	29.701	29.660	29.710	$29^{\circ} 754$	29.908	29.790	29.807	29.660	29795	29.821	29782	29.822	29.768
6 "	29.704	29.664	29.717	29.757	29.913	29.792	29.806	29.663	29.799	29.830	29788	29.824	29.771
	29.707	29.668	29725	29.765	29.920	29.795	29.810	29.667	29.806	29.835	29791	29.827	29.776
8 "	29.708	29.670	29.730	29×774	29.930	29.800	29.818	29.677	29.810	29.836	$29^{\circ} 794$	29.827	29.781
9 "	29.707	29.671	29.731	29.780	29.938	29.808	29.825	29.681	29.812	29.836	29.797	29.830	29.785
IO "	29706	29.671	29.731	29.781	29.940	29.811	29.830	29.686	29.812	29:834	29796	29.830	29.786
11	29'706	29.671	$29^{\circ} 730$	$29^{\circ} 782$	29.941	29.809	29.833	29.687	$29 \cdot 812$	29.834	29793	29.831	29\%786
Means	29\%712	29.661	29*725	29*774	29.925	29.806	29.828	29.673	29.800	29.829	$29^{\prime} 782$	$29^{\circ} 821$	29.778
$\left\{\begin{array}{c} \text { Numijer r } \\ \text { of Dlays } \\ \text { employed. } \end{array}\right\}$	31	28	31	30	31	30	31	31	30	31	30^{*}	31	.
Monthly Mean Temperature of the Air at every Hour of the Day, as deduced from the Photographic Records.													
Hour, Greenwich Mean Solar Time (Civil reckoning).	1881.												Yearly Means.
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$3{ }^{\circ} \cdot 1$	$37 \cdot 1$	$39^{\circ} 6$	$4{ }^{\circ} \mathrm{O}$	$48 \cdot 3$	$53 \cdot 0$	60°	$5{ }^{\circ} \cdot 5$	$5{ }^{\circ} \cdot 1$	$4 \stackrel{\circ}{3} 7$	$47^{\circ} 2$	$3{ }^{\circ} 1$	$4 \stackrel{\circ}{5} 6$
$\mathrm{I}^{\text {b }}$. a.m.	31.0	37.1	39.5	$40 \cdot 8$	$47 \cdot 5$	$52 \cdot 6$	59°	55°	$52 \cdot$	$43 \cdot 2$	47.2	$39^{1} 1$	$45 \cdot 3$
2 "	$30 \cdot 8$	$36 \cdot 7$	$39^{1} 1$	$40 \cdot 8$	47°	$52 \cdot 2$	58.5	54.5	$51^{\circ} 9$	$43 \cdot 0$	$47^{\circ} 4$	39^{-2}	$45 \cdot 1$
3 "	$30 \cdot 4$	$36 \cdot 6$	$38 \cdot 8$	$40 \cdot 7$	$46^{\circ} 2$	$51 \cdot 7$	$58 \cdot 0$	54^{1}	$51 \cdot 5$	$42 \cdot 7$	$47^{\circ} 6$	$39^{\prime} 1$	44.8
4 "	$30 \cdot 2$	$36 \cdot 7$	$38 \cdot 7$	$40 \cdot 1$	$46 \cdot 0$	$51 \cdot 6$	57.7	53.7	51.4	$42 \cdot 2$	$47^{\circ} 8$	39°	$44^{6} 6$
5 "	30°	$36 \cdot 8$	$38 \cdot 5$	$39 \cdot 8$	$46 \cdot 2$	$52 \cdot 0$	58.0	$53 \cdot 7$	$5 \mathrm{r} \cdot 5$	42.0	$48 \cdot 0$	$38 \cdot 8$	44^{6}
6 "	$29^{\circ} 9$	$36 \cdot 9$	$38 \cdot 4$	$40 \cdot 4$	$48 \cdot 2$	$53 \cdot 6$	59.4	54.2	$51 \cdot 7$	$41 \cdot 8$	47.9	38.9	45.1
7 "	$29^{\circ} 7$	$36 \cdot 9$	$38 \cdot 7$	$42^{\circ} \mathrm{O}$	$50 \cdot 8$	$55 \cdot 9$	61.8	$55 \cdot 9$	$52 \cdot 6$	$41 \cdot 9$	$47^{\circ} 8$	$38 \cdot 8$	$46 \cdot 1$
8 "	$29 \cdot 5$	$37 \cdot 2$	40°	44.5	53.9	$58 \cdot 7$	64.9	$57 \cdot 9$	53.9	$43 \cdot 5$	$48 \cdot 0$	$38 \cdot 6$	$47^{\circ} 5$
9 "	$30 \cdot 2$	377	$42 \cdot 3$	$47 \cdot 3$	$56 \cdot 6$	6 I 3	$67 \cdot 3$	$60 \cdot 2$	$55 \cdot 8$	$46 \cdot 0$	$48 \cdot 8$	$39 \cdot 2$	$49^{\circ} 4$
10 "	$3 \mathrm{I} \cdot 1$	38.4	$44^{1} 1$	$49^{\circ} 9$	$58 \cdot 7$	$62 \cdot 7$	$69 \cdot 3$	61.9	$57 \cdot 7$	$47 \cdot 8$	50°	$40 \cdot 1$	51°
11 "	32.4	$39^{\prime} 2$	$45 \cdot 8$	51.4	$60 \cdot 3$	$64 \cdot 3$	$71 \cdot 4$	$63 \cdot 5$	$59 \cdot 3$	$49 \cdot 3$	$51 \cdot 3$	$4{ }^{\circ} \mathrm{O}$	52.4
Noon	$33 \cdot 7$	397	$47^{\circ} 2$	52.6	61.5	$65 \cdot 4$	$73 \cdot 0$	$64 \cdot 8$	60.6	$50 \cdot 4$	$52 \cdot 0$	$41 \cdot 8$	$53 \cdot 6$
$1^{\text {b }}$. p.m.	34.4	$40 \cdot 1$	$48^{\text {. }}$	$53 \cdot 1$	61.9	$65 \cdot 7$	74.2	$65 \cdot 8$	61.4	$50 \cdot 6$	$52 \cdot 3$	$42 \cdot 3$	54.2
2 "	34.7	$40 \cdot 4$	49°	$52 \cdot 9$	62.1	$65 \cdot 5$	74.6	$66 \cdot 1$	62.1	$50 \cdot 5$	$52 \cdot 3$	$42 \cdot 5$	54.4
3 "	34.2	$40 \cdot 5$	$48 \cdot 9$	$52 \cdot 8$	$62 \cdot 1$	$65^{\circ} 9$	$74^{\circ} 6$	$65 \cdot 5$	$62 \cdot 1$	$49^{\circ} 4$	$5 \mathrm{I} \cdot 5$	$41 \cdot 9$	$54^{\circ} \mathrm{I}$
4 "	$33 \cdot 5$	$40 \cdot 0$	$48 \cdot$	51.6	$61 \cdot 3$	$65 \cdot 5$	74^{1}	$64 \cdot 8$	$61 \cdot 3$	$48 \cdot 6$	$50 \cdot 4$	$41 \cdot 3$	53.4
$5 \quad$ "	33.0	$39 \cdot 3$	$46 \cdot 4$	$50 \cdot 2$	$60 \cdot 0$	$64 \cdot 1$	$72 \cdot 7$	$63 \cdot 5$	$59: 5$	$46 \cdot 9$	$49^{\circ} 6$	$40 \cdot 5$	$52 \cdot 1$
6 "	$32 \cdot 5$	$38 \cdot 6$	$44^{\circ} 5$	$48 \cdot 4$	58.0	62.0	$70 \cdot 8$	62.0	577	$45 \cdot 7$	$49^{1} 1$	$40 \cdot 1$	$50 \cdot 8$
7 \%	32.1	$38 \cdot 1$	$43 \cdot$	46•1	$55 \cdot 8$	$60 \cdot 4$	$68 \cdot 6$	$60 \cdot 3$	$55 \cdot 9$	$44^{\circ} 9$	$48 \cdot 7$	$39^{\prime} 7$	$49 \cdot 5$
8 "	$3 \mathrm{I} \cdot 6$	37.7	$42 \cdot 0$	$44 \cdot 3$	53.2	57.9	$65 \cdot 9$	58.7	54.7	44.2	$48 \cdot 3$	$39 \cdot 5$	$48 \cdot 2$
9 "	31.4	37.4	$41 \cdot 2$	$43 \cdot 4$	51.6	$56 \cdot$	$63 \cdot 9$	$57 \cdot 5$	$53 \cdot 5$	$43 \cdot 8$	$48 \cdot 1$	$39 \cdot 3$	47.3
10 "	$31 \cdot 2$ 3.2	$37 \cdot 1$	$40 \cdot 5$	$42 \cdot 6$	$50 \cdot 5$	54.7	62.4	$56 \cdot 5$	$52 \cdot 9$	$43 \cdot 3$	$47^{\circ} 8$	$39 \cdot 1$	$46 \cdot 6$
11 "	$31 \cdot 2$	$36 \cdot 9$	$40 \cdot 3$	4199	$49 \cdot 5$	53.6	60.9	$55 \cdot 8$	$52 \cdot 6$	$43 \cdot 3$	$47 \cdot 8$	$39 \cdot 1$	$46 \cdot 1$
Means	317	38.0	$42 \cdot 6$	$45 \cdot 8$	54.0	$58 \cdot 6$	$65 \cdot 9$	59.2	$55 \cdot 7$	$45 \cdot 4$	49°	$39^{\circ} 9$	$48 \cdot 8$
$\left.\begin{array}{c} \text { Number } \\ \text { of Days } \\ \text { employed. } \end{array}\right\}$	31	28	31	30	31	30	29	31	30	31	30	31	-•

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multicolumn{12}{|c|}{188 I.} \& \multirow[b]{2}{*}{\begin{tabular}{l}
Yearly \\
Means.
\end{tabular}} \\
\hline \& January. \& February. \& March. \& April. \& May. \& June. \& July. \& August. \& September. \& October. \& November. \& December. \& \\
\hline Midnight \& \(3{ }^{\circ} \cdot 3\) \& \(3{ }^{\circ} \cdot 1\) \& 38.3 \& \(3{ }^{\circ} \cdot 6\) \& \({ }_{4}{ }^{\circ} \cdot 8\) \& \(5^{\circ} \cdot 6\) \& \(57^{\circ} 4\) \& 53.9 \& \(5^{\circ} \cdot 6\) \& \(4^{2 \cdot} 7\) \& \(4{ }^{\circ} \cdot{ }^{\circ} \mathrm{I}\) \& 38.3 \& \(\stackrel{\circ}{4} 4\) \\
\hline \(\mathrm{i}^{\text {b }}\).a.m. \& \(30 \cdot 2\) \& \(36 \cdot\) \& \(38 \cdot 2\) \& 39.5 \& \(46 \cdot 2\) \& 51.4 \& \(56 \cdot 9\) \& \(53 \cdot 7\) \& 51.6 \& \(42 \cdot 4\) \& \(46 \cdot 2\) \& \(38 \cdot 4\) \& \(44^{2}\) \\
\hline 2 \& \(30 \cdot 1\) \& \(35 \cdot 7\) \& \(38 \cdot 0\) \& 39.5 \& \(45 \cdot 7\) \& \(50 \cdot 9\) \& \(56 \cdot 4\) \& \(53 \cdot 1\) \& 51.4 \& \(42 \cdot 2\) \& \(46 \cdot 2\) \& \(38 \cdot 4\) \& \(44^{\circ}\) \\
\hline 3 " \& 29.7 \& \(35 \cdot 7\) \& \(37 \cdot 8\) \& 39.3 \& \(45 \cdot 2\) \& \(50 \cdot 5\) \& 56.1 \& 52.9 \& \(51 \cdot 1\) \& \(4{ }^{1} 9\) \& \(46 \cdot 6\) \& \(38 \cdot 3\) \& \(43 \cdot 8\) \\
\hline 4 " \& 29.6 \& \(35 \cdot 9\) \& 379 \& 38.9 \& \(45 \cdot 1\) \& \(50 \cdot 4\) \& 55.7 \& \(52 \cdot 5\) \& 51.0 \& 41.5 \& \(46 \cdot 7\) \& 38.2 \& \(43 \cdot 6\) \\
\hline 5 " \& 29.5 \& \(36 \cdot 0\) \& 37.7 \& \(38 \cdot 7\) \& \(45 \cdot 4\) \& \(50 \cdot 6\) \& \(56 \cdot 0\) \& \(52 \cdot 4\)
5.4 \& \(51^{\circ}\) \& \(41 \cdot 3\) \& \(46 \cdot 7\) \& 38.0 \& \(43 \cdot 6\) \\
\hline 6 " \& 29.3 \& \(35 \cdot 8\)
35.8 \& \(37 \%\)
38.0 \& \(39 \cdot 1\)
40.2 \& \(46 \cdot 8\) \& \begin{tabular}{l}
51.7 \\
53. \\
\hline
\end{tabular} \& \(56 \cdot 8\)
58.1 \& 52.8 \& 51.2
51.8
51 \& \(4{ }^{1 \cdot 1}\) \& \(46 \cdot 7\)
46.6 \& 38.0
3 \& 43.9 \\
\hline 7 \% \& 29.1 \& \(\stackrel{35 \cdot 8}{ }\) \& \begin{tabular}{l}
\(38 \cdot \circ\) \\
38 \\
\hline
\end{tabular} \& \(40 \cdot 2\) \& 48.4 \& \(53 \cdot 1\) \& 58.1
59.6 \& 53.9 \& 51.8 \& \({ }^{41} \cdot 4\) \& \(46 \cdot 6\) \& \begin{tabular}{l}
37.9 \\
37 \\
\hline 8
\end{tabular} \& \(44 \cdot 5\) \\
\hline 8 " \& \(29^{\circ}\) \& \({ }^{36 \cdot 1}\) \& \(38 \cdot 7\) \& \(42^{2 \cdot}\) \& \(50 \cdot 1\)
51.6 \& 54.4 \& 59.6 \& \(55 \cdot 2\) \& \(52 \cdot 8\) \& \(42 \cdot 3\) \& \(46 \cdot 7\) \& \(37 \cdot 8\) \& 45.4 \\
\hline 9 " \& \(29^{\circ} 4\) \& \(36 \cdot 4\) \& \(40 \cdot 2\) \& \(43 \cdot 5\) \& \({ }_{51}{ }^{1} 6\) \& 55.5 \& \({ }^{60} 7\) \& \(56 \cdot 3\) \& 54.1 \& 44.1 \& \(47 \cdot 3\) \& \& 46.4 \\
\hline 10 " \& \(30^{\circ}\) \& \(37^{\circ}\) \& 41.3 \& 44.8 \& 53.0 \& \(55 \cdot 9\) \& \({ }^{61} 5\) \& \(57^{\circ}\) \& \(55 \cdot 3\) \& \(45 \cdot 2\) \& \(4{ }^{8 .}{ }^{\circ}\) \& 38.8 \& 47.3 \\
\hline \(11 \%\) \& \(31^{\circ} \mathrm{O}\) \& \(37 \cdot 4\) \& \(42^{\circ} \mathrm{O}\) \& \(45 \cdot 7\) \& \(53 \cdot 6\) \& \(56 \cdot 7\) \& \(62 \cdot 6\) \& 57.8 \& \(56 \cdot 2\) \& \(45 \cdot 8\) \& \(48 \cdot 7\) \& 39.4 \& \(48 \cdot 1\) \\
\hline Noon \& \(32 \cdot 1\) \& \(37 \cdot 9\) \& \(42^{\prime} 7\) \& \(46 \cdot 1\) \& 54.2 \& \(57{ }^{\text {I }}\) \& \(63 \cdot 5\) \& 58.7 \& \(56 \cdot 7\) \& \(46 \cdot 7\) \& \(49^{2}\) \& 39.9 \& \(48 \cdot 7\) \\
\hline \(\mathrm{I}^{\text {h }}\). p.m. \& 32.6 \& 38.0 \& \(43 \cdot 2\) \& \(46 \cdot 6\) \& \(54 \cdot 3\) \& \(57 \cdot 1\) \& \(64^{\circ} 1\) \& 59.3 \& \(57^{\circ}\) \& \(46 \cdot 7\) \& 493 \& \(40 \cdot 3\) \& \(49^{\circ}\) \\
\hline 2 " \& \(32 \cdot 8\) \& \(38 \cdot 1\) \& \(43 \cdot 7\) \& \(46 \cdot 4\) \& 54.4 \& \(57^{\circ}\) \& 64.1 \& \(59 \cdot 7\) \& 573 \& \(46 \cdot 5\) \& \(49^{2}\) \& \(40^{\circ} 4\) \& \(49^{\circ} \mathrm{I}\) \\
\hline 3 " \& \(32 \cdot 6\) \& \(38 \cdot 1\) \& \(43 \cdot 8\) \& \(46 \cdot 3\) \& 54.5 \& \(57 \cdot 2\) \& \({ }^{64.1}\) \& 59.7 \& \(57 \cdot 5\) \& \(4{ }^{6 \cdot 0}\) \& \(48 \cdot 7\)
48 \& 39.9
3.9 \& \(49^{\circ}{ }^{\circ}\) \\
\hline \& \(32 \cdot 1\)
319 \& 377 \& \(43 \cdot 2\) \& \(45 \cdot 8\) \& \(54^{\circ}\) \& \(57^{\circ} \mathrm{O}\) \& \({ }^{63 \cdot 4}\) \& \(59 \cdot 2\) \& 56.9 \& \(45 \cdot 3\) \& \(48 \cdot 2\) \& \(39 \cdot 6\) \& \(48 \cdot 5\) \\
\hline 5 " \& \(31 \cdot 7\) \& 37.4 \& 42.4 \& 447 \& \(53 \cdot 2\) \& 56.5 \& \(62^{\prime} 7\) \& \(58 \cdot 5\) \& \(56 \cdot 1\) \& 44.6 \& 478 \& \(39 \cdot 1\) \& 47.9 \\
\hline 6 " \& 31.4 \& \(36 \cdot 9\) \& 41.5 \& 43.8 \& \(52 \cdot 3\) \& \(55 \cdot 6\) \& 617 \& \(57^{\circ} 9\) \& \(55 \cdot 2\) \& \(43 \cdot 8\) \& \(47 \cdot 6\) \& 38.9 \& \(47^{2}\) \\
\hline 7 " \& \(31 \cdot 1\) \& \(36 \cdot 5\) \& \(40 \cdot 6\) \& \(42 \cdot 6\) \& \(51 \cdot 2\) \& 54.7 \& 60.8 \& \(57 \cdot 1\) \& \(54 \cdot 1\) \& 43.2 \& \(47 \cdot 3\) \& \(38 \cdot 6\) \& \(46 \cdot 5\) \\
\hline 8 " \& \(30 \cdot 8\) \& \(36 \cdot 3\) \& 39.9 \& 41.6 \& \(49 \cdot 9\) \& 53.9 \& \(59 \cdot 8\) \& \(56 \cdot 2\) \& 53.3 \& \(43 \cdot 0\) \& \(47^{\prime} 1\) \& 38.5 \& 45.9 \\
\hline 9 " \& \(30 \cdot 5\) \& \(36 \cdot 1\) \& 39.4 \& \(41 \cdot 1\) \& \(48 \cdot 9\) \& \(52 \cdot 8\) \& \(59^{\circ}\) \& \(55 \cdot 3\) \& \(52 \cdot 6\) \& \(42 \cdot 5\) \& \(46 \cdot 9\) \& 38.4 \& \(45 \cdot 3\) \\
\hline 10 \& \(30 \cdot 4\) \& 35.9 \& \(38 \cdot 9\) \& \(40 \cdot 6\) \& \(48 \cdot 2\) \& \(52 \cdot 3\) \& 58.4 \& 54.8 \& \(52 \cdot 2\) \& \(42 \cdot 3\) \& \(46 \cdot 7\) \& \(38 \cdot 2\) \& \(44^{\circ} 9\) \\
\hline 11 " \& \(30 \cdot 3\) \& \(35 \cdot 8\) \& \(38 \cdot 7\) \& \(40 \cdot 3\) \& \(47 \cdot 5\) \& \(51 \cdot 9\) \& 57.6 \& 54.3 \& \(51 \cdot 9\) \& \(42 \cdot 3\) \& \(46 \cdot 6\) \& 38.3 \& \(44^{6}\) \\
\hline Means \& \(30 \cdot 6\) \& \(36 \cdot 6\) \& \(40 \cdot 2\) \& \(42 \cdot 4\) \& \(50 \cdot 0\) \& \(54^{\circ}\) \& 59.9 \& \(55 \cdot 9\) \& \(53 \cdot 7\) \& \(43 \cdot 5\) \& \(47 \cdot 4\) \& \(38 \cdot 7\) \& \(46 \cdot 1\) \\
\hline \[
\left.\left\{\begin{array}{c}
\text { Number } \\
\text { ouployd } \\
\text { emploged. }
\end{array}\right\} \right\rvert\,
\] \& 31 \& 28 \& 31 \& 30 \& \(3!\) \& 30 \& 29 \& 31 \& 30 \& 31 \& 30 \& 31 \& . \\
\hline \multicolumn{14}{|c|}{Monthly Mean Temperature of the Dew Point at every Hour of the Dax, as deduced by Glatsher's Tables from the corresponding Air and Evaporation Temperatures.} \\
\hline \multirow[t]{2}{*}{} \& \multicolumn{12}{|c|}{1881.} \& \multirow[b]{2}{*}{\begin{tabular}{l}
Yearly \\
Means.
\end{tabular}} \\
\hline \& January. \& February. \& March. \& April. \& May. \& June. \& July. \& August. \& September. \& October. \& November. \& December. \& \\
\hline Midnight \& 28.2 \& \(3{ }^{\circ} \cdot 7\) \& \(3{ }^{\circ} \cdot 6\) \& 37.8 \& \(4{ }^{\circ} \cdot 2\) \& \(5{ }^{\circ} \cdot 2\) \& \(55_{1}\) \& \(5{ }^{\circ} \cdot 4\) \& \(5_{1}^{\circ} \cdot 1\) \& \(\stackrel{\circ}{4} \cdot 5\) \& \(44^{\circ} 9\) \& \(3 \stackrel{\circ}{7}\) \& \(\stackrel{\circ}{4} \cdot{ }^{\circ} 9\) \\
\hline \({ }^{\text {f }}\), a.m. \& 28.0 \& 34.5 \& \(36 \cdot 5\) \& 37.9 \& \(44 \cdot 8\) \& \(50 \cdot 2\) \& 54.9 \& \(52 \cdot 4\) \& \(51 \cdot 2\) \& 41.4 \& \(45 \cdot 1\) \& 37.5 \& \(42 \cdot 9\) \\
\hline 2 " \& 28.2 \& \(34 \cdot 3\) \& \(36 \cdot 6\) \& 37.9 \& \(44 \cdot 3\) \& \(49 \cdot 6\) \& \(54 \cdot 5\) \& \(51 \cdot 7\) \& \(50 \cdot 9\) \& \(41 \cdot 2\) \& \& 37.4
37.3 \& \(42 \cdot 6\) \\
\hline 3 " \& 27.7 \& \(34 \cdot 5\) \& \(36 \cdot 5\) \& \(37 \cdot 6\) \& \(44^{1}\) \& \(49 \cdot 3\) \& 54.4 \& 517 \& \(50 \cdot 7\) \& \(40 \cdot 9\) \& \(45 \cdot 5\) \& 37.3 \& \(42 \cdot 5\) \\
\hline 4 " \& 27.8 \& 34.8 \& 36.9 \& 37.4 \& \(44^{1}\) I \& \(49 \cdot 2\) \& \(53 \cdot 9\) \& \(51 \cdot 3\) \& \(50 \cdot 6\) \& \(40 \cdot 7\) \& \(45 \cdot 5\) \& \(37 \cdot 2\) \& 42.4 \\
\hline 5 " \& 27.9 \& \(34 \cdot 9\) \& 36.6 \& 37.3 \& \(44 \cdot 5\) \& \(49^{\cdot 2}\) \& 54.2 \& \(51 \cdot 1\) \& \(50 \cdot 5\) \& \(40 \cdot 5\) \& \(45 \cdot 3\) \& \(37^{\circ}\) \& 42.4 \\
\hline 6 " \& \({ }^{27 \cdot 6}\) \& \(34 \cdot 3\)
3 \& \(36 \cdot 8\) \& 37.5 \& \(45 \cdot 3\) \& 49.9 \& 54.5 \& 51.4 \& \(50 \cdot 7\) \& \(40 \cdot 3\) \& 45.4 \& \(36 \cdot 8\) \& 42.5 \\
\hline 7 " \& \(27 \cdot 3\) \& \(34 \cdot 3\) \& 37.1 \& 38.0 \& \(45 \cdot 9\) \& \(50 \cdot 5\) \& \(55 \cdot 0\) \& \(52^{\circ} \mathrm{O}\) \& \(51^{\circ} \mathrm{O}\) \& \(40 \cdot 8\) \& \(45 \cdot 3\) \& \(36 \cdot 7\) \& \(42 \cdot 8\) \\
\hline \& 27.4 \& \(34 \cdot 6\) \& \(37^{\circ} \mathrm{O}\) \& \(39^{\circ}{ }^{\circ}\) \& \(46 \cdot 4\) \& \(50 \cdot 5\) \& \(55 \cdot 2\) \& \(52 \cdot 8\) \& \(51 \cdot 7\) \& \(40 \cdot 9\) \& \(45 \cdot 3\) \& \(36 \cdot 7\) \& \(43 \cdot 1\) \\
\hline \& \(27^{\circ}\) \& 34.7 \& 37.6 \& \(3{ }^{3} \cdot 2\) \& \(47^{\circ}\) \& \(50 \cdot 5\) \& 55.5 \& 52.9
5.9 \& \(52 \cdot 5\) \& \(4 \mathrm{i} \cdot 9\) \& 45.6 \& \(36 \cdot 7\) \& 43.4 \\
\hline 10 " \& \(27 \cdot 1\) \& \({ }^{35 \cdot 1}\) \& 38.0 \& 39.4 \& \(47 \cdot 9\) \& \(50^{\circ} 1\) \& 55.4 \& \(52 \cdot 8\) \& \(53 \cdot 1\) \& \(42 \cdot 3\) \& \(45 \cdot 9\) \& \(37 \cdot 1\) \& \(43 \cdot 7\) \\
\hline 11 " \& 28.0 \& \(35 \cdot 1\)
35.6 \& \(37^{\circ} 6\) \& \(3{ }^{3} 8\) \& 47.7 \& 50.4 \& 55.9 \& \(53 \cdot 1\) \& 53.4 \& \(42 \cdot 1\) \& \(46^{\circ} \cdot\) \& \(37 \cdot 4\) \& \(43 \cdot 9\) \\
\hline Noon \& \(29^{\circ} 2\) \& \(35 \cdot 6\) \& \(37 \cdot 7\) \& \(39 \cdot 6\) \& 479 \& \(5 \mathrm{c} \cdot 3\) \& \(56 \cdot 5\) \& \(53 \cdot 6\) \& 53.4 \& \(42 \cdot 8\) \& \(46 \cdot 3\) \& \(37 \cdot 5\) \& \(44^{\circ}\) \\
\hline \(\mathrm{i}^{\text {b }}\). p.m. \& 29.5 \& \(35 \cdot 3\) \& \(37 \cdot 8\) \& \(40 \cdot 1\) \& \(47 \cdot 8\) \& \(50 \cdot 1\) \& \(56 \cdot 7\) \& \(54^{\circ} \mathrm{O}\) \& 53.2 \& \(42 \cdot 6\) \& \(46 \cdot 3\) \& \(37 \cdot 9\) \& \(44 \cdot 3\) \\
\hline 2 " \& \(29^{\circ} 2\) \& \(35 \cdot 1\) \& 38.0 \& \(3{ }^{3} 9\) \& \(47 \cdot 8\) \& \(50^{\circ}\) \& \(56 \cdot 5\) \& 54.5 \& 53.2 \& \(42 \cdot 3\) \& \(46 \cdot 1\) \& 379 \& \(44 \cdot 2\) \\
\hline 3 " \& 29.8 \& 35.0 \& \(38 \cdot 3\) \& \(39 \cdot 8\) \& 48.0 \& \(50^{\circ} 2\) \& \(56 \cdot 5\) \& \(55^{\circ}\) \& 53.6 \& \(42 \cdot 4\) \& \(45 \cdot 8\) \& \(37 \cdot 5\) \& \(44^{3}\) \\
\hline 4 " \& 29.5 \& 34.7 \& 37.9 \& 39.9 \& \(47 \cdot 7\) \& \(50^{\circ} \mathrm{O}\) \& \(55 \cdot 6\) \& 54.5 \& 53.1 \& 41.7 \& \(45 \cdot 9\) \& 37.5 \& \(44^{\circ}\) \\
\hline 5 \% \& \(29^{2} 1\) \& \(34 \cdot 9\)
\(34 \cdot 6\) \& 37.9
38.0 \& 38.9
38.8 \& \(47^{\circ}\) \& 50\%2 \& \(55 \cdot 3\) \& \(54 \cdot 3\) \& 53.1 \& \(4^{2 \cdot}{ }^{\circ}\) \& \(45 \cdot 9\) \& 37.3
37 \& \(43 \cdot 8\) \\
\hline 6 " \& 29.1
28.8 \& \(34 \cdot 6\)
\(34 \cdot 3\) \& \(38 \cdot\)
37 \& \(38 \cdot 8\)
38.6 \& \(47^{\circ} 2\) \& \begin{tabular}{l}
\(50 \cdot 1\) \\
49 \\
\hline
\end{tabular} \& 54.7
5
5 \& 54.4
54.3 \& \(53 \cdot\)
52
5 \& \(41 \cdot 6\)
412 \& \(46 \cdot\)
45 \& 37.4
\(37 \cdot 2\)

3 \& $43 \cdot 7$

\hline 8 \%" \& 29° \& 34.4 \& $37 \cdot 3$ \& 38.4 \& 46.6 \& $50 \cdot 3$ \& 54.8 \& $5{ }^{\circ} \mathrm{O}$ \& 51.4
51.9 \& $4{ }_{4}{ }^{1} 6$ \& $45 \cdot 8$ \& $37 \cdot 2$ \& 43.4

\hline 9 " \& 28.3 \& $34 \cdot 3$ \& $37 \cdot 1$ \& $38 \cdot 4$ \& 46.2 \& $49 \cdot 8$ \& 54.9 \& 53.3 \& $51 \cdot 7$ \& $40^{\circ} 9$ \& $45 \cdot 6$ \& $37 \cdot 2$ \& $43 \cdot 1$

\hline 10 " \& 28.4 \& $34 \cdot 2$ \& $36 \cdot 9$ \& $38 \cdot 2$ \& 45.8 \& $50^{\circ} \mathrm{O}$ \& $55 \cdot$ \& $53 \cdot 3$ \& 51.5 \& $41^{1} \cdot 1$ \& $45 \cdot 5$ \& $37^{\circ} \mathrm{O}$ \& $43 \cdot 1$

\hline 11 " \& 28.0 \& $34 \cdot 3$ \& $36 \cdot 7$ \& $38 \cdot 3$ \& $45 \cdot 4$ \& $50 \cdot 3$ \& $54 \cdot 8$ \& 52.9 \& $51 \cdot 2$ \& $41^{1} 1$ \& $45 \cdot 3$ \& $37 \cdot 3$ \& 43.0

\hline Means \& $28 \cdot 3$ \& 347 \& $37 \cdot 3$ \& 38.7 \& $46 \cdot 3$ \& 50° \& $55 \cdot 2$ \& $53 \cdot 1$ \& 52.0 \& $41 \cdot 5$ \& $45 \cdot 6$ \& 372 \& $43 \cdot 3$

\hline
\end{tabular}

Monthly Mean Degree of Humidity (Saturation $=100$) at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures.													
	1881.												Yearly Means.
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	88	91	90	89	89	90	84	90	97	92	92	94	90
$\mathrm{I}^{\text {h }}$. a.m.	87	90	90	90	91	92	87	91	97	94	93	94	91
2 "	$9{ }^{\circ}$	92	91	$9{ }^{\circ}$	91	91	86	90	97	94	92	94	92
3 "	89	93	93	89	93	92	88	92	97	94	93	94	92
	$9{ }^{\circ}$	93	94	90	94	92	87	92	97	94	92	94	92
5 "	91	93	94	$9{ }^{1}$	94	90	87	91	96	94	91	94	92
6 "	90	91	94	90 86	8	87 83	85	80	${ }_{9}^{96}$	9	92	93	91
7 \%	90 91	91 90	94	86 81	84	83	79 71	88	95 92	96 90	92 91	93 94	89 85
9 "	87	89	84	74	70	68	66	77	89	87	89	$9{ }_{9}$	81
10 "	84	88	79	67	67	65	61	72	85	83	86	90	77
$1 \stackrel{ }{1}$	84	86	73	65	63	61	58	69	82	76	82	87	74
Noon	84	86	70	62	61	58	56	67	77	76	81	86	72
$\mathrm{I}^{\text {b }}$. p.m.	82	83	68	62	60	57	55	66	75	75	80	85	71
${ }^{2}$ ";	78	82	66	62	59	57	54	66	73	75	80	84	70
3 "	79	8 s	67	62	60	56	54	69	74	77	81	86	71
	84	82	68	65	61	57	53	70	75	78	85	87	72
	85	85	73	66	63	61	54	73	80	84	88	89	75
6 "	87	87	77	70	67	65	57	77	84	86	90	90	78
	87	86	82	76	72	68	61	81	88	87	90	91	81
8 "	89	88	84	79	78		68	84	90	91	92	92	84
9 "	87	89	86	82	82	80	73	86	94	90	92	93	86
10 "	88	89	88	85	84	84	77	89	95	92	92	93	88
$1{ }^{14}$	86	91	88	88	87	89	81	90	96	92	92	94	89
Means . . .	87	88	83	78	76	75	70	81	88	87	89	91	83

Total Amount of Sunshine registered in each Hocr of the Day in each Month, as derived from the Records of Campbell's Self-registering Instrument, for the Year 188i.

1881, Month.	Registered Duration of Sunshine in the Hour ending																	Corresponding aggre-gato Period which the Sun was Horizon.	$\begin{aligned} & \text { Mean } \\ & \text { Altitude } \\ & \text { of the } \\ & \text { Sun } \\ & \text { at Noon. } \end{aligned}$
	$\begin{gathered} \text { घj } \\ \underset{\sim}{\text { in }} \end{gathered}$	¢	$\stackrel{\text { aj }}{\text { aj }}$		$\stackrel{\square}{\text { ajo }}$		岗	号	$\begin{array}{r}\text { gi } \\ \stackrel{\text { a }}{ } \\ \hdashline-1\end{array}$	$\stackrel{\text { a }}{\substack{\text { a } \\-1}}$	-	-	-	\%	¢ $\stackrel{1}{4}$	-			
	${ }^{\text {h }}$	${ }^{\text {h }}$	h	${ }^{\text {b }}$	b	${ }^{\text {b }}$	${ }^{\text {h }}$	${ }^{\text {h }}$	h	${ }^{\text {h }}$	h	h	${ }^{\text {b }}$	h	h	h	${ }^{\text {b }}$	${ }^{\text {b }}$	-
January ..					$\cdot 3$	3.4	4.4	$6 \cdot 1$	$6 \cdot 8$	$6 \cdot 3$	4.1	$0 \cdot 4$	$31 \cdot 8$	259.1	18
February.				$0 \cdot 2$	$\cdot 5$	$3 \cdot 9$	$3 \cdot 4$	$2 \cdot 6$	$4 \cdot 4$	$4 \cdot 1$	$5 \cdot 1$	$\bigcirc \cdot 9$.	.	\cdots	$26 \cdot 1$	$277 \cdot 9$	26
March .			$1 \cdot 0$	$3 \cdot 4$	$6 \cdot 5$	12.2	13.7	$15 \cdot 6$	I3.9	14.9	12.8	12.4	8.	$1 \cdot 3$	\cdots	\cdots	115.8	$366 \cdot 9$	37
April			$2 \cdot 5$	$5 \cdot 0$	$10 \cdot 7$	12.6	15•1	14.3	14.4	11.5	117	11.0	$9 \cdot 7$	$7 \cdot 4$	$0 \cdot 2$		$126 \cdot 1$	414.9	48
May	0.2	7•0	11-8	14.7	1711	19.6	18.2	$16 \cdot 5$	$16 \cdot 1$	$16 \cdot 7$	16.4	13.7	$15 \cdot 3$	13.2	$5 \cdot 4$	$0 \cdot 3$	$202 \cdot 2$	$482 \cdot 1$	57
June	1•0	9.8	14.2	14.9	$16 \cdot 1$	15.2	$16 \cdot 6$	17×9	16.0	14.4	11.9	13.2	12.4	$9 \cdot 6$	$2 \cdot 5$		185.7	$494 \cdot 5$	62
July.	$0 \cdot 8$	9.7	$15 \cdot 3$	18.3	$16 \cdot 0$	17.2	18.2	$18 \cdot 3$	$18 \cdot 8$	17.8	16.0	14.7	12.2	$10 \cdot 8$	$7 \cdot 1$	$0 \cdot 3$	211.5	$496 \cdot 8$	60
August		0.6	4	$\cdot 3$	12.7	12.5	$14^{\circ} \mathrm{O}$	12.7	$15 \cdot 7$	$12 \cdot 8$	11.5	$10 \cdot 3$	9.5	$5 \cdot 7$	$1 \cdot 4$		$140 \cdot 1$	449'1	52
September		\cdots	$0 \cdot 1$	$1 \cdot 1$	3.9	$5 \cdot 3$	8.2	$7 \cdot 8$	$8 \cdot 7$	11.6	9.4	$10 \cdot 6$	$6 \cdot 6$	$0 \cdot 5$			$73 \cdot 8$	$376 \cdot 9$	41
October				2.2	$\cdot 2$	12.3	13.0	12.4	13.4	13.2	$10 \cdot 2$	$7 \cdot 5$	3.2	..			$96 \cdot 6$	$328 \cdot 7$	30
November					$\cdot 3$	$4 \cdot 8$	$8 \cdot 8$	$10 \cdot 5$	11.2	10.6	$6 \cdot 3$	$1 \cdot 7$.			$55 \cdot 2$	264.4	20
December					$0 \cdot 1$	$4{ }^{1} 1$	$7 \cdot 4$	$8 \cdot 2$	$6 \cdot 7$	$7 \cdot 3$	$2 \cdot 3$						$36 \cdot 1$	$24^{2} 7$	16
The hours are reckoned from apparent noon.																			
The total registered duration of sunshine during the year was $\mathbf{1 3 0 1} \cdot \circ$ hours ; the corresponding aggregate period during which the Sun was atove the horizon was $44^{\circ} 4^{\circ} \circ$ hours; the mean proportion for the year (constant sunshine $=1$) was therefore 0.292 .																			

(I.)-Reading of a Thermometer whose bulb is sunk to the depth of $25 \cdot 6$ feet (24 French feet) below the surface of the soil, at Noon on every Day of the Year.

188 I.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
1	$52 \cdot 1$	$51 \cdot 26$	$50 \cdot 37$	$49 * 44$	$48 \cdot 87$	$48 \cdot 66$	$48 \cdot 92$	$49 \cdot 68$	$50 \cdot 72$	51.64	$52 \cdot 17$	$52 \cdot 28$
2	$52 \cdot 01$	$51 \cdot 25$	$50 \cdot 35$	$49 \cdot 42$	$48 \cdot 85$	$48 \cdot 67$	$48 \cdot 94$	$49 \cdot 72$	$50 \cdot 75$	51.67	$52 \cdot 18$	$52 \cdot 30$
3	$51 \cdot 98$	$5 \mathrm{~L} \cdot 24$	$50 \cdot 30$	49.38	$48 \cdot 85$	48.67	48.97	49.75	$50 \cdot 78$	51.67	52.22	52.28
4	51 96	$51 \cdot 22$	$50 \cdot 27$	$49 \cdot 36$	48.83	48.67	$48 \cdot 98$	4978	50.82	51.70	$52 \cdot 26$	52.26
5	$5 \mathrm{I} \cdot 93$	$51 \cdot 18$	$50 \cdot 26$	$49 \cdot 35$	$48 \cdot 82$	$48 \cdot 66$	49 ¢1	$49 \cdot 82$	$50 \cdot 85$	5171	$52 \cdot 28$	$52 \cdot 27$
6	51.92	51.15	$50 \cdot 23$	$49 \cdot 31$	$48 \cdot 82$	48.66	$49{ }^{\circ} \mathrm{O}$	49.83	$50 \cdot 90$	$51 \cdot 73$	$52 \cdot 27$	$52 \cdot 26$
7	$5 \mathrm{5} \cdot 87$	$5 \mathrm{I} \cdot 11$	$50 \cdot 19$	$49 \cdot 26$	$48 \cdot 82$	$48 \cdot 65$	49.04	4986	$50 \cdot 92$	51.76	$52 \cdot 27$	$52 \cdot 24$
8	51.85	$51 \cdot 11$	$50 \cdot 15$	49.27	4880	48.66	$49 \cdot 06$	49.90	$50 \cdot 96$	51.77 51.80	52.27	$52 \cdot 23$
9	51.83	51.07	$50 \cdot 10$	$49 \cdot 26$	$48 \cdot 78$	$48 \cdot 66$	$49 \cdot 07$	$49 \cdot 92$	51.00	51.80	$52 \cdot 27$	$52 \cdot 21$
10	5180	51.03	$50 \cdot 08$	$49 \cdot 25$	$48 \cdot 77$	$48 \cdot 68$	$49 \cdot 10$	$49 \cdot 96$	$51 \cdot 02$	51.83	$52 \cdot 31$	$52 \cdot 17$
11	5177	51.00	$50 \cdot 03$	$49 \cdot 23$	$48 \cdot 76$	$48 \cdot 68$	$49 \cdot 14$	$50 \cdot 0$	$51 \cdot 05$	51.87	$52 \cdot 32$	$52 \cdot 23$
12	51.74	$50 \cdot 97$	$50 \cdot 0$	$49 \cdot 20$	$48 \cdot 75$	$48 \cdot 70$	$49 \cdot 15$	$50 \cdot 02$	51.09	$5 \mathrm{~L} \cdot 88$	$52 \cdot 32$	$52 \cdot 18$
	51.71	$50 \cdot 94$	$49 \cdot 96$	$49 \cdot 18$	$48 \cdot 74$	$48 \cdot 70$	$49 \cdot 17$	$50 \cdot 05$	$51 \cdot 12$	$51 \cdot 90$	$52 \cdot 34$	$52 \cdot 17$
1415	51.68	$50 \cdot 91$	$49 \cdot 9$	$49 \cdot 17$	$48{ }^{73}$	48.72	$49 \cdot 20$	$50 \cdot 08$	$51 \cdot 17$	$51 \cdot 93$	$52 \cdot 32$	$52 \cdot 18$
	51.65	$50 \cdot 87$	$49 \cdot 89$	$49 \cdot 15$	$48 \cdot 73$	$48 \cdot 77$	$49 \cdot 23$	$50 \cdot 12$	$51 \cdot 17$	51 93	$52 \cdot 32$	$52 \cdot 17$
16.	51.63	$50 \cdot 84$	$49 \cdot 87$	$49 \cdot 12$	48.71	$48 \cdot 74$	$49 \cdot 25$	$50 \cdot 16$	$51 \cdot 22$	51.93	$52 \cdot 33$	$52 \cdot 17$
17	51.62	$50 \cdot 8 \mathrm{I}$	$49 \cdot 84$	$49 \cdot 12$	$48 \cdot 72$	$48 \cdot 74$	$49 \cdot 27$	$50 \cdot 19$	$51 \cdot 26$	$51 \cdot 97$	$52 \cdot 33$	$52 \cdot 16$
	$51 \cdot 60$	$50 \cdot 77$	$49 \cdot 83$	$49 \cdot 10$	$48 \cdot 70$	$48 \cdot 75$	$49 \cdot 32$	$50 \cdot 23$	$51 \cdot 30$	51 99	$52 \cdot 31$	$52 \cdot 14$
1920	$51 \cdot 56$	$50 \cdot 75$	$49 \cdot 78$	$49 \cdot 07$	$48 \cdot 70$	$48 \cdot 75$	$49 \cdot 33$	$50 \cdot 27$	$51 \cdot 32$	52 -0	$52 \cdot 33$	$52 \cdot 13$
	51.51	$50 \cdot 71$	$49 \cdot 75$	$49 \cdot 04$	4870	$48 \cdot 76$	$49 \cdot 34$	50.30	$51 \cdot 36$	$52 \cdot 03$	$52 \cdot 34$	$52 \cdot 12$
21	$51 \cdot 45$	$50 \cdot 65$	49.71	49.02	48.69	$48 \cdot 77$	$49 \cdot 36$	$50 \cdot 34$	51.37	$52 \cdot 04$	$52 \cdot 33$	$52 \cdot 11$
222323	51.42	$50 \cdot 64$	49.68	49.00	48.68	$48 \cdot 79$	$49 \cdot 38$	$50 \cdot 38$	51.40	$52 \cdot 05$	52.33	$52 \cdot 08$
	51.43	$50 \cdot 60$	$49 \cdot 67$	49.00	$48 \cdot 69$	$48 \cdot 79$	$49^{\circ} 4^{2}$	$50 \cdot 42$	$51 \cdot 45$	$52 \cdot 07$	$52 \cdot 32$	$52 \cdot 07$
2425	51.39	$50 \cdot 56$	$49 \cdot 6$	$48 \cdot 98$	$48 \cdot 67$	48.82	$49 \cdot 46$	$50 \cdot 44$	$51 \cdot 46$	$52 \cdot 09$	52.33	$52 \cdot 06$
	$5 \mathrm{~F} \cdot 37$	$50 \cdot 54$	$49 \cdot 60$	$48 \cdot 97$	$48 \cdot 67$	$48 \cdot 83$	$49 * 4$	$50 \cdot 48$	51.49	$52 \cdot 10$	$52 \cdot 33$	$52 \cdot 06$
26	$51 \cdot 37$	$50 \cdot 49$		$48 \cdot 95$	48.66			$50 \cdot 52$	51.51	$52 \cdot 12$	$52 \cdot 30$	$52 \cdot 06$
2728	51.37	$50 \cdot 44$	$49 \cdot 55$	$48 \cdot 93$	$48 \cdot 66$	$48 \cdot 86$	$49 \cdot 52$	$50 \cdot 55$	$51 \cdot 54$	$52 \cdot 12$	$52 \cdot 30$	$52 \cdot 05$
	$51 \cdot 35$	$50 \cdot 40$	$49 \cdot 54$	$48{ }^{9} 9$	48.66	$48 \cdot 87$	$49 \cdot 56$	$50 \cdot 59$	51.57	$52 \cdot 13$	$52 \cdot 32$	$52 \cdot 03$
29 3	${ }_{51} 1 \cdot 34$		49.50	$48 \cdot 92$	$48 \cdot 66$	48.88	49.58	50.62	51.57	$52 \cdot 14$	52.29	$52 \cdot 02$
3031	$51 \cdot 32$ 51 51		49 49 49	4890	$48 \cdot 66$ 48.66	$48 \cdot 92$	49.61 49.64	$50 \cdot 66$	51.60	$52 \cdot 16$ $52 \cdot 15$	$52 \cdot 28$	52.00 51
	$51 \cdot 31$		$49 \cdot 45$		$48 \cdot 66$		$49 \cdot 64$			$52 \cdot 15$		5198
Means.	51.64	$50 \cdot 88$	$49 \% 9$	$49 \cdot 14$	$48 \cdot 74$	$4^{87} 74$	$49 \cdot 26$	50.17	$51 \cdot 19$	5193	$52 \cdot 30$	$52 \cdot 15$
The mean of the twelve monthly values is $50^{\circ} \cdot 50$.												

(II.)-Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year.

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	Augast.	September.	October.	November.	December.
d	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-
1	$50 \cdot 10$	$47 \cdot 77$	$46 \cdot 12$	$45 \cdot 98$	$46 \cdot 58$	$48 \cdot 43$	51•32	54.40	55.80	$55 \cdot 70$	$54 \cdot 28$	$52 \cdot 50$
2	$50 \cdot 05$	$47^{6} 9$	$46 \cdot 10$	$45 \cdot 98$	$46 \cdot 60$	$48 \cdot 54$	51 40	54.49	55 80	$55 \cdot 71$	$54 \cdot 22$	$52 \cdot 49$
3	$49 \cdot 98$	$47 \cdot 59$	$46 \cdot 10$	$45 \cdot 98$	$46 \cdot 6.3$	$4.8 \cdot 61$	51.50	$54 \cdot 59$	$55 \cdot 81$	$55 \cdot 70$	$54 \cdot 14$	$52 \cdot 46$
4	$49{ }^{\circ} 90$	$47{ }^{\circ} 49$	$46 \cdot 08$	$45 \cdot 98$	$46 \cdot 68$	$48 \cdot 70$	$51 \cdot 63$	$54 \cdot 69$	$55 \cdot 83$	$55 \cdot 67$	$5+\cdot 16$	$52 \cdot 38$
5	$49 \cdot 83$	$47 \cdot 38$	$46 \cdot 04$	$45 \cdot 99$	$46 \cdot 71$	$48 \cdot 79$	$51 \cdot 72$	54.78	$55 \cdot 87$	$55 \cdot 60$	54.09	$52 \cdot 36$
6	$49 \cdot 80$	$47 \cdot 24$	$46 \cdot 00$	$45 \cdot 97$	$46 \cdot 76$	$48 \cdot 84$	51.72	54.77	55 -90	$55 \cdot 61$	53.97	$52 \cdot 3 \mathrm{y}$
7	$49 \cdot 73$	$47 \cdot 19$	$45 \cdot 91$	$45 \cdot 98$	$46 \cdot 80$	$48 \cdot 95$	51.80	54.86	$55 \cdot 87$	$55 \cdot 62$	53.88	$52 \cdot 23$
8	$49 \cdot 67$	$47 \cdot 10$	$45 \cdot 81$	$45 \cdot 98$	$46 \cdot 86$	49.04	51.90	$54 \cdot 93$	$55 \cdot 89$	$55 \cdot 59$	$53 \cdot 78$	$52 \cdot 10$

(II.)-Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
9	$49 \cdot 61$	$47^{\circ} 00$	$45 \cdot 79$	$46 \cdot 00$	$46 \cdot 88$	49 18	$52 \cdot 00$	$54 \cdot 92$	55.90	$55 \cdot 56$	53.69	$52 \cdot 12$
10	$49 \cdot 52$	$46 \cdot 97$	$45 \cdot 75$	$45 \cdot 97$	$46^{\circ} 91$	$49 \cdot 29$	$52 \cdot 11$	$55 \cdot 00$	$55 \cdot 85$	$55 \cdot 57$	$53 \cdot 62$	$52 \cdot 6$
11	$49 * 47$	$46 \cdot 86$	$45 \cdot 70$	$46 \cdot 00$	$46 \cdot 97$	$49^{\circ} 40$	$52 \cdot 25$	$55 \cdot 08$	$55 \cdot 84$	$55 \cdot 59$	$53 \cdot 53$	5199
12	$49 \cdot 41$	$46 \cdot 80$	45 66	$45 \cdot 98$	$47^{\circ} \mathrm{o} 3$	$49 \cdot 52$	$52 \cdot 35$	5.509	$55 \cdot 85$	$55 \cdot 54$	$53 \cdot 47$	5198
13	$49 \cdot 34$	$46 \cdot 78$	$45 \cdot 67$	$46 \cdot 00$	$47^{\circ} 09$	$49 \cdot 65$	$52 \cdot 47$	$55 \cdot 13$	$55 \cdot 87$	$55 \cdot 49$	$53 \cdot 39$	51.87
14	$49 \cdot 28$	$46 \cdot 71$	$45 \cdot 62$	$46 \cdot 00$	$47 \cdot 13$	$49 \cdot 77$	$52 \cdot 58$	$55 \cdot 20$	$55 \cdot 88$	$55 \cdot 47$	$53 \cdot 29$	$5 \mathrm{I} \cdot 84$
15	$49 \cdot 21$	$46 \cdot 68$	$45 \cdot 61$	$46 \cdot 00$	$47^{1} 19$	$49 * 88$	$52 \cdot 71$	$55 \cdot 29$	$55 \cdot 81$	$55 \cdot 39$	$53 \cdot 21$	5178
16	$49 \cdot 18$	$46 \cdot 63$	$45 \cdot 63$	$46^{\circ} 00$	$47 \cdot 25$	49×97	52.79	$55 \cdot 36$	$55 \cdot 83$	$55 \cdot 30$	$53 \cdot 16$	$51 \cdot 70$
17	$49 \cdot 10$	$46 \cdot 56$	$45 \cdot 64$	$46 \cdot 03$	$47 \cdot 32$	$50 \cdot 05$	$52 \cdot 83$	$55 \cdot 40$	$55 \cdot 88$	$55 \cdot 30$	$53 \cdot 10$	51.63
18	$49^{\circ} \mathrm{O}$	$46 \cdot 54$	$45 \cdot 68$	$46 \cdot 06$	$47 \cdot 38$	$50 \cdot 12$	$52 \cdot 99$	$55 \cdot 45$	$55 \cdot 89$	$55 \cdot 26$	53 -00	51.56
19	$48 \cdot 93$	$46 \cdot 50$	$45 \cdot 69$	$46 \cdot 08$	$47 \cdot 43$	$50 \cdot 21$	53.09	$55 \cdot 50$	$55 \cdot 86$	$55 \cdot 20$	53 -00	$51 \cdot 48$
20	$48 \cdot 83$	$46 \cdot 49$	$45 \cdot 70$	$46 \cdot 09$	$47 \cdot 50$	$50 \cdot 30$	$53 \cdot 10$	$55 \cdot 54$	$55 \cdot 87$	$55 \cdot 18$	$52 \cdot 99$	$51 \cdot 37$
21	$48 \cdot 75$	$46 \cdot 42$	$45 \cdot 70$	46-11	$47 \cdot 59$	$50 \cdot 39$	$53 \cdot 20$	$55 \cdot 58$	$55 \cdot 81$	$55 \cdot 10$	$52 \cdot 93$	$51 \cdot 27$
22	$48 \cdot 70$	$46^{*} 42$	$45 \cdot 72$	$46 \cdot 17$	$47 \cdot 66$	$50 \cdot 48$	$53 \cdot 29$	$55 \cdot 64$	$55 \cdot 77$	$55 \cdot 02$	52.90	51.14
23	$48 \cdot 63$	$46 \cdot 36$	$45 \cdot 78$	$46 \cdot 22$	$47 \cdot 77$	$50 \cdot 54$	$53 \cdot 42$	$55 \cdot 69$	$55 \cdot 77$	$54 \cdot 99$	$52 \cdot 86$	51.06
24	$48 \cdot 54$	$46 \cdot 34$	$45 \cdot 79$	$46 \cdot 26$	$47 \cdot 81$	$50 \cdot 67$	$53 \cdot 57$	$55 \cdot 67$	$55 \cdot 79$	54.90	$52 \cdot 82$	$50 \cdot 98$
25	$48 \cdot 43$	$46 \cdot 30$	$45 \cdot 80$	$46 \cdot 31$	$47 * 89$	$50 \cdot 70$	$53 \cdot 64$	55.70	$55 \cdot 78$	$54 \cdot 83$	$52 \cdot 79$	$50 \cdot 92$
26	$48 \cdot 36$	$46 \cdot 22$	$45 \cdot 83$	$46 \cdot 36$	4795	$50 \cdot 83$	$53 \cdot 76$	$55 \cdot 74$	$55 \cdot 78$	$54 \cdot 77$	$52 \cdot 71$	$50 \cdot 87$
27	$48 \cdot 30$	$46 \cdot 20$	$45 \cdot 84$	$46 \cdot 40$	$48 \cdot 03$	$50 \cdot 88$	53.85	$55 \cdot 73$	$55 \cdot 73$	54.68	$52 \cdot 68$	$50 \cdot 78$
28	$48 \cdot 19$	$46 \cdot 13$	$45 \cdot 90$	$46 \cdot 44$	$48 \cdot 10$	$51 \cdot 00$	$54{ }^{\circ} \mathrm{oo}$	$55 \cdot 76$	$55 \cdot 71$	$54 \cdot 61$	$52 \cdot 66$	$50 \cdot 70$
29	$48 \cdot 09$		$45 \cdot 90$	$46 \cdot 49$	$48 \cdot 18$	51 19	$54 \cdot 10$	$55 \cdot 79$	$55 \cdot 72$	$54 \cdot 51$	$52 \cdot 57$	$50 \cdot 64$
30	$47{ }^{\circ} 99$		$45 \cdot 92$	$46 \cdot 54$	$48 \cdot 26$	$51 \cdot 22$	$54 \cdot 19$	$55 \cdot 81$	$55 \cdot 71$	$54 \cdot 43$	$52 \cdot 52$	$50 \cdot 52$
31	$47^{\circ} 89$		$45 \cdot 96$		48-34		$54 \cdot 29$	$55 \cdot 76$		$54 \cdot 33$		$50 \cdot 47$
Means.	$49^{\circ} 09$	$46 \cdot 80$	$45 \cdot 82$	$46 \cdot 11$	$47 \cdot 33$	$49 \cdot 84$	$52 \cdot 76$	$55 \cdot 27$	$55 \cdot 82$	$55 \cdot 23$	$53 \cdot 31$	$51 \cdot 60$
The mean of the twelve monthly values is $50^{\circ} \cdot 75$.												

(III.)—Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year.

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	\bigcirc	-	-	-	。	-	-	-	-	-	-
1	$47^{\circ} 60$	43 . ${ }^{\text {8* }}$	$43 \cdot 61$	45-22	$47 \cdot 68$	$52 \cdot 44$	$56 \cdot 50$	$60 \cdot 33$	59.40	$57 \cdot 97$	$53 \cdot 03$	51.68
2	$47 \cdot 60$	43 * 6^{*}	$43 \cdot 50$	$45 \cdot 19$	$47 \cdot 74$	$52 \cdot 64$	$56 \cdot 58$	$60 \cdot 32$	$59 \cdot 35$	$57 \cdot 87$	$52 \cdot 83$	$51 \cdot 57$
3	$47^{\cdot 51}$	43.45^{*}	43 * $4^{*}{ }^{*}$	$45 \cdot 18$	$47 \cdot 86$	$52 \cdot 84$	$56 \cdot 70$	$60 \cdot 30$	$59 \cdot 28$	$57 \cdot 79$	$52 \cdot 60$	51.44
	$47 \cdot 40$	$43^{\circ} 47^{*}$	$43 \cdot 38^{*}$	$45 \cdot 19$	$48 \cdot 00$	$53 \cdot 10$	$56 \cdot 90$	$60 \cdot 30$	59-20	57.62	$52 \cdot 43$	51.30
5	$47 \cdot{ }^{\text {i }}$	$43 \cdot 51 *$	$4^{3} \cdot 3{ }^{*}$	$45 \cdot 20$	$48 \cdot 13$	$53 \cdot 31$	$57 \cdot 10$	$60 \cdot 34$	$59 \cdot 10$	$57 \cdot 47$	$52 \cdot 20$	$51 \cdot 22$
6	$47 \cdot 30$	$43 \cdot 61$	43 ${ }^{\text {3 }}$ * ${ }^{*}$	$45 \cdot 23$	$48 \cdot 23$	$53 \cdot 67$	$57 \cdot 19$	$60 \cdot 26$	$59 \cdot 1$	$57 \cdot 37$	$52 \cdot 1$	$51 \cdot 10$
7	$47^{\circ} 20$	$43 \cdot 79$	$4^{3} \cdot 37^{*}$	$45 \cdot 27$	$48 \cdot 30$	$53 \cdot 83$	57.41	$60 \cdot 36$	$58 \cdot 90$	$57 \cdot 24$	$5 \mathrm{I} \cdot 94$	$50 \cdot 98$
8	$47 \cdot 11$	$43 \cdot 89$	$4^{3}{ }^{\circ}{ }^{2}{ }^{*}$	$45 \cdot 30$	$48 \cdot 41$	$54 \cdot 06$	$57 \cdot 73$	$60 \cdot 46$	$58 \cdot 83$	57.02	$51 \cdot 95$	$50 \cdot 80$
9	47.05	$43 \cdot 92$	43 ${ }^{\text {-53* }}$	$45 \cdot 35$	$48 \cdot 58$	$54 \cdot 20$	$57 \cdot 98$	$60 \cdot 42$	$58 \cdot 80$	$56 \cdot 83$	$52 \cdot 0$	$50 \cdot 68$
10	$46 \cdot 91$	$43 \cdot 92$	43 ${ }^{6} 6^{*}$	$45 \cdot 41$	$48 \cdot 76$	$54 \cdot 27$	$58 \cdot 12$	$60 \cdot 50$	$58 \cdot 70$	$56 \cdot 58$	$52 \cdot 06$	$50 \cdot 53$
11	$46 \cdot 76$	$43 \cdot 90$	$43 \cdot 80$	$45 \cdot 48$	48 97	$54 \cdot 29$	$58 \cdot 26$	$60 \cdot 59$	$58 \cdot 67$	56-56	$52 \cdot 10$	$50 \cdot 39$
12	$46 \cdot 61$	$44^{\circ} 00$	$44^{\cdot 02}$	$45 \cdot 57$	$49 \cdot 20$	$54 \cdot 29$	$58 \cdot 31$	$60 \cdot 52$	$58 \cdot 64$	$56 \cdot 32$	$52 \cdot 13$	$50 \cdot 20$
13	$4{ }^{6 \cdot 47}$	$44{ }^{\circ} \mathrm{O}$	$44 \cdot 27$	$45 \cdot 70$	$49 \cdot 37$	$54 \cdot 35$	$58 \cdot 38$	$60 \cdot 57$	$58 \cdot 60$	$56 \cdot 12$	$52 \cdot 20$	50 -00
14	$46 \cdot 32$	$44 \cdot 14$	$44 \cdot 50$	$45 \cdot 87$	$49 \cdot 44$	$54 \cdot 27$	$58 \cdot 50$	$60 \cdot 53$	$58 \cdot 57$	$56 \cdot 01$	$52 \cdot 21$	$49 \cdot 80$
15	$46^{19} 9$	$44^{1} 1 \mathrm{I}$	44.70	$46 \cdot 01$	$49 \cdot 58$	$54 \cdot 35$	$58 \cdot 71$	$60 \cdot 50$	58.41	$55 \cdot 83$	$52 \cdot 27$	$49{ }^{6} 1$

The symbol * indicates that the reading was estimated, in consequence of the fluid having gone out of range of the scale.
(III.)-Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	\bigcirc	-	\bigcirc	0	-	-	-	-	-
16	$46 \cdot 00$	$44 \cdot 03$	$44 \cdot 85$	$46 \cdot 21$	$49 \cdot 72$	54.45	58.84	$60 \cdot 40$	$58 \cdot 38$	$55 \cdot 70$	$52 \cdot 32$	49 * 1
17	$45 \cdot 80$	$43 \cdot 96$	$45 \cdot 0$	$46 \cdot 45$	$49 \cdot 92$	$54 \cdot 55$	59.00	$60 \cdot 27$	58.40	$55 \cdot 64$	$52 \cdot 33$	$49 \cdot 22$
18	$45 \cdot 60$	$43 \cdot 96$	$45 \cdot 10$	$46 \cdot 67$	50.09	54.67	$59 \cdot 33$	$60 \cdot 18$	$58 \cdot 33$	$55 \cdot 49$	$52 \cdot 37$	$48 \cdot 84$
19	$45 \cdot 35$	$43 \cdot 96$	$45 \cdot 19$	$46 \cdot 87$	$50 \cdot 20$	$54 \cdot 83$	$59 \cdot 59$	$60 \cdot 12$	$58 \cdot 22$	$55 \cdot 26$	$52 \cdot 40$	$48 \cdot 68$
20	$45 \cdot 15$	$44^{\circ} \mathrm{O}$	$45 \cdot 23$	$47 \cdot 05$	$50 \cdot 3 \mathrm{I}$	$55 \cdot \mathrm{O}$	$59 \cdot 68$	$60 \cdot 09$	$58 \cdot 18$	55 - 1	$52 \cdot 40$	$4^{8 \cdot 54}$
21	$45 \cdot 00$	$44^{\circ} 00$	$45 \cdot 32$	$47 \cdot 23$	$50 \cdot 46$	$55 \cdot 18$	$59 \cdot 92$	$60 \cdot 02$	$58 \cdot 12$	$54 \cdot 78$	$52 \cdot 32$	$48 \cdot 42$
22	$44 \cdot 79$	$44^{\circ} \mathrm{O}$	$45 \cdot 41$	$47 \cdot 38$	$50 \cdot 54$	$55 \cdot 31$	$60 \cdot 10$	$60 \cdot 01$	$58 \cdot 09$	$54 \cdot 58$	$52 \cdot 26$	$48 \cdot 36$
23	$44 \cdot 58$	$44^{\circ} 1$	45-53	$47 \cdot 43$	$50 \cdot 68$	$55 \cdot 50$	$60 \cdot 30$	59.95	$58 \cdot 12$	$54 \cdot 29$	$52 \cdot 20$	$48 \cdot 30$
24	44.42	$43 \cdot 97$	$45 \cdot 57$	$47 \cdot 43$	$50 \cdot 80$	$55 \cdot 69$	$60 \cdot 46$	$59 \cdot 84$	$58 \cdot 19$	$53 \cdot 95$	$52 \cdot 19$	$48 \cdot 20$
25	$44 \cdot 24$	$43 \cdot 88$	$45 \cdot 53$	$47 \cdot 45$	$50 \cdot 98$	$55 \cdot 79$	$60 \cdot 46$	59.80	$58 \cdot 19$	$53 \cdot 88$	$52 \cdot 14$	$48 \cdot 10$
26	$44^{\circ} \mathrm{O} 9$	$43 \cdot 80$	45-51	$47{ }^{\prime} 43$	51.12	$55 \cdot 98$	60.50	$59 \cdot 79$	$58 \cdot 15$	$53 \cdot 82$	52.06	$47{ }^{\circ} 9$
27	$43 \cdot 92$	$43 \cdot 70$	$45 \cdot 50$	$47 * 48$	$51 \cdot 36$	$56 \cdot 09$	$60 \cdot 44$	5970	$58 \cdot 10$	$53 \cdot 72$	5I'83	$47 \cdot 73$
28	$43 \cdot 80$	$43 \cdot 66$	$45 \cdot 48$	$47 \cdot 5 \mathrm{I}$	$51 \cdot 59$	$56 \cdot 19$	$60 \cdot 50$	$59 \cdot 64$	$58 \cdot 10$	$53 \cdot 67$.	$51 \cdot 81$	$47 \cdot 57$
	43 66		$45 \cdot 41$	$47 \cdot 58$	$51 \cdot 80$	$56 \cdot 30$	$60 \cdot 47$	$59 \cdot 60$	58.09	$53 \cdot 5{ }^{\text {' }}$	51.78	$47 * 47$
30	$43 \cdot 57^{*}$ $43 \cdot 5 \mathrm{I}$		$45 \cdot 33$ $45 \cdot 28$	$47 \cdot 62$	$52 \cdot 05$ $52 \cdot 28$	$56 \cdot 40$	$60 \cdot 39$ $60 \cdot 31$	$59 \cdot 59$	58 - 3	$53 \cdot 40$	51.72	$47{ }^{\circ} 40$
31	43 -51*		$45 \cdot 28$		$52 \cdot 28$		$60 \cdot 31$	59.44		$53 \cdot 20$		47^{-32}
Means.	$45 \cdot 77$	$43 \cdot 85$	$44 \cdot 55$	$46 \cdot 30$	49.75	$54 \cdot 60$	$58 \cdot 86$	$60 \cdot 15$	$58 \cdot 54$	$55 \cdot 63$	$52 \cdot 20$	$49 * 44$
The mean of the twelve monthly values is $5 \mathrm{I}^{\circ} \cdot 64$.												

The symbol * indicates that the reading was estimated, in consequence of the fluid having gone out of range of the scale.
(IV.)-Reading of a Thermometer whose bulb is sunk to the depth of $3 \cdot 2$ feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year.

188 I .												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-		-	-	-	-	-	0	\bigcirc	-	-	-
1	$43 \cdot 86$	$38 \cdot 90$	39.50	$42 \cdot 62$	$47 \cdot 78$	$55 \cdot 87$	$59 \cdot 65$	62.88	$59 \cdot 93$	$57 \cdot 42$	$48 \cdot 45$	$48 \cdot 52$
2	$43 \cdot 41$	$39 \cdot 20$	$39^{\circ} 20$	$42 \cdot 78$	$48 \cdot 07$	$56 \cdot 52$	$60 \cdot 19$	$62 \cdot 71$	$59 \cdot 60$	$57 \cdot 17$	$47 \cdot 83$	$48 \cdot 40$
3	$43 \cdot 38$	$39 \cdot 44$	$38 \cdot 98$	$43 \cdot 03$	$48 \cdot 30$	$57 \cdot 19$	$60 \cdot 82$	$62 \cdot 80$	$59 \cdot 27$	56.83	$47 *{ }^{\circ}$	$48 \cdot 24$
4	43.42	$40 \cdot 11$	38.90	$43 \cdot 20$	$48 \cdot 41$	$57 \cdot 88$	$61 \cdot 32$	$62 \cdot 92$	$59 \cdot 9$	$56 \cdot 50$	$47 \cdot 50$	$48 \cdot 16$
5	$43 \cdot 32$	40'79	$39 \cdot 06$	$43 \cdot 21$	48-32	$58 \cdot 30$	$62 \cdot 07$	$63 \cdot 30$	$58{ }^{\circ} 9$	$56 \cdot 20$	$48 \cdot 09$	$47 \cdot 83$
6	$43 \cdot 30$	41'09	39.85	$43 \cdot 25$	$48 \cdot 46$	58.38	$62 \cdot 67$	$63 \cdot 53$	58.82	$55 \cdot 70$	$48 \cdot 83$	$4.7{ }^{72}$
7	43 O9	41.02	$40 \cdot 93$	$43 \cdot 45$	$49 \cdot 13$	$57 \cdot 93$	$63 \cdot 11$	63.90	$58 \cdot 86$	$55 \cdot 16$	$49 \cdot 50$	$47^{\circ} 49$
8	$42 \cdot 69$	$40 \cdot 61$	$41 \cdot 92$	$43 \cdot 63$	$49 \cdot 80$	$57 \cdot 27$	$62 \cdot 68$	63.97	$59 \cdot 04$	$54 \cdot 75$	$49 \cdot 68$	$47 \cdot 49$
9	$42 \cdot 30$	$40 \cdot 66$	$42 \cdot 45$	$43 \cdot 80$	$50 \cdot 30$	$56 \cdot 60$	$62 \cdot 22$	$63 \cdot 80$	59.09	$54 * 41$	$49^{\circ} 97$	$47 \cdot 10$
10	$42 \cdot 12$	$40 \cdot 90$	$42 \cdot 69$	44*10	$50 \cdot 58$	$56 \cdot 18$	$61 \cdot 80$	$63 \cdot 59$	$59 \cdot 0$	$54 \cdot 10$	$50 \cdot 11$	$46 \cdot 58$
11	41-86	41 29	$43 \cdot 19$	$44 \cdot 51$	$50 \cdot 66$	$55 \cdot 87$	$61 \cdot 81$	$63 \cdot 31$	58.88	$53 \cdot 88$	50.21	$46 \cdot 02$
12	$41 \cdot 65$	$41 \cdot 40$	$43 \cdot 73$	$44 \cdot 93$	$50 \cdot 60$	$55 \cdot 88$	$62 \cdot 10$	$62 \cdot 90$	$58 \cdot 60$	53.90	$50 \cdot 49$	$45 \cdot 54$
13	$41 \cdot 28$	$41 \cdot 07$	$44^{\circ} 08$	$45 \cdot 50$	$50 \cdot 69$	$56 \cdot 2.0$	$62 \cdot 59$	$62 \cdot 62$	$58 \cdot 45$	$53 \cdot 90$	$50 \cdot 79$	$45 \cdot 20$
14	$40 \cdot 85$	$40 \cdot 61$	44*12	$46 * 9$	51.00	$56 \cdot 61$	$63 \cdot 10$	$62 \cdot 09$	$58 \cdot 42$	53.81	$50^{\circ} 9$	44.89
15	$40 \cdot 50$	$40 \cdot 40$	$44 \cdot 13$	$46 \cdot 60$	$51 \cdot 50$	$57 \cdot 00$	$63 \cdot 72$	61.68	$58 \cdot 31$	$53 \cdot 80$	51.02	$44 \cdot 50$
16	40 -09	$40 \cdot 43$	$44^{1} 10$	$47 * 05$	5179	$57 \cdot 30$	$64 * 40$	$61 \cdot 45$	$58 \cdot 26$	$53 \cdot 37$	5101	$44 * 45$
17	$39 \cdot 62$	$40 \cdot 47$	$44^{\circ} \mathrm{O} 2$	$47^{\circ} 41$	51.83	$57 \cdot 70$	64.91	$61 \cdot 42$	$58 \cdot 04$	$52 \cdot 70$	$50 \cdot 90$	$44 \cdot 48$
18	39.22	$40 \cdot 50$	$44^{\circ} \mathrm{O} 3$	$47 \cdot 70$	$5 \mathrm{I} \cdot 60$	58.08	$65 \cdot 42$	$61 \cdot 30$	57.94	$51 \cdot 93$	$50 \cdot 80$	$44 \cdot 36$
19	$38 \cdot 78$	$4^{\circ} 77$	$44 \cdot 10$	$48 \cdot 04$	5ı 65	$58 \cdot 30$	$65 \cdot 73$	$61 \cdot 48$	$58 \cdot 10$	51.49	$50 \cdot 48$	$44 \cdot 39$
20	$38 \cdot 58$	41 -00	$44 \cdot 40$	47 '98	5I•8I	$58 \cdot 47$	$65 \cdot 80$	$61 \cdot 39$	$58 \cdot 40$	$51 \cdot 20$	$50 \cdot 21$	$44 \cdot 33$

(IV.)-Reading of a Thermometer whose bulb is sunk to the depth of $3 \cdot 2$ feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	\bigcirc	-	-	-	-	-	-	-	-	-
2 I	$38 \cdot 38$	$40 \cdot 95$	$44 \cdot 54$	$47 \cdot 55$	$52 \cdot 03$	$58 \cdot 72$	65-89	61.18	$58 \cdot 53$	51.00	50.09	$44 \cdot 19$
22	$38 \cdot 29$	$40 \cdot 77$	$44^{\circ} 50$	$47^{\circ} \mathrm{O}$	$52 \cdot 20$	$59 \cdot 10$	$65 \cdot 49$	61.14	$58 \cdot 70$	$50 \cdot 96$	50.13	$44^{\circ} 00$
23	$38 \cdot 10$	$40 \cdot 37$	$44 \cdot 06$	$46^{\cdot 72}$	$52 \cdot 60$	$59 \cdot 37$	$65 \cdot 13$	60.90	$58 \cdot 53$	$50 \cdot 74$	$50 \cdot 22$	$43 \cdot 61$
24.	$37 \cdot 80$	$40 \cdot 10$	$43 \cdot 60$	$46 \cdot 55$	$53 \cdot 11$	$59 \cdot 53$	$64 \cdot 68$	$60 \cdot 80$	$58 \cdot 41$	50.89	$50 \cdot 13$	$43 \cdot 10$
25	$37 \cdot 80$	$39 \cdot 90$	$43 \cdot 60$	$46 \cdot 68$	$53 \cdot 70$	$59 \cdot 54$	$64 \cdot 34$	$60 \cdot 71$	$58 \cdot 41$	51•03	$49 \cdot 96$	$42 \cdot 60$
20	37.79	$39 \cdot 79$	$43 \cdot 50$	$46 \cdot 92$	$54 \cdot 20$	$59 \cdot 64$	64.02	$60 \cdot 59$	$58 \cdot 55$	$50 \cdot 93$	$49 \cdot 98$	$42 \cdot 22$
27	$37 \cdot 70$	$39 \cdot 72$	$43 \cdot 15$	$47{ }^{\circ} 06$	$54 \cdot 53$	$59 \cdot 39$	$63 \cdot 70$	$60 \cdot 60$	$58 \cdot 50$	$50 \cdot 61$	$49 \cdot 72$	$42 \cdot 34$
28	$37 \cdot 60$	$39 \cdot 66$	$42 \cdot 79$	$47^{\circ} 02$	$54 \cdot 82$	$59 \cdot 35$	$63 \cdot 58$	$60 \cdot 51$	$58 \cdot 28$	$50 \cdot 33$	$49 \cdot 59$	$42 \cdot 74$
29	$37 \cdot 52$		$42 \cdot 61$	$47 * 05$	$55 \cdot 10$	$59 \cdot 27$	63.09	$60 \cdot 31$	57.98	$49 * 99$	$49 \cdot 3$ I	43 -08
30	$37 \cdot 60$		$42 \cdot 61$	$47 \cdot 30$	$55 \cdot 33$	$59 \cdot 34$	$62 \cdot 98$	$60 \cdot 20$	57%	$49 \cdot 69$	$48 \cdot 94$	$43 \cdot 20$
31	$38 \cdot 37$		$42 \cdot 60$		$55 \cdot 40$		63.00	$60 \cdot 05$		$49 \cdot 08$		$43 \cdot 32$
Means.	40-33	$40 \cdot 43$	$42 \cdot 61$	$45 \cdot 62$	$51 \cdot 46$	$57 \cdot 89$	$63 \cdot 29$	61:94	$58 \cdot 62$	$53 \cdot 02$	4974	$45 \cdot 16$
The mean of the twelve monthly values is $50^{\circ} \cdot 84$.												

(V.)-Reading of a Thermometer whose bulb is sunk to the depth of i inch below the surface of tho soil, at Noon on every Day of the Year.

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	\bigcirc	-	-	-	-	\bigcirc	-	\bigcirc	0
1	$37 \cdot 4$	37°	$34^{\circ} \mathrm{O}$	$41 \cdot 8$	$50 \cdot 2$	$62 \cdot 1$	$66 \cdot 0$	61.3	$56 \cdot 3$	$53 \cdot 5$	$39 \cdot 2$	$45 \cdot 4$
2	$40 \cdot 8$	$38 \cdot 9$	$34 \cdot 8$	$43 \cdot 2$	$51 \cdot 0$	$63 \cdot 7$	$65 \cdot 1$	63 -	$56 \cdot 1$	53 -	$40 \cdot 9$	46°
3	$41 \cdot 5$	$44^{\circ} \mathrm{2}$	$35 \cdot 6$	$40^{\circ} 9$	$48 \cdot 3$	$64^{\circ} \mathrm{O}$	$66 \cdot 4$	$68 \cdot 5$	$56 \cdot 3$	$53 \cdot 2$	419	$45 \cdot 3$
4	$40^{\circ} 0$	44°	$38 \cdot 2$	$41^{1} 1$	$48 \cdot 3$	$65 \cdot 2$	$69 \cdot 8$	$65 \cdot 1$	$56 \cdot 1$	$53 \cdot$	$50 \cdot 2$	$43 \cdot 1$
5	$40 \cdot 6$	$4.2 \cdot 0$	$43 \cdot 0$	414	52 -	$63 \cdot$	$72 \cdot$	$67 \cdot 3$	58 -	$49 \cdot 3$	$52 \cdot 2$	$45 \cdot 8$
6	$39^{\circ} \mathrm{O}$	37.4	$45 \cdot 7$	$43{ }^{\circ}$	$54 \cdot 7$	$56 \cdot 3$	$68 \cdot 0$	$66^{\circ} \mathrm{O}$	$58 \cdot 1$	$49^{\circ} 1$	$52 \cdot$	$43 \cdot 5$
7	$37^{\circ} 9$	$36 \cdot 0$	$48 \cdot 3$	$44^{\circ} 2$	$54^{\circ} \mathrm{O}$	$54 \cdot 5$	61.9	$65 \cdot 1$	$58 \cdot 3$	$50 \cdot 9$	$49^{\circ} 2$	$45 \cdot 3$
8	$36 \cdot 1$	$4^{\circ} \mathrm{O}$	45°	$44^{\circ} \mathrm{O}$	54.0	$53 \cdot 5$	$62 \cdot 7$	$66 \cdot 0$	$57 \cdot 9$	$50 \cdot 0$	$53 \cdot 6$	$4^{2} \cdot 2$
9	$37 \cdot 5$	$41^{\circ} 0$	$45^{1} 1$	$45 \cdot 1$	$53 \cdot 2$	$53 \cdot 0$	617	619	$58 \cdot 6$	$4^{8 \cdot 6}$	49^{1}	41°
10	374	$44 \cdot 5$	$47 \cdot 6$	$4^{\circ} 0$	51.0	$54{ }^{\circ}$	629	$62 \cdot 2$	$57^{\text {I }}$	$4^{8 \cdot 2}$	$51{ }^{\circ}$	$38 \cdot 8$
11	$36 \cdot 3$	$39^{\cdot 1}$	$47 \cdot 5$	49^{1} I	$49^{\circ} 2$	$55 \cdot 0$	$65 \cdot 8$	$61 \cdot 2$	$56 \cdot$	$53 \cdot 7$	$51 \cdot 8$	$37 \cdot 8$
12	$33 \cdot 5$	37°	46°	$49 \cdot 5$	$52 \cdot 8$	59.0	67.9	$60^{\circ} \mathrm{O}$	57°	$52 \cdot$	$52 \cdot 7$	39.0
13	$33 \cdot 0$	$36 \cdot 2$	$44^{\circ} 3$	$5 \mathrm{I} \cdot 3$	$54 \cdot 3$	$59 \cdot 8$	$67 \cdot 2$	$58 \cdot 2$	$56 \cdot 8$	$50 \cdot 1$	$52 \cdot 3$	$37 \cdot 8$
14	$31 \cdot 2$	$38 \cdot$	$44^{\circ} \mathrm{O}$	$51 \cdot 8$	$55 \cdot 4$	$59 \cdot 3$	$68 \cdot 7$	$58 \cdot 4$	$57 \cdot 3$	53 -	51.4	$38 \cdot 2$
15	29°	$38 \cdot 9$	$42 \cdot 3$	$51 \cdot 0$	$56 \cdot 2$	61.1	$72 \cdot 7$	$59 \cdot 3$	$56 \cdot 0$	$4^{8 \cdot 3}$	$50 \cdot 1$	$40 \cdot 5$
16	$29 \cdot 5$	$38 \cdot 2$	$42 \cdot 2$	$50 \cdot 7$	$52 \cdot 8$	$62 \cdot 7$	$72 \cdot 3$	$61 \cdot 4$	$54 \cdot 2$	$43 \cdot 2$	$50 \cdot 0$	$40 \cdot 3$
17	$28^{\circ} 4$	$37 \cdot 5$	$43 \cdot 0$	$50 \cdot 9$	$53 \cdot$	$63 \cdot 3$	$70 \cdot 4$	610	$57^{\cdot 1}$	$43 \cdot 9$	$50 \cdot 2$	$43 \cdot 0$
18	$29{ }^{\circ}{ }^{*}$	$40 \cdot 4$	$44 \cdot 3$	$52 \cdot 6$	$54 \cdot 2$	$61 \cdot 3$	$71 \cdot 7$	$59 \cdot 9$	$59 \cdot 0$	41°	$45 \cdot$	$4^{2} 1$
19	$28.5 *$	$38 \cdot 8$	$46^{\circ} \mathrm{O}$	46°	$54{ }^{\circ}$	61.0	$72 \cdot 6$	61.0	$60 \cdot 0$	$45 \cdot 6$	$48 \cdot 3$	$40 \cdot 2$
20	28 - ${ }^{*}$	$39 \cdot 7$	$46 \cdot 2$	$44^{1} 1$	$54 \cdot 3$	$62 \cdot 3$	$68 \cdot 0$	$58 \cdot 9$	$59 \cdot 8$	$46 \cdot 8$	$49^{\circ} 1$	$40 \cdot 9$
21	$29^{\circ}{ }^{*}$	$36 \cdot$	43 -0	43 -0	$53 \cdot 9$	$63 \cdot 2$	$65 \cdot 0$	$60 \cdot 8$	$60 \cdot 1$	$47^{\circ} 2$	49 '9	$40 \cdot 1$
22	$30 \cdot 0 *$	$35 \cdot 7$	$39 \cdot 3$	$43 \cdot 8$	$56 \cdot 3$	62.9	$64 \cdot 6$	$59 \cdot 6$	$56 \cdot 4$	$47^{\circ} 9$	$50 \cdot 9$	$36 \cdot 8$
23	32.0	$35 \cdot 7$	$40 \cdot 8$	$45 *$	$58 \cdot 0$	$62 \cdot 4$	$64 \cdot 7$	61.7	57°	$49{ }^{\circ} 4$	$49^{\circ} 2$	$35 \cdot 2$
24	$30 \cdot 6$	$35 \cdot 5$	$44^{\circ} \mathrm{O}$	47°	$58 \cdot 0$	63 \%	$66 \cdot$	60°	$58 \cdot 7$	49°	$48 \cdot 3$	$34 \cdot 8$
25	30.4	$36 \cdot 7$	41°	50 ○	$60 \cdot 0$	$62 \cdot 1$	63 -	$59 \cdot 6$	60°	47°	$50 \cdot 3$	$35 \cdot 5$

The symbol * indicates that the reading was estimated.
(V.)-Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year-concluded.

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	\bigcirc	-	-	-	-	-	-	。	-	-	-	\bigcirc
26	$29^{\circ} \circ$	$36 \cdot 5$	$38 \cdot 7$	$47^{\circ} 6$	$59 \cdot 3$	$60 \cdot 3$	$63 \cdot 1$	61.0	58.0	$46 \cdot 5$	$46 \cdot 2$	$40 \cdot 8$
27	$32 \cdot 8$	$36 \cdot 3$	$38 \cdot 3$	$47 \cdot 1$	59.9	$6 \mathrm{I} \cdot 2$	$62 \cdot 1$	$58 \cdot 9$	$55 \cdot 9$	$44 \cdot 9$	$46 \cdot 5$	418
28	32.4	$35 \cdot$	38.9	$48 \cdot 3$	$60 \cdot 0$	$60 \cdot 1$	60.0	$57 \cdot 3$	$54 \cdot 5$	$44 \cdot 8$	$47^{\circ} 2$	$40 \cdot 6$
29	$37 \cdot 5$		$39 \cdot 8$	$50 \cdot 2$	59.0	$6 \mathrm{t} \cdot 2$	$63 \cdot 6$	$59 \cdot 6$	$54 \cdot 1$	$4^{3} \cdot 9$	44°	$42 \cdot 0$
30	40°		39.7	52 -	58.0	$62 \cdot 6$	$64^{\circ} \mathrm{O}$	60.0	54.0	$4{ }^{41} 7$	$44 \cdot 8$	41.8
31	$39 \cdot 3$		$40 \cdot 8$		$59 \cdot 8$		$62 \cdot 1$	$57 \cdot 3$		$38 \cdot 8$		41.8
Means.	$34 \cdot 1$	$38 \cdot 5$	$42 \cdot 2$	$46 \cdot 7$	54.7	$60 \cdot 4$	$66 \cdot 2$	$61 \cdot 3$	$57 \cdot 2$	$48 \cdot 0$	$48 \cdot 6$	$40^{\circ} 9$
The mean of the twelve monthly values is $49^{\circ} \cdot 90$.												

(VI.)-Reading of a Thermometer within the case covering the deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day of the Year.

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	\bigcirc	\bigcirc	-	\bigcirc	-	-	${ }^{\circ}$	-	-	-	\bigcirc
1	$38 \cdot 5$	$35 \cdot 4$	$36 \cdot 3$	$48 \cdot 8$	54.8	$74 \cdot 5$	$78 \cdot 0$	$67 \cdot 8$	$56 \cdot 3$	$59 \cdot 2$	$37 \cdot 8$	$45 \cdot 8$
2	$42 \cdot 8$	$43 \cdot 5$	$39 \cdot 5$	$47 \cdot 8$	57.4	$74 \cdot 3$	74.9	697	$57 \cdot 1$	$58 \cdot 1$	$41 \cdot 3$	$51 \cdot 7$
3	41.4	$50 \cdot 6$	38.8	$42 \cdot 2$	49.2	$73 \cdot 2$	$77^{\circ} \mathrm{O}$	69.9	$56 \cdot 1$	$59 \cdot 8$	$44 \cdot 5$	$48 \cdot 6$
4	$40 \cdot 6$	48.9 42.6	$42 \cdot 5$ 5 5	$45 \cdot 3$	53.0	77.4	81.9	73.0	58.0	$54 \cdot 5$	$58 \cdot 6$	$42 \cdot 7$
5	$41 \cdot 1$	$42 \cdot 6$		$45 \cdot 2$	$61 \cdot 2$	$63 \cdot 8$	$85 \cdot 4$	$79 \cdot 8$	$61 \cdot 5$	$47 \cdot 3$	$59 \cdot 9$	$47 \cdot 8$
6	$40 \cdot 4$	37.7	$52 \cdot 3$	$47 \cdot 3$	$64{ }^{\circ}$	54.5	67.0	68.4	$62 \cdot 3$	$51^{\circ} \mathrm{O}$	$54 \cdot 3$	$46 \cdot 6$
7	$39 \cdot 8$	35%	$56 \cdot 0$	$48 \cdot 9$	$63 \cdot 2$	$52 \cdot 5$	60.4	$70 \cdot 3$	$60 \cdot 1$	$52 \cdot 8$	$53 \cdot 8$	$45 \cdot$
8	$34 \cdot 9$	$47 \cdot 6$	$47^{\circ} 4$	$5 \mathrm{~L} \cdot 2$	61.4	56 \%	$63 \cdot 7$	71.8	61.0	$47 \cdot 2$	51.0	$43 \cdot 8$
9	37.2	$43 \cdot 5$	$50 \cdot 7$ 57	$53 \cdot 0$	$56 \cdot 9$	$55 \cdot 2$	$67^{\circ} \mathrm{O}$	61.6	61.5	$48 \cdot 3$	$51 \cdot 2$ 55.8	$39 \cdot 8$
10	$34^{\circ} \mathrm{O}$	49°	$57 \cdot 5$	$56 \cdot 3$	$52 \cdot$	$57 \cdot 1$	$67 \cdot 6$	$63 \cdot 2$	57.0	${ }_{52} \cdot 2$	$55 \cdot 8$	$33 \cdot 7$
11	$33 \cdot 2$	$36 \cdot 5$	$52 \cdot 0$	58.9	$54^{\circ} \mathrm{O}$	$63 \cdot 0$	74 \%	$65 \cdot$	549	$60 \cdot 2$	$55 \cdot 5$	$33 \cdot 3$
12	$30 \cdot 6$	38.5	$48^{\circ} \circ$	$55 \cdot 2$	63.4	$66 \cdot 3$	$75 \cdot 9$	57.8	$58 \cdot 1$	$56 \cdot 2$	$56 \cdot 8$	38.5
13	$30 \cdot 3$	39 'I	45°	$63 \cdot 3$	$66 \cdot 8$	$67 \cdot 2$	$75 \cdot 8$	$57 \cdot 8$	$60 \cdot 2$	$51 \cdot 4$	$57 \cdot 8$	$35 \cdot 5$
14	24.7	39%	$49^{\circ}{ }^{\circ}$	597	$64^{\circ} \mathrm{O}$	$65 \cdot 8$	$79 \cdot 1$	60.0	$62^{\circ} 9$	$55 \cdot \mathrm{I}$	$52 \cdot 1$	41.5
15	$20 \cdot 5$	$40 \cdot 1$	$48 \cdot 2$	$58 \cdot 5$	63.4	71%	$87 \cdot 3$	$63 \cdot 5$	55 -	$48 \cdot 6$	$53 \cdot 2$	417
16	22.6	41.3	$49^{\circ} 4$	58.0	$52 \cdot 5$	$70 \cdot 9$	$8 \mathrm{I} \cdot 8$	$66 \cdot 2$	57.2	$44^{\circ} \mathrm{O}$	$53 \cdot 6$	42.0
17	25°	38.8	$48 \cdot 3$	$61 \cdot 6$	$59 \cdot 1$	$68 \cdot 3$	$75 \cdot 3$	$63 \cdot 3$	$65 \cdot 8$	$53 \cdot 1$	$52 \cdot 8$	$46 \cdot 5$
18	28.5	$44 \cdot 6$	$52^{\circ} \mathrm{O}$	61.6	58.0	62.9	83.9	61.8	$67 \cdot 6$	$53 \cdot 2$	45 -	$41 \cdot 8$
19	$26^{\circ} \mathrm{O}$	37.5	$53 \cdot 0$	41.8	$60 \cdot 2$	67.4	$83 \cdot 5$	$65 \cdot 1$	$64 \cdot 7$	$50 \cdot 8$	$52 \cdot 8$	$42 \cdot 7$
20	21.8	$38 \cdot 3$	$51 \cdot 5$	$41 \cdot 3$	$62 \cdot 1$	$68 \cdot 7$	$66 \cdot 4$	$65 \cdot$	$66^{\circ} 9$	$52 \cdot 6$	54.9	$41 \cdot 2$
21	27.6	$34 \cdot 2$	$43 \cdot 5$	$44^{\circ} 6$	$63 \cdot 3$	$68 \cdot 0$	$67 \cdot 8$	$64 \cdot 8$	$62 \cdot 2$	$48 \cdot 9$	$51 \cdot 7$	$40 \cdot 7$
22	22.0	$33 \cdot 7$	$35^{\circ} \cdot 4$	$46 \cdot 9$	$67 \cdot 6$	68.4	$63 \cdot 2$	$66 \cdot 9$	$56 \cdot 4$	$48 \cdot 4$	$52 \cdot 8$	$34 \cdot 3$
23	33.0	$35 \cdot 4$	$47^{\circ} \mathrm{O}$	$51 \cdot 2$	69.0	69.0	$68 \cdot 1$	68.0	$58 \cdot 3$	$50 \cdot 5$	53.4	$3 \mathrm{I} \cdot 5$
24	$27 \cdot 6$	$37^{\circ} \mathrm{O}$	47.3	53.0	$66 \cdot 5$	71.9	$70 \cdot 0$	$62 \cdot 2$	64.4	$48 \cdot 3$	$52 \cdot$	$35 \cdot 2$
25	$27 \cdot 5$	37.8	$42^{\circ} 9$	56.4	$70 \cdot 9$	$63 \cdot 6$	$66 \cdot 5$	$62 \cdot 1$	$65 \cdot 7$	$47 \cdot 3$	$51 \cdot 7$	$36 \cdot 7$
26	23.9	$39^{\circ} \mathrm{O}$	$40 \cdot 2$	$52 \cdot 0$	64.2	$66 \cdot 2$	$67 \cdot 2$	$66 \cdot 6$	63.4	$47 \cdot 8$	$47 \cdot 3$	$44 \cdot 8$
27	41.3	$37^{\circ} \mathrm{O}$	42.1	$52 \cdot 3$	$63 \cdot 3$	$63 \cdot 4$	62.7	619	$57 \cdot 2$		$47 \cdot 1$	$42 \cdot 4$
28	38.2	34%	44.7	56.4	$63 \cdot 0$	$64 \cdot 3$	$68 \cdot 8$	62.0	$58 \cdot 7$	46.8	51.8	$40 \cdot 0$
29 30	$47^{\circ}{ }^{\circ}$		$45 \cdot 8$	58.1 60%	62.4 68.2	$68 \cdot$	69.2	61.8	59.0	41.6	$45 \cdot 1$	
30 31	$46 \cdot 2$ $45 \cdot 8$		44% 45%	$60 \cdot 6$	$68 \cdot 2$ $71 * 9$	$70 \cdot 2$	$65 \cdot 2$ $63 \cdot 5$	$65 \cdot 0$ 56.5	$59 \cdot 2$	417 35	$46 \cdot 4$	$43 \cdot 3$ 43.6
Means	33.4	$39 \cdot 9$	467	$52 \cdot 6$	61.5	$66 \cdot 1$	$72 \cdot 2$	$65 \cdot 1$	$60 \cdot 3$	$50 \cdot 2$	51.4	415
The mean of the twelve monthly values is $53^{\circ} \cdot 41$.												

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometter.

The sign + implies that the change in the direction of the wind has taken place in the order N., E., S., W., N., \&c., or in direct motion ; the sign - implies that the change has taken place in the order N., W., S., E., N., \&c., or in retrograde motion.
The times of shifts of the recording pencil, as given above, refer to the shifts made by hand, when, by the turning of the vane, the trace tends to travel or nas travelled out of range.

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer-concluded.

The sign + implies that the change in the direction of the wind has taken place in the order N., E., S., W., N., \&c., or in direct motion ; the sign - implies that the change has taken place in the order N., W., S., E., N., \&c., or in retrograde motion.
The times of shifts of the recording peacil, as given above, refer to the shifts made by hand, when, by the turning of the vane, the trace tends to travel or has travelled out of range.

The whole excess of direct motion for the year was 4995°.
The revolution-counter which is attached to the vertical spindle of the vane, whose readings increase with change of direction of the wind in direct motion, and decrease with change of direction in retrograde motion, gave the following readings:-

Implying an excess of direct motion, during the year, of 13.9 revolutions, or 5004°.

Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from the Records of Robinson's Anemometer.

Hour ending	1881.												Mean for the Year.													
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.														
h	Miles.																									
I a.m.	$10 \cdot 6$	1199	12.9	124	$9 \cdot 5$	$7{ }^{\text {² }}$	$8 \cdot 6$	$10 \cdot 9$	$7 \cdot 3$			$12 \cdot 1$	$10 {f61ec0bd1-7a2b-4714-b322-908af5ed2a0b} 4\) & \(8 \cdot 2\) & \(9 * 8\) & 11 6 & \(7{ }^{4}\) & 117 7 & 14.6 & \(12 \cdot 5\) & 11-2 \\ \hline Midnight. & \(10^{\circ} 6\) & 11 3 & 13.6 & 13.4 & \(9 * 4\) & \(7^{\bullet} 9\) & \(9^{\circ}\) & 1'1 4 & \(7 \cdot 3\) & \(10 \cdot 8\) & 14.5 & 12.5 & 11\% \\ \hline Means & \(10 \cdot 7\) & 13 - & \(14^{\circ} \mathrm{O}\) & 14 9 & 1199 & \(9^{\circ} 6\) & 10•8 & \(12 \cdot 6\) & 8•1 & \(12 \cdot 8\) & \(15^{\circ} 0\) & 12.4 & \(12 \cdot 1\) \\ \hline \[\underset{\text { Measures }}{\text { Greatest Hourly }}-\}$	47	52	42	42	33	30	29	33	26	61	53	50	-
$\underset{\text { Measures }}{\text { Least }} \quad \text { Hourly }\}$	\bigcirc	\bigcirc	\bigcirc	1	\bigcirc	\cdots																				

Mean Electrical Potential of the Atmosphere, derived from Thomson's Electroneter, for each Civil Dax, as deduced from Twenty-four Hourly Measures of Ordinates of the Photographic Register on that Day.
(The scale employed is arbitrary ; the zero reading is $10^{\circ} 000$, and numbers greater than $10^{\circ} 000$ indicate positive potential.)

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d												
1	10.655	.	10.436	10.196	$10 \cdot 237$	10.293	$10 \cdot 169$	10*404	10'297	10.274	$10 \cdot 330$	10.117
2	10.336		10.513	$10 \cdot 039$	$10 \cdot 127$	10.387	$10 \cdot 148$	10 \% 075	10.217	10'299	10.649	10.263
3	10.415	$10 \cdot 082$	10.437	10.224	10.306	$9{ }^{\circ} 99^{3}$	10.352	10.244	$10 \cdot 260$	$10 \cdot 264$	$10 \cdot 272$	10.396
4	$10 \cdot 560$	- $10 \cdot 160$	$9 \% 9{ }^{2}$	$10 \cdot 281$	10.220	$10 \cdot 203$	$10 \cdot 267$	$10 \cdot 307$	$10 \cdot 375$	$10 \cdot 263$	10.049	10.272
5	$10 \cdot 313$	$9 \cdot 950$	$10 \cdot 035$	10.335	$10 \cdot 372$	$10 \cdot 083$	$10 \cdot 289$	$10 \cdot 389$	$10 \cdot 284$	$10 \cdot 547$	10.101	10.146
6	$10 \cdot 345$	10.411	$10 \cdot 112$	10.305	10.224	9.443	9 720	$10 \cdot 268$	10.156	10.413	10.141	$10 \cdot 196$
7	10.464	10.313	10.086	10-319	10'194	..	$10 \cdot 243$	$10 \cdot 348$.	10.387	10.133	$10 \cdot 303$
8		10.145	$10 \cdot 184$	$10 \cdot 292$	$10 \cdot 333$.	$10 \cdot 186$	10.063	$10 \cdot 134$	9 790	$10 \cdot 059$	$10 \cdot 621$
9	$10 \cdot 622$	$10 \cdot 227$	$10 \cdot 140$	$10 \cdot 315$	10.338	.	$10 \cdot 165$	10.278	10.036	$10 \cdot 277$	$10 \cdot 290$	$10 \cdot 130$
10	$10 \cdot 509$	$10 \cdot 132$	10.115	10.385	$10 \cdot 309$.	$10 \cdot 260$	$10 \cdot 357$	$10 \cdot 164$	10.453	10.150	10.310
11	10.478	10.177	10.208	10.273	$10 \cdot 386$.		$10 \cdot 342$	10•105	10.189	10.110	10.258
12	$10 \cdot 452$	10.546	10. 258	. .	$10 \cdot 341$.		10.065	.	10.191	10.079	$9 \cdot 947$
13	..	10.480	10.229	$10 \cdot 284$	$10 \cdot 168$.	10.272	$10 \cdot 249$	$10 \cdot 334$	10.153	10.088	$10 \cdot 312$
14	..	10.219	$10 \cdot 308$	$10 \cdot 243$	$10 \cdot 262$	10.139	10.426	10.318	10.418	..	$10 \cdot 072$	$10 \cdot 384$
15	.	$10 \cdot 380$	$10 \cdot 346$	10'123	9.845	$10 \cdot 157$	$10 \cdot 223$	10.443	10'191	.	$10 \cdot 115$	$9 \cdot 984$
16	.	10.409	$10 \cdot 397$	$10 \cdot 298$	9 975	$10 \cdot 345$	$10 \cdot 172$	$10 \cdot 398$	10.214		$10 \cdot 098$	$9 \cdot 998$
17	\cdots	$10 \cdot 300$	10.179	$10 \cdot 233$	$10 \cdot 270$	$10 \cdot 103$	10.316	$9 \cdot 939$	$10 \cdot 442$		$10 \cdot 329$	$9{ }^{981}$
18	.	$10 \cdot 267$	$10 \cdot 393$	10.061	10.190	$10 \cdot 052$	$10 \cdot 372$	$10 \cdot 201$	10.127		10.408	10.296
19	..	10•104	$10 \cdot 321$	10.177	$10 \cdot 23 \mathrm{~s}$	$10 \cdot 252$	10.090	10.210	$10 \cdot 295$		$10 \cdot 265$	10.445
20	.	9.825	$10 \cdot 33_{4}$	10.301	10.247	$10 \cdot 193$	$10 \cdot 064$	10.414	10.259		$10 \cdot 127$	$10 \cdot 136$
21		9.815	$10 \cdot 208$	10.319	10.227	$10 \cdot 132$	$10 \cdot 302$	$10 \cdot 35$ o		$10 \cdot 122$	$10 \cdot 230$	10.497
22	.	10-396	$10 \cdot 374$	$10 \cdot 145$	10.217	10.201	$10 \cdot 298$	10.463	10.110		10.415	10.624
23	.	10.252	10.236	$10 \cdot 057$	$10 \cdot 062$	$10 \cdot 078$	10.327	$10 \cdot 252$	10•118	.	10.400	10.295
24	.	10.388	$10 \cdot 188$	$10 \cdot 231$	$10 \cdot 220$	$10 \cdot 303$	$10 \cdot 418$	10.390	$10 \cdot 114$.	$10 \cdot 269$	$10 \cdot 349$
25	.	$10 \cdot 317$	10.287	10.158	$10 \cdot 251$	10•198	$10 \cdot 264$	10.239	10.201		10.070	10.241
26	.	10.463	$10 \cdot 160$	9.825	$9 \cdot 889$	$10 \cdot 456$	10.155	$10 \cdot 253$	$10 \cdot 197$	$10 \cdot 464$	$10 \cdot 244$	10.047
27	.	10.419	$10 \cdot 382$.10'176	$9 \cdot 965$	10.411	$10 \cdot 186$	10.311	10.300	10.470		10.099
28	.	10.474	10.414	10.155	$10 \cdot 025$	$10 \cdot 359$	10.407	.	10.240	10.516	$10 \cdot 172$	$10 \cdot 177$
29	.		$10 \cdot 265$	$10 \cdot 206$	$10 \cdot 085$	10.340	$10 \cdot 106$	10.083	10.375	$10 \cdot 562$	$10 \cdot 548$	$10 \cdot 146$
30	.		10.416	$10 \cdot 170$	$10 \cdot 324$	10.445	10.379	$10 \cdot 094$	$10 \cdot 345$	10.743	10.306	$10 \cdot 103$
31	.		$10 \cdot 275$		$10 \cdot 351$		$10 \cdot 137$	$10 \cdot 458$		10.615		10.106
Means	$10 \cdot 468$	10.256	$10 \cdot 265$	10.211	$10 \cdot 200$	10•199	$10 \cdot 231$	$10 \cdot 273$	$10 \cdot 234$	$10 \cdot 350$	$10 \cdot 225$	$10 \cdot 232$

The mean of the twelve monthly values is $\mathbf{1 0 . 2 6 2}$.

Monthly Mean Electrical Potential of the Atmosphere, derived from Thomson's Electrometer, at every Hour of the D_{ay}, as deduced from the Photographic Records. (The scale employed is arbitrary ; the zero reading is $10 \cdot 000$, and numbers greater than $10 \cdot 000$ indicate positive potential.)																
Hour, Greenwich Mean Solar Time (Civil reckoning).	1881.												Yearly Means.			
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.				
Midnight	10*447	10:274	$10 \cdot 340$	$10 \cdot 306$	10-342	10.329	$10 \cdot 362$	$10 \cdot 445$	$10 \cdot 307$	10.414	$10 \cdot 245$	10.237	$10 \cdot 337$			
$\mathrm{I}^{\text {h }}$ a a.m.	10.446	10.259	10-349	10.288	$10 \cdot 347$	$10 \cdot 354$	10. 289	$10 \cdot 415$	10.291	10-396	10.217	10.225	$10 \cdot 323$			
2 ,	10.440	10.219	$10 \cdot 302$	$10 \cdot 279$	10:328	$10 \cdot 343$	$10 \cdot 270$	$10 \cdot 381$	$10 \cdot 263$	$10 \cdot 336$	10.190	$10 \cdot 192$	$10 \cdot 295$			
	10.421	10:230	$10 \cdot 303$	10.234	10'294	$10 \cdot 276$	10.296	$10 \cdot 359$	10:240	$10 \cdot 331$	10•165	$10 \cdot 182$	10.278			
	$10 \cdot 383$	$10 \cdot 220$	10.263	$10 \cdot 261$	$10 \cdot 273$	$10 \cdot 247$	$10 \cdot 334$	$10 \cdot 359$	10 219	10•325	10.133	$10 \cdot 164$	$10 \cdot 265$			
	$10 \cdot 380$	$10 \cdot 227$	10.289	$10 \cdot 259$	$10 \cdot 236$	10-299	$10 \cdot 336$	$10 \cdot 376$	10.201	10-319	10'109	10.155	10 266			
	$10 \cdot 413$	$10 \cdot 152$	10.282	10•271	10-328	10•289	$10 \cdot 359$	10-382	10'201	10-310	10.108	10.132	$10 \cdot 269$			
	$10 \cdot 316$	$10 \cdot 115$	$10 \cdot 298$	$10 \cdot 271$	$10 \cdot 228$	$10 \cdot 369$	10.411	$10 \cdot 455$	10.188	10.282	$10 \cdot 123$	$10 \cdot 157$	$10 \cdot 268$			
	$10 \cdot 401$	10.211	$10 \cdot 256$	$10 \cdot 256$	10.236	10•303	$10 \cdot 373$	10.456	10•179	$10 \cdot 290$	10.153	10.132	10.271			
	10.415	$10 \cdot 200$	10:229	10.166	$10 \cdot 237$	$10 \cdot 184$	10:300	10.369	$10 \cdot 151$	$10 \cdot 255$	10.178	$10 \cdot 169$	$10 \cdot 238$			
	10.456	$10 \cdot 257$	$10 \cdot 175$	10.121	10.137	$10 \cdot 107$	$10 \cdot 187$	$10 \cdot 245$	10.111	10•200	$10 \cdot 226$	10.159	10•198			
11	10.449	$10 \cdot 278$	10.150	10.064	9 9996	10•078	10`099 & \(10 \cdot 212\) & 10•147 & \(10 \cdot 283\) & \(10 \cdot 257\) & 10.211 & \(10 \cdot 185\) \\ \hline Noon & 10.474 & \(10 \cdot 278\) & 10.224 & 10.101 & \(10 \cdot 059\) & 10.035 & \(10 \cdot 067\) & 10:224 & \(10 \cdot 178\) & \(10 \cdot 308\) & 10.280 & \(10 \cdot 257\) & \(10 \cdot 207\) \\ \hline \(\mathrm{l}^{\text {h }}\). p.m. & \(10 \cdot 466\) & \(10 \cdot 293\) & \(10 \cdot 243\) & 10`099	10*010	$10 \cdot 064$	10*073	10'207	10.218	$10 \cdot 341$	10.286	10•292	10.216
	10.482	$10 \cdot 300$	$10 \cdot 237$	$10^{\circ} 092$	10.052	$10 \cdot 036$	$10^{\circ} 091$	10'144	10:247	10.329	$10 \cdot 282$	$10 \cdot 270$	10.213			
3	$10 \cdot 475$	$10 \cdot 338$	$10 \cdot 176$	$10 \cdot 065$	$10^{\circ} 037$	10'000	9*985	10'092	10.227	$10 \cdot 354$	10.228	10.281	$10 \cdot 188$			
	10.524	$10 \cdot 373$	10.242	10•093	10*013	$10 \cdot 060$	10*070	9-860	$10 \cdot 230$	$10 \cdot 398$	10.285	$10 \cdot 304$	10-204			
	$10 \cdot 539$	$10 \cdot 303$	$10 \cdot 205$	10.146	$10 \cdot 061$	10.076	10.089	10.005	$10 \cdot 227$	$10 \cdot 383$	$10 \cdot 276$	$10 \cdot 331$	$10 \cdot 220$			
	$10 \cdot 542$	$10 \cdot 313$	$10 \cdot 155$	10'190	$10 \cdot 082$	$10 \cdot 088$	$10^{\circ} \mathrm{OgI}$	10.055	10.183	$10 \cdot 373$	10.290	$10 \cdot 356$	$10 \cdot 227$			
,	$10 \cdot 615$	$10 \cdot 332$	$10 \cdot 250$	$10 \cdot 247$	10.212	$10 \cdot 178$	10.086	10.219	10-313	10.300	$10 \cdot 302$	10.337	$10 \cdot 283$			
	$10 \cdot 593$	$10 \cdot 339$	$10 \cdot 346$	$10 \cdot 308$	$10 \cdot 262$	10:203	10:217	$10 \cdot 238$	$10 \cdot 355$	10.428	$10 \cdot 293$	$10 \cdot 267$	$10 \cdot 321$			
9	$10 \cdot 547$	$10 \cdot 240$	$10 \cdot 367$	$10 \cdot 309$	$10 \cdot 346$	$10 \cdot 245$	$10 \cdot 346$	$10 \cdot 262$	$10 \cdot 333$	10.506	10.272	10.262	$10 \cdot 336$			
11 ,	$10 \cdot 537$	$10 \cdot 203$	$10 \cdot 359$	$10 \cdot 326$	$10 \cdot 344$	$10 \cdot 227$	$10 \cdot 412$	$10 \cdot 381$	10-317	10.489	$10 \cdot 252$	$10 \cdot 256$	$10 \cdot 342$			
	10.471	10.183	10.331	10.319	$10 \cdot 329$	$10 \cdot 374$	10.411	10.422	10.281	10*441	$10 \cdot 245$	10.229	10.336			
Means -	10.468	$10 \cdot 256$	10 265	10.211	10*200	10•199	$10 \cdot 231$	10:273	$10 \cdot 234$	$10 \cdot 350$	$10 \cdot 225$	$10 \cdot 232$	$10 \cdot 262$			
$\left.\begin{array}{c} \text { Number of } \\ \text { Days em- } \\ \text { ployed }- \end{array}\right\}$	11	26	31	29	31	23	29	30	27	20	29	31	-			
													,			

Amount of Rain collected in each Month of the Year 1881.

$\begin{gathered} \text { 188ı, } \\ \text { MONTH. } \end{gathered}$		Monthly Amount of Rain collected in each Gauge.							
		Self- registering Gauge of Osler's Anemometer.	Second Gauge at Osler's Anemometer.	On the Roof of the Octagon Room	On the Roof of the Magnetic Observatory	On the Roof of the Photographic Thermometer Shed.	Gauges	tly sunk in	ground.
		No. 1.	No. 2.	No. 3.	No. 4.	No. 5.	No. 6.	No. 7.	No. 8.
		${ }^{\text {ta. }}$	${ }^{\text {m. }}$.	in.	tn.	${ }^{\text {in. }}$	in,	in.	in.
January..	9	$0 \cdot 708$	0.760	$1 \cdot 034$	1.067	$1 \cdot 150$	1.663	1-348	.
February.	18	$1 \cdot 103$	$1 \cdot 344$	1.792	$1 \cdot 954$	$2 \cdot 367$	2.446	$2 \cdot 350$.
March	11	$1 \cdot 140$	$1 \cdot 228$	1407	1.504	$1 \cdot 701$	1.835	1.690	
April .	8	$0 \cdot 298$	0.360	$0 \cdot 461$	0.560	0.612	0.623	0.480	
May.	13	0.875	- 955	1.241	1-396	1.542	1.611	$1 \cdot 363$	
June..	9	$1 \cdot 202$	$1 \cdot 292$	1.649	$1 \cdot 724$	1.837	1.863	1.630	
July...	12	1-538	I 574	I 842	1-992	$2 \cdot 072$	$2 \cdot 137$	1988	$2 \cdot 048$
August .	17	$2 \cdot 752$	$2 \cdot 943$	$3 \cdot 342$	$3 \cdot 589$	$3 \cdot 783$	3.888	$3 \cdot 732$	$3 \cdot 749$
September.	15	1.525	1.583	1.825	$2 \cdot 017$	$2 \cdot 128$	$2 \cdot 188$	$2 \cdot 108$	$2 \cdot 071$
October...	13	2 .003	$2 \cdot 212$	$2 \cdot 305$	$2 \cdot 425$	$2 \cdot 692$	$2 \cdot 711$	$2 \cdot 572$	2.690
November.	16	$0 \cdot 988$	1.007	$1 \cdot 413$	$1 \cdot 797$	$2 \cdot 127$	$2 \cdot 265$	$2 \cdot 272$	$2 \cdot 289$
December	15	$1 \cdot 250$	1.376	1882	$2 \cdot 107$	$2 \cdot 380$	$2 \cdot 495$	$2 \cdot 428$	$2 \cdot 450$
Sums	156	15-382	$16 \cdot 634$	20•133	$22 \cdot 132$	$24 * 391$	$25 \cdot 725$	$23 \cdot 953$	\ldots
$\underset{\text { Height of }}{\text { Hencing }} \int \begin{gathered} \text { above the } \\ \text { ground. } \end{gathered}$	$\}$.			ft. in. 38.4	$\begin{aligned} & \text { ft. in. } \\ & 21.9 \end{aligned}$	$\begin{aligned} & \text { fitin. in. } \\ & \text { 10.0. } \end{aligned}$	Pt. in. 0.5 0.5	ft. in. 0.5 0.5	ft. in. 0. P
$\left.\begin{array}{c}\text { recerface } \\ \text { Surface }\end{array} \begin{array}{c}\text { above mean } \\ \text { sea level. }\end{array}\right\}$	\}..	${ }_{\text {ft. }}^{\text {ftin. }}$	ft. in.	$\begin{aligned} & \text { ft. in. } \\ & \text { 193. } \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 176.7 \end{aligned}$	ctictin in	${ }_{\text {fte }}^{\text {fit. in. }}$	${ }_{1}^{\text {fti }} 5$.	${ }^{\text {f.t. in. }} 15$

ROYAL OBSERVATORY, GREENWICH.

.OBSERVATIONS

OF

LUMINOUS METEORS.

1881.

Month and Day, 188 I .		Grcenwich Mean Solar Time.	Observer.	Apparent Size of Meteor in Star-Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. for Reference.
October		h m s		1		8		-	
	17	10.20. 0	$\begin{aligned} & \text { G. } \\ & \text { G. } \end{aligned}$		Bluish-white	0.6	Slight	10	1
	"	10.23. 0		3	Bluish-whiteBluish-white	0.70.7	NoneTrain	20	2
		10.41. 0	G .					12	3
	,	10.50. 10	G.	1	Bluish-white Blue	$0 \cdot 7$	Very fine	15	4
October	18	9.12.51	H.	3	Bluish-white	0.5	None	5	5
	"	9.17.31	H.	3	WhiteBluish-white	10.5	None	15	
	,	9.21.23	H.	2			Slight	5	6
	,	9.24.41	H.	2	Yellow	$0 \cdot 2$	None	2	8
	"	9.49. 23	H.	2	Bluish-whiteRed	$0 \cdot 2$	None	3	9
	,	10. 7.59	H.			$\stackrel{1}{0.5}$	Train Train	5	10
	"	11. 3.14	N.	2	Bluish-white			10	11
October	19	9.9. 33.24	H.	3	Bluish-white	1	None	10	12
	"		H.		Bluish-white	0.5		8	13
	"	9.37. 2	H.	3	Red Bluish-white	1	None None	10	1415
	'	9.53.29	H.	1			None	10	
	"	10. 6.54	H.	I	Bluish-white	I	Train	15	16
October	29	10. 5. 44	N	>1	Yellowish	2	Fine	25	17
November	17	10. 1. 30	H.	$>{ }_{1}$	Yellowish	2	Slight	30	18
November	28	8. 52.12	H.	>1	Yellowish	2	None	30	19
	"	10.19.15	H.	2	Yellowish	$0 \cdot 5$	None	5	20
	"	10.22. 47	H.	3	Bluish-white	$0 \cdot 5$	None	5	21
	"	10.54.37	H.	3 increasing to >1	Red	3	Fine	25	22
	"	11.14.10	H.	3	Red	$0 \cdot 3$	None	5	23
December	31	9.24.37	N.	> I	White	0.5	-	7	24

From a Ursæ Majoris, disappeared between γ and δ Ursæ Majoris.
From Aldebaran to β Trianguli.
From direction of a Aquilæ, passed across δ Aquilæ.
Shot from α Persei, disappearing between γ and β Cassiopeiæ.
Moving from direction of β Camelopardali across δ Aurigæ.
From direction of Polaris shot between η and \& Draconis.
Shot from β Persei towards a point midway between α and δ Persei.
From δ Andromedæ moved vertically downwards.
From direction of ، Ceti to a point 5° to right of β Ceti.
Shot from ζ Ursæ Majoris to a point about 2° above η Ursæ Majoris.
From near λ Tauri passed across μ Tauri.
Shot across 41 Arietis towards a point a few degrees to left of Saturn.
Shot across δ Persei from direction of a point midway between α and β Camelopardali.
From a point 5° below o Ursæ Majoris towards a point midway between α and β Urse Majoris.
Moved from direction of γ Ursæ Majoris across η Ursæ Majoris.
From a point 2° to right of a Delphini, disappeared near ξ Aquilx.
From direction of a point midway between the Pleiades and Aldebaran to a point about 20° below γ Ceti.
Moving towards horizon, crossing a line joining γ and ϵ Cygni at right angles.
From direction of a Cephei shot between β and η Pegasi.
From direction of a point 3° above Mars passed near γ Geminorum.
Passed I° below Aldebaran, moving from direction of ، Aurigx.
From direction of β Tauri passed across a point I° above θ Geminorum.
From a point 2° below ε Geminorum passed across γ Geminorum.
From a point about 10° or 12° below β Cassiopeix moved westward at an inclination of 4°.

