R ESULTS

of the

MAGNETICALAND METE0R0L0GICAL OBSERVATIONS

MADE AT

THE ROYAL OBSERVATORY, GREENWICH,

IN THE YEAR
1911

UNDER THE DIRECTION OF

F. W. D Y S O N, M.A., LL.D., F.R.S., astronomer royal.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY, IN OBEDIENCE TO HIS MAJESTY'S COMMAND.

LONDON:
PUBLISHED BY HIS MAJESTY'S STȦTIONERY OfFICE.
Printed by Neill \& CO., Limited, Bellevue, Edinburgh.
1913.
[Crown Copyright Reserved.]

I N D E X.

INTRODUCTION. pagk
Personal Establishment and Arrangements E i
General Description of tei Buildings and Instruments Ei
Súbjects of Observation E ii
Magnetic Instruments-
Drolination Magnet for Absolute Determinations E iii
Dip Instrument E iv
Deflection Instrumbnt Ev
Declination Variometer E vii
Horizontal Force Variometer E viii
Vertical Force ${ }^{\text {Variometer }}$ Exi
Magnetic Reductions Exii
Table of Magnetic Elements determined at Greenwich from 1841 Exviii
Metrorological Instruments-
Standard Barometer E xix
Photographic Barometer Exx
Dry and Wet Bulb Thermombters Exxi
Photographic Dry and Wet Bulb Thermometers Exxiii
Radiation Thermometers Exxiv
Earth Thermometers Exxv
Osler's Anemometer Exxvi
Robinson's Anemometer Exxvii
Rain-Gauges Exxviii
Electrometrir Exxx
Sunshine Recorder Exxx
Meteorological Reductions Exxxi
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABUL L_{-}凡 ARRANGEMENT:- PAGE
Results of Magnetical Observations E 1
Table I.-Mean Magnetic Declination West for each Civil Day. E 2
Table II.-Monthly Mean Diurnal Inequality of Magnetic Declination West E 2
Table III.-Mean Horizontal Magnetic Force (diminished by a Constant) for each Civil Day E 3
Table IV.-Mean Temperature for each Civil Day within the box inclosing the Horizontal Force Magnet E 4
Table V.-Mionthly Mean Diurnal Inequality of Horizontal Magnetic Force E. 5
Table VI.-Monthly Mean Temperature at each Hour of the Day within the box inclosing the Horizontal Force Magnet E 5
Table VII.-Mean Vertical Magnetic Force (diminished by a Constant) for each Civil Day E 6
Table VIII.-Mean Temperature for each Civil Day within the box inclosing the Vertical Force Magnet. E 7
Table IX.-Monthly Mean Diurnal Inequality of Vertical Magnetic Force E 8
Table X.-Monthly Mean Temperature at each Hour of the Day within the box inclosing the Vertical Force Magnet E 8
Table XI.—Mean Magnetic Declination, Horizontal Force, and Vertical Force, in each Month E 9
Table XII.—Mean Diurnal Inequalities of Magnetic Declination, Horizontal Force, and Vertical Force, for the year E 10
Table XIII.-Diurnal Range of Declination and Horizontal Force on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register E 11
Table XIV. - Monthly Mean Diurnal Range, and Sums of Hourly Deviations from Mean, for Declination, Horizontal Force, and Vertical Force, as deduced from the Monthly Mean Diurnal Inequalities E 11
Table XV.—Values of the Coefficients in the Periodical Expression-

$$
\mathrm{V}_{t}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+\& \mathrm{c}
$$for the Magnetic Diurnal InequalitiesE 12

Table XVI.-Values of the Coefficients and Constant Angles in the Periodical Expressions-

$$
\begin{aligned}
& \mathrm{V}_{t}=m+c_{1} \sin (t+\alpha)+c_{2} \sin (2 t+\beta)+\& \mathrm{c} \\
& \mathrm{~V}_{t^{\prime}}=m+c_{1} \sin \left(t^{\prime}+\alpha^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+\& \mathrm{c}
\end{aligned}
$$

for the Magnetic Diurnal Inequalities E 13
Table XVII.-Results of Observations of Magnetic Dip E 14
Table XVIII.-Monthly and Yearly Means of Magnetic Dip E 15
Table XIX.-Determinations of the Absolute Value of Horizontal Magnetic Force E 16
Magnetic Diurnal Inequalities for the Mean of Five selected quiet Days in each Month E 18
Table XX.-Monthly Mean Diurnal Inequality of Magnetic Declination West E 18

I N D E X.

RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS-continued. PAGE
Table XXI.-Monthly Mean Diurnal Inequality of Horizontal Magnetic Force E 19
Table XXII.—Monthly Mean Diurnal Inequality of Vertical Magnetic Force E 20
Magnetic Disturbances E 21
Brief description of Magnetic Movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 0.0010 in Horizontal Force, or 0.0003 in Vertical Force, taken from the Photographic Register E 22
Explanation of the Plates of Magnetic Disturbances E 34
Plates I.-III., photo-lithographed from tracings of the Photographic Registers of MagneticDisturbances.
Plate IV., photo-lithographed from tracings of the Photographic Registers of MagneticMovements, as types of the Diurnal Variations, at four seasons of the year.
Results of Metrorological Observations E 35
Daily Results of the Meteorological Observations E 36
Highest and Lowest Readings of the Barometer E 60
Highest and Lowest Readings of the Barometer for each Month E 60
Monthly Results of Meteorological Elements E 61
Monthly Mean Reading of the Barometer at every Hour of the Day E 62
Monthly Mean Temperature of the Air at every Hour of the Day E 62
Monthly Mean Temperature of Evaporation at every Hour of the Day E 63
Monthly Mean Temperature of the Dew-Point at every Hour of the Day E 63
Monthly Mean Degree of Humidity at every Hour of the Day E 64
Total Amount of Sunshine registered in each Hour of the Day in each Month E 64
Readings of Thermometers on the ordinary stand in the Magnetic Pavilion Enclosure E 65
Excess of Readings in Stevenson Screen above those in ordinary stand E 68
Amount of Rain collected in each Month by the different gauges E 68
Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer E 69
Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures as derived from the Records of Robinson's Anemometer E 76
Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day , E 77
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, at every Hour of the Day E 78
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day E 79
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non- Rainy Days, at every Hour of the Day E 80
Orservations of Luminous Meteors E 81

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS,

 1911.
Introduction.

In the present volume a sufficient account is given of the instruments and methods of reduction now in use. Fuller information, principally of a historical nature, may be found in the Introductions to the volumes for 1909 and previous years.

§ 1. Personal Establishment and Arrangements.

During the year 1911 the personal establishment in the Magnetical and Meteorological Department of the Royal Observatory consisted of Walter William Bryant, Superintendent, aided by one Established Computer, David J. R. Edney, and four Computers. The Computers employed during the year were :-Edward Kirby, William H. Timbury, Ernest L. Richardson, Sydney T. Divers, Frederick Brown and Harold George Showell.

Mr. Bryant controls and superintends the whole of the work of the Department. The routine magnetical and meteorological observations are in general made by the Computers.

§ 2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory.

The buildings and instruments remained substantially unchanged throughout the year 1911. For a detailed historical account of them, reference should be made to the Introductions to earlier volumes of these observations.

Greenwich Magnetical and Meteorological Observations, 1911.

E ii Introduction to Greenwich Magnetical Observations, 1911.

The instruments for photographic registration of changes in the atmospheric pressure, magnetic declination, and horizontal and vertical magnetic force, are situated in an underground chamber (known as the Magnet Basement) ; this chamber is kept at a nearly uniform temperature by means of gas stoves. The small variations of temperature are recorded on a Richard thermograph. In the same room there are two mean solar clocks, one being of peculiar construction in order to interrupt the photographic traces at each hour. All these instruments are mounted on or suspended from supports carried by piers built from the ground.

In a wooden building (called the Magnet House) above this chamber are placed the standard barometer, and a Thomson electrometer for photographic registration of the variations of atmospheric electricity. A platform erected above the roof of the Magnet House is used for the observation of meteors; and a nephoscope is mounted there for occasional observations. On the same platform there is a rain-gauge, at a height of 20 feet above the ground.

Near the Magnet House, on what is known as the Magnet Ground, are the earth thermometers, the photographic dry and wet-bulb thermometer apparatus, a rain-gauge, and a set of dry-bulb, wet-bulb, and maximum and minimum thermometers in a Stevenson screen.

The Magnet House is built of non-magnetic material, but during the years 18911898 considerable masses of iron were introduced into its neighbourhood by the building of certain additions to the Observatory. Hence the instruments which were formerly placed in the Magnet House, for absolute determinations of magnetic declination, dip, and horizontal force, were transferred to the Magnetic Pavilion. This building is constructed of non-magnetic materials, and stands in an enclosure in Greenwich Park, 350 yards to the east of the Observatory, on a site carefully chosen for its freedom from abnormal magnetic conditions. In the enclosure there are two sets of thermometers used for ordinary eye observations, the thermometers for solar and terrestrial radiation, and two rain-gauges.

The anemometers, three rain-gauges, and the sunshine recorder are fixed above the roof of the Octagon Room (the ancient part of the Observatory).

§ 3. Subjects of Observation in the year 1911.

The observations comprise determinations of absolute magnetic declination, horizontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force; eye observations of the ordinary meteorological
instruments, including the barometer, dry and wet-bulb thermometers, radiation and earth thermometers, and of thermometers placed on the roof of the Magnet House ; continuous photographic record of the variations of the barometer, dry and wet-bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine; observations of some of the principal meteor showers; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud, special cloud observations in connection with the International Balloon ascents, and occasional phenomena.

Since 1885, Greenwich civil time, reckoning from midnight to midnight, and counting from 0 to 24 hours, has been employed throughout the magnetical and meteorological sections.

§ 4. Mugnetic Instruments.

Declination Magnet for Absolute Determinations.-Since 1899 January 1, regular observations of declination have been made in the Magnetic Pavilion. The hollow cylindrical magnet Elliot No. 75 is used in conjunction with a telescope by Troughton and Simms, placed on a pier about 2 feet south of the magnet. The magnet is about 4 inches long, and at one end is an engraved glass scale for collimation. The telescope is 21 inches long, and the aperture of its object-glass is 2 inches; its horizontal circle is 16.6 inches in diameter, divided to 5^{\prime} and read by verniers to $5^{\prime \prime}$. It has no vertical circle. The eye-piece has one fixed horizontal wire and one vertical wire, moved by a micrometer screw, the value of one revolution of which is $1^{\prime} 34^{\prime \prime} \cdot 2$. The adopted collimation reading throughout the year was $100^{\text {r. }} 280$.

The vertical axis of the telescope is adjusted by means of a fixed level, one division of which corresponds to $1^{\prime \prime} \cdot 15$. The level correction for inequality of the pivots of the axis of the telescope was found in 1898 to be $-6^{\text {div. }} 0$ or $-6^{\prime \prime} \cdot 9$.

The reading of the azimuth circle corresponding to the astronomical meridian is determined by observations of Polaris, taken once a week whenever practicable. The collimation error of the magnet collimator is also determined weekly, by observing the position of the magnet in its usual position with the scale direct, then with the scale reversed (by turning the magnet through 180° in its carrier, about the longitudinal axis) ; the observations are repeated quickly several times. In the reduction of the observations of declination, the determinations of collimation error and azimuth zero reading are combined into half-yearly means.

E iv Introduction to Greenwich Magnetical Observations, 1911.

The torsion effect of the silk suspending skein is eliminated as nearly as possible, and any small effect still remaining is allowed for. The reading of the torsion circle, which corresponds to free suspension in the plane of the magnetic meridian, and the ratio of the torsion couple, due to 90° of twist on the thread, to the couple due to the Earth's horizontal magnetic force, are determined weekly.

Declination observations are usually made four times daily, at $9^{\mathrm{h}}, 12^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h}.
Dip Instrument.--This instrument was designed by Sir G. B. Airy, and constructed by Troughton and Simms. It is mounted in the Magnetic Pavilion on a slate slab supported by a braced wooden stand built upon a pier insulated from the floor. It was designed so that needles of three different lengths could be used, but in practice only those 3 inches in length have been used since 1898 September 30. The pivots of the needles rest on agate bearings within a gun-metal box with back and front of glass. On the inner side of the front glass (which is parallel to the plane of vibration of the needle) is etched a graduated circle, $9 \frac{3}{4}$ inches in diameter, divided to 10^{\prime} and read by two verniers to $10^{\prime \prime}$. The verniers are thin plates of metal with notches instead of marks, for use with transmitted light. They are attached to a frame which can move about a horizontal axis nearly coincident with the pivot axis of the needles; two microscopes are mounted on this frame, for observation of the two ends of the needle.

The inclination of the needle is observed by turning the movable frame till the two ends of the needle (seen as a dark object in a bright field) come into view in the microscopes. The position of the movable frame is read by the circle and verniers, and the position of the needle relative to the frame is read off on glass scales within the microscopes. These scales are divided to $1000^{\prime \prime}$, and can be read by estimation to $100^{\prime \prime}$. A brass zenith-point needle is used to determine the zenith-point reading.

The gun-metal box is mounted on a circular horizontal plate which can be rotated in azimuth, its position being read on a graduated circle by fixed verniers.

There are two levels, at right angles, on the base-plate ; the level is adjusted from time to time, and the readings of dip are corrected for any small outstanding level error (generally amounting to a few seconds of arc).

Observations are made only in the plane of the magnetic meridian. The needle is first magnetised by double touch, giving it nine strokes on each of its sides. Its inclination to the horizontal, when placed in the instrument, having been read, the whole apparatus is reversed in azimuth, and another reading taken. The needle pivots are then reversed on the agate bearings, and two more observations, in reversed posi-
tions of the instrument, are made. We will denote the mean of these four determinations of dip by θ_{1}. The needle is then taken out, remagnetised in the reverse direction, and four more observations are made in the same way, giving another mean reading θ_{2}.

Dip observations are made twelve times in each calendar month, at approximately equal intervals.

A systematic difference between θ_{1} and θ_{2} is assumed to indicate that the mass centre of the needle is not in the axis of the pivots. It may easily be seen that, on this supposition, the true inclination θ is given by the relation,

$$
\tan \theta=\frac{1}{2}\left(\tan \theta_{1}+\tan \theta_{2}\right) .
$$

The values of the dip given in this volume are obtained from this formula.
Deflection Instrument for Absolute Determinations of Horizontal Force.This instrument (known as Gibson No. 3) is similar to those issued from the Kew Observatory. It is mounted on a slate slab in the Magnetic Pavilion in the same way as the dip instrument.

The deflected magnet, used merely to ascertain the ratio which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism, is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to, and rotating with, the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflection the deflecting magnet is placed on the transverse deflection rod, carried by the rotating frame, at the distances 1.0 foot and 1.3 foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter: it is graduated to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$.

It will be convenient in this case to include with the description of the instrument an account of the method of reduction employed, in which the Kew precepts are followed. Previous to the establishment of the instrument at the Royal Observatory, the values of the various instrumental constants, as determined at the Kew Observatory, were kindly communicated by the late Professor Balfour Stewart, and these have been since used in reduction of all observations made with the instrument at Greenwich.

E vi Introduction to Greenwich Magnetical Observations, 1911.

The instrumental constants as thus furnished are as follows:-
The increase in the magnetic moment of the deflecting magnet produced by the inductive action of unit magnetic force in the English system of absolute measurement $=\mu=0.00015587$.

The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35° Fahrenheit $=c$ $=0.00013126(t-35)+0.000000259(t-35)^{2} ; t$ representing the temperature (in degrees Fahrenheit) at which the observation is made.

Moment of inertia of the deflecting magnet $=K$. At temperature 30°, log. $K=0.66643$; at temperature 90°, log. $K=0.66679$.

The distance on the deflection rod from $1^{\text {ft. }} 0$ east to $1^{\mathrm{ft} .} 0$ west of the engraved scale, at temperature 62°, is too long by 0.0034 inch, and the distance from $1^{\mathrm{ft}} \cdot 3$ east to $1^{\mathrm{ft}} 3$ west is too long by 0.0053 inch. The coefficient of expansion of the scale for 1° is ${ }^{\circ} 00001$.

The adopted value of K was confirmed in the year 1878 by a new and independent determination made at the Royal Observatory, giving log. K at temperature $30^{\circ}=0.66727$.

Let $m=$ Magnetic moment of deflecting or vibrating magnet.
$X=$ Horizontal component of Earth's magnetic force.
Then, if in the two deflection observations, r_{1}, r_{2}, be the apparent distances of centre of deflecting magnet from deflected magnet, corrected for scale-error and temperature (about 1.0 and 1.3 foot),

$$
u_{1}, u_{2} \text { the observed angles of deflection, }
$$

$$
\begin{aligned}
& A_{1}=\frac{1}{2} r_{1}^{3} \sin u_{1}\left\{1+\frac{2 \mu}{r_{1}^{3}}+c\right\} \\
& A_{2}=\frac{1}{2} r_{2}^{3} \sin u_{2}\left\{1+\frac{2 \mu}{r_{2}^{3}}+c\right\}
\end{aligned}
$$

$P=\frac{A_{1}-A_{2}}{\frac{A_{1}}{r_{1}-A_{2}} r_{2}^{2}}[P$ being a constant depending on the distribution of magnetism in the
we have, using for reduction of the observations a mean value of P :-
$\stackrel{m}{\bar{X}}=A_{1}\left(1-\frac{P}{r_{1}^{2}}\right)$, from observation at distance r_{1}.
$\frac{n}{\bar{X}}=A_{2}\left(1-\frac{P}{r_{2}^{2}}\right)$, from observation at distance r_{2}.
The mean of these is adopted as the true value of $\frac{m}{\bar{X}}$.

In calculating the value of P as well as the values of the four factors within brackets, the distances r_{1} and r_{2} are taken as being equal to 1.0 ft . and 1.3 ft . respectively. The expression for P is not convenient for logarithmic computation, and, in practice, its value for each observation has, since the year 1877, been calculated from the expression $\frac{\text { Log. } A_{1}-\log . A_{2}}{\text { modulus }} \times \frac{r_{1}{ }^{2} \times r_{2}{ }^{2}}{r_{2}{ }^{2}-r_{1}{ }^{2}}=\left(\right.$ Log. $\left.A_{1}-\log . A_{2}\right) \times 5 \cdot 64$.

For determination, from the observed vibrations, of the value of $m X$:-let $T_{1}=$ time of vibration of the deflecting magnet, corrected for rate of chronometer and arc of vibration,
$\frac{H}{F}=$ ratio of the couple due to torsion of the suspending thread to the couple due to the Earth's magnetic force. [This is obtained from the formula $\frac{H}{F}=\frac{\theta}{90^{\circ}-\theta}$, where $\theta=$ the angle through which the magnet is deflected by a twist of 90° in the thread.]

$$
\begin{aligned}
& \text { Then } T^{2}=T_{1}^{2}\left\{1+\frac{H}{F}+\mu \frac{X}{m}-c\right\} \\
& \text { and } m X=\frac{\pi^{2} K}{T^{2}} \text {. }
\end{aligned}
$$

The corrected time of vibration of the deflecting magnet, printed in the tables of results, is the mean of 100 vibrations observed immediately before, and of 100 vibrations observed immediately after the observations of deflection, corrected for temperature, rate of chronometer, semi-arc of vibration, induction, and torsion force.

From the values of $m X$ and $\frac{m}{X}$ thus calculated, m and X are deduced. The actual computation is made in the British system of units (foot-grain—second). The derived value of X is then reduced to C.G.S. units, as given in the tables.

Observations of the absolute horizontal magnetic force are made twice monthly.
Declination Variometer.-The magnet used in this instrument is 2 feet long, $1 \frac{1}{2}$ inches wide, and $\frac{1}{4}$ inch thick. It is suspended by a skein of silk, consisting of a bundle of fine threads bound together at intervals of 6 or 7 inches: the skein is about 12 feet long, 6 feet of which is vertical. The suspension skein gave way on June 3, and a new one was mounted on June 5. The magnet is taken from its carrier at the beginning of each year, in order to remove any torsion which may have accumulated; this is done by stretching the skein under the weight of a brass torsion rod for a few hours, adjusting the torsion circle till the bar rests in the magnetic meridian. The magnet is enclosed in a double wooden box, and is encircled by a copper damper to reduce accidental vibrations.

The photographic registration takes place in the usual way, on a horizontal cylinder which revolves once in 26 hours; the same sheet also receives the record of the horizontal force variometer. The illumination is by gas-light. The photographic sheets

Eviii Introduction to Greenwich Magnetical Observations, 1911.

are changed daily at 11 a.m. On each sheet a reference line is photographed by a fixed spot of light. The traces are interrupted automatically for 4 minutes at every hour, to afford a time scale. By another shutter the observer occasionally cuts off the light for a few minutes, noting the time; this facilitates the numeration of the hourly breaks. The length of 24 hours on the sheet is about 13.3 inches.*

The distance between the concave speculum mirror carried by the magnet, and the surface of the cylinder, is 134.4 inches. Since a movement of the mirror through 1° produces 2° of motion in the reflected ray, a change of 1° in declination corresponds to 4.691 inches on the photographic paper. A card-board strip, graduated on this scale to degrees and minutes, is prepared for reading from the sheets.

The base line is laid down as follows: the movement of the magnet is assumed to be identical with that of the absolute declination magnet, so that every observation with the latter affords a value of the base line. These values (of which four are obtained daily) are taken in monthly groups, the means being adapted for use throughout the corresponding months. Then, by means of the card-board scale, a base line (whose ordinate represents some convenient quantity) is laid down upon each sheet ; from this line the hourly ordinates (see p. Exiii) are measured.

No eye readings of the position of this magnet are taken.
Horizontal Force Variometer.-The magnet used in this instrument is 2 feet long, $1 \frac{1}{2}$ inches broad, and about $\frac{1}{4}$ inch thick; it is enclosed in a double wooden box. The bifilar suspension consists of a silk skein passing under two small pulleys, which are attached to a vernier piece used in connection with a torsion circle on the frame which holds the magnet. The effective length of each branch of the skein is about $7^{\text {ft. }} 6^{\text {in. }}$; the distances between the branches at the upper and lower ends are respectively ${ }^{\text {in. } \cdot} 14$ and $0^{\text {in. }} 80$. The present skein was mounted in 1909 December.

The torsion circle is fixed relative to the magnet, while the vernier is movable; the circle is divided to half degrees, and read by vernier to 1^{\prime}. The torsion is adjusted so as to make the magnet hang approximately transverse to the magnetic meridian, the north magnetic pole being west. Accidental vibrations of the magnet are reduced by a copper damper.

The changes of horizontal force are registered photographically on the cylinder already described in connection with the declination variometer; the same reference line is used for each trace, and the arrangements for interruption of the traces are similar.

* In accordance with a circular from Dr Chree requesting co-operation in "quick speed" magnetograms for the Term-days of the Antarctic Expedition, two new driving clocks were supplied, one for the Declination and Horizontal Force Maguetograph, and the other for the Vertical Force. By a simple changing device, these can be made to drive the cylinders at the ordinary rate, or at twelve times the ordinary rate.

In the present case eye-readings of the position of the magnet can also be taken by means of an auxiliary mirror, telescope, and scale. The eye observations are usually made at $9 \frac{1}{2}$ h, $12 \frac{1}{2}$ h, $15 \frac{1}{2} \mathrm{~h}$, and $20 \frac{1}{2} \mathrm{~h}$.

Since 12 inches of the fixed scale corresponds to $30^{\text {div.. }} 85$, while the mirror is 90.84 inches distant (in a normal direction) from the scale, it appears that, for a change of one division of scale-reading, the magnet is turned through an angle of $7^{\prime} .21^{\prime \prime} \cdot 6$, or (in circular measure) 0.002141 . We will denote these two corresponding quantities by k and k_{1} respectively.

The magnet should be within two or three degrees of arc on either side of the ideal position (i.e. magnetic east and west direction), if it is to indicate truly the changes in the magnitude of the horizontal magnetic force, without regard to small changes in its direction. Suppose ϕ is the angle of torsion, and θ the circular measure of the deviation of the magnetic axis from the ideal position, θ being reckoned positive when the north pole of the magnet is north of west; then the variation of the horizontal force-in terms of the whole horizontal force as unit-which will produce angular motion of the magnet corresponding to change of one scale-division, is

$$
k(\cot \phi+\tan \theta)
$$

Changes in θ are easily measured by the fixed scale; but there is no direct means of determining the scale zero, viz., the scale-reading for the position $\theta=0$. This, together with the value of the angle of torsion, is determined annually (in order to break the continuity of the photographic register as seldom as possible) by the following method.

The torsion-circle being set so that the magnet is nearly east and west, readings of the torsion vernier $\left(\mathrm{V}_{1}\right)$, of the scale $\left(\mathrm{S}_{1}\right)$, and of the time of vibration (T_{1}) in this position, are carefully taken. The magnet is then taken out and replaced in the reverse position, end to end, in its carrier ; the magnetic couple being thus reversed, the vernier-reading on the torsion scale must be changed by twice the angle of torsion (which is approximately known beforehand) in order to maintain the magnet transverse to the meridian. A finer adjustment is made, if necessary, while the magnet is in position. Corresponding readings are taken, of vernier $\left(V_{2}\right)$, scale $\left(S_{2}\right)$, and time of vibration $\left(\mathrm{T}_{2}\right)$. Lastly, the magnet is replaced in its original position, in which it remains (in general) until the following year's torsion observations. Again the three readings, $\mathrm{V}_{3}, \mathrm{~S}_{3}, \mathrm{~T}_{3}$, are taken.

Then for the angle of torsion we have

$$
\phi=\frac{1}{4}\left(2 \mathrm{~V}_{2}-\mathrm{V}_{1}-\mathrm{V}_{3}\right)+\frac{1}{2} k_{1}\left(\mathrm{~S}_{1}+\mathrm{S}_{3}-2 \mathrm{~S}_{2}\right)
$$

while the scale zero S_{0} is given by the formula

$$
\mathrm{S}_{0}=\frac{1}{4}\left(\mathrm{~S}_{1}+\mathrm{S}_{3}+2 \mathrm{~S}_{2}\right)+\frac{1}{k} \frac{\mathrm{~T}_{1}+\mathrm{T}_{3}-2 \mathrm{~T}_{2}}{\mathrm{~T}_{1}+\mathrm{T}_{3}+2 \mathrm{~T}_{2}} \cot \phi
$$

Greenwich Magnetical and Meteorological Observations, 1911.

Two determinations of ϕ and S_{0} are made by taking two sets of observations of S, V, and T in each position of the magnet, with slightly different vernier readings.

The above method of determining the scale value was not used before the beginning of 1911 , but the formulæ could be applied to the observations taken in connection with the method formerly used (a description of the latter is given in the volumes for 1908 and earlier years). A table of corrections (calculated from these formulæ) appeared in the Introduction to the Magnetical Observations for 1909 (see p. xv.), giving the percentage error in the scale values adopted for the horizontal force magnetographs in the years 1883-1909.

From experiments on 1910 December 30, it was found that the angle of torsion was $41^{\circ} 56^{\prime}$, and the scale zero was 56.79 ; from similar experiments on 1912 January 1, the corresponding values found were $42^{\circ} 8^{\prime}$ and $51 \cdot 35$. The mean scale reading during the year 1911 was about 52. The adopted values of ϕ and θ for the reduction of the observations for 1911 are $42^{\circ} 2^{\prime}$ and -15^{\prime}. Thus the value of $\cot \phi+\tan \theta$ is 1•1052.

Since the distance between the concave mirror carried by the magnet and the surface of the cylinder is 136.8 inches, the length on the cylinder which corresponds to a change of 0.01 of the whole horizontal force is $2 \times 0.01 \times 136.8 \div(\cot \phi+\tan \theta)=$ $2^{\text {in. }} 476$ during the year 1911; the cardboard scale used for measuring the curves is constructed with this as unit.

As the indications of horizontal force are in a slight degree affected by the small changes to which the Magnet Basement is subject, a thermometer, the bulb of which reaches considerably below the attached scale, is placed in a nearly upright position on the outer magnet box, with its bulb projecting well into the interior of the inner box. Readings of this thermometer are usually taken at $9^{\mathrm{h}}, 10^{\mathrm{h}}, 11^{\mathrm{h}}, 12^{\mathrm{h}}, 13^{\mathrm{h}}, 14^{\mathrm{h}}, 15^{\mathrm{h}}, 16^{\mathrm{h}}$, and 21^{h}. An index correction of $-0^{\circ} \cdot 3$ has been applied to all the readings.

The temperature coefficient of the magnet was determined by artificially heating the Magnet Basement to different temperatures, and observing the change of position of the magnet produced thereby. Such experiments were made in the years 1868, 1885, and 1886 (see previous volumes for details). A discussion of the observations taken in 1885 and 1886 shows that the correction for reduction to temperature 32° (expressed in terms of the whole horizontal force) is $(+-32) \times 0 \cdot 0000936+(+-32)^{2} \times \cdot 000002074$, the temperature \pm being in degrees Fahrenheit. The decrease of horizontal force for
an increase of 1° of temperature would thus be $\cdot 00021$ at $60^{\circ}, \cdot 00023$ at 65°, and $\cdot 00025$ at 70°.

The eye readings of the position of the magnet, in conjunction with the photographic record of the position at the same times, serve as a check on the constancy of the recording arrangements.

Vertical Force Variometer.-The magnet used in this instrument is $1 \frac{1}{2}$ feet long, and lozenge-shaped, being broad at the centre and pointed at the ends. The steel knife-edge, which is 8 inches long, and passes through an aperture in the magnet, rests on two agate planes. The magnet is placed unsymmetrically on the knife edge, being nearer to its southern end. The axis of vibration was originally in the magnetic meridian, but is now a few degrees distant, on account of the secular change of declination.

Two steel screw stalks, carrying adjustable screw weights, are attached to the magnet, one being vertical in order to vary the sensitiveness, the other horizontal in order to adjust the balance of the magnet, which should rest in a nearly horizontal position. Formerly a copper damper encircled the magnet, but, as it was found to be unnecessary, it has not been used since 1902. The magnet and supporting frame are enclosed in a wooden box with suitable glass-covered apertures. The temperature within the box is indicated by a thermometer, the bulb of which projects well into the interior of the box.

The photographic arrangements are generally similar to those already described in connection with the declination and horizontal force variometers. The cylinder carrying the photographic sheet is in this case vertical, and also receives the record of the variations of barometric pressure. The time scale is the same as for the other magnetic registers.

The scale coefficient of the instrument is determined by the method of vibrations. When the magnet is approximately horizontal, and transverse to the magnetic meridian, the variation of the vertical force, in terms of the whole vertical force, which will produce a small angular motion θ (measured in radians) $=\operatorname{cotan} \operatorname{dip} \times\left(\frac{T^{1}}{T}\right)^{2} \times \theta$; T and T^{1} are the times of vibration of the magnet in the vertical and horizontal planes respectively.

Observations of T are made once a week by means of the telescope and scale provided for eye readings of the position of the magnet. The mean of 54 observations made during the year gives the value $18^{s .} 272$.

The time of vibration in the horizontal plane (T^{1}) is determined once every three years, as the observation requires the removal of the magnet from its box. The magnet, with all its attached parts, is suspended from a tripod, with its broad side horizontal. The are of vibration is kept small. Observations on 1912 January 1 gave for the time of vibration in the horizontal plane $16^{8 .} 484$. This value has been adopted for the year 1911.

Since the distance between the concave mirror of the magnet and the surface of the cylinder is 100.2 inches, the length on the cylinder, in inches, which corresponds to a change of 0.01 part of the whole vertical force $=2 \times 100.2 \times \tan \operatorname{dip} \times$ $\left(\frac{T}{T^{1}}\right)^{2} \times 0.01$. Taking $T^{\cdot}=18^{8.272}, T^{\mathrm{l}}=16^{\mathrm{s}} 484$, and $\operatorname{dip}=66^{\circ} 52^{\prime} 6^{\prime \prime}$, this length is found to be 5.764 inches. The cardboard scale, which is used for measuring the curves for the year, is constructed with this as unit.

The eye readings, which are taken at $9 \frac{1}{2}^{\mathrm{h}}, 12 \frac{1 \mathrm{~h}}{}, 15 \frac{1}{2}$, and $20 \frac{1}{2}^{\mathrm{h}}$, afford a check on the recording arrangements, when compared with the photographic record of the position of the magnet at the same times.

Readings of the temperature within the box are taken at $9^{\mathrm{h}}, 10^{\mathrm{h}}, 11^{\mathrm{h}}, 12^{\mathrm{h}}, 13^{\mathrm{h}}, 14^{\mathrm{h}}$, $15^{\mathrm{h}}, 16^{\mathrm{h}}$, and 21^{h}. Experiments made in 1885 and 1886 (details of which are given in the Introduction for 1886) showed that, through the range of temperature to which the magnet is normally exposed, the apparent increase of vertical force for 1° rise of temperature (Fahrenheit) is uniformly $0 \cdot 000212$. No term depending on the square of the temperature is necessary in this case.

§ 5. Magnetic Reductions.

The results given in the Magnetic Section refer to the civil day, commencing at midnight.

Before the photographic records of magnetic declination, horizontal force, and vertical force are discussed, they are divided into two groups-one including all days on which the traces show no particular disturbance, and which, therefore, are suitable for the determination of diurnal inequality ; the other comprising days of unusual and violent disturbance, when the traces are so irregular that it appears impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are no days in the year 1911 which are classed as days of great disturbance. Days of lesser disturbance are January 24-25, February 21-22, 22-23, April 8-9, 16, May 14-15, October 10-11, December 11.

When two days are mentioned, it is to be understood that the reference is usually to one set of photographic sheets extending from noon to noon, and including the last half and the first half respectively of two consecutive civil days.

Through each photographic trace, including those on days of lesser disturbance, a pencil line was drawn, representing the general form of the curve without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour; and from the tables of these measures, for each calendar month, are obtained the mean monthly values for each hour of the day, and the mean daily value of the element for each day of the month. The daily mean is taken from the 24 ordinates 0^{h} to 23^{h}. Tables I. and II. contain the results for declination, Tables III. to VI. those for horizontal force, with corresponding tables of temperature, and Tables VII. to X. those for vertical force, with corresponding tables of temperature. In the formation of diurnal inequalities it is unimportant whether a day omitted be a complete civil day, or the parts of two successive civil days making together a whole day, although in the latter case the results are not available for daily values. No days were omitted on account of great disturbance in the formation of these Tables, but from other causes there are omitted in Tables I. and II. for declination, Jüne 4 and 5.

Table XI. gives the collected monthly values for declination, horizontal force, and vertical force, and Table XII. the mean diurnal inequalities for the year.

By means of two stoves placed in the Basement, the temperature has been kept nearly constant throughout the year, the endeavour being to keep it as near to 67° as possible. Since 1883 the results in Tables III., V., VII., and IX. have been given as corrected for temperature, as well as without this correction. In Tables XI. and XII., only results corrected for temperature are given. The corrections applied (which are mentioned in the description of each instrument) are founded on the daily and hourly values of temperature given in Tables IV., VI., VIII., and X.

In regard to the formation of the tables of temperature, the hourly readings of the Richard Thermograph were combined so as to give the mean daily values for each day of the month, and the mean monthly values for each hour of the day. To adapt these to represent the temperature within the horizontal and vertical force magnet boxes respectively, the monthly means of the thermograph-readings at $9^{\text {h }}, 10^{\text {h }}$, $11^{\mathrm{h}}, 12^{\mathrm{h}}, 13^{\mathrm{h}}, 14^{\mathrm{h}}, 15^{\mathrm{h}}, 16^{\mathrm{h}}$, and 21^{h} were compared with the corresponding means of the eye readings of the thermometers whose bulbs are within the respective magnet boxes, giving corrections to the thermograph-readings at these hours, which were very

Exiv Introduction to Greenwich Magnetical Observations, 1911.

accordant, and from which, by interpolation, corrections were obtained for the remaining hours. The nine daily observations gave also the means of reducing the daily thermograph values to the temperature of the interior of the respective magnet boxes. The results are given in Tables IV., VI., VIII., and X.

In order to economise space, the daily values, as exhibited in Tables III. and VII., both uncorrected and corrected, have been diminished by constants. The division =_ in these Tables and in Table XI. indicates that the instrument has been disturbed for experiment or adjustment, or that for some reason the continuity of the values has been broken, the constants deducted being different before and after each break. In the interval between two breaks the values of u and c are each comparable throughout, remarking only that in certain cases it is to be understood that the values are to be taken 1000 greater or less for comparison with adjacent values. See, for example, c in Table III. on February 18, which should be taken as 1018 for comparison with the adjacent values, and similarly in other cases. The excess of the value of c above that of u on any day (supposing c, when the smaller value, to be increased by 1000) shows the correction for temperature that has been actually applied, In Tables II., V., IX., and XII. the separate hourly values of the different elements have been simply diminished by the smallest hourly value.

The variations of declination are given in the sexagesimal division of the circle, and those of horizontal and vertical force in terms of 00001 of the whole horizontal and vertical forces respectively taken as units. In Tables XI. and XII. they have been also expressed in C.G.S. measure.

Table XIII. exhibits the diurnal range of declination and horizontal force on each separate day, as determined from the 24 hourly ordinates of each element measured from the photographic register (as explained on page E xiii), and the monthly means of these numbers, the results for horizontal force being corrected for temperature. The first portion of Table XIV. contains the difference between the greatest and least hourly mean values in each month, for declination, horizontal force, and vertical force, as extracted from Table II. and columns c of Tables V. and IX. In the second portion of the table there are given for each month the numerical sums of the deviations of the 24 hourly values from the mean, taken without regard to sign.

The magnetic diurnal inequalities of declination, horizontal force, and vertical force, for each month and for the year, as given in Tables II., V., and IX., have been treated by the method of harmonic analysis, and the results are given in Tables XV. and XVI.

The values of a_{5} and b_{5} for the diurnal inequalities for the year were also calculated, but could not be conveniently included in Table XV. They are as follows :-

1911.	a_{5}.	b_{5}.
Declination	-0:07	$\bigcirc 00$
Horizontal Force	$-{ }^{-1}$	-0.7
Vertical Force ..	+o.6	-0.1

In order to give some indication of the accuracy with which the results of observation are represented by the harmonic formula, the sums of squares of residuals remaining after the introduction of m and of each successive pair of terms of the expression on page E 12 , corresponding to the single terms of the expressions on page E13, have been calculated for the mean diurnal inequalities for the year (columns 1, 2, and 3 of Table XII.). The respective sums of squares of residuals are as follows :-

SUMS OF SQUARES OF RESIDUALS OF DIURNAL INEQUALITIES.

The unit in the case of horizontal and vertical force being 00001 of the whole horizontal and vertical forces respectively, it thus appears that there would be no advantage in carrying the approximation (Table XV.) beyond the determination of a_{4}, b_{4}.

As regards Magnetic Dip, the result of each complete observation of dip with each of the needles in ordinary use, is given in Table XVII.; and in Table XVIII., the concluded monthly and yearly values for each needle.

Exvi Introduction to Greenwich Magnetical Observations, 1911.

The results of the observations for Absolute Measure of Horizontal Force contained in Table XIX. require no special remark, the method of reduction and all necessary explanation having been given with the description of the instrument employed. The observed result in each month has been also given as reduced to the mean value for the month, by application of the difference between the horizontal force ordinate at the time of observation and the mean value for the month, as obtained from the photographic register.

In order to facilitate the comparison of the diurnal inequalities of magnetism at the different British and other magnetic observatories, an arrangement was made with the Sub-Committee of the Kew Committee of the Royal Society, by which five quiet days were selected at Greenwich in each month of every year for adoption at all these observatories for determination of the monthly diurnal inequalities of declination, horizontal force, and vertical force, thus providing for further discussion results which should be strictly comparable. Beginning with 1911, the five days selected by the International Committee from a comparison of data from all contributing stations, have been adopted instead. The particular days selected are given on page E 18, and the results found for Greenwich are contained in Tables XX., XXI., and XXII., which it is interesting to compare with the values found from the records of all days, as given in Tables II., V., IX., and XII.

Reduced copies of the magnetograms for certain disturbed days (mentioned on p . Exii) have been printed in each volume since 1882. The list of these days since the year 1889 has been selected in concert with M. Mascart, or his successor M. Angot, so that the two Observatories of Val Joyeux (formerly of the Parc Saint Maur) and Greenwich should publish the magnetic registers for the same days of disturbance with a view to the comparison of the results. It is proposed to follow this plan in future years, and if other magnetic observatories should eventually join in the scheme for concerted action, in regard to the publication of their registers, the discussion of magnetic perturbations would be much facilitated.

The plates are preceded by a brief description of all other significant magnetic motions (superposed on the ordinary diurnal movement) recorded throughout the year. These, in combination with the plates, give very complete information on magnetic disturbances during the year 1911, affording thereby, it is hoped, facilities for making comparison with solar phenomena.

In regard to the plates, it may be remarked that on each day three distinct registers are usually given, viz. : declination, horizontal force, and vertical force; all necessary information for proper understanding of the plates being added in the notes on page (E 34).

An additional plate (IV.) exhibits the registers of declination, horizontal force and vertical force on four quiet days, which may be taken as types of the ordinary diurnal movement at four seasons of the year. These are given for the civil day as exhibiting more clearly the character of the diurnal movement.

The indications of horizontal and vertical force are given precisely as registered; they are therefore affected, slightly as compared with the amount of motion on disturbed days, by the small recorded changes of temperature of the magnets. The recorded hourly temperatures being inserted on the plates, reference to the temperaturecorrection of the magnets, given at pages Ex to Exii, will show the effect produced. Briefly, an increase of about $4 \frac{1}{2}^{\circ}$ of temperature throws the horizontal force curve upward by 0.001 of the whole horizontal force; an increase of about 5° of temperature throws the vertical force. curve downward by 0.001 of the whole vertical force.

The original photographs have been reduced in the proportion of 20 to 11 on the plates, and the corresponding scale values are :-

$$
\begin{array}{cccc}
\text { I of Declination is } & 65.53 & \text { on the Plates. } \\
\text { O.OI of Horizontal Force is } & 34.58 & " & " \\
0.01 \text { of Vertical Force is } & 80.52 & ",
\end{array}
$$

The scales actually attached to the plates are, however, so arranged as to correspond with the tables of the magnetic section-that is to say, the units for horizontal force and vertical force are 00001 of the whole horizontal and vertical forces respectively, the numbers being in some cases increased by 1000 to avoid negative quantities. At the foot of each plate equivalent scales, in C.G.S. measure, are given for each of the magnetic registers.

Since the preceding scale values are not immediately comparable for the different elements, it therefore becomes desirable to refer them all to the same unit, say 0.01 of the horizontal force.

Now, the transverse force represented by a variation of 1° of Declination $=\cdot 0175$ of Horizontal Force, and Vertical Force $=$ Horizontal Force $\times \tan \operatorname{dip}$ [adopted dip $=66^{\circ} .52^{\prime} .6^{\prime \prime}$] $=$ Horizontal Force $\times 2.3409$;
whence we have the following equivalent scale values for the different elements :mm .

Exviii Introduction to Greenwich Meteorological Observations, 1911.
If we divide the last three numbers by $0 \cdot 18529$, we get $202^{\mathrm{mm}} \cdot 1,186^{\mathrm{mm}} \cdot 6,185^{\mathrm{mm} \cdot 6}$, which represent the lengths on the respective three curves equivalent to 0.01 C.G.S. unit.

The subjoined table gives the values of Magnetic Elements determined at the Royal Observatory, Greenwich :--

Year.	Declination West.	Horizontal Force, C.G.S. Unit.	Dip. \dagger	Year.	Declination West.	Horizontal Force, C.G.S. Unit.	Dip. \dagger
1841	$23^{\circ} \cdot 16^{\prime} \cdot 2$	\ldots	-..	1876	19. $8^{\circ} \cdot 3$	- 1797	$67^{\circ} 4^{1}{ }^{\circ} \mathrm{o}$
1842	23.14 .6	...		1877	18.57°	-1799	$67.39 \cdot{ }^{\circ}$
1843	23.117 7	\ldots	69. 0.6	1878	$18.49{ }^{\circ} 3$	0.1801	$67.38 \cdot 2$
1844	23.15 3		69. $0 \cdot 3$	1879	$18.40 \cdot 5$	0.1803	$67.37{ }^{\circ}$
1845	22.56 .7		$68.57 \cdot 5$	1880	$18.32 \cdot 6$	0.1804	67.357
1846	22.49 .6	0.1731	$68.58 \cdot 1$	1881	$18.27{ }^{1}$	0.1805	67.34%
1847	22.51 3	$0 \cdot 173^{6}$	68.59 .0	1882	18.22 .3	0.1804	$67.34{ }^{\circ}{ }^{2}$
1848	22.51.8	0.1731	68.547	1883	$18.15{ }^{\circ}$	0.1810	67.317
1849	22.37 .8	0.1733	$68.51 \cdot 3$	1884	18. $7^{\circ} 6$	0.1812	67.29 .7
1850	22.23 .5	0.1738	68.46 .9	1885	18. 177	$0 \cdot 1816$	67.28 .0
1851	22.18.3	0.1744	$68.40 \cdot 4$	1886	17.54.5	$0 \cdot 1816$	$67.27 \cdot 1$
1852	22.179	0.1745	68.42 .7	1887	$17.49{ }^{\text {1 }}$	0.1818	$67.26 \cdot 6$
1853	22.10 .1	0.1748	68.44 .6	1888	$17.40{ }^{\circ} 4$	0.1820	$67.25 \cdot 6$
1854	22. $0 \cdot 8$	0.1749	68.477	1889	17.34 .9	0.1821	$67.24 \cdot 3$
1855	21.48 .4	0.1756	$68.44 \cdot 6$	1890	$17.28 \cdot 6$	0.1823	67.23 .0
1856	21.43 .5	$0 \cdot 1759$	68.43 .5	1891	17.23 .4	$0 \cdot 1825$	$67.21 \cdot 5$
1857	$21.35{ }^{\circ} 4$	0.1769	68.31 1	1892	17.174	0.1827	67.20 .0
1858	$21.30 \cdot 3$	0.1762	$68.28 \cdot 3$	1893	17.11 .4	$0 \cdot 1829$	67.17 .9
1859	21.23 .5	0.1761	68.26 .9	1894	17. 4.6	0.1829	67.17 .4
1860	21.14 .3	...	$68.30 \cdot 1$	1895	16.574	0.1832	67.16.1*
1861	21. $5 \cdot 5$	-11773	68.24 .6	1896	16.517**	0.1833^{*}	$67.15 \cdot 1 *$
1861	21. 55	0.1757	$68.15 \cdot 8$	1897	16.458^{*}	$0 \cdot 1836$	$67.13 .5^{*}$
1862	20.52.6	0.1761	68. $9 \cdot 6$	1898	16.39.2*	0.1838	67.12 .1
1863	20.45 9	0.1763	68. $7 \cdot 0$	1899	$16.34{ }^{\circ}$	0.1842	$67.10 \cdot 5$
1864		0.1765	68. $4^{\cdot 1}$	1900	$16.29{ }^{\circ}$	$0 \cdot 1844$	67. $8 \cdot 8$
1865	20.33 .9	0.1765	68. $2 \cdot 7$	1901	16.26 .0	0.1848	$67.6 \cdot 4$
1866	$20.28{ }^{\circ}$	$0 \cdot 1771$	68. 1.3	1902	$16.22 \cdot 8$	0.1850	67. $3 \cdot 8$
1867	$20.20 \cdot 5$	0.1776	$67.57 \cdot 2$	1903	16.19.0	c'1850	67. 1.2
1868	$20.13 \cdot 1$	0.1777	$67.56 \cdot 5$	1904	16.15.0	0.1852	66.57 .6
1859	20. 4^{11}	0.1780	67.54 .8	1905	16. $9 \cdot 9$	0.1852	$66.56 \cdot 3$
1870	19.53 .0	0.1782	$67.52 \cdot 5$. 1906	16. $3 \cdot 6$	0.1852	$66.55 \cdot 6$
1871	19.41.9	0.1785	$67.50 \cdot 3$	1907	15.59 .8	0.1853	$66.56 \cdot 2$
1872	$19.36 \cdot 8$	0.1787	$67.47 \cdot 8$	1908	15.53 .5	0.1853	$66.56 \cdot 3$
1873	19.33 .4	0.1791	$67.45 \cdot 8$	1909	1 $5.47^{\circ} 6$	0.1853	66.54 .1
1874	19.28 .9	$0 \cdot 1795$	$67.43 \cdot 6$	1910	$15.41 \cdot 2$	$0 \cdot 1853$	66.52.8
1875	19.21 .2	0.1795	67.42 .4	1911	15.33°	0.1853	$66.52 \cdot 1$

* Corrected for the effect of the iron in the new buildings (see p. E ii).
+ These values of the dip differ slightly in some instances from those given in previous volumes, on account of the correction described on p. E v.

In 1861 the new Unifilar Apparatus for absolute Horizontal Force and the Airy DipCircle were introduced, both sets of apparatus being used in that year. In 1864 the excavation of the Magnetic Basement caused the suspension of complete Declination Observations.

Slight interruptions in the traces on the plates are due to various causes. In the originals there are breaks at each hour for time scale, so slight, however, that in the copies the traces could usually be made continuous without fear of error: in a few cases, however, this could not be done. Further, to check the numeration of hours, the observer interrupts the register at definite times for about five minutes, usually at or near $9^{\mathrm{h}} 30^{\mathrm{m}}, 12^{\mathrm{h}} 30^{\mathrm{m}}$, and $20^{\mathrm{h}} 30^{\mathrm{m}}$ Greenwich civil time.

The original photographic records were first traced on thin paper, the separate records on each day being arranged one under another on the same sheet, and great attention being paid to accuracy as regards the scale of time. Each sheet containing the records for one or more days was then reduced by photo-lithography, in the proportion of 20 to 11 , to bring it to a convenient size for insertion in the printed volume.

§ 6. Meteorological Instruments.

Standard Barometer.-The standard barometer, mounted in 1840 on the southern wall of the western arm of the Upper Magnet Room, is Newman No. 64. Its tube is $0^{\text {in }} 565$ in diameter, and the depression of the mercury due to capillary action is $0^{\text {in. }} 002$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{\text {in }} 05$, sub-divided by vernier to $0^{\text {in }} \cdot 002$.

The readings of this barometer, until 1866 August 20, are considered to be coincident with those of the Royal Society's flint-glass standard barometer. It then became necessary to remove the sliding rod for repair of its slow motion screw, which was completed on August 30. Before the removal of the rod the barometer had been compared with three other barometers, one of which, during repair of the rod, was used for the daily readings. After restoration of the rod, a comparison was again made with the same three barometers, from which it appeared that the readings of the standard, in its new state, required a correction of $-0^{\text {in. }} 006$, all three auxiliary barometers giving accordant results. This correction has been applied to every observation since 1866 August 30.

Exx Introduction to Greenwich Meteorological Observations, 1911.

An elaborate comparison of the standard barometers of the Greenwich and Kew Observatories, made in the spring of the year 1877, under the direction of the Kew Committee, by Mr. Whipple, showed that the difference between the two barometers (after applying to the Greenwich barometer-readings the correction $-0^{\text {in }} \cdot 006$) did not exceed $0^{\text {in. }} 001$. (Proceedings of the Royal Society, vol. xxvii. page 76.)

The height of the barometer cistern above the mean level of the sea is 159 feet, being $5^{\text {rt. }} 2^{\text {in. }}$ above Mr. Lloyd's reference mark in Bradley's Transit room adjoining the present Transit-circle room. (Philosophical Transactions, 1831.)

The barometer is read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Each reading is corrected by application of the index-correction above mentioned, and reduced to the temperature 32° by means of Table II. of the "Report of the Committee of Physics" of the Royal Society. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

Photographic Barometer.-The barometric record is made on the same cylinder as is used for magnetic vertical force. A siphon barometer fixed to the northern wall of the Magnet Basement is employed, the bore of the upper and lower extremities of the tube being about 1.1 inch, and that of the intermediate portion 0.3 inch. A metallic plunger, floating on the mercury in the shorter arm of the siphon, is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of aluminium, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet. A base line is traced on the sheet, and the record is interrupted at each hour by the clock, and occasionally by the observer, in the same way as for the magnetic registers. The length of the time scale is also the same.

The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found $=4^{\text {in }} 16$ on the paper. Ordinates measured for the times of observation of the standard barometer, combined with the corrected readings of the standard barometer, give apparent values of the base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, from which the hourly ordinates (see page Exxxi) are
measured as for the magnetic registers. As the diurnal change of temperature in the Basement is very small, no appreciable differential effect is produced on the photographic register by the expansion of the column of mercury.

Dry and Wet Bulb Thermomerers.-The Standard dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. A vertical axis, fixed in the ground, carries the frame, which consists of a horizontal board as base, of a vertical board projecting upwards from it and connected with one edge of the horizontal board, and of two parallel inclined boards (separated about 3 inches) connected at the top with the vertical board and at the bottom with the other edge of the horizontal board: the outer inclined board is covered with zinc, and the air passes freely between all the boards. The dry and wet bulb thermometers are mounted near the centre of the vertical board, with their bulbs about 4 feet from the ground; the maximum and minimum thermometers for air temperature are placed towards one side of the vertical board, and those for evaporation temperature towards the other side, with their bulbs at about the same level as those of the dry and wet bulb thermometers. A small roof projecting from the frame protects the thermometers from rain. The frame is turned in azimuth several times during the day (whether cloudy or clear), so as to keep the inclined side always towards the sun. In 1878 September a circular board, 3 feet in diameter, was fixed, below the frame, round the supporting post, at a height of 2 feet 6 inches above the ground, with the object of protecting the thermometers from radiation from the ground. In the summer of 1886 experiments were made on days of extreme heat, with the view of determining the effect of the circular board in this respect, an account of which will be found at the end of the Introduction to the volume for the year 1887. The effect of radiation with the circular board removed was found to be insensible.

On 1899 January 4 the thermometer stand was moved to the Magnetic Pavilion enclosure, where the thermometers are set up in an open position, about 40 feet southwest of the building.

The corrections to be applied to the thermometers in ordinary use are determined, usually once each year for the whole extent of scale actually employed, by observations at 32° in pounded ice and by comparison with the standard thermometer No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society.

The dry bulb thermometer used throughout the year was Negretti and Zambra, No. 45354. The correction $-0^{\circ} \cdot 4$ has been applied to the readings of this

Exxii Introduction to Greenwich Magnetical Observations, 1911.

thermometer. The wet bulb thermometer used throughout the year was Negretti and Zambra, No. 94737 . The correction $-0^{\circ} \cdot 2$ has been applied to the readings of this thermometer.

The self-registering thermometers for temperature of air and evaporation are all by Negretti and Zambra. The maximum thermometers are on Negretti and Zambra's principle, the minimum thermometers are of Rutherford's construction. The readings of Negretti and Zambra, No. 83760 , for maximum temperature of the air, required no correction; to those of Negretti and Zambra, No. 38338, for minimum temperature of the air, a correction of $+0^{\circ} .1$ has been applied; to those of Negretti and Zambra, No. 102104, for maximum temperature of evaporation, a correction of $+0^{\circ} \cdot 1$ has been applied; and to those of Negretti and Zambra, No. 98508, for minimum temperature of evaporation, a correction of $+0^{\circ} \cdot 1$ has been applied.

The dry and wet bulb thermometers are read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Readings of the maximum and minimum thermometers are taken at $9^{\mathrm{h}}, 15^{\mathrm{h}}$ and 21^{h} every day. Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.

In the year 1887, four thermometers-a dry-bulb and a wet-bulb, with maximum and minimum thermometers for air temperature-were mounted in a Stevenson screen, with double louvre-boarded sides, of the pattern adopted by the Royal Meteorological Society, which is fully described in the Quarterly Journal of the Society, vol. x. page 92 . The screen is planted in the Magnet ground 20 feet east-north-east of the photographic thermometers, and its internal dimensions are, length 18 inches, width 11 inches, and height 15 inches, the bulbs of the thermometers placed in it being at a height of about 4 feet above the ground. The dry-bulb thermometer is Hicks No. 262495, to the readings of which a correction of $-0^{\circ} \cdot 1$ has been applied. The wet-bulb is Hicks No. 268525, and the maximum thermometer is Negretti and Zambra, No. 85059, neither of which required correction. To the readings of the minimum thermometer, Negretti and Zambra, No. 68873, a correction of $+0^{\circ} .1$ has been applied.

Experiments were made in the summer of the year 1887 on days of extreme heat, to determine whether, with the door of the screen open, the thermometers were in any way influenced by radiation from external objects, an account of which will be found
at the end of the Introduction to the volume for 1887. The effect of radiation with the door of the screen open was found to be insensible.

On 1900 Marcb 31, an additional Stevenson screen, similar to the screen already mounted in the Magnet ground, was erected in the Magnetic Pavilion enclosure, 15 feet north-east of the open stand. The dry and wet-bulb thermometers mounted in this screen are Negretti and Zambra, Nos. 94713 and 94714 , of which the former required no correction to its readings. To the readings of the maximum thermometer, Negretti and Zambra, No. 94859, a correction of $-0^{\circ} \cdot 4$ has been applied, and to those of the minimum thermometer and the wet-bulb thermometer, Negretti and Zambra, Nos. 85080 and 94714 , a correction of $+0^{\circ} \cdot 1$ has been applied.

Photographic Dry-Bulb and Wet-Bulb Thermometers.-The apparatus which has been in use since 1887 was designed by Sir W. H. M. Christie, and since 1899 has stood in its present position in the Magnet Ground. It is placed in a shed, 8 feet square, standing upon posts about 8 feet high, and open to the north. The roof slopes towards the south, and there are double protecting boards on the eastern, southern, and western sides; the apparatus is thus screened from the direct rays of the sun, without impeding the circulation of the air. The cylinder which receives the photographic register is $11 \frac{1}{2}$ inches long, and $14 \frac{1}{2}$ inches in circumference, and revolves once in 26 hours. The two traces fall on the same part of the cylinder, as regards time scale; a long air-bubble in the wet-bulb thermometer column gives the means of registering the indications of the wet bulb (as well as of such degrees and decades of its scale as fall within the bubble), just below the trace of the dry-bulb thermometer, without any interference of the two records, an arrangement which admits of the time scale being made equal to that of all the other registers. The stems of the thermometers are placed close together, each being covered by a vertical metal plate having a fine vertical slit, so that light passes through only at such parts of the bore of the tube as do not contain mercury. Two gas lamps, each at a distance of 21 inches, are placed at such an angle that the light from each, after passing through its corresponding slit and thermometer tube, falls on the photographic paper in one and the same vertical line. Degree lines etched upon the thermometer stems, and painted, interrupt the light sufficiently to produce a clear and sharp indication on the photographic sheet, the line at each tenth degree being thicker than the others, as well as those at $32^{\circ}, 52^{\circ}, 72^{\circ}$, \&c. The length of scale is from 0° to 120° for each thermometer, the length of 1° being about $0 \cdot 1$ inch, and the air-bubble in the wet-bulb thermometer is about 12° in length, so that it will always include one of the ten-degree lines. The bulbs, which are 2 inches long and of about $\frac{1}{2}$ an inch in internal bore, are separated horizontally by 5 inches, the tubes of the thermometers having a double bend

Exxiv Introduction to Greenwich Meteorological Observations, 1911.

above the bulbs, which are placed about 4 feet above the ground. The thermometers are carried by a vertical frame with independent vertical adjustment for each thermometer, so that the register in summer or winter can be brought to a convenient part of the photographic sheet. The revolving cylinder is driven by a pendulum clock contained within the brass case covering the whole apparatus, excepting the thermometer bulbs which project below. It makes one revolution in 26 hours, and the time scale is the same as that for all the other registers. As the cylinder revolves, the light passing through the portion of the thermometer tubes not occupied by mercury imprints on the paper a broad band of photographic trace, corresponding to the drybulb register, whose breadth in the vertical direction varies with the height of the mercury in the tube, and a narrower band below, corresponding to the wet bulb. When these are developed, the traces are seen to be crossed by thin white lines, the horizontal lines corresponding to degrees, and the vertical lines to hours, the lower boundary of each trace indicating the thermometric record corresponding to the upper surface of the thermometric column.

The driving clock is made to interrupt the light for a short time at each hour, producing on the sheet the hour lines above mentioned; the observer also occasionally interrupts the register for a short time for proper identification of the hourly breaks.

The bulbs of the thermometers were at first completely protected from radiation by vertical or inclined boards fixed to the thermometer stand, two on the south side, two on the north side, one at the east end, one at the west end, and one below, but with proper spaces for free circulation of air. Experiments made in the summer of the year 1886, an account of which is given at the end of the Introduction for 1887, showed that the north and south boards were unnecessary, and the two south boards and one north board were in consequence removed before commencing regular work with the instrument at the beginning of the year 1887. The south boards were replaced during 1908 as a precaution against indirect effects from the gravel path to the south of the shed.

For a description of the apparatus formerly employed, reference may be made to the Introduction for 1887 and previous years. A comparison of the results given by the old and new apparatus will be found at the end of the Introduction to the year 1887.

Radiation Thermometers.-These thermometers are placed in the Magnetic Pavilion enclosure, in an open position about 50 feet south-west of the building. The thermometer for solar radiation is a self-registering mercurial maximum thermometer on Negretti and Zambra's principle, with its bulb blackened, and the thermometer
enclosed in a glass sphere from which the air has been exhausted. The thermometer employed throughout the year was Negretti and Zambra, No. 99989. The thermometer for radiation to the sky, a self-registering spirit minimum thermometer of Rutherford's construction, by Horne and Thornthwaite, No. 3120, was broken on March 14, and replaced by Negretti and Zambra, No. 137640. The thermometers are laid on short grass and freely exposed to the sky ; they require no correction for index-error.

Earth Thermometers.-These thermometers were made by Adie, of Edinburgh, under the superintendence of Professor J. D. Forbes. They are placed about 20 feet south of the Magnet House.

The thermometers are four in number, placed in one hole in the ground, the diameter of which in its upper half is 1 foot and in its lower half about 6 inches, each thermometer being attached in its whole length to a slender piece of wood. The thermometer No. 1 was dropped into the hole to such a depth that the centre of its bulb was 24 French feet (25.6 English feet) below the surface; then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the centre of its bulb was 12 French feet below the surface; Nos. 3 and 4 till the centres of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes carrying the scales were left projecting above the surface; No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, $8.5,10.0,11.0$, and 14.5 inches respectively are in each case tube with narrow bore. The length of 1° on the scales is 1.9 inch, 1.1 inch, 0.9 inch, and 0.5 inch in each case respectively. The ranges of the scales are for No. $1,46^{\circ} \cdot 0$ to $55^{\circ} \cdot 5$; No. $2,43^{\circ} \cdot 0$ to $58^{\circ} \cdot 0$; No. $3,44^{\circ} \cdot 0$ to $62^{\circ} \cdot 0$; and for No. 4 , $36^{\circ} \cdot 9$ to $68^{\circ} \cdot 0$.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long, and 2 or 3 inches in diameter. The bore of the principal part of each tube, from the bulb to the graduated scale, is very small; in that part to which the scale is attached it is - larger ; the fluid in the tubes is alcohol tinged red; the scales are of opal glass.

The ranges of scale having in previous years been found insufficient, fluid has at times been removed from or added to the thermometers as necessary, corresponding alterations being made in the positions of the attached scales. Information in regard to these changes will be found in previous Introductions.

The parts of the tubes above the ground are protected by a small wooden hut fixed to the ground; the sides of the hut are perforated with numerous holes, and it has a double roof; in the north face is a plate of glass, through which the readings are

Exxvi Introduction to Greenwich Meteorological Observations, 1911.

taken. Within the hut are two small thermometers-one, No. 5, with bulb 1 inch in the ground; another, No. 6, whose bulb is freely exposed in the centre of the hut.

These thermometers are read every Monday and No. 4 every day at noon. The index-errors of Nos. 1, 2, 3, and 4 are unknown; No. 6 appears to read too high by $0^{\circ} 4$, but no corrections have been applied. The readings of No. 4 are given without correction in the daily results.

Osler's Anemometer.-This self-registering anemometer, devised by A. Follett Osler, for continuous registration of the direction and pressure of the wind and of the amount of rain, is fixed above the north-western turret of the ancient part of the observatory. For the direction of the wind a large vane ($9^{\text {tt. }} 2^{\text {in. }}$ in length), from which a vertical shaft proceeds down to the registering table within the turret, gives motion, by a pinion fixed at its lower end, to a rack-work carrying a pencil. A collar on the vane shaft bears upon anti-friction rollers running in a cup of oil, rendering the vane very sensitive to changes of direction in light winds. The pencil marks a paper fixed to a board moved horizontally and uniformly by a clock, in a direction transverse to that of the motion of the pencil. The paper carries lines corresponding to the positions of N., E., S., and W. of the vane, with transversal hour lines. The vane is 25 feet above the roof of the Octagon Room, 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board. The vane, which had been in use since the year 1841, began in the autumn of 1891 to show signs of weakness; it was taken down in December 1891 and thoroughly repaired. It was satisfactory to find that the anti-friction bearings of the vane, on which the sensitiveness of its motion depends, were in excellent condition, after having been continuously in action for 25 years.

For the pressure of the wind the construction is as follows:-At a distance of 2 feet below the vane there is placed a circular pressure plate (with its plane vertical) having an area of $1 \frac{1}{3}$ square feet, or 192 square inches, which, moving with the vane in azimuth, and being thereby kept directed towards the wind, acts against a combination of springs in such way that, with a light wind, slender springs are first brought into action, but, as the wind increases, stiffer springs come into play. For a detailed account of the arrangement adopted, the reader is referred to the Introduction for the year 1866. [Until 1866 the pressure plate was a square plate, 1 foot square, for which in that year a circular plate, having an area of 2 square feet, was substituted and employed until the spring of the year 1880, when the present
circular plate, having an area of $1 \frac{1}{3}$ square feet, was introduced.] A short flexible snake chain, fixed to a cross bar in connexion with the pressure plate, and passing over a pulley in the upper part of the shaft, is attached to a brass chain (formerly a copper wire) running down the centre of the shaft to the registering table, just before reaching which the chain communicates with a short length of silk cord, which, led round a pulley, gives horizontal motion to the arm carrying the pressure pencil. The substitution, in the year 1882, of the flexible brass chain for the copper wire, has greatly increased the delicacy of movement of the pressure pencil, every small movement of the pressure plate being now registered. The scale for pressure, in lbs. on the square foot, is experimentally determined from time to time as appears necessary; the pressure pencil is brought to zero by a light spiral spring. During the year 1907 a new set of pressure springs was supplied by Messrs. Simms. Advantage was taken of this opportunity to endeavour to simplify the determination of mean pressures by arranging that the scale should change only once, low pressures being represented on twice as large a scale as high ones, and adjusting screws and clamps were also iutroduced by which the strength could be varied so that the springs could be adjusted to scale, instead of a new scale being determined from time to time.

Whilst the action of the pressure apparatus has been satisfactory for moderate winds, it is believed that the record of occasional very large pressures in years preceding 1882 was due principally to irregular action, in excessive gusts, of the connecting copper wire, but the brass chain being always in tension, the movements of the recording pencil have since been in complete sympathy with those of the pressure plate, and in this condition of the apparatus-that is, since the year 1882-few pressures greater than 30 lbs . have been recorded.

A self-registering rain gauge of peculiar construction forms part of the apparatus: this is described under the heading "Rain Gauges."

A new sheet of paper is applied to the instrument every day at noon. The scale of time is ordinarily the same as that of the magnetic registers, but by means of a special gearing applied to the clock by Mr. Kullberg in 1894 the table carrying the record can either be driven at the usual rate, or 24 times as fast, in order to give a largely increased time scale for the register of wind pressure during gales, the ordinary sheet thus giving a register for 1 hour instead of 24 .

Robinson's Anemometer.-This instrument, made by Mr. Browning, is constructed on the principle described by Dr. Robinson in the Transactions of the Royal Irish Academy, vol. xxii., for registration of the horizontal movement of the air, and is mounted above the small building on the roof of the Octagon Room. It

E xxviii Introduction to Greenwich Meteorological Observations, 1911.

was brought into use in 1866 October. The motion is given by the pressure of the wind on four hemispherical cups, each 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The foot of the axis is a hollow flat cone bearing upon a sharp cone, which rises up from the base of a cup of oil. An endless screw acts on a train of wheels furnished with indices for reading off the amount of motion of the air in miles, and a pinion on the axis of one of the wheels draws upwards a rack, to which is attached a rod passing down to the pencil which marks the paper placed on the vertical revolving cylinder in the chamber below. A motion of the pencil upwards through a space of 1 inch represents horizontal motion of the air through 100 miles. The revolving hemispherical cups are 21 feet above the roof of the Octagon Room, 56 feet above the adjacent ground, and 211 feet above the mean level of the sea.

The cylinder is driven by a clock in the usual way, and makes one revolution in 24 hours. A new sheet of paper is applied every day at noon. The scale of time is the same as that of the magnetic registers.

In preceding volumes the values of wind velocity V given in the tables are three times the actual velocity v of the cups. From some tests of the Browning instrument, made by Mr. W. H. Dines at Hersham in 1889, on his whirling machine, it appears that the relation between V and v is more correctly given by

$$
\mathrm{V}=4 \cdot 0+2 \cdot 0 v
$$

The instrument thus fails to record wind velocities less than 4 miles per hour ; and values of the wind velocity given by the formula $\mathrm{V}=3 v$ are too high when V exceeds 12. Since the two formulæ agree, however, for $V=12$, the mean values of the wind velocity (which seldom differ much from 12) will be approximately correct in either case ; therefore, for the sake of continuity and simplicity, the formula $\mathrm{V}=3 v$ will continue to be used. In this volume, however, the greatest hourly measures (p. E 76) are given according to both formulæ, and the least hourly measures omitted.

The experiments by Mr. W. H. Dines, above referred to, are described in the Introduction to the volume for 1889.

Rain Gauges.-During the year 1911 eight rain gauges were employed, placed at different elevations above the ground, complete information in regard to which will be found at page (E 68) of the Meteorological Section.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The receiving surface is a rectangular opening
10×20 inches (200 square inches in area). The collected water passes into a vessel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected. The water then discharges itself by means of the following modification of the siphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube a larger tube, closed at the top, is loosely placed. The accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full, the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe-the only outlet. This creates a partial vacuum in the globe sufficient to cause the longer leg of the siphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a corresponding trace to be made on the paper fixed to the moving board of the anemometer. The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record thus gives information on the rate of the fall of rain, but the record is liable to interruption when the staging is erected for experiments with the Osler Anemometer.

Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily at 9^{h} Greenwich civil time. This is also liable to interference, just as No. 1.

Gauges Nos. 3, 4, and 5 are 8 -inch circular gauges, placed respectively on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily at $9^{\text {h }}$ Greenwich civil time.

Gauge No. 6 is an 8 -inch circular gauge placed with the receiving surface 5 inches above the ground in the Magnetic Pavilion enclosure, about. 10 feet north-west of the thermometer stand, and gauge No. 7, also an 8-inch circular gauge, is similarly placed in the ground south-east of the Magnetic Observatory. No. 8 is a new gauge of the same diameter, but of the modified Snowdon pattern adopted by the Meteorological Office, having its receiving surface 1 foot above the ground. It was brought into use 1908 January 1, being fixed SW by W from No. 6 with a clear space of 6 feet between the rims. No. 6 is the Standard gauge, Nos. 7 and 8 are used as checks on the readings of No. 6. No. 6 is read daily, usually at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} Greenwich civil time, and Nos. 7 and 8 at $9^{\text {h }}$ only as a rule.

The height of the Standard gauge above mean sea-level was determined by

Exxx Introduction to Greenwich Meteorological Observations, 1911. .

Mr. H. A. H. Christie on 1908 February 26, and was found to be 5 feet 9 inches less than in its old position in the Observatory Grounds, before removal to the Pavilion Enclosure.

The gauges are also read at midnight on the last day of each calendar month.
Electrometer.-The electric potential of the atmosphere is measured by means of a Thomson self-recording quadrant electrometer, made by White, of Glasgow. It is situated in the Upper Magnet Room, in connection with Lord Kelvin's water-dropping apparatus, and with the usual arrangements for photographic registration. The time scale is the same as for the magnetic registers, the bourly break of trace being made by the driving-clock itself.

Sunshine Recorder.-The Campbell-Stokes instrument, which has been in use since 1887, records the duration of bright sunshine by the length of blackened trace produced by the concentration of the sun's rays on a card. A spherical glass globe brings the rays to a focus. The recording cards are supported by carriers no larger than is required for keeping them in proper position; one straight card serves for the equinoctial periods of the year, and another, curved, for the solstitial periods, the only difference between the summer and winter cards being that the summer cards are the longer: grooves are provided so that the cards are placed in position with great readiness. The daily record is transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums for each hour (reckoning from apparent midnight) through the month, are thus readily formed. The recorded durations are to be understood as indicating the amount of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud, or when the sun is very near the horizon. Until 1896 February 5 the instrument was placed on a table upon the platform above the Magnetic Observatory, about 21 feet above the ground, and 176 feet above mean sea level. On account of the extension of the buildings in the south ground, it was found necessary on 1896 February 6 to remove the sunshine recorder from the roof of the Magnetic Observatory to a commanding position on the stage carrying the Robinson anemometer, on the roof of the Octagon Room, about 50 feet above the ground. A clear view of the sun is obtained in this position from sunrise to sunset, but some inconvenience is caused by the smoke from neighbouring chimneys. Very little record is obtained near to sunrise at any part of the year.

It was pointed out by Mr. Marriott, Secretary of the Royal Meteorological Society, towards the end of 1896, that the record by the Campbell-Stokes instrument exhibited a notable falling off. This, though not very marked till 1896, had certainly begun in

Meteorological Reductions.

1894, and it was found to be due to opacity in the glass globe, which appears to have deteriorated. On 1897 January 1 a globe of clearer glass, presented to the Royal Observatory in 1881 by the late Mr. Campbell, was substituted for the defective globe.

The deterioration of the old ball is fully discussed by Mr. Curtis in the Quarterly Journal of the Royal Meteorological Society, vol. xxiv.

§ 7. Meteorological Reductions.

The results given in the Meteorological Section refer to the civil day, commencing at midnight.

All results in regard to atmospheric pressure, temperature of the air and of evaporation with deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye observation of the ordinary maximum and minimum thermometers at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} (civil reckoning), reference being made, however, to the photographic register when necessary to obtain the values corresponding to the civil day from midnight to midnight. The hourly readings of the photographic traces for the elements mentioned are entered into a form having double argument, the horizontal argument ranging through the 24 hours of the civil day (0^{h} to 23^{h}), and the vertical argument through the days of a calendar month. Then for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value. It should be mentioned that before measuring out the electrometer ordinates, a pencil line was first drawn through the trace to represent the general form of the curve, in the way described for the magnetic registers (page Exiii), excepting that no day has been omitted on account of unusual electrical disturbance, as it has been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. In measuring the electrometer ordinates a scale of inches is used, and the values given in the tables which follow are expressed in thousandths of an inch, positive and negative potential being denoted by positive and negative numbers respectively. The scale has not been determined in terms of any electrical unit.

To correct the photographic indications of barometer and dry and wet bulb thermometers for small instrumental error, the means of the photographic readings at $9^{\text {h }}$,

Exxxii Introduction to Greenwich Meteorological Observations, 1911.
12^{h} (noon), 15^{h}, and 21^{h} in each month are compared with the corresponding corrected mean readings of the standard barometer and standard dry and wet bulb thermometers, as given by eye observation. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb thermometers exposed on the free stand. The barometer results are not reduced to sea level, neither are they corrected for the effect of gravity, by reduction to the latitude of 45°.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and of evaporation by use of Glaisher's Hygrometrical Tables. The table of factors for this purpose may be found in the Introductions for 1910 and previous years.

In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pages E 63 and E 64) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages E 62 and E 63).

The excess of the mean temperature of the air on each day above the average of 65 years, given in the "Daily Results of the Meteorological Observations," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the daily means deduced from the observations for the sixty-five years 1841-1905. In this series the mean daily temperature from 1841 to 1847 depends usually on 12 observations daily, in 1848 on 6 observations daily, and from 1849 to 1905 on 24 hourly readings from the photographic record. The smoothed numbers are given in Table VII., Reduction of the Greenwich Meteorological Observations, Part IV., and also in the Introduction for 1910.

The daily register of rain contained in column 16 is that recorded by the gauge No 6, whose receiving surface is 5 inches above the ground. This gauge is usually read at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} Greenwich civil time. The continuous record of Osler's selfregistering gauge shows whether the amounts measured at 9^{h} are to be placed to the
same, or to the preceding civil day ; and in cases in which rain fell both before and after midnight, also gives the means of ascertaining the proper proportion of the 9^{h} amount which should be placed to each civil day. The number of days of rain given in the footnotes, and in the abstract tables, pages E 61 and E 68, is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded 0 in. 005 .

The indications of atmospheric electricity are derived from Thomson's Electrometer.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration. The "Mean of 24 Hourly Measures" was in former years the mean of 24 measures of pressure taken at each hour, but commencing with 1887 January 1, it is the mean of measures, each one of which is the average pressure during the hour of which the nominal hour is the middle point.

The mean amount of cloud given in the footnotes on the right-hand pages E 37 to E 59 , and in the abstract table, page E 61, is the mean found from observations made usually at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), 15^{h}, and 21^{h} of each civil day.

For understanding the divisions of time under the headings, "Clouds and Weather" and "Electricity," the following remarks are necessary:-In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6^{h}, and those following it to the interval from 6^{h} to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity, the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).

The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10.

Greenwich Magnetical and Meteorological Observations, 1911.

Exxxiv Introduction to Greenwich Meteorological Observations, 1911.

The following is the notation employed for Electricity:-

N denotes negative
P ... positive
m ... moderate
w denotes weak
s ... strong
v ... variable

The duplication of the letter denotes intensity of the modification describedthus, ss is very strong; vv, very variable. 0 indicates zero potential, and a dash, "一," accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in $\S 6$.

In regard to the comparisons of the extremes and means, \&c. of meteorological elements with average values, contained in the footnotes, it may be mentioned that comparison is in all cases made with mean values determined from the observations for the sixty-five years 1841-1905.

The tables following the "Daily Results" require no lengthened explanation. They consist of tables giving the highest and lowest readings of the barometer through the year ; monthly abstracts of the principal meteorological elements; hourly values in each month of barometer-reading, of temperature of air, evaporation, and dewpoint, and of degree of humidity; sunshine results; rain results; observations of thermometers on the revolving stand, with mean differences from corresponding readings in a Stevenson screen in the Magnetic Pavilion Enclosure; changes of direction of the wind; hourly values in each month of the horizontal movement of the air derived from Robinson's Anemometer; results derived from the Thomson Electrometer; and observations of parhelia, paraselenæ, and meteors.

In the tables of mean values of meteorological elements at each hour for the different months of the year, the mean values have, in previous years, been given for the hours 0^{h} to 23^{h} only. But since 1886 the mean for the 24th hour (the following midnight) has been added, thus indicating the amount of non-periodic variation. The monthly means have also been given since 1886 for the 24 hours, $1^{\text {h }}$ to $24^{\text {h }}$, as well as for the hours, 0^{h} (midnight) to 23^{h}, which were given in former years.

It may be pointed out that the monthly means, 0^{h} to 23^{h}, for barometer and temperature of the air and of evaporation contained in these tables, pages E 62 and E 63 , do not in some cases agree with the monthly means given in the daily results

- Exxxvi Introduction to Greenwich Meteorological Observations, 1911.

pages E 36 to E 58, and in the table on page E 61, in consequence of occasional interruption of the photographic register, at which times daily values to complete the daily results could be supplied from the eye observations, as mentioned in the footnotes; but hourly values, for the diurnal inequality tables, could not be so supplied. In such cases, however, the means given with these tables are the proper means to be used in connexion with the numbers standing immediately above them, for formation of the actual diurnal inequality.

The table, "Abstract of the Changes of the Direction of the Wind," as derived from Oller's Anemometer, page E69, exhibits every change of direction of the wind occurring throughout the year, whenever such change amounted to two nautical points or $22 \frac{1}{2}^{\circ}$. It is to be understood that the change from one direction to another during the interval between the times mentioned in each line of the table was generally gradual. All complete turnings of the vane which were evidently of accidental nature, and which in the year 1881 and in previous years had been included, are here omitted. Between any time given in the second column and that next following in the first column, no change of direction in general occurred varying from that given by so much as one point or $11 \frac{1}{4}^{\circ}$. From the numbers given in this table the monthly and yearly excess of motion, page E 75 , is formed. By direct motion it is to be understood that the change of direction occurred in the order $N, E, S, W, N, \& c$. , and by retrograde motion that the change occurred in the order $N, W, S, E, N, \& c$.

In regard to Electric Potential of the Atmosphere, in addition to giving the hourly values in each month, including all available days, the days in each month have been (since the year 1882) further divided into two groups, one containing all days on which the rainfall amounted to or exceeded $0^{\text {in }} 020$, the other including only days on which no rainfall was recorded, the values of daily rainfall given in column 16 of the "Daily Results of the Meteorological Observations" being adopted in selecting the days. These additional tables are given on pages E 79 and E 80 respectively.

In regard to the observations of Luminous Meteors, it is simply necessary to say that, in general, only special meteor showers are watched for, such as those of April, August, and November. The observers of meteors in the year 1911 were Mr. Bryant, Mr. Edney, Mr. Kirby, Mr. Timbury, Mr. Divers, and Mr. Brown. Their observations are distinguished by the initials B., E., K., T., D., and F.B. respectively. A few observations made by Mr. Smith, Mr. Leary, and Mr. Jeffries are distinguished by the initials S., L., and J. respectively.

F. W. DYSON.

Royal Observatory, Greenwich,

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

MAGNETICAL OBSERVATIONS

(EXCLUDING DAYS OF GREAT MAGNETIC DISTURBANCE),
1911.

Table III.-Mean Horizontal Magnetic Force (diminished by a Constant) for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in terms of the whole Horizontal Force, the unit in the table being -00001 of the whole Horizontal Force. The letters u and c indieate respectively values uncorrected for, and corrected for temperature.)

1911.																								
(${ }_{\substack{\text { Day of } \\ \text { Month. }}}$	January.		February.		March.		April.		May.		Jume.		July.		August.		September.		October.		November.		December.	
	${ }^{*}$		${ }^{u}$		u	e	u	${ }^{c}$	"				u				u		${ }^{*}$		${ }^{u}$	c	u	c
d																								
1	340	905	282	775	301	866	320	897	273	862	491	092	541	121	290	-19	286	918	235	803	191	768	118	698
2	294	833	272	788	388	970	322	882	318	900	493	-92	457	027	326	048	298	953	172	730	195	784	148	735
3	289	833	321	835	417	004	285	845	335	895	548	152	418	990	353	059	285	965	203	761	163	743	176	772
4	274	844	356	898	468	052	223	758	307	875	613	229	43^{8}	020	335	025	309	981	213	788	155	771	189	766
5	349	895	315	890	362	930	213	748	253	849	482	12	434	040	34^{2}	030	311	978	$24+$	821	213	790	159	751
6	285	862	333	872	285	860	243	732	235	834	403	043	453	076	273	958	269	931	243	823	174	718	147	700
7	317	863	315	845	282	864	240	720	253	781	375	988	45^{1}	101	250	943	264	949	247	82	114	694	105	$68 ;$
8	344	919	299	855	275	850	275	780	280	810	436	028	403	063	262	971	257	953	264	836	135	724	135	677
9	337	912	318	839	237	821	$\bigcirc 56$	591	264	846	482	088	386	$\bigcirc 38$	255	992	247	956	220	800	088	660	169	713
10	305	865	305	826	231	823	131	673	389	957	361	926	392	010	227	978	268	928	147	731	103	66_{3}	213	778
11	295	877	287	852	242	822	196	729	382	969	337	895	415	02	236	973	215	872	205	79^{2}	103	654	994	540
12	292	857	311	874	235	812	191	726	340	934	34^{8}	906	398	026	265	-13	169	829	271	855	18	758	02	56;
13	289	810	308	854	265	811	174	$74+$	460	056	330	890	327	962	246	00;	205	890	363	935	105	649	099	669
14	275	794	208	785	218	781	166	74^{6}	540	$1: 7$	312	858	347	994	194	950	257	899	357	94	095	672	124	692
15	301	820	270	850	28	756	193	789	350	934	279	856	284	931	178	913	317	913	362	95^{1}	20	707	139	716
16	260	802	347	910	216	760	152	736	415	985	295	899	409	020	208	906	245	827	335	915	227	797	169	739
17	311	867	360	954	203	751	073	679	375	964	393	997	428	053	219	915	273	857	257	837	197	779	174	770
18	312	875	410	018	221	786	157	749	405	973	49^{6}	085	371	003	220	929	263	852	265	847	206	778	163	771
19	299	874	${ }^{18}$	995	229	813	205	775	430	986	501	085	328	95^{6}	233	957	298	882	290	867	157	713	275	833
20	283	863	344	897	182	750	260	802	334	882	506	-81	327	982	262	986	225	836	34°	929	139	707	295	839
21	303	878	285	824	159	739	267	813	258	823	441	040	292	969	282	O11	207	787	370	952	110	649	215	778
22	290	855	300	865	235	819	223	800	278	858	459	039	232	941	338	0;2	221	789	325	905	$16+$	678	199	752
23	267	849	314	903	24^{8}	837	286	846	367	963	494	074	236	955	320	003	241	818	323	893	162	695	170	733
24	295	848	307	882	182	764	262	830	483	063	495	065	263	966	226	896	270	874	315	899	137	685	189	757
25	262	825	377	942	143	706	278	850	525	117	520	076	285	991	262	929	293	885	270	828	180	717	182	726
26	313	897	282	857	170	700	299	855	513	12	486	034	289	99^{2}	278	935	331	932	219	782	145	678	120	662
27	290	877	236	823	142	690	375	919	515	097	475	033	340	043	250	927	341	935	202	777	112	651	105	6;3
28	314	889	305	892	225	773	371	915	529	101	496	080	317	041	249	932	313	912	171	739	148	70	128	691
29	372	932			198	766	332	867	467	087	467	068	257	002	263	933	299	859	133	705	131	71	r4	729
30	316	876			220	792	278	853	453	054	511	091	274	022	265	915	264	844	200	794	127	685	178	758
31	275	810			258	838			446	040			256	988	308	945			253	816			141	709

Table IV.-Mean Temperature for each Civil Day within the box inclosing the Horizontal Force Magnet.												
1911.												
(Day of	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }_{1}{ }^{\text {a }}$	$66^{\circ} 3$	$6{ }^{\circ} \cdot 2$	$66^{\circ} 3$	$66^{\circ} 8$	$67 \cdot 3$	$67^{\circ} \cdot 8$	$66^{\circ} 9$	$72 \cdot 9$	69°	$66^{\circ} \cdot 4$	$66^{\circ} \cdot 8$	$66^{\circ} 9$
2	65.2	$64 \cdot 2$	$67 \cdot 0$	$66 \cdot 1$	$67 \cdot 0$	67.7	$66 \cdot 5$	$72 \cdot 6$	$70 \cdot 0$	$66 \cdot 0$	67.3	67.2
3	$69 \cdot 4$	$6{ }_{+} \cdot 1$	$67 \cdot 2$	$66 \cdot 1$	$66 \cdot 1$	67.9	$66 \cdot 6$	$72 \cdot$	71°	$66 \cdot 0$	$66 \cdot 9$	$67 \cdot 6$
4	$66 \cdot 5$	$6 ; 3$	$67 \cdot 1$	65°	$66 \cdot 4$	68.4	67°	714	$70^{\circ} 7$	$66 \cdot 7$	68.4	$66 \cdot 8$
5	$65^{\prime} 5$	$66 \cdot 7$	$66 \cdot 4$	65.0	67.6	69°	68.0	713	$70 \cdot 5$	$66 \cdot 8$	$66 \cdot 8$	67.4
6	$66 \cdot 8$	$65 \cdot 2$	66.7	63.0	677	$69 \cdot 4$	$68 \cdot 7$	71.2	$70 \cdot 3$	$66 \cdot 9$	65.4	65.8
7	65.5	$64 \cdot 8$	67.0	$62 \cdot 6$	647	68.3	$69 \cdot 8$	715	$71 \cdot 2$	$66 \cdot 7$	$66 \cdot 9$	$66 \cdot 9$
8	$66 \cdot 7$	$6 ; 9$	$66 \cdot 7$	63.7	$64 \cdot 8$	$67 \cdot 4$	$70^{\prime 2}$	$72 \cdot 1$	71.6	$66 \cdot 6$	$67 \cdot 3$	653
9	$66 \cdot 7$	$64 \cdot 4$	$67 \cdot 1$	$65^{\circ} \mathrm{O}$	67.0	68.0	$69 \cdot 9$	73.2	$72 \cdot 1$	66.9	$66 \cdot 6$	$65 \cdot 4$
10	$66 \cdot 1$	64.4	$67^{\circ} 4$	$65 \cdot 3$	$66 \cdot 4$	$66 \cdot 3$	$68 \cdot 5$	73.7	$70 \cdot 2$	$67 \cdot 1$	$66 \cdot 1$	$66 \cdot 3$
11	$67 \cdot 0$	$66 \cdot 3$	66.9	64.9	$67 \cdot 2$	$66 \cdot 0$	68.0	73.2	$70^{\prime} 1$	$67 \cdot 2$	65.7	$65 \cdot 5$
12	$66 \cdot 3$	$66 \cdot 2$	$66 \cdot 8$	$65 \cdot$	67.5	$66 \cdot 0$	$68 \cdot 9$	$73 \cdot 6$	$70 \cdot 2$	$67 \cdot 1$	$66 \cdot 8$	65.4
13	64.4	$6 ; \cdot 5$	$65 \cdot 5$	$66 \cdot 5$	$67 \cdot 6$	$66 \cdot 1$	69.2	74°	$71^{1} 2$	$66 \cdot 6$	65.4	$66 \cdot 5$
14	673	$66 \cdot 8$	$66 \cdot 2$	$66 \cdot 9$	$66 \cdot 8$	$65 \cdot 5$	$69 \cdot 7$	73.9	69.5	$67 \cdot 2$	$66 \cdot 8$	66.4
15	$64 \cdot 3$	$66 \cdot 9$	$6+7$	$67 \cdot 6$	$67 \cdot 1$	$66 \cdot 8$	$69 \cdot 7$	$73 \cdot 1$	$67 \cdot 6$	$67 \cdot 3$	$67 \cdot 2$	$66 \cdot 8$
16	$6 ; 3$	$66 \cdot 2$	$65 \cdot 4$	67.1	$66 \cdot 5$	67.9	68.2	717	67.0	$66 \cdot 9$	$66 \cdot 5$	$66 \cdot 5$
17	67.9	$67 \cdot 3$	$69 \cdot 6$	68.0	$67 \cdot 3$	679	$68 \cdot 8$	71.6	$67 \cdot 1$	$66 \cdot 9$	67.0	$67 \cdot 6$
18	$66 \cdot 2$	68.1	$66 \cdot 3$	67.4	$66 \cdot 4$	67.3	69.1	$72 \cdot 1$	$67 \cdot 3$	$67 \cdot 0$	$66 \cdot 6$	$68 \cdot 1$
19	$66 \cdot 7$	$66 \cdot 8$	$67 \cdot 1$	$66 \cdot 5$	65.9	$67 \cdot 1$	68.9	$72 \cdot 7$	$67 \cdot 1$	$66 \cdot 8$	65.9	$66 \cdot 0$
20	66.9	6; 8	$66 \cdot 4$	653	$67 \cdot 6$	$66 \cdot 7$	$70 \cdot 0$	$72 \cdot 7$	$68 \cdot 2$	$67 \cdot 3$	$66 \cdot 4$	$65 \cdot 4$
21	$66 \cdot 7$	$65 \cdot 2$	$66 \cdot 9$	$65 \cdot 5$	$66 \cdot 3$	$67 \cdot 7$	$70 \cdot 9$	72.9	$66 \cdot 9$	$67 \cdot 0$	$65 \cdot 2$	$66 \cdot 2$
22	$66 \cdot 3$	$66 \cdot 3$	$67 \cdot 1$	$66 \cdot 8$	$66 \cdot 9$	$66 \cdot 9$	$72 \cdot 1$	$72 \cdot 3$	$66 \cdot 4$	66.9	$64 \cdot 1$	$65 \cdot 8$
23	67°	$67 \cdot 3$	$67 \cdot 3$	$66 \cdot 1$	$67 \cdot 6$	$66 \cdot 9$	$72 \cdot 5$	$71 \cdot 1$	$66 \cdot 8$	$66 \cdot 5$	64.9	$66 \cdot 2$
24	6; 8	$66 \cdot 7$	$67 \cdot 0$	$66 \cdot 4$	66.9	$66 \cdot 5$	$71 \cdot 9$	$70 \cdot 6$	679	$67 \cdot 1$	$65 \cdot 6$	66.4
25	$66 \cdot 2$	$66 \cdot 3$	$66 \cdot 2$	$66 \cdot 6$	67.4	$65^{\circ} 9$	$72 \cdot$	$70^{\circ} 5$	67.4	66.0	$65 \cdot 1$	654
26	$67 \cdot 1$	$66 \cdot 7$	$64 \cdot 8$	659	67.7	$65 \cdot 6$	71×9	$70 \cdot 1$	67.8	$66 \cdot 2$	649	653
27	$67 \cdot 2$	$67 \cdot 2$	$65 \cdot 6$	654	67.0	$66 \cdot 0$	719	$70 \cdot 9$	$67 \cdot 6$	$66 \cdot 7$	65.2	$65 \cdot 6$
28	$66 \cdot 7$	$67 \cdot 2$	$67 \cdot 6$	674	$66 \cdot 6$	$67 \cdot 1$	$72 \cdot 7$	$71 \cdot 1$	677	$66 \cdot 4$	$65 \cdot 8$	$66 \cdot 2$
29	$66 \cdot 1$		$66 \cdot 4$	65.0	$68 \cdot 6$	$67 \cdot 8$	73.5	$70 \cdot 6$	$66 \cdot 1$	$66 \cdot 6$	$66 \cdot 9$	$67 \cdot 2$
30	$66 \cdot \mathrm{I}$		$66 \cdot 6$	$66 \cdot 7$	$67 \cdot 8$	$66 \cdot 9$	$73 \cdot 6$	69.8	$66 \cdot 9$	67.5	$66 \cdot 0$	66.9
31	65°		$66 \cdot 9$		67.5		73°	$69 \cdot 3$		$66 \cdot 2$		$66 \cdot 4$
Means.	$68 \cdot 07$	6597	66.46	$69^{\circ} 79$	$66^{\circ} \cdot 88$	$67^{\circ} \cdot 16$	$69^{\circ} 95$	$7{ }^{\circ} \cdot 93$	$68^{\circ} 78$	$66^{\circ} 76$	$66^{\circ} \cdot 22$	$66 \cdot 37$

Table V.—Monthly Mean Diurnal Inequality of Horizontal Magnetic Force.
(The results are expressed in terms of the whole Horizontal Force, diminished in each case by the smallest hourly value, the unit in the table being $\cdot 0001$ of the whole Horizontal Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

$\begin{gathered} \text { Hour, } \\ \text { Greenwich } \\ \text { Civil } \\ \text { Time. } \end{gathered}$	January.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.	
	u	c	u	c	u	c																		
Midn.	55	69	81	98	131	157	142	170	150	174	114	133	145	160	132	153	167	183	121	135	4 I	59	20	29
$\mathrm{I}^{\text {b }}$	60	72	78	93	135	157	137	163	132	154	114	131	143	155	128	146			127	141	43	59	23	30
2	59	66	84	96	124	141	129	150	132	149	112	126	134	144	128	144	154	168	131	143	43	57	27	29
3	62	66	89	97	125	135	132	148	130	145	112	124	126	133	124	137	155	167	135	144	49	58	40	40
4	72	74	90	95	134	139	129	140	129	141	103	112	125	130	120	130	159	168	141	148	64	70	52	49
5	78	78	95	98	142	142	130	137	113	120	89	96	117	119	115	123	155	159	147	151	76	80	61	56
6	85	82	108	108	149	144	I 34	136	92	97	74	79	104	104	103	108	144	146	145	147	86	88	60	50
7	85	82	114	112	146	139	116	116	68	71	49		80	80	80	83	117	119	133	133	81	83	53	43
8	63	60	95	95	129	122	83	83	36	36	20		34	31	34	37	8 I	81	101	101	55	54	32	22
9	38	35	57	57	88	78	48	46	11	1 I	\bigcirc	\bigcirc	4	I	,	4	29		53	50	24	23	14	4
10	26	23	20	20	37	30	19	19	0	\bigcirc	3	3	\bigcirc	0	\bigcirc	,		\bigcirc	11	8	6	5	16	6
11	12	9	\bigcirc	-	7	2	-	\bigcirc	9	9	12		17	17	12	15	13		\bigcirc	\bigcirc	I	\bigcirc	32	24
Noon.	\bigcirc	-	2	2	\bigcirc	\bigcirc	5	10	23	28	28		36	36	32	35	55		18	20	0	2	45	37
$13^{\text {h }}$	1 I	15	2	5	9	14	32	43	43	55	42		63	68	58	66	85	89	27	31	10	14	51	46
14	22	29	6	14	3 I	43	60	79	63	80	71	78	85	92	72	82	106	113	39	48	17	26	42	39
15	18	27	5	17	57	71	82	103	94	113	104		113	123	76	86	111	120	43	55	15	26	17	17
16	12	24	5	18	74	93	100	123	121	143	III	125	132	144	86	99	112		50	64	14	28	0	\bigcirc
17	17	29	15	35	85	109	119	145	148	170	134		142	157	101	117	II8	132	65	79	25	41	6	8
18	25	34	39	61	101	127	128	154	181	203	143	162	153	170	II 5	131	139	153	94	108	34	50	15	19
19	3 I	35	57	77	114	140	139	167	192	214	146	165	151	168	129	147	156	170	106	120	40	;6	15	19
20	40	42	67	84	125	151	148	179	180	202	140		147	164	137	155	167	183	103	117	42	58	19	23
21	52	52	77	92	122	146	149	180	171	195	125	146	144	164	143	164	164	180	I 15	129	40	56	2 I	28
22	52	56	78	93	120	144	144	172	174	198	12 I		145	165	141	159	164	180	III	125	32	48	21	28
23	47	54	79	96	125	149	141	169	171	195	124		142	162	141	159	166	180	110	124		49	17	26
Means corrected for Temperature.	$\} 46$		65			72		8•0		I°			I 12	$2 \cdot 0$		$3 \cdot 3$								

Table VI.-Monthly Mean Temperature at each Hour of the Day within the box inclosing the Horizontal
Force Magnet.

I9II.													
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	$66^{\circ} \cdot 5$	$66^{\circ} \cdot 3$	$67^{\circ} \cdot 1$	$66^{\circ} 3$	$67^{\circ} 3$	$67^{\circ} 5$	$70^{\circ} \cdot 2$	$72 \cdot 3$	$69^{\circ} 1$	$67^{\circ} \mathrm{O}$	$66^{\circ} \cdot 6$	$66^{\circ} \cdot 8$	$67^{\circ} 75$
$\mathrm{I}^{\text {h }}$	$66 \cdot 4$	$66 \cdot 2$	$66 \cdot 9$	$66 \cdot 2$	67.2	67.4	70.I	$72 \cdot 2$	$69^{\circ} 1$	$67^{\circ} \mathrm{O}$	$66 \cdot 5$	$66 \cdot 7$	67.66
2	$66 \cdot 2$	$66 \cdot 1$	$66 \cdot 7$	$66 \cdot 0$	67°	67.3	$70 \cdot 0$	$72 \cdot 1$	69°	$66 \cdot 9$	$66 \cdot 4$	$66 \cdot 5$	67.52
3	$66 \cdot 1$	65.9	$66 \cdot 4$	$65 \cdot 8$	$66 \cdot 9$	$67 \cdot 2$	$69 \cdot 9$	$72 \cdot 0$	68.9	$66 \cdot 8$	$66 \cdot 2$	$66 \cdot 4$	$67 \cdot 37$
4	$66 \cdot$	65.8	$66 \cdot 2$	$65 \cdot 6$	$66 \cdot 8$	$67 \cdot 1$	69.8	71.9	$68 \cdot 8$	$66 \cdot 7$	$66 \cdot 1$	$66 \cdot 3$	$67 \cdot 26$
$\stackrel{4}{5}$	65.9	65.7	$66 \cdot 0$	65.4	$66 \cdot 6$	$67 \cdot 0$	697	71.8	$68 \cdot 6$	$66 \cdot 6$	$66 \cdot 0$	$66 \cdot 2$	$67 \cdot 13$
6	65.8	$65 \cdot 6$	$65^{\circ} 8$	$65 \cdot 2$	$66 \cdot 5$	66.9	$69 \cdot 6$	$71 \cdot 7$	$68 \cdot 5$	$66 \cdot 5$	$65 \cdot 9$	$66 \cdot 0$	67.00
7	$65 \cdot 8$	65.5	$65 \cdot 7$	$65 \cdot 1$	$66 \cdot 4$	$66 \cdot 8$	$69 \cdot 6$	$71 \cdot 6$	$68 \cdot 5$	66.4	$65 \cdot 9$	$66 \cdot 0$	66.94
8	$65 \cdot 8$	$65 \cdot 6$	$65 \cdot 7$	$65 \cdot 1$	$66 \cdot 3$	$66 \cdot 7$	$69 \cdot 5$	71.6	68.4	$66 \cdot 4$	65.8	$66 \cdot 0$	$66 \cdot 91$ 66.87
9	$65 \cdot 8$	$65 \cdot 6$	$65 \cdot 6$	65°	$66 \cdot 3$	$66 \cdot 7$	69.5	71.6	$68 \cdot 3$	$66 \cdot 3$	$65 \cdot 8$	$66 \cdot 0$	$66 \cdot 87$
10	$65 \cdot 8$	$65 \cdot 6$	$65 \cdot 7$	$65^{\circ} 1$	$66 \cdot 3$	$66 \cdot 7$	$69 \cdot 6$	715	68.4	$66 \cdot 3$	$65 \cdot 8$	$66 \cdot 0$	66.90
11	$65 \cdot 8$	$65 \cdot 6$	$65 \cdot 8$	$65 \cdot 1$	$66 \cdot 3$	$66 \cdot 7$ 66.8	69.6	71.6	68.4	$66 \cdot 4$ 66.4	$65 \cdot 8$	$66 \cdot 1$	66.93
Noon.	65.9	$65 \cdot 6$	$66 \cdot 0$	65.3	$66 \cdot 5$ $66 \cdot 8$	$66 \cdot 8$	69.6	71.6	$68 \cdot 5$	$66 \cdot 5$	$65 \cdot 9$	$66 \cdot 1$	67.03
$13^{\text {h }}$	$66 \cdot \mathrm{I}$	$65 \cdot 7$	$66 \cdot 2$	65.6	$66 \cdot 8$	$67^{\circ} \mathrm{O}$	69.8	71.8	$68 \cdot 6$ 68.7	$66 \cdot 6$	$66 \cdot 0$	$66 \cdot 2$	67.20
14	$66 \cdot 2$	65.9	$66 \cdot 5$	65.9	$67 \cdot 0$	$67^{\circ} 0$	69.9	719	$68 \cdot 7$ $68 \cdot 8$	$66 \cdot 8$	$66 \cdot 2$	$66 \cdot 3$	67.36
15	$66 \cdot 3$	$66 \cdot 1$	$66 \cdot 6$	$66 \cdot$	$67 \cdot 1$	$67 \cdot 1$	70:0	$71 \cdot 9$	$68 \cdot 8$	$66 \cdot 9$	$66 \cdot 3$	$66 \cdot 4$	$67 \cdot 6$
16	$66 \cdot 4$	$66 \cdot 3$	$66 \cdot 8$	$66 \cdot 1$	$67 \cdot 2$	67.3	$70 \cdot 1$	72.0	$68 \cdot 9$	67.0	$66 \cdot 4$	$66 \cdot 4$	67.57 67.66
17	$66 \cdot 4$	$66 \cdot 4$	$67^{\circ} \mathrm{O}$	$66 \cdot 2$	$67 \cdot 2$	67.4	$70 \cdot 2$	72.1	69°	67.0	$66 \cdot 5$	$66 \cdot 5$	67.66 67.69
18	$66 \cdot 3$	$66 \cdot 5$	$67 \cdot 1$	$66 \cdot 2$	$67 \cdot 2$	$67 \cdot 5$	$70 \cdot 3$	72.1	69°	67.0	$66 \cdot 5$	$66 \cdot 6$	67.69
19	$66 \cdot 1$	$66 \cdot 4$	67.1	$66 \cdot 3$	$67 \cdot 2$	67.5	$70 \cdot 3$	72.2	69°	67.0 67.0	$66 \cdot 5$ $66 \cdot 5$	$66 \cdot 6$ $66 \cdot 6$	$67 \cdot 68$ 67.68
20	66.0	$66 \cdot 3$ $66 \cdot 2$	$67 \cdot 1$ 67.0	$66 \cdot 4$ 66.4	$67 \cdot 2$ $67 \cdot 3$	67.5 67.6	$70 \cdot 3$	$72 \cdot 2$ $72 \cdot 3$		$67 \circ$ 67.0	$66 \cdot 5$	$66 \cdot 6$	67.68 67.70
21	$65 \cdot 9$	$66 \cdot 2$	67.0	$66 \cdot 4$ $66 \cdot 3$	$67 \cdot 3$ $67 \cdot 3$	67.6 67.6	70.4	72.3	69.1	67.0 67.0	$66 \cdot 5$ $66 \cdot 5$	$66 \cdot 7$ $66 \cdot 7$	67.70
22	$66 \cdot 1$	$66 \cdot 2$	67.0	66.3	$67 \cdot 3$ 67.3	67.6	70.4	72.2	69. 1	67.0 67.0	$66 \cdot 5$ $66 \cdot 6$	$66 \cdot 7$ $66 \cdot 8$	67.70 67.72
23	$66 \cdot 2$	$66 \cdot 3$	67°	$66 \cdot 3$	$67 \cdot 3$	67.5	$70 \cdot 4$	72.2	69°	67°	$66 \cdot 6$	$66 \cdot 8$	6772

Table VII.—Mean Vertical Magnetic Force (diminished by a Constant) for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in terms of the whole Vertical Force, the unit in the table being -0000 of the whole Vertical Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

[^0]Table VIII.-Mean Temperature for each Civil Day within the box inclosing the Vertical Force Magnet.
1911.

Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }_{\text {a }}{ }^{\text {d }}$	$67^{\circ} 7$	65°	$66^{\circ} \cdot 3$	$67^{\circ} 3$	$67^{\circ} 0$	$66^{\circ} 9$	$66^{\circ} \cdot 8$	7199	$68^{\circ} \mathrm{I}$	$67^{\circ} 1$	$67^{\circ} 0$	$67^{\circ} \cdot 5$
2	66.4	$65 \cdot 7$	679	$65 \cdot 6$	$66 \cdot 1$	$66 \cdot 6$	$66 \cdot 3$	71.5	$69 \cdot 2$	$66 \cdot 6$	$67 \cdot 1$	67.0
3	$67 \cdot 0$	$66 \cdot 3$	$66 \cdot 7$	$66 \cdot 3$	$66 \cdot 2$	$66 \cdot 9$.	$66 \cdot 5$	$70 \cdot 9$	$70 \cdot 0$	$66 \cdot 8$	67.0	$67 \cdot 2$
4	$67 \cdot 2$	$67 \cdot 1$	$66 \cdot 5$	65.5	$66 \cdot 2$	67.4	$66 \cdot 4$	$70 \cdot 3$	69.7	$66 \cdot 7$	$67 \cdot 8$	$66 \cdot 8$
5	$66 \cdot 3$	67.0	67.5	$64 \cdot 1$	$67 \cdot 3$	67.9	$67 \cdot 3$	$70 \cdot 2$	69.5	$67 \cdot 0$	$66 \cdot 9$	$67 \cdot 7$
6	67.4	$66 \cdot 2$	$66 \cdot 8$	$62 \cdot 7$	$67 \cdot 0$	$68 \cdot 3$	$67 \cdot 7$	$70^{\circ} 1$	$69 \cdot 4$	$66 \cdot 8$	$65 \cdot 9$	$66 \cdot 3$
7	$66 \cdot 8$	$66 \cdot 2$	67°	62.5	64.5	$67 \cdot 1$	$68 \cdot 8$	$70 \cdot 4$	$70 \cdot 2$	$66 \cdot 4$	$67 \cdot 2$	$66 \cdot 9$
8	$67 \cdot 6$	$66 \cdot 7$	$66 \cdot 9$	63.2	64.9	$66 \cdot 3$	$69 \cdot 2$	$71 \cdot 3$	70.9	$66 \cdot 7$	$67 \cdot 1$	657
9	$67 \cdot 8$	$66 \cdot 2$	67.9	64.5	$67 \cdot 6$	$66 \cdot 7$	$68 \cdot 7$	$72 \cdot 3$	71°	$66 \cdot 3$	$66 \cdot 9$	65.5
10	$66 \cdot 6$	$66 \cdot 1$	$67 \cdot 4$	$64 \cdot 7$	$66 \cdot 4$	$65 \cdot 3$	$67 \cdot 2$	727	69.1	$67^{\circ} \mathrm{O}$	$66 \cdot 5$	$66 \cdot 8$
11	67.3	67.3	$67 \cdot 7$	64.4	$66 \cdot 5$	$66 \cdot 3$	67.0	$72 \cdot 2$	69.2	$66 \cdot 7$	$66 \cdot 4$	$66 \cdot 0$
12	$66 \cdot 8$	$67 \cdot 5$	$67 \cdot 2$	64.4	$67 \cdot 5$	66.0	67.9	$72 \cdot 5$	69.5	$67 \cdot 6$	$67 \cdot 1$	$65 \cdot 5$
13	$66 \cdot 1$	$66 \cdot 3$	$66 \cdot 0$	$66 \cdot 3$	$67 \cdot 3$	$65 \cdot 3$	$68 \cdot 3$	$73^{\circ} 1$	$70^{\circ} \mathrm{I}$	$66 \cdot 5$	$66 \cdot 1$	$67^{\circ} \mathrm{O}$
14	$65 \cdot 9$	67.4	$66 \cdot 8$	$67 \cdot 1$	$66 \cdot 5$	$65 \cdot 3$	$68 \cdot 7$	73°	$68 \cdot 4$	$67 \cdot 1$	$67 \cdot 3$	$66 \cdot 5$
15	$66 \cdot 2$	$67 \cdot 7$	$65 \cdot 8$	67.5	$66 \cdot 7$	$66 \cdot 5$	$68 \cdot 7$	72.0	$66 \cdot 5$	67.4	$66 \cdot 9$	$66 \cdot 8$
16	$67 \cdot 7$	$66 \cdot 2$	$66 \cdot 4$	$66 \cdot 5$	$66 \cdot 5$	67.4	$67 \cdot 0$	$70 \cdot 4$	$66 \cdot 2$	$66 \cdot 8$	67°	$66 \cdot 2$
17	$66 \cdot 8$	67.3	$66 \cdot 9$	67.5	$67 \cdot 2$	$66 \cdot 8$	$67 \cdot 7$	$70 \cdot 7$	$66 \cdot 7$	$67 \cdot 0$	$67 \cdot 2$	$67 \cdot 7$
18	$67 \cdot 5$	67.8	$67 \cdot 3$	$66 \cdot 4$	$66 \cdot 5$	66.1	$67 \cdot 9$	71×2	$66 \cdot 8$	$67 \cdot 0$	$66 \cdot 9$	679
19	$66 \cdot 5$	$66 \cdot 5$	$68 \cdot 1$	65.9	$66 \cdot 0$	$65 \cdot 8$	$67 \cdot 9$	71-8	$67 \cdot 0$	$66 \cdot 9$	65.7	$66 \cdot 2$
20	$67 \cdot 2$	$66 \cdot 2$	67.5	$65 \cdot 8$	$65 \cdot 5$	$66 \cdot 3$	$68 \cdot 9$	71*9	$67 \cdot 6$	$66 \cdot 7$	$67 \cdot 0$	$66 \cdot 2$
21	67.2	$66 \cdot 7$	$67 \cdot 3$	$66 \cdot 5$	$67 \cdot 3$	67.5	70'1	71-8	$66 \cdot 3$	$66 \cdot 8$	$65 \cdot 8$	$66 \cdot 9$
22	675	$67 \cdot 8$	$67 \cdot 2$	$67 \cdot 1$	$66 \cdot 8$	65.9	71.2	$71 \cdot 1$	$66 \cdot 4$	$66 \cdot 9$	6,6	$66 \cdot 1$
23	$67 \cdot 2$	$67 \cdot 6$	$67 \cdot 3$	$67 \cdot 2$	$66 \cdot 7$	65.9	71.5	69.9	67°	$66 \cdot 3$	$65 \cdot 5$	$66 \cdot 6$
24	$66 \cdot 5$	$67 \cdot 1$	67.5	$67 \cdot 1$	66.4	$65 \cdot 8$	$70 \cdot 8$	$69 \cdot 6$	$67 \cdot 3$	$66 \cdot 9$	$66 \cdot 0$	67.0
25	$66 \cdot 9$	$67 \cdot 1$	$66 \cdot 2$	$67 \cdot 1$	$66 \cdot 8$	$64 \cdot 8$	71/1	$69 \cdot 4$	$66 \cdot 5$	$66 \cdot 4$	657	65.5
26	67.4	$67 \cdot 3$	65%	$65 \cdot 8$	$67 \cdot 1$	$65 \cdot 3$	70.7	69.1	67.0	$66 \cdot 6$	$65 \cdot 3$	$65 \cdot 5$
27	67.1	67.5	$66 \cdot 1$	$65 \cdot 5$	$65 \cdot 9$	$66 \cdot 7$	$70 \cdot 8$	69.9	67.0	$66 \cdot 9$	$65 \cdot 3$	$66 \cdot 1$
28	67.4	$67 \cdot 7$	$66 \cdot 4$	$65 \cdot 9$	$65 \cdot 5$	$67 \cdot 1$	71.8	70.0	$66 \cdot 9$	$66 \cdot 7$	$65 \cdot 8$	$66 \cdot 8$
29	$66 \cdot 9$		$67 \cdot 3$	$65 \cdot 9$	$67 \cdot 8$	67.4	72.5	69.4	$66 \cdot 1$	$67 \cdot 1$	$67 \cdot 2$	$67 \cdot 8$
30	$66 \cdot 5$		$67 \cdot 2$	67°	$66 \cdot 6$	$66 \cdot 3$	724	$68 \cdot 7$	$66 \cdot 7$	$66 \cdot 9$	$66 \cdot 4$	$67 \cdot 3$
31	$66 \cdot 0$		$67 \cdot 8$		$66 \cdot 4$		$72 \cdot 0$	$68 \cdot 2$		$66 \cdot 8$		$66 \cdot 9$
Means	$66^{\circ} \cdot 95$	$66^{\circ} \cdot 84$	$66^{\circ} 99$	$65^{\circ} 78$	$66^{\circ} \cdot 54$	$66^{\circ} \cdot 46$	$69^{\circ} \cdot 3$	$70^{\circ} \cdot 89$	$68^{\circ} \cdot 08$	$66^{\circ} \cdot 82$	$66^{\circ} \cdot 49$	$66^{\circ} \cdot 64$

Table IX.-Monthly Mean Diurnal Inequality of Vertical Magnetic Force. (The results are expressed in terms of the whole Vertical Force, diminished in each case by the smallest hourly value, the unit in the table being - 0001 of the whole Vertical Force. The letters \mathbf{u} and c indicate respectively values uncorrected for, and corrected for temperature.)																		
1911.																		
	January.		February.		March.		April.		June.		August.		September.	October.		Norember.	December.	
	u	c			*	c	u c	${ }^{*}$ c	" c	${ }^{*}$ c	u	-	$u \quad 0$	u	c u	c	*	c
Midn.	19	8	22	12	37	18	5514	50.41	51	$40 \quad 29$	45	33	$39 \quad 29$	29	21.24	1 C	19	3
$\mathrm{I}^{\text {h }}$	9	-	17	9	30	16	$4^{8} 36$	45	$44 \quad 33$	$33 \quad 25$	40	28	3426	21	$15 \quad 19$	7	13	${ }^{1}$
2	5	-	10	6	25	15	4335	4237	3728	28.22	38	30	3125	17	13 12	2	10	-
3	3	2	4	2	21	15	4137	3936	36 32	28 26	36	30	31 27 27	14	10	6	6	-
4	2	5	4		20	18	38188	38 40	40	29 29 34 36	39	35	29 27 31 27 1 33	14	13 10	9	6	2 4
5	4	9	6	I_{1}	20	25	3742	4145	4141	34 36	41	39	$\begin{array}{lll}31 & 33 \\ 33\end{array}$	13	$13{ }^{13} 10$	9	3	- 4
6		9	6	13	16	23	3746	4349	36	33137	42	42	33 37 34	13	15 10 18 10	11	1	3
7	5	14	7	${ }^{1} 4$	16	25	36 47 33 44	42 50 35 15	$\begin{array}{lll}34 & 38 \\ 29 & 35\end{array}$	34 40 28 34	42	44	34 40 30 38 0	18	18 10	$\begin{array}{r} 11 \\ 9 \end{array}$	1	6
8	5	12	9	14	19	28	$\begin{array}{lll}33 & 44 \\ 24 & 37\end{array}$	35 25 45	$\begin{array}{ll}29 & 35 \\ 21 & 37 \\ 27\end{array}$	28 18 18	35 24	37	30 20 28	12	17	6	1	6
9 10	3	10		15 9	13	24 15	24 37 10 21	25 35 7 17	21 27 11 17	18 24 9 15	12	14	 11 28 17 17	12	-		5	8 8
11	\bigcirc	5	4	3		7	- 7	- 6	4 - 8	$\begin{array}{ll}3 & 7\end{array}$	4	6	6	2	-	\bigcirc	5	8
Noon.	1		\bigcirc	-	-	0	\bigcirc	-	- 0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	8	$4{ }^{4} \quad 6$	4	6	7
$13^{\text {h }}$	6	3	8	4	14	8	16	19 122	12	6	11	9	11 9 18	17	9	4	11	7
14	16	9	24	14	29	17	36 24	$35 \quad 26$	28 1	21.15	28	22	$\begin{array}{ll}24 & 18 \\ 3\end{array}$	27	17 22 29	12	14	6
15	23	14		23	45	31	53.39	$4^{8} 37$	3930	3729	43	35	35 5	39	29	16	14	6
16	29	18	53	37	61	42	6450	6251	5342	5140	55	47	$45 \quad 35$	43	$\begin{array}{lll}33 & 29 \\ 30\end{array}$	17	18	6
17	37	26	59	43	70	49	7357	7158	6451	$6_{3} 50$	62	52	$47 \quad 37$	44	$\begin{array}{ll}34 & 30 \\ 35 \\ 30\end{array}$		24 27 27	13
18	37	28	60	44	68	45	77 61	75 64	6956	$65 \quad 52$	62	50	44 34	45	$35 \quad 30$	18	27	13
19	33	28	56	42	67	44	77 61	$75 \quad 64$	6853	6350	55	43	$46 \quad 36$	43	35 30 6	18	25	11
20	30	27	47	37	6I	40	7660	$\begin{array}{ll}72 & 61\end{array}$	66 51	$59 \quad 46$	55	43	4434	42	36	15	23	9
21	24	21	37	31	54	35	6953	$68 \quad 59$	6247	$55 \quad 40$	54	42	4131	37	$33-25$	13	21	7
22	18	15	29	21	47	28	624^{88}	$64 \quad 55$	59	$54 \quad 39$	49	37	38 8	31	$25 \quad 23$	9	19	5
23	16	9	27	17	41	22	58 44	$\begin{array}{ll}57 & 48\end{array}$	5239	48	46	34	37 18	$3{ }^{1}$	$25{ }^{23}$			2
(leans cor.							39°	$40 \cdot 6$	34°	$30^{\circ} 1$	32		$27^{1} 1$			$9 \cdot 6$		57
Table X.—Monthly Mean Temperature at each Hour of the Day within the box inclosing the Vertical Force Magnet.																		
1911.																		
			Febr	uary	ar		April.	May	June.	July.	August		scptember.	October.	November.	Decen		($\begin{gathered}\text { For the } \\ \text { Year. }\end{gathered}$
				\% 1			$66^{\circ} 2$	$66^{\circ} 8$	$66^{\circ} \cdot 8$		$71^{\circ} \cdot 2$		$68^{\circ} \cdot 4$	$67^{\circ} \cdot$	66.8	$67^{\circ} \cdot 1$		67.63
${ }_{1}{ }^{\text {H/ }}$				7.0			$\begin{aligned} & 00 \cdot 2 \cdot 2 \\ & 66 \cdot 1 \end{aligned}$	$66 \cdot 7$	66.7	$69 \cdot 2$	71.2		$68 \cdot 3$	$66 \cdot 9$ 66.8	$66 \cdot 7$	$66 \cdot 9$ 66.8		67.52 67.38
2				$6 \cdot 8$		I	65.9	$66 \cdot 6$	66.6	69.1	71.0		$68 \cdot 2$	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 8$		67.38 67.23
3				$6 \cdot 7$. 9	$65 \cdot 7$	$66 \cdot 5$	66.4	68.9	$70 \cdot 9$		$68 \cdot 1$	$66 \cdot 8$	$66 \cdot 4$	$66 \cdot 6$		67.23
4				$6 \cdot 6$		$6 \cdot 7$	65%	$66 \cdot 3$	$66 \cdot 3$	68.8	$70 \cdot 8$		$68 \cdot 0$ 6.8	$66 \cdot 7$ 66.6	$66 \cdot 3$	$66 \cdot 5$		$67 \cdot 10$ 66.95
		6		$6 \cdot 4$		6.4	$65 \cdot 3$	$66 \cdot 2$	$66 \cdot 2$	68.7 68.6	$70 \cdot 7$		$67 \cdot 8$ 67.7	$66 \cdot 6$ 66.5	$66 \cdot 2$ $66 \cdot 1$	$66 \cdot 3$ $66 \cdot 2$		$66 \cdot 95$ 66.83
6		$6 \cdot 5$		$6 \cdot 3$		$6 \cdot 3$	$65 \cdot 1$	$66 \cdot 1$	$66 \cdot 0$	68.6	$70 \cdot 6$		67.7	$66 \cdot 5$ $66 \cdot 5$	$66 \cdot 1$ $66 \cdot 1$	$66 \cdot 2$ $66 \cdot 2$		$66 \cdot 83$ 66.78
7		6.4		$6 \cdot 3$		$6 \cdot 2$	65°	$66 \cdot 0$	$66 \cdot$	68.5	70.5		67.6 67.5	$66 \cdot 5$ $66 \cdot 5$	$66 \cdot 1$ $66 \cdot 1$	$66 \cdot 2$ 66.1		66.78 66.76
8		\%		6.4		6.2	65°	65.9	65.9	68.5	$70 \cdot 5$ $70 \cdot 4$		67.5 67.5	$66 \cdot 5$ $66 \cdot 4$	$66 \cdot 1$ 66.1	${ }_{66 \cdot 1}$		66.76 66.72
9 10		'5		66.4		$6 \cdot 1$	64.9 6.0	65.9 6.9	65.9 6.9	68.5 68.5	$70 \cdot 4$ $70 \cdot 5$		67.5 67.6	$66 \cdot 4$ $66 \cdot 6$	$66 \cdot 1$ $66 \cdot 1$	$66 \cdot 1$ $66 \cdot 2$		66.72 66.78
10		$6 \cdot 6$		$6 \cdot 4$		6.2	65% 65.2	65.9 66.1	65.9 66.0	68.5 68.6	70.5		67.7	$66 \cdot 7$	$66 \cdot 2$	$66 \cdot 2$		$66 \cdot 89$
Noon.		$6 \cdot 8$		$6 \cdot 6$		6.6	$65 \cdot 5$	66.5	$66 \cdot 2$	68.8	$70 \cdot 6$		$67 \cdot 9$	$66 \cdot 8$	$66 \cdot 3$	$66 \cdot 3$		67.08
13^{11}		.		$6 \cdot 8$		5	659	$66 \cdot 7$	66.4	69°	$70 \cdot 7$		68.0	67.0	$66 \cdot 5$ 66.6	$66 \cdot 5$		67.28
14		$\cdot 2$		$7 \cdot 1$		7.2	$66 \cdot 1$	$66 \cdot 8$	$66 \cdot 5$	69.1	$70 \cdot 9$		$68 \cdot 2$ 68.3	$67 \cdot 1$ 67.1	$66 \cdot 6$ $66 \cdot 7$	$66 \cdot 7$ $66 \cdot 7$		67.46 67.55
15		3		7.3		73	66.2	$66 \cdot 9$	$66 \cdot 6$	69.2 69.3	$71^{\circ} \mathrm{O}$		68.3 68.4	$67 \cdot 1$ $67 \cdot 1$	66.7 66.7	$66 \cdot 7$ 66.9		
16		${ }_{4}^{4}$		77.4		7.5	$66 \cdot 2$ $66 \cdot 3$	$66 \cdot 9$ 67.0	$66 \cdot 7$ $66 \cdot 8$	69.3 69%	710 71.1		$68 \cdot 4$ 68.4	$67 \cdot 1$ $67 \cdot 1$	$66 \cdot 7$ $66 \cdot 8$	$66 \cdot 9$		67.63 67.68
17		4		774		$7 \cdot 6$	$66 \cdot 3$ 66.3	66.0 66.9	$66 \cdot 8$ $66 \cdot 8$	69.4 69.4	71.2		68.4	$67 \cdot 1$	$66 \cdot 7$	$67{ }^{\circ}$		67.68
19		1		7% 7		$7 \cdot 7$	66.3	66.9	66.9	69.4	71.2		68.4	67°	$66 \cdot 7$	67°		67.66
20		${ }^{\circ}$		771		$7 \cdot 6$	$66 \cdot 3$	66.9	66.9	$69 \cdot 4$	71.2		68.4	$66 \cdot 9$	$66 \cdot 7$	67°		67.62 67.78
21		\bigcirc		66.9		7.5	$66 \cdot 3$	$66 \cdot 8$ 66.8	$66 \cdot 9$	69.5	71.2		68.4 68.4	$66 \cdot 8$ $66 \cdot 9$	$66 \cdot 7$ $66 \cdot 8$	67° 67 6		67.58 67.60
22		${ }^{\circ}$		67.0		7.5	66.2 66.2	$66 \cdot 8$ $66 \cdot 8$	66.9 66.8	69.5 $69^{\circ} 4$	71\%2		68.4 68.3	$66 \cdot 9$ 66.9	$66 \cdot 8$	$67 \cdot 1$		67.61
23		72		7^{1}		$7 \cdot 5$	66.2	$66 \cdot 8$	66.8	69.4	712		683	6				

Table XI.-Mean Magnetic Declination, Horizontal Force, and Vertical Force, in each Month.
(The results for Horizontal Force and Vertical Force are corrected for Temperature.)

The units in columns 2 and 3 are 00001 of the whole Horizontal and Vertical Forces respectively, of which the mean values for the year in C. G. S. units are 0.18529 and 0.43374 respectively.

Horizontal Force.-At the end of the year experiments were made for determination of the angle of torsion, thus breaking the continuity of the values.

Vertical Force.-At the end of the year the magnet was readjusted, thus breaking the continuity of the values.

Table XII.-Mean Diurnal Inequalities of Magnetic Declination, Horizontal Force, and Vertical Force, for the Year igil.
(Each result is the mean of the twelve monthly mean values, the annual means for each element being diminished by the smallest hourly value. The results for Horizontal Force and Vertical Force are corrected for temperature.)

	Inequality of			Inequality of		
	$\begin{aligned} & \text { Declination } \\ & \text { West } \\ & \text { in Arc. } \end{aligned}$	Horizontal Force in terms of the whole Horizontal Force.	Vertical Force in terms of the whole Vertical Force	$\begin{gathered} \text { Dexclination } \\ \text { expressed as } \\ \text { WESTERLIY Force } \end{gathered}$	Horizontal Foror	vertical Forcs
Midnight.	$\bigcirc \cdot 56$	118.3	$22 \cdot 3$	$30 \cdot 2$	219.2	$96 \cdot 7$
$1^{\text {b }}$	0.84	114.9	18.2	$45 \cdot 3$	2129	78.9
2	1.06	109.3	$16 \cdot 5$	$57^{\text {¹ }}$	$202 \cdot 5$	71.6
3	$1 \cdot 12$	1078	17.3	60.4	1997	$75^{\circ} \mathrm{O}$
4	$1 \cdot 01$	1079	20.0	54.4	$199^{\circ} 9$	$86 \cdot 7$
5	$0 \cdot 74$	104.9	243	$39^{\circ} 9$	194.4	$105 \% 4$
6	- 54	99°	$25^{\circ} 9$	29.1	183.4	1123
7	$0 \cdot 23$	84.3	274	12.4	$156 \cdot 2$	118.8
8	0.00	53.4	25.5	$\bigcirc \cdot 0$	98.9	$110 \cdot 6$
9	$0 \cdot 40$	19.5	$20 \cdot 2$	21.6	$36 \cdot 1$	$87 \cdot 6$
10	1.69	$1 \cdot 1$	10.5	91.1	$2 \cdot 0$	$45^{\circ} 5$
11	$3 \cdot 47$	$0 \cdot 0$	4°	187.0	$0 \cdot 0$	17.3
Noon.	$5 \cdot 06$	13.0	-.०	2727	$24^{1} 1$	$0 \cdot 0$
$13^{\text {h }}$	575	$32 \cdot 8$	$5 \cdot 6$	309.9	$60 \cdot 8$	24.3
14	54°	519	15.5	2911	$96 \cdot 2$	67.2
15	44^{2}	$64 \cdot 2$	25°	$238 \cdot 2$	119°	108.4
16	3.30	$73^{\circ} 7$	33.5	1779	$136 \cdot 6$	145.3
17	$2 \cdot 26$	$89 \cdot 3$	39^{1}	121.8	165.5	169.6
18	152	105.9	$40 \cdot 4$	819	196.2	175.2
19	1.03	114.8	39^{1}	55.5	212.7	169.6
20	0.61	118.0	37°	329	218.6	$160 \cdot 5$
21	$0 \cdot 36$	1193	$33^{\circ} 0$	19.4	2211	143.1
22	$0 \cdot 34$	1174	28.2	18.3	217.5	122.3
23	$\bigcirc 39$	117.1	24.8	21.0	217°	1076
Means	175	$80 \cdot 7$	23^{11}	94.5	149.6	100.0
Number of Column	1	2	3	4	5	6

The units in columns 2 and 3 are -00001 of the whole Horizontal and Vertical Forces respectively, the mean values of which for the year in C. G. S. units are $0 \cdot 18529$ and 0.43374 respectively.

Table XIII.—Diurnal Range of Declination and Horizontal Force, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register.
(The Declination is expressed in minutes of arc ; the unit for Horizontal Force is $\cdot 00001$ of the whole Horizontal Force. The results for Horizontal Force are corrected for temperature.)

Day of Month.	I9II.																							
	January.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.	
	Dec.	H.F.	Dec.	н.F.																				
${ }_{\text {d }}$	$5 \cdot 6$	111	$7 \cdot 6$	181	O	282	10.4	232	$10 \cdot 0$	211	$10 \cdot 6$	264	. 7	337	$8 \cdot 3$	25	$8 \cdot 4$	202	6.4	219	3.4	147	3.2	95
2	$6 \cdot 5$	224	9*0	374	5.1	211	$8 \cdot 8$	155	8.4	237	$6 \cdot 4$	199	$7 \cdot 8$	210	$6 \cdot 8$	158	97	155	10.5	342	$6 \cdot 5$	155	3.8	89
3	6.4	188	$4 \cdot 8$	133	10.8	285	$10 \cdot 7$	282	10.4	258	5.8	179	5.4	150	9.6	211	$7 \cdot 8$	185	8.6	211	$8 \cdot 7$	232	4.0	103
4	$5 \cdot 6$	173	$6 \cdot 1$	84	8.9	163	$8 \cdot 7$	253	$9 \cdot 3$	222		284	$8 \cdot 1$	194	5.9	241	7.4	205	$7 \cdot 0$	177	$5 \cdot 6$	186	1.8	106
5	6.9	108	$9 \cdot 7$	312	7.4	309	$9 \cdot 3$	220	104	221		225	$6 \cdot 7$	182	8.4	195	$9 \cdot 1$	167	$7 \cdot 6$	192	$7 \cdot 3$	222	2.8	75
6	$6 \cdot 5$	183	$7 \cdot 5$	172	8.6	279	8.0	195	$9 \cdot 8$	226	10'5	325	$7 \cdot 2$	212	$8 \cdot 8$	154	8.8	233	9-1	239	$4 \cdot 6$	124	4.8	383
7	$4 \cdot 1$	141	$6 \cdot 2$	129	7.2	200	9.8	166	15.5	362	$6 \cdot 9$	150	9.9	300	$7 \cdot 3$	19^{8}	10.4	206	6.9	193	3.9	116	3.9	115
8	9.9	124	$5 \cdot 1$	155	$7 \cdot 3$	355	16.2	243	$7 \cdot 7$	212	$6 \cdot 4$	189	12.7	388	10.1	171	$6 \cdot 3$	207	$9{ }^{\circ} \mathrm{I}$	282	$8 \cdot 6$	240	$3 \cdot 6$	71
9	$9 \cdot 4$	116	$6 \cdot 4$	139	6.I	219	20.9	546	$8 \cdot 5$	337	10.4	162	8.4	237	9.8	242	$7 \cdot 8$	191	$9 \cdot 7$	272	12.2	181	2.5	63
10	$6 \cdot 4$	164	$7 \cdot 1$	240	$7{ }^{\circ}$	154	$8 \cdot 8$	${ }_{2} 36$	$7{ }^{\circ}$	257	11.8	291	12.7	367	117	227	9.9	205	$26^{\prime} \mathrm{I}$	410	$5 \cdot 8$	99	$3 \cdot 1$	137
11	$5 \cdot 9$	224	$5 \cdot 7$	221	7.3	130	12.2	133	$9^{\circ} \mathrm{I}$	197	$7^{\circ} \mathrm{O}$	332	$7 \cdot 8$	209	10.9	244	I 2.8	207	31.5	407	$5 \cdot 1$	101	17.8	530
12	2.9	157	5.9	140	$8 \cdot 3$	235	$9 \cdot 1$	305	$8 \cdot 0$	309	8.0	274	10.5	247	$9 \cdot 5$	247	11.2	248	$5 \cdot 7$	265	$5 \cdot 5$	190	2.9	156
13	7.9	210	12.2	216	8.6	210	$8 \cdot 1$	181	9*I	282	$8 \cdot 8$	230	II'I	214	$10^{\circ} 0$	236	$10 \cdot 2$	245	$6 \cdot 7$	185	12.0	330	$1 \cdot 9$	100
14	$4 \cdot 1$	177	$7 \cdot 8$	197	$7 \cdot 5$	262	$7 \cdot 3$	180	II.3	285	$6 \cdot 2$	260	10.1	152	$7 \cdot 5$	150	$6 \cdot 3$	170	$5 \cdot 4$	90	$6 \cdot 5$	321	$4 \cdot 1$	183
15	$6 \cdot 8$	100	3.9	142	$8 \cdot 5$	230	$8 \cdot 2$	208	$11^{\circ} \mathrm{O}$	479	8.9	325	12.0	233	6.4	186	77	175	$5 \cdot 1$	142	$8 \cdot 9$	151	$2 \cdot 1$	60
16	9.4	224	7.3	136	8.9	220	14.4	301	$9 \cdot 5$	359	$8 \cdot 7$	196	$10 \cdot 1$	237	$8 \cdot 2$	250	9.5	277	9.1	223	$5 \cdot 4$	94	$3 \cdot 1$	89
17	4.3	73	$8 \cdot 7$	249	8.0	225	$7 \cdot 8$	390	9.2	299	7.7	213	10.2	227	$7 \cdot 8$	180	$10^{\circ} 1$	170	9.3	355	$5 \cdot 6$	130	II•3	125
18	$6 \cdot 2$	151	$8 \cdot 2$	238	$8 \cdot 7$	148	10.4	336	$7 \cdot 1$	266	$7 \cdot 7$	130	$9 \cdot 8$	237	$6 \cdot 6$	146	$6 \cdot 0$	125	10.4	319	$3 \cdot 5$	92	$3 \cdot 1$	109
19	$4 \cdot 5$	192	4.5	190	7.5	142	10'1	298	8.7	308	$6 \cdot 5$	162	$8 \cdot 7$	245	12.0	203	$10 \cdot 0$	212	$10 \cdot 4$	292	4.8	127	$2 \cdot 7$	102
20	$5 \cdot 1$	133	4.5	133	17.5	599	10.9	248	13.0	252	$10 \cdot 0$	236	7•1	213	10.2	131	13.2	575	$6 \cdot 4$	221	5.6	120	2.7	131
21	2.7	23	$2 \mathrm{I} \cdot \mathrm{I}$	430	11.2	234	11.2	333	9.9	283	9'9	305	$6 \cdot 3$	172	$8 \cdot 3$	210	$9 \cdot 2$	460	$5^{\circ} 2$	128	4.8	156	3.5	105
22	5.0	234	II ${ }^{\prime} 2$	422	$8 \cdot 6$	308	$8 \cdot 7$	235	6.4	239	5.5	245	7.6	202	$7 \cdot 8$	160	$8 \cdot 5$	399	$6 \cdot 0$	121	3.4	26	2.1	112
23	3.5	173	9'1	244	11.7	301	$6 \cdot 8$	254	$9 \cdot 3$	337	I 3.2	259	$6 \cdot 8$	146	14.2	215	9.5	250	$4 \cdot 9$	130	$3 \cdot 1$	69	2.5	14^{6}
24	$14^{\circ} \mathrm{O}$	213	$8 \cdot 7$	287	12.3	255	10.2	33 I	$7 \cdot 6$	178	8.6	97	$8 \cdot 0$	111	104	307	$7 \cdot 8$	200	$8 \cdot 5$	168	3.9	132	2.5	170
25	9.6	229	7.9	236	$8 \cdot 0$	309	9.6	190	$8 \cdot 7$	154	10.7	177	9.2	170	11.0	275	$7 \cdot 6$	274	$8 \cdot 2$	227	$3 \cdot 1$	143	4.9	217
26	$7 \cdot 5$	272	$8 \cdot 3$	339	157	214	104	212	$6 \cdot 0$	142	$9 \cdot 4$	153	$8 \cdot 4$	208	$8 \cdot 6$	275	8.0	275	4.5	85	4.0	101	11.1 4.3	273
27	$6 \cdot 3$	169	12.4	239	13.4	367	11'7	253	$7 \cdot 1$	212	8.4	229	9.7	214	$9^{\circ} 0$	298	$7 \cdot 6$	214	$5 \cdot 2$	158	$3 \cdot 3$	69	4.3	97
28	$9 \cdot \circ$	280	10.0	215	$9 \cdot 3$	212	10'I	211	$8 \cdot 5$	167	10.9	190	18.8	428	101	233	$8 \cdot 6$	215	$5 \cdot 0$	186	3.3	55	4.6	$12+$
29	$6 \cdot 5$	92			10.0	308	$7 \cdot 2$	206	7.0	244	$9 \cdot 3$	185	11*O	281	$7 \cdot 6$	195	$6 \cdot 4$	194	$5 \cdot 5$	154	4.2	158	2.7	$9{ }^{8}$
30	$5 \cdot 8$	172			7.3	2.11	12.5	162	10.6	242	$8 \cdot 8$	162	$7^{\circ} 1$	244	8.2	203	$7 \cdot 2$	128	3.6	$16+$	$3 \cdot 3$	73	4.8	9°
31	$8 \cdot 6$	24 I			7.9	97			12%	356			$7 \cdot 2$	341	10%	147			3.5	130			9.5	205
Means	$6 \cdot 5$	176	$8^{\prime} \cdot \mathrm{I}$	221	$9^{\prime \prime}$	248	$10 \cdot 3$	250	$9 \cdot 2$	262	$8^{\prime} \cdot 7$	22 I	94	236	$9^{\prime} \cdot 1$	211	8'8	232	$8^{\prime} \cdot 4$	216	$5 \cdot 5$	$1+5$	44	$1+4$

The mean of the twelve monthly values is, for Declination $8^{\prime} \cdot 13$, and for Horizontal Force 213.5 .

Table XIV.-Monthly Mean Diurnal Range, and Sums of Hourly Deviations from Mean, for Declination, Horizontal Force, and Vertical Force, as deduced from the Monthly Mean Diurnal Inequalities, Tables II., V., and IX.
(The Deslination is expressed in minutes of arc ; the units for Horizontal Force and Vertical Force are -00001 of the whole Horizontal and Vertical Forces respectively. The results for Horizontal Force and Vertical Force are corrected for temperature.)

Month, 1911.	Difference between the Greatest and Least of the 34 Hourly Values.			Sum of the 24 Hourly Deviations from the Mean Value.		
	Deelination.	Horizontal Force.	Vertical Force.	Deelination.	Horizontal Force.	Vertical Force.
January .	$5 \cdot 1$	82	28	$25 \cdot 6$	509	172
February..	$6 \cdot 0$	112	44	31.4	845	275
March..	$6 \cdot 6$	157	49	$36 \cdot 6$	1055	244
April.	$7 \cdot 9$	180	61	45^{1} I	1126	$29+$
May ..	8.4	214	64	$45^{\circ} \mathrm{O}$	1421	324
June..	$7 \cdot 7$	165	56	$45^{\circ} 7$	1122	273
July ..	$8 \cdot 3$	170	52	$48 ;$	1157	276
August...	$7 \cdot 8$	164	52	$4{ }^{17} 7$	1054	247
September	7.4	183	40	$40^{\circ} \mathrm{O}$	1089	179
October....	$6 \cdot 0$	151	36	32.5	1029	223
November.		88	18	23.7	490	104
December..	$3 \cdot 2$	56	13	17.6	280	64
Means ...	$6 \cdot 57$	143.5	$42 \cdot 8$	$3^{\prime} 6 \cdot 12$	9314	222.9

$\mathrm{V}_{t}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+a_{3} \cos 3 t+b_{3} \sin 3 t+a_{4} \cos 4 t+b_{4} \sin 4 t$ (in which t is the time from Greenwich mean midnight converted into arc at the rate of 15° to each hour, and V_{t} the mean value of the magnetic element at the time t for each month and for the year, as given in Tables II., V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature). The values of the co-efficients for Declination are given in minutes of arc : the units for Horizontal Force and Vertical Force are oooor of the whole Horizontal and Vertical Forces respectively.									
Month, 1911.	m	a_{1}	b_{1}	a_{2}	b_{2}	a_{3}	b_{3}	a_{4}	b_{4}
January February March. April. May June July August September.. October November. December For the Year..	Declination West.								
	2'16	- I.60	$+0.40$	$+0^{\prime} 40$	+ 0.86	-0.29	-0.17	+ 0.09	$+0^{.} 20$
	2.42	- 1.93	+0.14	+0.59	+ 1.35	-0.14	-0.47	+0.02	+0.21
	2.17	-1.77	-0.43	+0.66	+1.66	-0.19	-0.91	$+0.23$	$+0.31$
	2.43	-2.16	- 1.12	+ 1.04	+ I.61	-0.67	-0.67	+0.35	$+0.27$
	3.56	-173	-1778	+1.41 +1.37		-0.79	- 0.24	$+0.19$	-0.02
	3.21	- I•52	$2 \cdot 22$	+1.03 +1.39		-0.43	-0.27	+0.01	$+0.07$
	3.30	- 1.82	-2.25	+1.2I	+1.38	-0.45	-0.34	-0.01	+0.13
	$2 \cdot 88$	-179	- 1.52	+ 1.52+1.29	+1.12	-0.65	-0.37	$+0.05$	$+0.21$
	2.47	-1.83	- I•II		+1.22	-0.68	-0.40	+0.37	+0.11 +0.16
	$2 \cdot 11$	- I.85	-0.39		+1.18	-0.73	-0.33	+0.39	$+0.16$
	$1 \cdot 70$	-1.42	$+0.02$		+0.73	-0.38-0.19	$+0.06$	+0.20	+0.01
	1.16	- I'11	$+0.27$	$\begin{aligned} & +0.56 \\ & +0.45 \end{aligned}$	+0.18		$+0.13$	+0.16	-0.17
	1.75	- 171	-0.83	$+0.89$	+1.17	-0.47	-0.33	+0.17	+0.12
	Horizontal Force.								
January.	$4^{6 \cdot 4}$	$+237$	+184	$-10 \cdot 3$	+ 2.0	$+57$	-73	$+0.4$	$+3.9$
February	$65^{\circ} \mathrm{I}$	+ 44.1	$+210$	- 17.9	-10.2	+ 49	- 6.8	$+0.5$	+ $8 \cdot 7$
March...	107.2	$\begin{aligned} & +63.4 \\ & +69.0 \end{aligned}$	+ 42	-30.6	- 4.1	+14.1	- $5 \cdot 1$	- 0.6	+ 7.1
April.	1180°		- 21.7	-27.3 $-\quad 23.8$	$+6.4$	+7.9	- 10.0	+ 4.8	+7.4 $+\quad 1.1$
May .	121.0	+ 75.9	-52.7	- 23.8	10.3 +18.4	$+\quad 29$ $-\quad 29$	-4.6		- 1.1
June.	979	$+550$	- 44.3	- 18.5	+184	- $2 \cdot 1$	- 1.6	$+3.1$	$+\quad 0.4$$+\quad 0.6$
July .	112.0	$+60 \cdot 9$	- 4112	-18.1	+21.4	+ 1.0	- 8.9	$+6.4$	
August.	103.3	+64.0	- 24.7	18.8 -118.8	+14.1	- 5.9	- 12.9 -10.3	$+\quad 5.1$ $+\quad 4.8$	$+\quad 4.2$ +10.5
September	128.7	+67.7	- 19.9	1178-175-26.2	$+19.2$	- $3^{\circ} 0$	- 19.3	$+\quad 4.8$	+10.5
October....	96.7	+ 59.1	$\begin{array}{r} \\ +14.4 \\ \hline\end{array}$		$\begin{array}{r}\text { + } \\ +6.5 \\ \hline\end{array}$	1 $+\quad 17$	103 $-\quad 8.4$	$+\quad 3.7$ $+\quad 4.5$	$+\quad 9.7$$+\quad 6.2$$+\quad 3.9$
November	45.4	+ 23.7	+10.6 +10.1	- 195$+\quad 01$	$+\quad 1.8$$+\quad 6.0$	$+\quad 1.9$ $+\quad 9.8$	1084$-\quad 10.6$	$+\quad 3.5$$+\quad 6.2$	
December.	28.0	+ 44	$+10.1$						
For the Year.	$80 \cdot 7$	+ 50.9	-10.5	- 18.5	$+77$	+ I•I	-8.8	$+3.2$	+ 4.9
				Vertical Force.					
January	11.8	$+0.4$	-8.3	- 7.8	$4 \cdot 2$	+ 0.6	$+0.3$	$\begin{array}{r}0.0 \\ -\quad 0.1 \\ \hline\end{array}$	-0.1
February	177	+ 20	-147	- 11.1	- 3.6	+ 3.5	+ 177		$-\quad 0.4$$-\quad 0.9$
March..	24.6	+ 3.2	-103	- 12.9	- $2 \cdot 5$	$+\quad 4.4$$+\quad 6.2$	+ III	- 199	
April.	39°	+124	-7.5	-163	- 37		0.0	- 2.3	+ 0.6
May	$40 \cdot 6$	+14.0	- 8.3	-167	- $4^{1.1}$	+ $5 \cdot 6$	$-\quad 18$	- 1.5	+ 0.9
June	34°	+120	- $6 \cdot 8$	-14.0	- 2.5	+3.9 $+\quad .9$	- 0.3	- 0.4	- 0.9
July	$30 \cdot 1$	+ 9.5	- 6.8	-151	- 3.6	$+\quad 4.8$	0.2	+ 0.1	- 1.2
August	32%	+ 8.7	- 4.8	- 14.7	- 0.2	$+6.4$	- $1 \cdot 5$	- 1.3	- 0.6
September.	27.1	6.4 $+\quad 5$	- 0.5	-10.9	- 1.5	+6.1 $+\quad 4.1$	- 1.1	- 1.3	10.0 $+\quad 1.5$
October....	19.5	+ $5 \cdot 0$	- 11.1	-77 $-\quad .8$	- 1.6	+ 411	- 177	- 1.5	+ 1.5
November	9.6	+ 1.1	- 4.7	- 4.8	+ 0.5	1.7 $+\quad 0.7$	- 1.5	+ 0.1	$+\quad 0.7$ $+\quad 0.3$
December.	$5 \cdot 7$	- 23	$-3 \cdot 1$	- 1.6	- 1.6	- 0.7	+ 10	+ 0.9	-0.3
For the Year..	23.1	$+6 \cdot 0$	-72	- 11'1	- 24	$+3.9$	-0.3	-0.8	00°

Table XVI.—Values of the Co-efficients and Constant Angles in the Periodical Expressions

$$
\begin{aligned}
& \mathrm{V}_{t}=m+c_{1} \sin (t+a)+c_{2} \sin (2 t+\beta)+c_{3} \sin (3 t+\gamma)+c_{4} \sin (4 t+\delta) \\
& \mathrm{V}_{t}=m+c_{1} \sin \left(t^{\prime}+a^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+c_{3} \sin \left(3 t^{t^{\prime}}+\gamma^{\prime}\right)+c_{4} \sin \left(4 t^{\prime}+\delta^{\prime}\right)
\end{aligned}
$$

(in which t and t^{\prime} are the times from Greenwich mean midnight and apparent midnight respectively, converted into arc at the rate of 15° to each hour, and $\mathrm{V}_{t}, \mathrm{~V}_{t}$ the mean value of the magnetic element at the time t or t^{\prime} for each month and for the year, as given in Tables II., V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature).

The values of the co-efficients for Declination are given in minutes of arc : the units for Horizontal Force and Vertical Force are 0000 of the whole Horizontal and Vertical Forces respectively.

Month, 1911.	m	c_{1}	$\boldsymbol{\alpha}$	α^{\prime}	c_{2}	β	β^{\prime}	c_{3}	γ	γ^{\prime}	c_{4}	δ	δ^{\prime}
	Declination West.												
January	$2 \cdot 16$	I'64	284. ${ }^{\text {a }}$	286. ${ }^{\circ}{ }^{\prime}$	0.95	24.40°	29. 16	$\bigcirc \cdot 34$	238. 55°	245.49'	0.21	24. 10°	$33^{\circ} 22^{\prime}$
February.	2.42	1.94	274.13	277.43	1.47	23.33	30.32	0.49	197. 4	207.33	0.21	5.41	19.39
March.	$2 \cdot 17$	1.82	256.19	258. 32	- 78	21. 33	25.59	$0 \cdot 93$	192. 3	198.43	$0 \cdot 39$	36. 28	45.21
April.	2.43	2.43	242.31	242. ${ }^{6}$	-91	32. 51	33. 2	0.95	225. 9	225.25	0.44	53. 1	53.23
May	$3 \cdot 56$	2.48	224. 5	223.13	I 97	45.52	44. 9	$0 \cdot 83$	253.13	250.38	$\bigcirc \cdot 19$	96. 35	93. 9
June.	3.21	2.69	214.23	214.26	1.73	36. 24	36.30	$0 \cdot 51$	238.24	238.33	0.07	6. 33	6.45
July ..	3.30	2.90	218. 57	220. 18	1.84	41.18	44. ${ }^{\text {- }}$	0.56	233. 5	237. 9	$\bigcirc \cdot 13$	356. 20	361. 45
August.	$2 \cdot 88$	2.35	229.39	230.39	1.88	53.40	55.40	$0 \cdot 75$	240.34	243.34	0.21	12.22	16. 22
September	2.47	$\stackrel{2}{2 \cdot 14}$	238.41	237.31	178	46. 38	44. 17	$0 \cdot 79$	239. 52	236.21	$0 \cdot 39$	73.43	69.2
October..	$2 \cdot 11$	1.89	258. 4	254.37	1.30	25.9	18.15	0.80	245.31	235.10	0.42	67.53	54. 4
November.	$1 \cdot 70$	$1{ }^{1} 42$	270. 56	267. 13	0.92	37.40	30. 14	0.38	278. 36	267.28	$0 \cdot 20$	85.57	71. 6
December	I•6	$1 \cdot 14$	283. 38	282.30	0.48	$67 \cdot 38$	65.23	$\bigcirc \cdot 23$	304. 29	301. 6	0.23	137.35	133. 4
For the Year.	$1 \cdot 75$	190	244. I	244. I	147	37.18	37.18	$0 \cdot 57$	234.40	234.40	0.21	53.43	53.43
	Horizontal Force.												
January	$46 \cdot 4$	$30 \cdot 0$	52.13	54.31	10.5	280.41	285.17	93	142.12	149. 6	3.9	6. 6	15. 18
February.	$65 \cdot 1$	48.9	64.32	68.2	20.5	240.23	247.22	8.4	143. ${ }^{8}$	154.27	$8 \cdot 8$	3. 33	17.31
March.	107.2	63.5	86. I I	88.24	30.9	262.26	266. 52	15°	109.52	116.32	$7 \cdot 2$	355.	363.53
April	118.0	723	107.27	107.32	28.0	283. 13	283.24	12.7	141.47	142. 3	$5 \cdot 5$	351.41	352. 3
May	121°	924	124.46	123.54	26.0	293.24	291.41	5.5	212. 14	209. 39	4.9	102. 44	99. 18
June	97*9	$70 \cdot 6$	128.51	128. 54	$26 \cdot 1$	314.44	314.50	2.6	233.28	233.37	3.1	96.32	96.44
July	112.0	73.5	124. 6	125.27	28.1	319.43	322.25	9.0	173.55	177.59	$6 \cdot 4$	84.53	90. 18
August	103.3	68.6	111. 7	II2. 7	18.4	320. 2	322. 2	$14^{2} 2$	204.40	207.40	$6 \cdot 6$	50.33	54.33
September	128.7	70.5	106. 23	105.13	26.0	317.38	315.17	$19^{\circ} 6$	188. 54	185. 23	11.5	${ }^{24 .} 36$	19. 55
October.	$96 \cdot 7$	$60 \cdot 8$	76. 19	72.52	27.0	283.50	276. 56	10.5	170. 53	160.32	104	20. 50	7. 1
November	45.4	$25^{\circ} 9$	65.54	62.11	19.5	275.21	267.55	8.6	167. 4	155.56	77	35.56	21. 5
December	28.0	11.0	23.48	22.40	6.0	0.48	358.33	14.5	222.51	219.28	73	57.41	53. 10
For the Year..	$80 \cdot 7$	52.0	IOI. 39	101. 39	$20 \cdot 0$	292.31	292.31	8.9	172.49	172.49	5.9	32. 54	32. 54
	Vertical Force.												
January	11.8	$8 \cdot 3$	177. 14								$\bigcirc \cdot 1$	270. 0	279. 12
February	177	14.8	172. 6	175.36	11.6	252. 7	259.6	3.9	63. 26	73.55	$0 \cdot 4$	199. 4	213.12
March	24.6	10.8	162. 28	164.41	13.1	259.11	263.37	$4 \cdot 6$	75.53	82.33	$2 \cdot 1$	243.20	252.13
April.	39°	14.5	121.19	121.24	16.7	257. 9	257.20	$6 \cdot 2$	89.41	89.57	$2 \cdot 3$	284.20	284.42
May.	$40 \cdot 6$	16.3	120.41	119.49	17.2	256. 13	254.30	$5 \cdot 9$	108. 5	105.30	1.8	301.25	297. 59
June.	34°	13.8	119.32	119.35	14.2	259.52	259.58	3.9	94. 4	94. 13	1.0	201. 43	201. 55
July .	$30^{\circ} 1$	11.7	125.33	126. 54	15.6	256.47	${ }^{2} 59.29$	4.8	91. 59	96. 3	1.2	174. 10	179.35
August.	32.5	9.9	118. 57	119.57	14.7	269. 3	${ }^{271} 1.3$	$6 \cdot 5$	102. 57	105. 57	1.5	246.40	250.40
September.	27.1	6.5	94.35	93.25	$\mathrm{I}^{7} \mathrm{O}$	262. ${ }^{\circ}$	259.39	$6 \cdot 2$	100. 26	96. 55	17	307. 6	302. 25
October...	19.5	12.1	155. 5^{2}	152.25	7.9	257.56		4.4	112.33	102. 12	$2 \cdot 1$	316. 7	302. 18
November.	$9 \cdot 6$	4.8	166. 40	162. 57	4.9	276. 13	268.47	2.2	130.11	119. 3	$0 \cdot 7$	10. 53	356. 2
December.	$5 \cdot 7$	3.8	216.31	215.23	2.3	225.27	223.12	12	327.30	324.7	$1 \cdot 0$	107.39	103. 8
For the Year.	23.1	94	140. 5	140. 5	11.4	257.56	${ }^{257} 5^{56}$	3.9	94.37	$94 \cdot 37$	$0 \cdot 8$	272.14	272.14

Table XVil.-Results of Observations of Magnetic Dip made in the Magnetic Pavilion in the Year igif.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Greenwich Civil Time, 1911. \& \& Magnetic Dip. \& \& Greenwich Civil Time, 19ti. \& \({ }_{\text {a }}\) \& Magnetic Dip. \& 袌 \& Greenwich Civil Time, 1911. \& \& Magnetic Dip. \& 安 \\
\hline \multirow[b]{2}{*}{Jan.} \& \& \& \& d h \& \& \& \& \multirow[t]{2}{*}{Sept. \begin{tabular}{c}
d. \\
dra \\
\hline
\end{tabular}} \& \& \& \\
\hline \& \(\mathrm{D}_{1}\) \& 66. \({ }^{\circ} 52.3\). 39 \& E \& May I. 15 \& \(\mathrm{D}_{1}\) \& 66. \({ }^{\circ}\) 49. \({ }^{\prime \prime}{ }^{\prime \prime}\) \& E \& \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
66. 51. 54 \\
66. 50. 45
\end{tabular}} \& \\
\hline 4. 12 \& \(\mathrm{D}_{2}\) \& 66. 52. 43 \& E \& 4.12 \& \(\mathrm{D}_{2}\) \& 66. 51. 3 \& E \& 4. 13 \& \(\mathrm{D}_{2}\) \& \& \[
\underset{\mathrm{E}}{\mathrm{E}}
\] \\
\hline 6. 12 \& \(\mathrm{D}_{1}\) \& 66. 54.23 \& E \& 8.13 \& \(\mathrm{D}_{1}\) \& 66. 50. 4 \& E \& 7. 12 \& \(\mathrm{D}_{1}\) \& 66. 52. 26 \& \(\stackrel{\mathrm{E}}{\mathrm{E}}\) \\
\hline 9. 12 \& \(\mathrm{I}_{2}\) \& 66. 50. 28 \& \(\underset{\text { E }}{\text { E }}\) \& 10. 12 \& \(\mathrm{D}_{2}\) \& 66. 52. 49 \& \(\underset{\mathrm{E}}{\mathrm{E}}\) \& 8. 12 \& \(\mathrm{D}_{2}\) \& 66. 52.
66. 54.
25 \& E \\
\hline 11. 12 \& \(\mathrm{D}_{1}\) \& \(\begin{array}{llll}66.54 . \& 27 \\ 66.54 . \& 21\end{array}\) \& \(\underset{\mathrm{E}}{\mathrm{E}}\) \& 12.12
15.12 \& \(\mathrm{D}_{1}\) \& 66. 53.55
66.50 .11 \& \(\underset{\mathrm{E}}{\mathrm{E}}\) \& 11. 12
14.
12
I \& D \({ }_{1}{ }_{\text {d }}\) \& 66. 54. 25
66.51 .15 \& \(\stackrel{\text { E }}{\text { E }}\) \\
\hline 13. 12 \& \(\mathrm{D}_{2}\) \& 66. 54.
66.521
62. \& \({ }_{\text {E }}^{\text {E }}\) \& 15.12
17.13 \& \(\mathrm{D}_{2}\) \& 66. 50. 11 \& \(\underset{\text { B }}{ }\) \& 14.12
18.12
18. \& \(\mathrm{D}_{2}\) \& 66. 51. 15 \& \({ }_{\text {E }}\) \\
\hline 17. 15 \& \(\mathrm{D}_{2}\) \& 66. 52. 16 \& \({ }_{\text {B }} \mathrm{B}\) \& 17.13
20.11 \& \(\mathrm{D}_{2}\) \& 66. 50. 11 \& \({ }_{\text {B }}^{\text {B }}\) \& 18. 12
20. 12 \& \(\mathrm{D}_{2}\)
\(\mathrm{D}_{1}\) \& 66. 49. 11 \& \({ }_{\text {B }}\) \\
\hline 19.11
23.12 \& \({ }^{\mathrm{D}_{1}}\) \& 66. 53. 47 \& \({ }_{\text {B }}\) \& 20.11 \& \(\mathrm{D}_{1}\) \& 66. 5i. 14 \& B \& 22. 12 \& \(\mathrm{D}_{2}\) \& 66. 50. 29 \& B \\
\hline 26. 12 \& \(\mathrm{D}_{1}\) \& 66. 53.41 \& B \& 24. 12 \& \(\mathrm{D}_{1}\) \& 66. 51.53 \& B \& 25. 12 \& \(\mathrm{D}_{1}\) \& 66. 53.2 \& B \\
\hline 27. 15 \& \(\mathrm{D}_{2}\) \& 66. 52. 30 \& B \& 26. 12 \& \(\mathrm{D}_{2}\) \& 66. 48.53 \& B \& 27. 13 \& \(\mathrm{D}_{2}\) \& 66. 51. 18 \& B \\
\hline 30. 12 \& \(\mathrm{D}_{1}\) \& 66. 52. \(4^{6}\) \& B \& 29. 12 \& \(\mathrm{D}_{1}^{2}\) \& 66. 51.42 \& B \& 29. 13 \& \(\mathrm{D}_{1}\) \& 66. 51. 49 \& \\
\hline Feb. 1. 12 \& \(\mathrm{D}_{1}\) \& 66. 53. 5 \& B \& June 2. 13 \& \(\mathrm{D}_{1}\) \& 66. 51. 59 \& B \& Oct. 3. 13 \& \multirow[t]{2}{*}{\(\mathrm{D}_{1}\)} \& \multirow[t]{2}{*}{66. 53.30} \& \multirow[t]{2}{*}{B} \\
\hline F. 4. 12 \& \(\mathrm{D}_{2}\) \& 66. 51. \(4^{8}\) \& B \& J. 12 \& \(\mathrm{D}_{2}{ }_{2}\) \& 66. 52. 25 \& B \& Oct. \(\begin{array}{r}\text { 3. } \\ \text { 4. } 13 \\ \text { 4. }\end{array}\) \& \& \& \\
\hline 6. 12 \& \(\mathrm{D}_{1}\) \& 66. 52. \(4^{2}\) \& B \& 7. 12 \& \(\mathrm{D}_{1}^{2}\) \& 66. 53.15 \& B \& 6. 13 \& \(\mathrm{D}_{1}\) \& 66. 52. 37 \& B \\
\hline 8. 13 \& \(\mathrm{D}_{2}\) \& 66. \(53 \cdot 22\) \& B \& 8. 12 \& \(\mathrm{D}_{2}\) \& 66. 53. 35 \& B \& 9. 12 \& \(\mathrm{D}_{2}\) \& 66. 53. 54 \& B \\
\hline 10. 13 \& \(\mathrm{D}_{1}^{-}\) \& 66. 51. 40 \& B \& 12. 13 \& \(\mathrm{D}_{1}\) \& 66. 51. 33 \& B \& II. 13 \& \(\mathrm{D}_{1}\) \& 66. 54. 33 \& B \\
\hline 14. 12 \& \(\mathrm{D}_{2}\) \& 66. 52. \(4^{2}\) \& B \& 14. 13 \& \(\mathrm{D}_{2}\) \& 66. 51.58 \& B \& 13. 12 \& \(\mathrm{D}_{2}\) \& 66. 51.1 \& B \\
\hline 15. 12 \& \(\mathrm{D}_{2}\) \& 66. 52. 14 \& E \& 16. 12 \& \(\mathrm{D}_{2}\) \& 66. 47.29 \& E \& 17. 12 \& \(\mathrm{D}_{2}\) \& 66. 50. 25 \& E \\
\hline 17. 12 \& \(\mathrm{D}_{1}\) \& 66. 54.2 \& E \& 19. 12 \& \(\mathrm{D}_{1}\) \& 66. 52. \(4^{1}\) \& E \& 19. 12 \& \(\mathrm{D}_{1}\) \& 66. 55.1 \& \({ }_{\mathrm{E}}^{\mathrm{E}}\) \\
\hline 20. \& \(\mathrm{D}_{2}\) \& 66. 54.53 \& E \& 21. 12 \& \(\mathrm{D}_{2}\) \& 66. 51.10 \& E \& 23. 12 \& \(\mathrm{D}_{2}\) \& 66. 51. 23 \& E \\
\hline 22. \& \(\mathrm{D}_{1}^{-}\) \& 66. 54.25 \& , \& 26. 12 \& \(\mathrm{D}_{1}\) \& 66. 50.42 \& E \& 25. 12 \& \(\mathrm{D}_{1}\) \& 66. 51. 28 \& \(\stackrel{\mathrm{E}}{\mathrm{E}}\) \\
\hline 24. 12 \& \(\mathrm{D}_{2}\) \& 66. 54.22 \& E \& 28. 12 \& \(\mathrm{D}_{2}\) \& 66. 50.40 \& \(\underset{\mathrm{E}}{\mathrm{E}}\) \& 27.12
30.12 \& \& \[
\begin{aligned}
\& \text { 66. } 50 . \\
\& 66 . \\
\& 62 . \\
\& 52 .
\end{aligned}
\] \& \(\stackrel{\mathrm{E}}{\mathrm{E}}\) \\
\hline 27. 12 \& \(\mathrm{D}_{1}\) \& 66. 52.38 \& E \& 30. 12 \& D, \& 66. \(5^{2 .} 4^{2}\) \& E \& \& \& \& \\
\hline Mar. 2. 12 \& \(\mathrm{D}_{1}\) \& 66. 52. 39 \& E \& July 4. 12 \& \(\mathrm{D}_{1}\) \& 66. 50.26 \& \& Nov. 1. 12 \& \& 66. 53.31
66. 49.17 \& \multirow[t]{2}{*}{E
E} \\
\hline 6. 1 \& \(\mathrm{I}_{2}\) \& 66. 51.43 \& \(\stackrel{\mathrm{E}}{\mathrm{E}}\) \& 5. 12 \& \(\mathrm{D}_{2}\) \& 66.
66. 59.42
5. \& \(\underset{\text { E }}{\text { E }}\) \& 3. 12 \& \(\mathrm{D}_{2}\) \& 66.
66. 52.
52. \& \\
\hline 7. 12 \& \(\mathrm{D}_{1}\) \& 66. 52.55 \& E \& 7.12 \& \(\mathrm{D}_{1}\) \& 66. 52. 59 \& \(\underset{\mathrm{E}}{\mathrm{E}}\) \& 7. 12
10. 12
12 \& \(\mathrm{D}_{1}\) \& 66. \(52 . \quad 0\) \& \(\stackrel{\text { E }}{\text { E }}\) \\
\hline 9. 12 \& \(\mathrm{D}_{2}\) \& 66. 53.15 \& E \& 10. 12 \& \(\mathrm{D}_{2}\) \& 66. 52. 43 \& \(\underset{\mathrm{E}}{\mathrm{E}}\) \& 10. 12
13.13
13 \& \(\mathrm{D}_{2}\)
\(\mathrm{D}_{1}\) \& 66. 51. 59 \& \({ }_{\text {E }}\) \\
\hline 13. 12 \& \(\mathrm{D}_{1}\) \& 66. 52. 32 \& E \& 12. 12 \& \(\mathrm{D}_{1}\) \& 66. 53. 21 \& \(\stackrel{\mathrm{E}}{\mathrm{E}}\) \& 13.13
14.11 \& \(\mathrm{D}_{1}\) \& 66. 54. 47 \& E \\
\hline 15.12 \& \(\mathrm{I}_{2}\) \& 66. 52. 9 \& E \& 14. 12 \& \(\mathrm{D}_{2}\) \& 66. 49. 44 \& \(\underset{B}{\mathrm{E}}\) \& 14. 111 \& \(\mathrm{D}_{2}\) \& 66. 52. 52.31 \& E \\
\hline 17.12 \& \(\mathrm{D}_{2}\) \& 66. 5 I . 2 \& B \& 17. 13 \& \(\mathrm{D}_{2}\) \& 66. 48.45 \& B \& 16.13
19.12 \& \(\mathrm{D}_{1}\) \& 66. 53. 45 \& E \\
\hline 20. 15 \& \(\mathrm{D}_{1}\) \& 66. 55. 24 \& B \& 18. 13 \& \(\mathrm{D}_{1}\) \& 66. 53. 16 \& \({ }_{\text {B }}^{\text {B }}\) \& 19. 12 \& \({ }_{\mathbf{D}}^{1}\) \& 66. 53. 45 \& E \\
\hline 22. 12 \& \(\mathrm{I}_{2}\) \& 66. 52.7 \& B \& 21. 13 \& \& \& \({ }_{\text {B }}^{\text {B }}\) \& 22. 12
24.12 \& \& \& E \\
\hline 25.13 \& \(\mathrm{D}_{1}\) \& 66. 54.13 \& B \& 24. 13 \& \(\mathrm{D}_{1}\) \& 66. 49. \({ }^{86}\) \& B
B \& 24. 12 \& \& 66. 52. 12 \& \(\stackrel{\text { C }}{ }\) \\
\hline 28. 12 \& \(\mathrm{I}_{2}\) \& 66. 50. 2 \& B \& 26. 12 \& \(\mathrm{D}_{2}\) \& 66. 51. 46 \& B \& 27. 15 \& \(\mathrm{D}_{1}\) \& \begin{tabular}{l}
66. 50. 18 \\
66. 56. 12
\end{tabular} \& \({ }_{C}\) \\
\hline 30. 12 \& \(\mathrm{D}_{1}\) \& 66. 52. 43 \& B \& 28. 12 \& \(\mathrm{D}_{1}\) \& 66. 53. 13 \& B \& 29. 13 \& \(\mathrm{D}_{1}\) \& 66. 56. 12 \& C \\
\hline \multirow[t]{12}{*}{} \& \multirow[t]{2}{*}{\(\mathrm{I}_{1}\)} \& 66. 52.7 \& B \& Aug. 1. 12 \& \multirow[t]{2}{*}{\(\mathrm{D}_{1}\)} \& 66. 53.56 \& B \& Dec. 4. 12 \& \(\mathrm{D}_{1}\) \& \multirow[t]{2}{*}{66. 53.
66.
51.

7} \& \multirow[t]{2}{*}{}

\hline \& \& 66. 52.26 \& B \& 3. 12 \& \& 66. 49.42 \& B \& 6. 12 \& D_{2} \& \&

\hline \& I_{1} \& 66. 52.15 \& B \& 5. 13 \& D_{1} \& 66. 51. 43 \& B \& 8. 11 \& D_{1} \& 66. 53. 3 \& $\stackrel{\mathrm{E}}{\mathrm{E}} \mathrm{E}$

\hline \& I) \& 66. 53.59 \& 1 \& 8. 12 \& D_{2} \& 66. $4^{8 .} 4^{2}$ \& B \& 11. 13 \& D_{2} \& 66. 52. 9 \&

\hline \& D_{1} \& 66. 54.25 \& 13 \& 11. 12 \& D_{1} \& 66. 51.9 \& B \& 13. 11 \& D_{1} \& 66. 53.22 \&

\hline \& D_{2} \& 66. 51.44 \& B \& 14. 12 \& D_{2} \& 66. 49. 20 \& B \& 14. 15 \& D_{2} \& 66. 50. 17 \&

\hline \& D_{2} \& 66. 52. 34 \& E \& 16. 12 \& D_{2}^{2} \& 66. 48. 19 \& E \& 18. 13 \& D_{2} \& 66. 51. 55 \& $\stackrel{\text { c }}{ }$

\hline \& I) ${ }_{1}$ \& 66. 52. 21 \& E \& 18. 12 \& D_{1} \& 66. 51. 3^{2} \& E \& 20. 11 \& D_{1} \& 66. 53.37 \& ${ }_{\mathrm{C}}$

\hline \& I_{2} \& 66. 53.25 \& E \& 21. 15 \& D_{2} \& 66. 51. 32 \& E \& 22. 12 \& D_{2} \& 66. 49.54 \& $\underset{\mathrm{E}}{\mathrm{E}}$

\hline \& D_{1} \& 66. 51. 10 \& E \& 24. 12 \& D_{1} \& 66. 53. 12 \& $\underset{\text { E }}{\text { E }}$ \& \& D_{1} \& 66. 54. 4 \& \multirow[t]{2}{*}{$$
\underset{\underset{F}{\mathrm{E}}}{\stackrel{\mathrm{E}}{2}}
$$}

\hline \& I) \& 66. 50.50
66.50 .32 \& $\underset{\text { E }}{\text { E }}$ \& 28.12
30.12 \& $\mathrm{I}_{2}{ }^{\text {D }}$ \& 66. 53.41
66.52 .31 \& E \& 29.12 \& D_{1} \& 66. 53.12 \&

\hline \& \& 66. 50. 32 \& \& 30. 12 \& \& \& \& \& \& \&

\hline
\end{tabular}

Table XVIII.—Monthly and Yearly Means of Magnetic Dip from Observations made in the Year igif.

The monthly means have been formed without reference to the hour at which the observation on each day was made.
In combining the monthly results, to form annual means, weights have been given proportional to the number of observations.

Table XIX.—Determinations of the Absolute Value of Horizontal Magnetic Force in the Year igi i.							
Abstract of the Observations of Deflection of a Magnet for Absolute Measure of Horizontal Force made with the Gibson Instrument in the Magnetic Pavilion.							
Greenwich Civil Time 1911.	Distances of Centres of Magnets.	Temperature Fahrenheit.	Observed Deflexion.	Mean of the Times of Vibration of Deflecting Magnet.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { vibrations. } \end{gathered}$	Temperature Fahrenheit.	Observer.
January $\quad \begin{array}{lrr}\text { d } \\ & \text { 6. } \\ \end{array}$	$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{I} \cdot \mathrm{O} \\ & \mathrm{I} \cdot 3 \end{aligned}$	\circ 454	9. $37^{\prime} .20^{\prime \prime}$ 4. 22.10	$\begin{gathered} \mathrm{s} \\ 5 \cdot 809 \\ 5 \cdot 8 \mathrm{IO} \end{gathered}$	100	$46^{\circ} \cdot 2$ $46 \cdot 9$	E
January 24. 13	$\begin{aligned} & \text { I•O } \\ & 1 \cdot 3 \end{aligned}$	$45^{\circ} 8$	9. 36.53 4. $22 . \quad 3$	$\begin{aligned} & 5 \cdot 811 \\ & 5 \cdot 810 \end{aligned}$	100 100	$\begin{aligned} & 45^{\circ} \cdot 2 \\ & 45^{\prime} 4 \end{aligned}$	B
February 7. 15	$\begin{aligned} & \text { I•O } \\ & \text { 1•3 } \end{aligned}$	444	9. 36.28 4. 21.33	$\begin{aligned} & 5 \cdot 813 \\ & 5 \cdot 807 \end{aligned}$	100 100	$\begin{aligned} & 44^{\circ} 7 \\ & 45^{\circ} \mathrm{I} \end{aligned}$	B
February 21.15	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	$4^{8 .}$	9. 38.41 4.22.50	$\begin{aligned} & 5 \cdot 814 \\ & 5 \cdot 815 \end{aligned}$	100 100	$\begin{aligned} & 48 \cdot 8 \\ & 49 \cdot 9 \end{aligned}$	E
March 7. 15	1.0 1.3	$49^{\circ} 2$	9. 36.56 4.21 .54	$\begin{aligned} & 5.810 \\ & 5.813 \end{aligned}$	100	$\begin{aligned} & 49 \cdot 8 \\ & 51 \cdot 1 \end{aligned}$	E
March 22. 15	$\begin{aligned} & \text { I•O } \\ & \text { I'3 } \end{aligned}$	$58 \cdot 6$	9. 35.28 4.21 .10	$\begin{aligned} & 5 \cdot 817 \\ & 5.817 \end{aligned}$	100	$58 \cdot 9$ $60 \cdot 3$	B
April 6. 15	1.0 1.3	$40 \cdot 5$	9. 37.0 4. 22.	$\begin{aligned} & 5 \cdot 806 \\ & 5.804 \end{aligned}$	100 100	$40 \cdot 7$ $41 \cdot 5$	B
April 24. 15	$\begin{aligned} & 1 \cdot 0 \\ & 1.3 \end{aligned}$	59.9	$\begin{aligned} & 9.34 .54 \\ & 4.20 .59 \end{aligned}$	$\begin{aligned} & 5.814 \\ & 5.817 \\ & \hline \end{aligned}$	100	$\begin{array}{r} 61 \cdot 0 \\ 63 \cdot 0 \end{array}$	E
May 8. 12	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	$60 \cdot 5$	9. 35.13 4.21 .11	$\begin{aligned} & 5 \cdot 819 \\ & 5 \cdot 821 \end{aligned}$	100 100	$\begin{aligned} & 61 \cdot 8 \\ & 64 \cdot 2 \end{aligned}$	E
May 23. 15	1.0 1.3	$65 \cdot 8$	9. 33.40 4.20 .28	$5 \cdot 818$ $5 \cdot 818$	100 100	$\begin{aligned} & 66 \cdot 7 \\ & 67 \cdot 9 \end{aligned}$	B
June 7. 15	1.0 1.3	$72 \cdot 1$	9. 32.55 4. 20.15	$5 \cdot 819$ 5.821	100	$\begin{aligned} & 7 \mathrm{I} \cdot 6 \\ & 76 \cdot 9 \end{aligned}$	B
June 21. 15	$1 \cdot$ 1.3	657	9. 34.0 4.20 .45	5.815 5.819	100 100	$\begin{aligned} & 66 \cdot 4 \\ & 67 \cdot 5 \end{aligned}$	E
July 7.15	$\begin{aligned} & 1 \circ 0 \\ & 1 \cdot 3 \end{aligned}$	$8 \mathrm{I}^{1} \mathrm{I}$	$\begin{aligned} & \text { 9. } 3 \mathrm{II} .3 \\ & 4.19 .21 \end{aligned}$	$\begin{aligned} & 5 \cdot 823 \\ & 5 \cdot 824 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 82 \cdot 9 \\ 85 \cdot 3 \\ \hline \end{array}$	E
July 22. 12	$\begin{aligned} & \text { I•O } \\ & \text { I. } 3 \end{aligned}$	82.9	9. 32.33 4. 19.53	5.829 5.831	100 100	$\begin{aligned} & 80 \cdot 9 \\ & 83 \cdot 3 \end{aligned}$	B
August 8. 15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	847	9. 31.28 4. 19.30	5.826 5.828	100	$\begin{aligned} & 84 \cdot 1 \\ & 85 \cdot 1 \\ & \hline \end{aligned}$	B
August 24. 15	$\begin{aligned} & 1 \circ 0 \\ & I^{\circ} 3 \end{aligned}$	71•2	9. 33.9 4. 20.16	$\begin{aligned} & 5 \cdot 826 \\ & 5.824 \end{aligned}$	100	72.8 72.8	E
September 7.15	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	$77 \cdot 2$	9.32. 23 4.19 .56	$\begin{aligned} & 5 \cdot 826 \\ & 5 \cdot 827 \end{aligned}$	100	$79 \cdot 2$ 81.1	E
September 22. 15	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	$59 \cdot 6$	$\begin{array}{ll}\text { 9. } 35 . & 3 \\ 4.2 \mathrm{I} . & 3\end{array}$	5.817 5.814	100 100	58.8 59.6	B
October 9.15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	54.9	$\begin{aligned} & \text { 9. } 35.28 \\ & 4.21 .25 \end{aligned}$	$\begin{aligned} & 5.819 \\ & 5.819 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	54.5 $55^{\circ} \mathrm{I}$	B
October 23. 15	10 1.3	57°	9. 34.24 4. 20.51	$\begin{aligned} & 5 \cdot 820 \\ & 5 \cdot 821 \end{aligned}$	100 100	$57 \cdot 3$ 58.2	E
November 7. 15	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	$50^{\prime} 7$	$\begin{aligned} & \text { 9. } 35.18 \\ & 4.21 .15 \end{aligned}$	$\begin{aligned} & 5.816 \\ & 5.817 \end{aligned}$	100 100	514 52.5	E
November 23. 15	$\begin{aligned} & 1 \circ 0 \\ & 1.3 \end{aligned}$	$42 \cdot 5$	9.35 .43 4.21 .26	$\begin{aligned} & 5.813 \\ & 5.814 \end{aligned}$	100 100	$\begin{aligned} & 43 \cdot 5 \\ & 44^{\circ} 9 \end{aligned}$	E
December $\text { 8. } 13$	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$45^{\circ} 2$	9.35 .40 4.21 .28	$5 \cdot 815$ $5 \cdot 815$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 46 \cdot 2 \\ & 47 \cdot 1 \end{aligned}$	E
December 22. 13	$\begin{array}{r}1 \% \\ 1.3 \\ \hline\end{array}$	47.5	9.35 .8 4.21 .11	$\begin{array}{r} 5.817 \\ 5.815 \\ \hline \end{array}$	100 100	$48 \cdot 1$ $48 \cdot 7$	E
The deflecting magnet is placed on the east side of the suspended magnct, with its marked pole alternately east and west, and on the west side with its marked pole also alternately east and west: the deflection given in the table above is the mean of the four deflections observed in these positions of the magnets. The initials E and E are those of Mr. Bryant and Mr. Edney. In the subsequent calculations every observation is reduced to the temperature 35° Fahrenheit.							

Table XIX.-continued—Computation of the Values of Horizontal Force in Absolute Measure.

From Observations made with the Gibson Instrument in the Magnetic Pavilion.

Greenwich Civil Time, 1911.	In British Units.									In C. G. S. Units. Value of Horizontal Force.	
	Apparent Value of A_{1}.	Apparent Value of A_{2}.	Apparent Value of P.	Mean Value of P.	Log. $\frac{m}{\bar{X}}$	Corrected Time of Vibration of Deflecting Magnet.	Log. m X .	Value of m.	$\begin{gathered} \text { Value of } \\ \text { Harizontal } \\ \text { Force } \\ X . \end{gathered}$		
										observed.	Reduced to Mean of Month.
d h						s					
Jan. 6. 13	0.08371	$0 \cdot 08382$	-0.00316)	$8 \cdot 92416$	5.8163	O.13153	0.3372	4.0150	$\cdot 18512$	-18528
Jan. 24. 13	0.08365	0.08379	0.00400		8.92392	$5 \cdot 8166$	0.13148	0.3371	4.0159	-18517	-18528
Feb. 7. 15	0.08357	0.08361	0.00107		8.92326	5.8167	O'13145	0.3368	4-0188	-18530	'18531
Feb. 21. 15	0.08394	0.08407	0.00378		$8 \cdot 92541$	$5 \cdot 8202$	0.13096	0.3374	4.0066	-18474	'18504
Mar. 7. 15	0.08371	0.08379	0.00231		$8 \cdot 92408$	5.8175	0.13136	0.3371	4.0146	-18511	-18513
Mar. 22. 15	0.08363	0.08369	0.00180		8.92362	$5 \cdot 8185$	0.13128	0.3369	4.0163	-18519	'18518
Apr. 6. 15	0.08359	0.08374	$0 \cdot 00423$		8.92367	$5 \cdot 8153$	0.13164	0.3370	4.0178	-18525	-18543
Apr. 24. 15	0.08357	0.08365	0.00237		8.92336	5.8174	O.13145	0.3368	4.0183	-18528	'18531
May 8. 12	0.08362	0.08372	0.00305		$8 \cdot 92369$	5.8214	$0 \cdot 13085$	0.3367	4.0140	'18508	'18555
May 23. 15	0.08348	0.08357	0.00271		8.92291	$5 \cdot 8174$	0.13148	0.3367	4.0205	-18538	-18532
June 7. 15	0.08346	0.08359	0.00389		$8 \cdot 92294$	$5 \cdot 8163$	0.13169	0.3368	$4^{\circ} \mathrm{O2} 14$	- 18542	-18538
June 21. 15	0.08352	0.08366	0.00400		8.92326	5.8173	0.13149	0.3368	4.0190	-18531	'18542
July 7. 15	0.08333	$0 \cdot 08344$	0.00344	,	8.92220	$5 \cdot 8155$	0.13185	0.3365	4.0255	$\cdot 18561$	-18529
July 22. 12	0.08357	0.08364	$0 \cdot 00203$		8.92334	$5 \cdot 8238$	$0 \cdot 13063$	0.3365	4.0146	-185II	-18528
Aug. 8. 15	0.08344	$0 \cdot 08354$	0.00305		8.92276	5.8195	- 131129	0.3365	$4^{\circ} 0204$	$\cdot 18537$	'18533
Aug. 24. 15	0.08348	0.08359	0.00316		$8 \cdot 92297$	5.8227	O.13072	0.3364	4.0168	-18521	'18528
Sept. 7. 15	0.08346	0.08357	0.00327		8.92287	$5 \cdot 8209$	$0 \cdot 13103$	0.3365	4.0186	-18529	-18518
Sept. 22. 15	0.08358	0.08366	0.00231		$8 \cdot 92344$	$5 \cdot 8220$	$0 \cdot 13077$	0.3366	$4^{\circ} 0148$	-18512	'18538
Oct. 9. 15	$0 \cdot 08357$	0.08371	$0 \cdot 00412$		8.92355	$5 \cdot 8 \mathbf{4 3}$	- 13039	0.3365	40125	-18501	-18527
Oct. 23. 15	0.08345	0.08357	0.00338		$8 \cdot 92284$	5.8223	0.13070	0.3363	4.0173	-18523	-18518
Nov. 7. 15	0.08349	0.08360	0.00316		8.92304	5.8212	0.13082	0.3365	4.0169	$\cdot 18521$	-18530
Nov. 23. 15	0.08343	0.08354	0.00327		8.92274	5.8212	$0 \cdot 13078$	0.3363	4.0181	-18527	-18532
Dec. 8. 13	0.08347	0.08359	0.00361		8.92295	$5 \cdot 8214$	0.13076	0.3364	4.0170	-18522	'18533
Dec. 22. 13	0.08342	0.08354	-0.00338)	8.92269	$5 \cdot 8212$	0.13081	0.3363	4.0185	-18528	'18516
Means	\ldots	\ldots	\ldots	-	...	\cdots	\cdots	...	4.0170	- 18522	-18529

The value of X in British Units is referred to the Foot-Grain-Second Unit.

MONTHLY MEAN DIURNAL INEQUALITIES OF MAGNETIC ELEMENTS FROM HOURLY ORDINATES, ON FIVE SELECTED DAYS, IN EACH MONTH.

Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected for comparison with results at other British Observatories. The days included are January 7, 12, 17, 20, 21, February 11, i2, 15, 19, 20, March 10, 11, 12, 17, 18, April 5, 13, 14, 15, 26, May 1, 4, 13, 22, 24, June 3, 17, 18, 19, 25, July 13, 14, 15, 16, 26, August 7, 8, 10, 11, 29, September 2, 3, 14, 25, 26, October I, 5, 15, 23, 28, November I, 7, 22, 23, 24, December 2, 9, 21, 22, 23.
The results for Declination are given in minutes of arc : those for Horizontal Force and Vertical Force are given both in terms of the whole Horizontal or Vertical Force and in terms of the C. G. S. Unit. The letter f indicates values in terms of the whole Horizontal or Vertical Force, and the letter m values in terms of the C. G. S. Unit, the unit for the former values being 0000 I of the whole Horizontal or Vertical Force, and for the latter -000001 of the C. G. S. Unit. The values of the whole Horizontal and Vertical Forces expressed in terms of the C. G. S. Unit are $\cdot 18529$ and 43374 respectively for the year.

Table XX.-Monthly Mean Diurnal Inequality of Magnetic Declination West.
(The results in each case are diminished by the smallest hourly value.)

1911.													
	January.	February.	3arch.	April.	May.	June.	July.	August.	September.	October.	November.	December.	$\underset{\substack{\text { For the } \\ \text { Year. }}}{ }$
Midnight.	$0 \cdot 6$	\bigcirc	$3 \div 5$	$3 \cdot 3$	$2 \cdot 2$	$2^{3} 7$	3.9	$3 \cdot 4$	$2 \cdot 7$	-6	$0 \cdot 6$	$0 \cdot 9$	1:74
$1^{\text {h }}$	1×0	$1 \cdot 3$	$3 \cdot 6$	$3 \cdot 6$	$2 \cdot 3$	2.9	3.7	3.6	$2 \cdot 5$	-'9	$1 \times$	0.8	$1 \cdot 90$
2	1.0	$2 \cdot 0$	$3 \cdot 7$	$3 \cdot 7$	$2 \cdot 7$	$3 \cdot 1$	3.5	$3 \cdot 5$	$2 \cdot 4$	$1 \cdot 1$	$\bigcirc \cdot 9$	$1 \cdot 1$	2.02
3	1.3	1.8	$3 \cdot 2$	3.6	$2 \cdot 7$	$2 \cdot 3$	3.6	3.0	$2 \cdot 1$	$1 \cdot 1$	$\bigcirc \cdot 9$	$1 \cdot 1$	1.86
4	1.6	1.5	$3 \cdot 2$	$3 \cdot 3$	$2 \cdot 6$	$2 \cdot 0$	3.2	2.6	19	1.4	$0 \cdot 8$	$1 \cdot 2$	$1 \cdot 74$
5	$1 \cdot 3$	1.3	3.2	$2 \cdot 7$	$1 \cdot 7$	$\bigcirc \cdot 9$	1.9	1.6	17	1.5	$0 \cdot 6$	$\bigcirc \cdot 9$	$1 \cdot 24$
6	1.5	1.4	$3 \cdot 1$	$2 \cdot 3$	$1 \cdot 2$	$0 \cdot 0$	$1 \cdot 3$	$\bigcirc \cdot 9$	$1 \cdot 1$	1.3	$0 \cdot 5$	$\bigcirc \cdot 7$	$0 \cdot 90$
7	$1 \cdot 3$	1.6	$2 \cdot 7$	$1{ }^{\circ}$	$0 \cdot 4$	0.4	0.8	$\bigcirc \cdot$	$0 \cdot 4$	$1 \cdot 2$	0.2	$0 \cdot 5$	0.51
8	1×0	1.0	$1 \cdot 1$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 6$	$0 \cdot 0$	$0 \cdot 0$	- 0	$\bigcirc \circ$	$\bigcirc \cdot 1$	0.6	$0 \cdot 00$
9	$\bigcirc 9$	0.2	$\bigcirc \cdot$	$0 \cdot 0$	$1 \cdot 1$	$1 \cdot 3$	I'I	13	$0 \cdot 6$	$0 \cdot 1$	$0 \cdot 4$	1.2	0.31
10	14	$0 \cdot 2$	1×1	$1 \cdot 9$	29	3.3	$3 \cdot 0$	$2 \cdot 8$	2.5	1.6	1.6	$2 \cdot 1$	1.66
11	19	$1 \cdot 4$	$2 \cdot 8$	5*1	$5 \cdot 3$	$5 \cdot 2$	$5 \cdot 7$	47	$4 \cdot 8$	3.5	2.5	2.5	3.41
Noon.	$3^{\circ} 0$	2.9	$5 \cdot 3$	$7 \cdot 7$	73	$6 \cdot 5$	$8 \cdot 3$	73	$6 \cdot 8$	47	3.0	$2 \cdot 5$	5.07
$13^{\text {h }}$	3.5	4°	74	8.4	$7 \cdot 8$	$7 \times$	$9 \cdot 5$	$8 \cdot 8$	$7 \cdot 8$	52	$3 \cdot 1$	2.0	$5 \cdot 84$
14	2.9	4.0	79	7.5	7.6	74	$10 \cdot 3$	8.9	$6 \cdot 8$	$4 \cdot 6$	$2 \cdot 1$	$1 \cdot 1$	$5 \cdot 55$
15	$2 \cdot 3$	3.5	$7 \cdot 1$	$5 \cdot 6$	$6 \cdot 8$	6.9	$9 \cdot 3$	$7 \cdot 6$	$5 \cdot 1$	$3 \cdot 6$	1.0	$0 \cdot 7$	4.59
16	1.6	$2 \cdot 6$	$5 \cdot 4$	43	5.9	$5 \cdot 7$	$7 \cdot 8$	$5 \cdot 5$	$3 \cdot 7$	$2 \cdot 5$	$1 \cdot 1$	1.0	3.56
17	14	$2 \cdot 3$	$4 \cdot 2$	3.6	$5 \cdot 2$	4.9	$6 \cdot 1$	$4{ }^{1}$	3.0	19	$1 \cdot 0$	10	2.85
18	1.8	1.5	$3 \cdot 6$	3.2	4.5	$4 \cdot 6$	4.5	$3 \cdot 7$	$3 \cdot 1$	1.8	$\bigcirc \cdot 5$	0.6	2.41
19	$1 \cdot 3$	14	3.2	$3 \cdot 1$	$4 \cdot 1$	$4 \cdot 1$	$4 \cdot 2$	$3 \cdot 7$	2.8	1.6	$0 \cdot 2$	$0 \cdot 6$	2.16
20	$0 \cdot 8$	1.4	$3 \cdot 1$	$3 \cdot 1$	$3 \cdot 8$	$3 \cdot 8$	$4 \cdot 1$	3.6	2.8	1.4	$0 \cdot 2$	$\bigcirc \cdot 3$	2.00
21	0.5	$0 \cdot 6$	$2 \cdot 8$	3.1	$3 \cdot 5$	$3 \cdot 6$	4.2	3.4	2.7	1.2	$\bigcirc \cdot 0$	$0 \cdot 2$	178
22	$0 \cdot 4$	$0 \cdot 1$	3.0	$3 \cdot 0$	3.4	$3 \cdot 5$	$3 \cdot 8$	3.4	$2 \cdot 6$	$1 \cdot 1$	$0 \cdot 1$	$0 \cdot 0$	${ }_{1} \cdot 66$
23	$0 \cdot 1$	$0 \cdot 0$	$3 \cdot 1$	29	3.2	$3 \cdot 3$	4°	$3 \cdot 6$	$2 \cdot 3$	$1{ }^{\circ}$	$0 \cdot 1$	$\bigcirc \cdot 3$	1.62
24	$0 \cdot 0$	$0 \cdot 4$	$3 \cdot 3$	$3 \cdot 4$	3.2	$3 \cdot 1$	4°	3.9	2.4	1.0	$\bigcirc \cdot 3$	$\bigcirc 5$	1.76
$\mid a\left(0^{h}-23^{\mathrm{h}}\right)$	$1: 43$	${ }_{1}: 62$	$3: 64$	$3: 58$	3:68	$3 \cdot 58$	$4 \cdot 49$	379	3 이	${ }_{1} 187$	$\bigcirc \cdot 94$	1:00	${ }^{2} 35$
	$1: 41$	1.60	$3: 63$	3×59	372	3.60	4‘50	3:81	$3: 00$	1'89	$0 \cdot 92$	$\bigcirc \cdot 98$	$2 \cdot 35$

Table XXI.-Monthly Mean Diurnal Inequality of Horizontal Magnetic Force.
(The results are corrected for temperature, and in each case diminished by the smallest hourly value.)

I9II.																										
Hour, Greenwich Civil time	January.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.		For the Year.	
	f	m																								
Midn.	74	137	102	189	137	254	I 49	276	77	143	87	161	136	252	141	261	177	328	139	258	55	102	46	85	1010	$187 \cdot 1$
$\mathrm{I}^{\text {b }}$	74	137	100	185	146	271	150	278	76	141	78	145	136	252	139	258	179	332	129	239	63	117	49	91	100'9	I $87 \cdot 1$
2	73	135	103	191	146	271	144	267	82	152	80	148	119	220	141	261	168	311	134	248	56	104	55	102	$99^{\circ} 4$	$184^{\circ} 1$
3	79	146	100	185	134	248	149	276	73	135	70	130	105	195	132	245	170	315	131	243	64	119	56	104	$96 \cdot 3$	$178 \cdot 4$
4	78	145	96	178	137	254	143	265	78	145	73	135	115	213	132	245	170	315	137	254	73	135	59	109	$98 \cdot 6$	1827
5	86	159	103	191	14°	259	142	263	62	115	79	146	112	208	124	230	16I	298	147	272	77	143	63	117	99°	1834
6	79	146	104	193	142	263	141	261	45	83	66	122	106	196	101	187	155	287	142	263	75	139	68	126	$93^{\circ} \mathrm{O}$	$172 \cdot 1$
7	79	146	104	193	149	276	117	217	33	61	44	82	91	169	91	169	121	224	130	241	69	128	58	107	81.5	151.1
8	62	115	108	200	137	254	95	176	10	19	12	22	47	87	40	74	88	163	110	204	39	72	30	56	$55^{\prime 8}$	103.5
9	46	85	82	152	101	187	57	106	4	7	\bigcirc	\bigcirc	17	3 I	10	19	32	59	59	109	15	28	6	11	$26 \cdot 7$	495
10	38	70	58	107	55	102	1 I	20	3	6	2	4	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	14	26	6	11	0	\bigcirc	$6 \cdot 6$	$12 \cdot 1$
11	22	41	28	52	11	20	0	0	\bigcirc	-	20	37	10	19	\bigcirc	-	7	13	\bigcirc	-	\bigcirc	\bigcirc	10	19	$0 \cdot 0$	0.0
Noon.	-	\bigcirc	18	33	\bigcirc	\bigcirc	5	9	24	44	42	78	34	63	24	44	51	94	0	-	6	11	37	69	I I'I	$20 \cdot 4$
$13^{\text {b }}$	29	54	10	19	31	57	52	96	54	100	50	93	83	154	57	106	97	180	25	46	22	41	61	113	$38 \cdot 6$	71.6
14	47	87	9	17	56	104	86	159	69	128	64	119	II I	206	92	170	137	254	55	102	43	80	71	132	61.0	113.1
15	45	83	10	19	79	146	105	195	104	193	92	170	144	267	105	195	152	282	68	126	39	72	56	104	74.3	137.6
16	4^{8}	89	\bigcirc	-	106	196	113	209	116	215	105	195	172	319	105	195	160	${ }^{2} 96$	77	143	45	83	48	89	82.2	152.4
17	54	100	10	19	109	202	123	228	152	282	127	235	178	330	133	246	156	289	89	165	58	107	55	102	947	175.4
18	67	124	34	63	120	222	II9	220	177	328	147	272	182	337	145	269	168	311	117	217	64	119	61	I 13	107.8	1995
19	66	122	49	91	136	252	143	265	193	358	135	250	176	326	168	311	187	34^{6}	12 I	224	74	137	65	120	$117{ }^{\circ} 1$	$216 \cdot 8$
20	71	132	46	85	136	252	155	287	192	356	146	271	182	337	168	311	201	372	115	213	70	130	51	94	118%	$220 \cdot 0$
21	75	139	52	96	134	24^{8}	158	293	188	348	${ }_{138}{ }^{8}$	256	174	322	159	295	193	358	123	228	66	122	33	61	115	213.8
22	72	133	62	115	139	258	171	317	186	345	140	259	174	322	149	276	189	350	121	224	60	111	29	54	115\%3	$213 \cdot 6$
23	75	I 39	64	II9	137	254	163	302	184	341	138	256	168	311	145	269	185	343	12 I	224	59	109	19	35	112.5	$208 \cdot 5$
24	82	152	74	137	128	237	156	289	181	335	142	263	163	302	153	283	189	350	127	235	59	109	29	54	114.6	2121
$\left\|\begin{array}{l} \text { Means. } \\ \mathrm{o}^{\mathrm{h}}-23^{\mathrm{h}} \end{array}\right\|$	$60 \cdot 0$	III 10	60'5	I 12.2	$109 \cdot 1$	202.1	1121	2077	90.9	168.5	80.6	1494	115.5	214.0	104.2	193.2	137.7	255°	$96 \cdot 0$	$177{ }^{\circ} 9$	$49^{\circ} 9$	92'5	$45^{\circ} 3$	83.9	$79^{\circ} 5$	$147 \cdot 2$
$\mathrm{I}^{\mathrm{h}}-24^{\mathrm{h}}$	$60 \cdot 3$	111.6	59*3	$110 \cdot 0$	108.7	201.4	112.4	208.3	953	$176 \cdot 5$	$82 \cdot 9$	153.7	116.6	216.1	1047	194*1	138.2	$255^{\circ} 9$	95.5	$176 \cdot 9$	50•1	92-8	$44^{\circ} 5$	82.6	$80 \cdot 0$	$148 \cdot 3$

Table XXII.-Monthly Mean Diurnal Inequality of Vertical Magnetic Force.
(The results are corrected for temperature, and in each case diminished by the smallest hourly value.)

1911.																										
	January.		February.		March.		April.		May.		June.		July.		August.		September.		October.		November.		December.		For the Year.	
	f	m	f	m	f	m	f	m	f	m	f	m	f	m	f	m	f	m	f	m	f	m	f	${ }^{m}$	f	m
Midn.	9	39	21	91	29	126	53	230	56	243	43	187	38	165	34	147	33	143	22	95	20	87	4	17	277	120°
$1^{\text {b }}$	3	13	22	95	27	117	53	230	54	234	39	169	34	147	28	121	31	134	16	69	12	52	2	9		5°
2	7	30	24	104	25	108	52	226	58	252	38	165	34	147	28	121	32	139	18	78	8	35	4	17	- 8	1077
3	10	43	16	69	30	130	58	252	61	265	42	182	36	156	30	130	34	147	20	87	10	43	4	17		-
4	12	52	22	95	28	121	58	252	65	282	48	208	40	173	34	147	38	165	20	87	12	52	9	39	$29^{\prime} 7$	6
;	14	61	26	113	30	130	62	269	67	291	48	208	45	195	36	156	40	173	22	95	10	43	II	48	7	77
6	18	78	26	113	35	152	64	278	71	308	42	182	49	213	44	191	44	191	19	82	10	43	7	30	33.3	3
7	20	87	24	104	35	152	64	278	69	299	38	165	53	230	44	191	48	208	23	100	8	35	9	39	37	- 5
8	18	78	26	113	43	187	64	278	63	273	36	156	47	204	38	165	46	200	25	108	4	17	11	48	-	$14{ }^{\prime} 5$
9	18	78	24	104	35	152	50	217	47	204	24	104	39	169	24	104	32	139	23	100	4	17	13	56	25.3	$109 \cdot 5$
10	16	69	14	61	21	91	32	139	23	100	16	69	23	100	8	35	20	87	1	4	4	17	15	65	13.6	9°
11	12	52	6	26	9	39	14	61	9	39	10	43	9	39	-	-	10	43	-	\bigcirc	-	\bigcirc	13	56	5.2	224
Noon.	6	26	\bigcirc	-	\bigcirc	-	-	\bigcirc	4	17	\bigcirc	-	1	4	-	-	-	\bigcirc	10	43	4	17	5	22	$0 \cdot 0$	-
$13^{\text {b }}$	\bigcirc	-	8	35	0	\bigcirc	4	17	0.	\bigcirc	10	43	-	-	\bigcirc	\bigcirc	6	26	6	26	6	26	5	22	1.2	$5 \cdot 5$
14	12	52	12	52	3	13	25	108	16	69	22	95	14	61	12	52	16	69	4	17	14	61	9	39	10.8	$46 \cdot 5$
15	14	61	17	74	11	48	39	169	20	87	32	139	26	113	28	121	22	95	10	43	14	61	4	17	17.2	$4{ }^{\circ} 9$
16	18	78	23	100	23	100	47	204	34	147	44	191	34	147	38	165	30	130	16	69	16	69	4	17	24.8	7
17	22	95	27	117	27	117	49	213	37	160	52	226	46	200	39	169	32	139	16	69	14	61	4	17		
18	26	113	31	134	21	91	53	230	46	200	58	252	48	208	37	160	30	130	16	69	12	52	6	26	29.5	
19	24	104	42	182	27	117	51	221	48	208	56	243	44	191	29	126	31	134	18	78	14	61	2	9	297	128.7
20	22	95	40	173	23	100	55	239	46	200	50	217	32	139	33	143	31	134	20	87	10	43	4	17		121.5
21	20	87	40	173	23	100	53	3230	50	217	50	217	32	139	31	134	31	134	20	87	9	39	2	9	$27 \cdot 6$	97
22	14	61	3^{8}	165	23	100	47	204	52	226	48	208	28	121	29	126		117	20	87	9	39	2	9	25.	
23	8	35	34	147	27	117	51	1221	50	217	44	191	32	139	31	134			20	87	7	30	-	-	25°	109.5
	8	35	32	139	33	143	58	$8{ }^{252}$	52	226	44	191	34	147	33	143			18	78	11	48	4	17	27	1190
$\begin{aligned} & \text { Means } \\ & 0^{\mathrm{b}}-23^{\mathrm{h}} \end{aligned}$								7198		$189^{\prime \prime}$		$60 \cdot 8$											- 6		23.2	$100 \cdot 5$
$\mathrm{I}^{\mathrm{h}}-24^{\mathrm{h}}$			23*9	1037	$23 \cdot 3$		4	-199'5			1				$27 \cdot 2$				15.9	68.7	$9 \cdot 3$	$40 \cdot 0$	6.2	$6 \cdot 9$	23.2	100'5

ROYAL OBSERVATORY, GREENWICH.

MAGNETIC DISTURBANCES.

1911.

Magnetic Disturbances in Declination, Horizontal Force, and Vertical Force, recorded at the Royal Observatory, Greenwich, in the Year igil.

The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 0.0010 in Horizontal Force, or 0.0003 in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in Horizontal and Vertical Force are expressed in parts of the whole Horizontal and Vertical Forces respectively. When any one of the three elements is not specifically mentioned, it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated.

The term "wave" is used to indicate a movement in one direction and return; "double wave" a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movements in the same direction; "fluctuations" a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase, and -a decrease of the magnetic element. In the case of fluctuations the sign \pm denotes positive and negative movements of generally equal extent.

Magnetic movements which do not admit of brief description in this way are exhibited on accompanying plates.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from \circ to 24).
1911.

January $\quad \mathbf{1}^{d}{ }^{2} 0^{3 \mathrm{~h}}$ to to $\mathbf{2 2}^{\mathrm{h}}$ Irregular double-crested wave in Dec. $\left(-6^{\prime}\right)$; irregular wave in H.F. ($+{ }^{\circ} 0033$).
$2^{\mathrm{d}} 2^{1 \mathrm{~h}}$ to 3^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $1^{14^{\mathrm{h}}}$ to 1^{h} Wave in Dec. $\left(+3^{\prime}\right)$, steep at end. $1^{16^{\mathrm{h}}}$ to 17^{h} Wave in H.F. (-.0016), followed till 18^{h} by a sharp double-crested wave (-.0025). $16 \frac{1_{2}}{}{ }^{\mathrm{h}}$ to 17^{h} Sharp wave in Dec. $\left(-5^{\prime}\right)$, followed till $18 \frac{2^{h}}{}$ by another sharp wave $\left(-11^{\prime}\right) .21_{4}^{\frac{1}{4}}$ to 22^{h} Irregular wave in H.F. $(+\cdot 0016)$, with sudden commencement. $2 \frac{1}{2}^{\frac{1}{h}}$ to 22^{h} Irregular wave in Dec. $\left(+5^{\prime}\right)$. $22 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 23^{h} Wave in H.F. ($-{ }^{-\infty} 10$). $2^{\mathrm{d}} 23^{\mathrm{h}}$ to $3^{\mathrm{d}} \mathbf{1}^{\mathrm{h}}$ Irregular triple wave in Dec. $\left(+3^{\prime},-6^{\prime},+5^{\prime}\right)$.
$3^{\mathrm{h}} 0^{\mathrm{h}}$ to $0_{4}^{\frac{3}{4}}$ Sharp wave in H.F. $(+\cdot 0030)$. $0 \frac{1}{4}^{\mathrm{h}}$ to 1^{h} Decrease in V.F. (-0003). $2^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $33^{\frac{3}{4}}$ Truncated

 Wave in Dec. $\left(-4^{\prime}\right) . \quad 17^{3 \mathrm{~h}}$ to 20^{h} Irregular triple-crested wave in Dec. (-10^{\prime}). 18^{h} to $199^{3 \mathrm{~h}}$ Wave in H.F. $(+\cdot 0027)$. $22 \frac{1}{2}$ h to $23 \frac{1}{2} \frac{\mathrm{~h}}{}$ Truncated wave in H.F. (-0015).
$4^{\mathrm{d}} 177^{\frac{3}{4}}$ to 184^{h} Sharp wave in Dec. $\left(-6^{\prime}\right)$: sharp increase in H.F. $(+\cdot 0020)$, followed by slower partial return (--0010).
$5^{\mathrm{d}} 16 \frac{3 \mathrm{~h}}{4}$ to 18^{h} Sharp wave in Dec. $\left(-13^{\prime}\right)$: double wave in H.F. $(-.0014$ to +0021$) .21 \frac{1}{4}^{\text {h }}$ to $22 \frac{34^{h}}{4}$
 23 $3^{\frac{3}{4}}$ Sharp increase in Dec. $\left(+9^{\prime}\right)$.
 20^{h} by a truncated wave (- - 0013). $166_{4}^{3 \mathrm{~h}}$ to 19^{h} Irregular wave in Dec. (-10^{\prime}), steep at commence-
 ${ }^{21}{ }_{4}^{111}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$8^{\mathrm{d}} 17^{\frac{1}{4} \mathrm{~h}}$ to $20^{1 \mathrm{~h}}$ Irregular double wave in Dec. $\left(+3^{\prime}\right.$ to -5^{\prime}), followed till $22 \frac{3^{\mathrm{h}}}{}$ by a sharp irregular triplecrested wave $\left(-16^{\prime}\right)$. 19^{b} to $22^{\frac{1 \mathrm{~h}}{}}$ Irregular double-crested wave in V.F. $(+0004) .20 \frac{1}{4}^{\mathrm{h}}$ to $23 \frac{1}{2}^{\frac{\mathrm{h}}{}}$ Irregular quintuple wave in H.F. (-.0013, +.0022, -.0008, +.0028, --0010).
 $\left.+{ }^{\circ} 011,-0013\right)$. $184^{3 \mathrm{~h}}$ to 1^{h} Sharp increase in Dec. $\left(+4^{\prime}\right)$, followed till $20 \frac{1}{4}^{\mathrm{h}}$ by two steep waves (-5^{\prime} and $\left.-5^{\prime}\right) .20^{\text {h }}$ Sharp increase in H.F. ($+\cdot 0012$).
$1^{10^{1}} 15^{\mathrm{h}}$ to 16^{h} Irregular wave in H.F. (-0017). ${ }^{15 \frac{3}{4}}$ to $16 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-5^{\prime}\right)$.
$1_{11^{\mathrm{d}}} 2^{\mathrm{h}}$ to $4^{\frac{1}{2} \mathrm{~h}}$ Irregular double wave in Dec. $\left(+6^{\prime}\right.$ to $\left.-5^{\prime}\right)$. 2^{h} to 4^{h} Slow wave in H.F. (+0014). $2_{2}^{\frac{1}{2} \mathrm{~h}}$ to $4^{\frac{1}{2}}{ }^{h}$ Wave in V.F. (--0003).
1911.

January $13^{\mathrm{d}} 17^{\mathrm{h}}$ to $18 \frac{1}{2} \mathrm{~h}$, Wave in M.F. (-.0023). $17 \frac{1}{2}^{\mathrm{h}}$ to $18 \frac{1_{2}^{\mathrm{h}}}{}$ Wave in Dec. (-6^{\prime}). $20 \frac{3}{4}{ }^{\mathrm{h}}$ to $21 \frac{3}{4} \mathrm{~h}$ Wave in Dec. (-4^{\prime}).
$14^{\mathrm{d}} \mathrm{O}_{2}^{\mathrm{h}}$ to $\frac{13^{\mathrm{h}}}{}{ }^{\text {I }}$ Irregular wave in Dec. $\left(+3^{\prime}\right)$.
 Irregular wave in Dec. $\left(-6^{\prime}\right)$.
$16^{d} 0 \frac{11^{h}}{4}$ to 2^{h} Flat-crested wave in H.F. ($-\infty 010$). $7 \frac{1}{4}^{h}$ to 10^{h} Slow wave in Dec. $\left(+6^{\prime}\right)$. $16 \frac{1}{2} h$ to $20 \frac{1}{2} h$ Loss of V.F. register. 18^{h} to $19 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-5^{\prime}\right) . \quad 22 \frac{1}{2}^{\mathrm{h}}$ to $23 \frac{1 \mathrm{lh}}{4}$ Wave in H.F. $\left(+{ }^{\circ} \mathrm{OO} 12\right)$.
$18^{\mathrm{d}} 3 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $4 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $\quad 17 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Double-crested wave in Dec. $\left(-7^{\prime}\right)$, followed till $22 \frac{1}{4} \mathrm{~h}$ by a slow wave $\left(-4^{\prime}\right) . \quad 18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $19 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular wave in H.F. $\left(+{ }^{\circ} \mathrm{OO} 3\right.$).
$2^{\mathrm{d}} 16 \frac{1}{2}^{\mathrm{h}}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.

$23^{\mathrm{d}} \mathrm{I}^{\frac{1}{4} \mathrm{~h}}$ to 3^{h} Two successive waves in Dec. $\left(+3^{\prime}\right.$ and $\left.+3^{\prime}\right)$. $17 \frac{14^{\mathrm{h}}}{}$ to $19^{\frac{1}{2}}{ }^{\mathrm{h}}$ Irregular wave in Dec. (-5^{\prime}): fluctuations in H.F.
$24^{\mathrm{d}} 6^{\mathrm{h}}$ to $25^{\mathrm{d}} 6^{\mathrm{h}}$. See Plate I.
$25^{d} 8 \frac{3}{4}{ }^{\mathrm{h}}$ to $1 I^{\mathrm{h}}$ Wave in H.F. ($-\cdot 0020$). $\quad 14^{\mathrm{h}}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Two successive irregular waves in Dec. (-4^{\prime} and -7^{\prime}). 15^{h} to 16^{h} Sharp wave in H.F. (-.0023), followed till $17 \frac{1}{2}^{\mathrm{h}}$ by a double wave (-0018 to +.0020), the first portion double-crested. $16 \frac{3 \mathrm{~h}}{4}$ to $18 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in Dec. (-14^{\prime}), steep at commencement. 19^{h} to $19 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular decrease in Dec. $\left(-6^{\prime}\right)$, followed by small waves till 23^{h}. 19^{h} to $20 \frac{1}{2}{ }^{\mathrm{h}}$ Irregular double-crested wave in H.F. $(+.0020) . \quad 20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $21 \frac{3 \mathrm{~h}}{4}$ Truncated wave in H.F. ($-{ }^{\circ} \mathrm{OO1} 3$).
$26^{\mathrm{d}} 0^{\mathrm{h}}$ to $3 \frac{1}{2}^{\mathrm{h}}$ Irregular triple-crested wave in Dec. $\left(-7^{\prime}\right)$. $\circ \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Sharp wave in H.F. $(+-0028)$. $\circ \frac{1}{2} \mathrm{~h}$ to $1 \frac{1}{2}^{\mathrm{h}}$ Decrease in V.F. ($-\cdot 0003$). $5 \frac{1}{2}^{\mathrm{h}}$ to 7^{h} Double-crested wave in H.F. ($-\cdot 0013$). 20^{h} to $\mathbf{2 2}^{\mathrm{h}}$ Irregular triple-crested wave in H.F. $\left(+\cdot 0027\right.$). $20 \frac{1}{4} \mathrm{~h}$ to $20 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. (-3^{\prime}), followed till $2^{\mathrm{h}}{ }^{\mathrm{h}}$ by two successive sharp waves $\left(+4^{\prime}\right.$ and $\left.+4^{\prime}\right)$. $26^{\mathrm{d}} 22^{\mathrm{h}}$ to $27^{\mathrm{d}} 0^{\frac{1}{2}}{ }^{\mathrm{h}}$ Slow wave in V.F. ($+\cdot 0003$). $26^{\mathrm{d}} 23^{\frac{1 \mathrm{~h}}{}}$ to $27^{\mathrm{d}} 1^{\mathrm{h}}$ Flat-crested wave in H.F. (+ -OOI7), steep at commencement.
$27^{\mathrm{d}} 1^{\mathrm{h}}$ to 4^{h} Double wave in Dec. $\left(-3^{\prime}\right.$ to $\left.+6^{\prime}\right)$. $17^{\frac{1}{4}}{ }^{\text {h }}$ to $18 \frac{1}{4}^{h}$ Wave in Dec. $\left(-7^{\prime}\right)$: double wave in H.F. (- -OOIO to $+\cdot 0$ IO). 20^{h} to 22^{h} Slow wave in Dec. $\left(-4^{\prime}\right) . \quad 23^{\mathrm{h}}$ to $23^{\frac{3}{4}{ }^{\mathrm{h}}}$ Wave in Dec. (-3^{\prime}). $27^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $28^{\mathrm{d}} 1^{\frac{1}{4}}{ }^{\mathrm{h}}$ Flat-crested wave in H.F. $(+\cdot 0012)$: in V.F. small.
 portion flat-crested. 13^{h} to 15^{h} Steep wave in H.F. (-0037). $13 \frac{1}{2}^{\mathrm{h}}$ to $14^{\frac{1}{2} \mathrm{~h}}$ Increase in V.F. $(+\cdot 0004) .20^{\mathrm{h}}$ to $22 \frac{1}{2} \mathrm{~h}$ Irregular triple-crested wave in Dec. $\left(-9^{\prime}\right) .21 \frac{1 \mathrm{~h}}{4}$ to $22 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ Sharp wave in H.F. (+ .0028).
$29^{\mathrm{d}} 19^{\frac{1}{2}} \mathrm{~h}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. $20 \frac{3 \mathrm{~h}}{4}$ to 22^{h} Sharp double wave in H.F. (-0013 to +0025). $2 \frac{1}{4}^{h}$ to $2 \frac{1}{2}^{\frac{h}{h}}$ Very sharp wave in Dec. $\left(-7^{\prime}\right) . \quad 22 \frac{1^{h}}{}$ to 23^{h} Wave in Dec. $\left(-4^{\prime}\right)$.
$30^{\mathrm{d}} 16 \frac{1}{2}^{\mathrm{h}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. ($-\cdot 0010$). $16 \frac{3 \mathrm{~h}}{4}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. (-5^{\prime}). $177^{\frac{3}{4}}$ to 18^{h} Sharp decrease in Dec. (-4^{\prime}), followed till $19 \frac{1}{2}^{\mathrm{h}}$ by a double wave $\left(+4^{\prime}\right.$ to $\left.-8^{\prime}\right)$. $18 \frac{1}{2}^{\mathrm{h}}$ to 20^{h} Sharp double wave in H.F. (- $\cdot 0017$ to $+\cdot 0017$).
 Wave in H.F. (-0024). 15^{h} to 16^{h} Decrease in Dec. $\left(-13^{\prime}\right)$, followed till 17^{h} by slower irregular
 $19 \frac{3 \mathrm{~h}}{}{ }^{2}$ to $20 \frac{1 \mathrm{~h}^{h}}{2}$ Very sharp double wave in Dec. $\left(-10^{\prime}\right.$ to $\left.+5^{\prime}\right)$. $19 \frac{3 h^{h}}{4}$ to 21^{h} Sharp wave in H.F. ($+\cdot 0043$), the second portion very irregular. 20^{h} to $2 \mathrm{I}^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in V.F. $\left(-.0003\right.$). 2^{h} to $233^{\frac{1}{2}}$ Two successive waves in Dec. $\left(+4^{\prime}\right.$ and $\left.+3^{\prime}\right)$. 22^{h} to $23 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular double-crested wave in H.F. $\left(+{ }^{-} 0013\right)$, followed till February $I^{d}{ }^{\frac{1}{4}} \frac{\mathrm{~h}}{}$ by a wave (+.0022). $22 \frac{1 \mathrm{l}}{4}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Decrease in V.F. (-0004). January $3 I^{\mathrm{d}} 2^{\frac{3}{4}}{ }^{\mathrm{h}}$ to February $1^{d} I^{\text {b }}$ Wave in Dec. $\left(-5^{\prime}\right)$.
 $17 \frac{1}{2}^{\mathrm{h}}$ by an irregular steep double wave (-.0017 to $+\cdot 0015$). 15^{h} to 19^{h} Slow wave in V.F. ($+\cdot 0005$). $15^{\frac{1}{4} \mathrm{~h}}$ to $16 \frac{1}{4}^{\mathrm{h}}$ Arched wave in Dec. $\left(-7^{\prime}\right)$. $16 \frac{1}{2}^{\mathrm{h}}$ to 17^{h} Sharp wave in Dec. $\left(-9^{\prime}\right)$. $\quad 20^{\mathrm{h}}$ to 21^{h} Wave in Dec. $\left(-3^{\prime}\right) . \quad 22 \frac{1}{2}^{\mathrm{h}}$ to 23^{h} Wave in Dec. $\left(+3^{\prime}\right)$.
$2^{\mathrm{d}} 1^{\frac{1}{4}}$ to $2^{\frac{1}{2} \mathrm{~b}}$ Wave in Dec. $\left(-3^{\prime}\right)$, followed till $4 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ by a double-crested wave $\left(-4^{\prime}\right) . \quad 2^{\mathrm{h}}$ to $3 \frac{1}{2}^{\mathrm{h}}$ Waves in H.F. ($+\cdot 0021$) and V.F. ($-\cdot 0003$). $9^{\text {h }}$ to $12 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. ($-\cdot 0040$), steep at commencement. $9 \frac{1}{2}^{1 \mathrm{~h}}$ to $12 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+5^{\prime}\right)$. $14 \frac{3}{4}^{\mathrm{h}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Double wave in H.F. (-.0020 to +.0018), the first
 $\left(-4^{\prime}\right)$, followed till $18 \frac{1}{4}^{\mathrm{h}}$ by another (-12^{\prime}), very steep at commencement, with small waves superposed on return. 19^{h} to $21 \frac{1}{2}^{\mathrm{h}}$ Three successive waves in Dec. $\left(-5^{\prime},-3^{\prime},-3^{\prime}\right)$, followed till 24^{h} by a slow wave $\left(-4^{\prime}\right) . \quad 19^{\mathrm{h}}$ to $20 \frac{3}{4} \mathrm{~h}$ Double-crested wave in H.F. $(+\cdot 0020)$, followed by small waves till $2 \mathrm{I}_{2}^{\mathrm{h}}$, and from $2 I^{\frac{1}{2}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ by another wave (+0012).
1911.

February $4^{\text {d }} 18 \frac{3 h^{h}}{4}$ to $19 \frac{1}{2} h$ Sharp wave in Dec. $\left(-5^{\prime}\right)$. $20 \frac{3}{4}{ }^{h}$ to $21 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$, followed till 23^{h} by a slower one (-3^{\prime}).
$5^{d} 0^{h}$ to $1 \frac{1}{2}^{h}$ Wave in Dec. $\left(-3^{\prime}\right)$. 2^{h} to 23^{h} h Small sharp waves in H.F. $11 \frac{3}{4}^{h}$ to $1^{h}{ }^{h}$ Decrease in H.F. (-.0015). $11 \frac{1}{2}{ }^{h}$ to $12 \frac{1}{4}{ }^{h}$, Wave in Dec. $\left(+4^{\prime}\right)$. $15 \frac{1 h^{h}}{4}$ to 17^{h} Wave in H.F. (-0012). $18 \frac{1 \mathrm{~h}}{4}$ to $19 \frac{3 \mathrm{~h}}{4}$ Double wave in Dec. $\left(+3^{\prime}\right.$ to -4^{\prime}): smaller wave in H.F. $20^{\text {h }}$ to $21 \frac{3 \mathrm{~h}}{4}$ Double-crested wave in Dec. (-9^{\prime}), the first crest very sharp. 20^{h} to $20 \frac{3}{4} \mathrm{~h}$ Sharp wave in H.F. ($+{ }^{\circ} 0029$). $2 \mathrm{I}^{\mathrm{h}}$ to $2 \mathrm{I}_{\frac{1}{2}}{ }^{\mathrm{h}}$ Decrease in H.F. ($-\cdot 0010$), followed till $22 \frac{34^{\mathrm{h}}}{}$ by an increase $\left(+{ }^{\circ} 0020\right)$. $22 \frac{1}{2}^{\mathrm{h}}$ to $23^{\frac{1 \mathrm{~h}}{}}$ Wave in Dec. $\left(+4^{\prime}\right)$. $5^{\mathrm{d}} 22 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $6^{\mathrm{d}} 0 \frac{1}{2} \mathrm{~h}$ Irregular double wave in H.F. (-0010 to $+\cdot 0010$).
$6^{\mathrm{d}} 15 \frac{1}{2}^{\mathrm{h}}$ to 17^{h} Double-crested wave in H.F. (- -0010). $15^{\frac{3}{4}}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Irregular wave in Dec. (-6^{\prime}). $20 \frac{1}{2}^{\mathrm{h}}$ to $\mathbf{2 2}^{\mathrm{h}}$ Double-crested wave in H.F. ($+\cdot 0020$), the second portion sharp. $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 22^{h} Two successive waves in Dec. $\left(+4^{\prime}\right.$ and $\left.+3^{\prime}\right)$. $2 I^{\mathrm{h}}$ to $2 \mathrm{I}_{4} \mathrm{3}^{\mathrm{h}}$ Decrease in V.F. $(-\cdot 0003)$.
$7^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to $3 \frac{3}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+5^{\prime}\right)$. $16 \frac{1}{2}^{\mathrm{h}}$ to 19^{h} Triple-crested wave in H.F. (-0015). $17 \frac{1}{2}^{\mathrm{h}}$ to 19^{h} Wave in Dec. $\left(-9^{\prime}\right)$.
$8^{\mathrm{d}} 0 \frac{1}{2}{ }^{\mathrm{h}}$ to $1 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$. 12^{h} to $13^{\frac{1}{4} \mathrm{~h}}$ Wave in H.F. (-001 I). $12 \frac{1^{\mathrm{h}}}{}$ to $13 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right) . \quad 15^{\mathrm{h}}$ Decrease in H.F. (-0013). $17 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-7^{\prime}\right)$.
$9^{\text {d }} 17^{\frac{1}{2}}$ to $18 \frac{1}{2}^{h}$ Small double wave in H.F. $\quad 18^{h}$ Sharp decrease in Dec. $\left(-5^{\prime}\right) . \quad 18 \frac{1}{2}^{h}$ to 19^{h} Increase in Dec. $\left(+7^{\prime}\right)$.
$10^{\mathrm{d}} 8 \frac{3 \mathrm{~h}}{4}$ to 12^{h} Slow wave in H.F. (-.0020). 18^{h} to 19^{h} Wave in H.F. (-.0010). $20 \frac{1}{4}^{\mathrm{h}}$ to 21^{h} Waves in Dec. (-4^{\prime}) and H.F. (+ +0020).
$1 I^{d} 15 \frac{1}{2}^{h}$ to $16 \frac{1}{4}^{h}$ Wave in H.F. (-00II). $15^{\frac{3}{4}}{ }^{h}$ to $17 \frac{1}{4}^{h}$ Wave in Dec. $\left(-4^{\prime}\right)$.
 H.F. ($-\cdot 0010,+\cdot 0010,-\cdot 0010$).
$13^{\mathrm{d}} 1^{\mathrm{h}}$ to $2 \frac{3 \mathrm{~h}}{4}$. Slow wave in Dec. $\left(-3^{\prime}\right)$. 19^{h} to $21 \frac{1 \mathrm{l}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-20^{\prime}\right)$, the first portion steep, the return irregular. $19^{\text {h }}$ to 20^{h} Sharp wave in H.F. (-0036), followed till $22 \frac{3}{4}{ }^{\mathrm{h}}$ by an irregular double wave (-0024 to $+\cdot 0026$), again followed till $23^{\frac{1}{2}}{ }^{\mathrm{h}}$ by a sharp wave (-0016). 19 ${ }^{\frac{1}{4}}{ }^{\mathrm{h}}$ to $22 \frac{3}{4}{ }^{\mathrm{h}}$ Slow wave in V.F. $(+\cdot 0005) .22^{\mathrm{h}}$ Decrease in Dec. $\left(-4^{\prime}\right) .22 \frac{34^{\mathrm{h}}}{}$ to 24^{h} Waves in Dec. (-6^{\prime} and - 3^{\prime}). $13^{\mathrm{d}} 23^{3 \mathrm{~b}}$ to $14^{\mathrm{d}} 2 \frac{1}{4}^{\mathrm{h}}$ Irregular slow wave in H.F. ($-\cdot 0 \mathrm{O} 7$).
 in Dec. $\left(+4^{\prime}\right)$. $8 \frac{3 \mathrm{~h}}{4}$ to $10 \frac{3 \mathrm{~h}}{4}$. Wave in H.F. (-0015). $13 \frac{1}{2}^{\mathrm{h}}$ to $15 \frac{1{ }^{\mathrm{h}}}{}{ }^{\mathrm{h}}$ Irregular wave in Dec. $\left(-7^{\prime}\right)$. 15^{h} to 16^{h} Loss of H.F. and V.F. registers. 16^{h} to $17 \frac{1}{4}^{\mathrm{h}}$ Slow double-crested wave in Dec. ($-3^{\text {' }}$). $19 \frac{1}{4}^{\mathrm{h}}$ to $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-8^{\prime}\right)$. $19 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0010)$. $\mathbf{2 2}^{\mathrm{h}}$ to 23^{h} Wave in Dec. $\left(-3^{\prime}\right)$: double-crested wave in H.F. $\left(+{ }^{\circ} \mathrm{OO} 3\right)$.
$16^{\mathrm{d}}{ }^{1} 3^{\frac{1}{4}}$ to $15^{\frac{1}{2}}$ h Slow wave in H.F. (-.0013), with superposed sharp fluctuations. 16^{h} to 18^{h} Irregular wave in H.F. (-0012). 17^{h} to 18^{h} Sharp decrease in Dec. $\left(-12^{\prime}\right)$, and increase $\left(+8^{\prime}\right)$. $17 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $18 \frac{1}{2} \mathrm{~h}$ Wave in V.F. $(+\cdot 0003)$.
$17^{\mathrm{d}} 15^{\mathrm{h}}$ to 20^{h} Slow wave in V.F. $\left(+\cdot 0005\right.$). $155^{\frac{1}{4} \mathrm{~h}}$ to $16 \frac{3 \mathrm{~h}}{4}$ Double-crested wave in H.F. ($-\cdot 0013$). $16 \frac{1}{4} \mathrm{~h}$ to $17 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-9^{\prime}\right)$. $19 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{3}{4} \mathrm{~h}$ Double-crested wave in Dec. $\left(-6^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $20 \frac{3 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ Wave in H.F. (+0010). $23 \frac{1^{\mathrm{h}}}{}$ to 24^{h} Waves in Dec. $\left(-5^{\prime}\right)$ and H.F. ($+{ }^{\circ} 0018$).
$18^{\mathrm{d}} 20 \frac{1}{4}^{\mathrm{h}}$ to $21^{\frac{1}{2}}$ Waves. in Dec. $\left(-8^{\prime}\right)$ and H.F. $(+\cdot 0030) .22 \frac{3 \mathrm{~h}}{4}$ to $23 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Waves in Dec. $\left(+5^{\prime}\right)$ and H.F. ($+\cdot 0011$). 23^{h} to $23 \frac{1}{2} \mathrm{~h}$ Decrease in V.F. (-0003).
$19^{\mathrm{d}} \mathrm{I}_{\frac{1}{2}}{ }^{\mathrm{h}}$ to 3^{h} Wave in Dec. $\left(+7^{\prime}\right)$. $17 \frac{1}{2}^{\mathrm{h}}$ to $18 \frac{3}{4} \mathrm{~h}$ Wave in Dec. $\left(-6^{\prime}\right)$.
$20^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-5^{\prime}\right)$.

$21^{d} 6^{\mathrm{h}}$ to $2^{\mathrm{d}} 6^{\mathrm{h}}$. See Plate I.
$22^{d} 6^{h}$ to $23^{d} 6^{h}$. See Plate II.
 Decrease in Dec. $\left(-4^{\prime}\right)$, continued till $19 \frac{1}{4}^{\mathrm{h}}$ by a quintuple wave $\left(-4^{\prime},+3^{\prime},-3^{\prime}\right.$, $\left.+3^{\prime},-5^{\prime}\right)$. $18 \frac{3 \mathrm{~h}}{4}$ to ${ }^{21}{ }^{1 \mathrm{~h}}$ Irregular quadruple wave in H.F. (-.0017, $+.0015,-.0012,+.0018$). $20 \frac{1}{4}$ h to $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Sharp wave in Dec. $\left(-7^{\prime}\right)$. $\quad 22^{\mathrm{h}}$ to 24^{h} Double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+4^{\prime}\right)$. $22 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 24^{h} Wave in H.F. ($+\cdot 0014$).
$24^{\mathrm{d}} 0^{\mathrm{h}}$ to 24^{h} Irregular double wave in Dec. $\left(-4^{\prime}\right.$ to $+4^{\prime}$), the first portion flat-crested. o^{h} to 3^{h} Irregular triple
 Dec. $\left(-4^{\prime}\right)$. $16 \frac{1}{4}^{\mathrm{h}}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (-.0023). ${ }^{16 \frac{1}{2}}{ }^{\mathrm{h}}$ to 18^{h} Irregular wave in Dec. (-9^{\prime}). 191^{h} to 23^{h} Truncated wave in Dec. $\left(-7^{\prime}\right)$, with small waves superposed on crest. $19 \frac{1}{2}^{\mathrm{h}}$ to 22^{h} Irregular wave in H.F. ($+\cdot 0034$).

191I.
February $25^{\mathrm{d}} 11^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 13^{b} Truncated wave in H.F. (-00IO): steep at commencement. $183^{\mathrm{h}}{ }^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$: in H.F. small. $\quad 2 I^{\frac{1}{2}}$ to $22 \frac{3}{4} \mathrm{~h}$ Double-crested waves in Dec. $\left(+4^{\prime}\right)$ and H.F. $\left(+{ }^{\circ} 0016\right)$.
$26^{\mathrm{d}} 0^{\mathrm{h}}$ to $\frac{1}{2}^{\frac{1}{\mathrm{~h}}}$ Double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-3^{\prime}\right)$: wave in V.F. $(-\cdot 003)$. $3^{34^{\mathrm{h}}}$ to $5^{\frac{1}{4} \mathrm{~h}}$ Wave in H.F. (-.0012). 14^{h} to 15^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $16 \frac{1}{2} \mathrm{~h}$ to $18 \frac{1}{2} \mathrm{~h}$ Wave in H.F. (-0010). $21 \frac{1}{4}{ }^{\mathrm{h}}$ to 23^{h} Wave in Dec. $\left(-5^{\prime}\right) . \quad 21 \frac{3 \mathrm{~h}}{4}$ to $22 \frac{3 \mathrm{~b}}{4}$ Wave in H.F. ($+\cdot 0010$).
$27^{\mathrm{d}} 2^{\mathrm{h}}$ to 3^{h} Decrease in V.F. ($-\cdot 0003$). $22^{\frac{1}{2}}$ to 3^{h} Wave in Dec. $\left(+3^{\prime}\right) . \quad 2 \frac{1}{2} \mathrm{~h}$ to $3 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. ($+\cdot 0012$). $9^{\frac{3}{4}}$ to 11^{h} Waves in Dec. $\left(-4^{\prime}\right)$ and H.F. ($-\infty 012$). 14^{h} to $1^{\frac{1}{2}}{ }^{\mathrm{h}}$ Double crested wave in H.F. $(-0017) . \quad 16 \frac{3 \mathrm{~h}}{4}$ to 19^{h} Truncated wave in Dec. $\left(-7^{\prime}\right)$: followed till 22^{h} by an irregular wave $\left(-9^{\prime}\right)$, with a sharp wave $\left(-5^{\prime}\right)$ superposed from $19 \frac{1}{4}^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$. $17 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (- -OOI 3). $19 \frac{1}{4}^{\mathrm{h}}$ to 22^{h} Irregular double wave in H.F. (+.0026 to $-\cdot 0012$), steep at commencement.
 Decrease in V.F. (-0005). $4^{\frac{1}{2} \mathrm{~h}}$ to 6^{h} Double-crested wave in Dec. $\left(+3^{\prime}\right)$. $12 \frac{3 \mathrm{~h}}{4}$ to $13 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in H.F. (-0010). $13 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $14 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. 14^{h} to $14^{\frac{1}{2} \mathrm{~h}}$ Wave in H.F. (-0010). $14 \frac{1}{2}^{\mathrm{h}}$ to 17^{h} Irregular double wave in Dec. $\left(+3^{\prime}\right.$ to -4^{\prime}). 15^{h} to $16 \frac{1 \mathrm{~h}}{4}$ Double wave in H.F. (-0012 to $+\cdot 0008$). $17 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Triple-crested wave in Dec. $\left(-8^{\prime}\right)$. 18^{h} to $19 \frac{3 \mathrm{~h}}{}$ Two successive waves in H.F.
 Sharp wave in H.F. $(+\cdot 0036) .21 \frac{1}{4}$ to 23^{h} Wave in V.F. $(-0005) .22^{\mathrm{h}}$ to $22 \frac{1}{2} \mathrm{~h}$ Wave in H.F. (+ -OOIO). February $28^{d} 23^{h}$ to March $1^{d} 1 \frac{1}{2}{ }^{\text {h }}$ Irregular double-crested wave in H.F. $(+\cdot 0025)$.

March
 H.F. (- 0013). 13^{h} to $133^{\frac{3 \mathrm{~h}}{}}$ Wave in H.F. (-0012). 15^{h} to 17^{h} Rapid fluctuations in H.F. 17^{h} to 18^{h} Wave in Dec. $\left(-4^{\prime}\right)$. 17^{h} to $17 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (- ooio). $18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 21^{h} Irregular double wave in H.F. $(-\circ 010$ to $+\circ 013)$, the first portion double-crested, the second triple-crested. $19 \frac{1}{2}^{\text {h }}$ to

 Sharp wave in Dec. $\left(-1^{\prime}\right)$. $\mathbf{2 0}^{\mathrm{h}}$ to $\mathbf{2 2}^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right)$, sharp at commencement. $\mathbf{2 3}^{\frac{1}{4}}{ }^{\mathrm{h}}$ to $\mathbf{2} 4^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right)$: in H.F. small.
 till 22^{h} by a triple-crested wave ($-{ }^{\circ} 0019$). $21 \frac{3 \mathrm{~h}}{4}$ to 23^{h} Wave in Dec. $\left(-4^{\prime}\right) .22 \frac{1 \mathrm{~h}}{4}$ to 23^{h} Wave in H.F. (- -OO12).
$5^{\mathrm{d}} 3^{\frac{1}{2}}$ to $4 \frac{1}{2}^{\mathrm{h}}$ Double wave in Dec. $\left(+5^{\prime}\right.$ to -3^{\prime}): wave in V.F. (-0003). $3^{\frac{1}{2} \mathrm{~h}}$ to 6^{h} Triple wave in H.F. ($+\cdot 0010,-0008,+0009$). $9^{\text {h }}$ to $93^{\frac{3}{4}}$ Sharp decrease in H.F. (-0028). $14^{\text {h }}$ to ${ }^{1} 5^{\frac{1}{2}}{ }^{\text {h }}$ Wave in H.F. (-.0025), with superposed fluctuations, followed till $17 \frac{3 \mathrm{~h}}{4}$ by another wave (-.0035). ${ }^{1} 4 \frac{1}{2}^{\text {h }}$ to $15 \frac{3 \mathrm{~h}}{4}$ Truncated wave in Dec. (-5^{\prime}). $14 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $21 \frac{1}{2}^{\mathrm{h}}$ Wave in V.F. ($+{ }^{\circ} 0008$). $16 \frac{33^{\mathrm{h}}}{4}$ to 18^{h} Sharp wave in Dec. $\left(-{ }^{\prime} 2^{\prime}\right)$. $18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Three successive waves in Dec. $\left(-4^{\prime},-3^{\prime},-4^{\prime}\right.$), the first doublecrested. $18 \frac{3 \mathrm{~h}}{4}$ to 22^{h} Four successive waves in H.F. $\left(+0010,+0012,+002 \mathrm{I},+.0027\right.$). $223^{3 \mathrm{~h}}$ to $23 \frac{1}{4}{ }^{\mathrm{h}}$ Waves in Dec. $\left(+3^{\prime}\right)$, and H.F. $\left(+{ }^{\circ} \mathrm{OO} 0\right.$).
$6^{\text {d }} 18 \frac{1 \mathrm{~h}}{4}$ to $19 \frac{3 \mathrm{~h}}{4}$ Sharp triple-crested wave in Dec. $\left(-9^{\prime}\right)$: irregular wave in H.F. $(+\cdot 0040)$.
$7^{\mathrm{d}} 1^{\mathrm{h}}$ to $16 \frac{1}{2} \mathrm{~h}$ Decrease in Dec. $\left(-4^{\prime}\right) .21^{\mathrm{h}}$ to $22^{\frac{1}{4} \mathrm{~h}}$ Double-crested wave in Dec. $\left(+4^{\prime}\right)$: wave in H.F.

$8^{\mathrm{d}} 11^{\mathrm{h}}$ to 14^{b} Wave in H.F. (-0027).
$9^{\mathrm{d}} 20^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$13^{\mathrm{d}} 20 \frac{3^{h}}{4}$ to 2^{h} Truncated wave in H.F. (- - O (o) : in Dec. small.
$14^{\mathrm{d}} 4^{\frac{3}{4} h}$ to $8 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ Double-crested wave in Dec. $\left(+8^{\prime}\right)$. 5^{h} to $63^{\frac{3 h}{4}}$ Wave in H.F. $(+\cdot \infty 16) .5^{\frac{1 \mathrm{~h}}{}}$ to 6^{h} Decrease in V.F. (-0003). $22 \frac{1 \mathrm{~h}}{4}$ to 24^{h} Double-crested wave in H.F. $(+\cdot 0011)$.
 wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+3^{\prime}\right)$. $2^{\frac{1}{4}}{ }^{\mathrm{h}}$ to 5^{h} Two successive waves in H.F. (-0012 and -0010). 12^{h}

$16^{\mathrm{d}} 10_{2}^{\frac{1}{2}}$ to 11^{h} Decrease in H.F. ($-\cdot 0010$).
$19^{d} 12^{h}$ to $15^{\text {h }}$ Loss of V.F. register.
1911.

March $\quad 20^{\mathrm{d}} 0{ }^{\frac{3 \mathrm{Sh}}{4}}$ Sudden increase in H.F. $\left(+0008\right.$): in Dec. small. ${ }^{2 \frac{3 \mathrm{~h}}{4}}$ to $5 \frac{3 \mathrm{~h}}{4}$ Irregular quadruple wave in Dec. (-3^{\prime}, $\left.+4^{\prime},-4^{\prime},+3^{\prime}\right) \cdot$ two successive irregular waves in H.F. (-.0027 and -.0020), the tirst commencing with a sharp spasmodic double wave: small slow waves in V.F. $8^{\text {h }}$ to $8 \frac{33^{h}}{}$ Decrease in H.F. (-0018).

 continued till 17^{h} by two successive sharp truncated waves (-8^{\prime} and -6^{\prime}). $15 \frac{11^{\mathrm{h}}}{}{ }^{\mathrm{h}}$ to $1^{16 \frac{\mathrm{~h}}{}{ }^{\mathrm{h}} \text { Double wave }}$ iu H.F. (-0010 to +0042), followed till 17^{h} by a wave $\left(+.0017\right.$). 17^{h} to ${ }^{17} \mathrm{~m}^{\mathrm{h}}$ Sharp wave in Dec. $\left(-3^{\prime}\right)$. $17^{\frac{1 \mathrm{~h}}{}}$ to 18^{h} Sharp increase in H.F. (+0010), followed by a wave (-0017). $17 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ to 18^{h} Irregular decrease in Dec. (-6^{\prime}), followed till 20^{h} by an irregular triple wave $\left(+4^{\prime},-16^{\prime},+4^{\prime}\right)$. ${ }^{18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}}$ to 20^{h} Triple-crested wave in H.F. $\left(+\cdot 0047\right.$), followed till $21 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ by a triple wave ($-0014,+\circ 0029$, - oor 6). 20^{h} Sudden increase in Dec. $\left(+3^{\prime}\right)$, followed till $211^{1 \mathrm{~h}}$ by a sharp irregular double wave (-5^{\prime}
 23_{4}^{hh} Irregular double wave in H.F. $(-\cdot 0013$ to +0016$)$. 22^{h} to 24^{h} Irregular double wave in Dec. $\left(-3^{\prime}\right.$ to $\left.+3^{\prime}\right)$, the first portion triple-crested. $20^{d} 22 \frac{1 \mathrm{~h}}{4}$ to $21^{\mathrm{d}} \mathrm{I}_{2}^{\frac{1}{\mathrm{~h}}}$ Wave in V.F. $(-\cdot 0004)$.
 (-.0021). 9^{h} to 12^{h} Irregular wave in H.F. (-0024). 12^{h} to $\mathrm{I}^{2} 4^{\frac{1}{4}}$ Two successive irregular waves in Dec. $\left(+5^{\prime}\right.$ and $\left.+6^{\prime}\right)$. $12 \frac{1 \mathrm{~h}}{4}$ to $13 \frac{1 \mathrm{hb}}{4}$ Triple-crested wave in H.F. (-0013). 13^{h} to ${ }^{\frac{3}{3 h}}{ }^{\frac{\mathrm{h}}{}}$ Increase in V.F. $\left(+0005\right.$). 14^{h} to $14_{2}^{1 \mathrm{~h}}$ Sharp double-crested wave in H.F. (-0022). 15^{h} to 164_{4}^{h} Increase
 Sharp decrease in Dec. $\left(-{ }^{2} 3^{\prime}\right)$, followed till 17^{h} by slower partial return $\left(+14^{\prime}\right)$. $177^{1 \mathrm{~h}}$ to $183^{3 \mathrm{~h}}$ Double wave in Dec. $\left(+5^{\prime}\right.$ to $\left.-9^{\prime}\right)$, each portion double-crested, followed till $19 \frac{1}{2}{ }^{1}$ by small waves. $17 \frac{3}{4} \mathrm{~h}$ Sharp decrease in H.F. (-0014). 18^{h} to 19^{h} Sharp irregular triple wave in H.F. ($-0010,+\cdot 0040$,
 20^{h} to $2 \mathrm{I}_{2}^{1 \mathrm{~h}}$ Truncated wave in H.F. ($+\cdots 020$). $222_{2}^{1 \mathrm{~h}}$ to 24^{h} Wave in Dec. $\left(+8^{\prime}\right)$. $22 \frac{1 \mathrm{l}}{2}$ h to $23 \frac{1 \mathrm{hh}}{4}$ Wave in H.F. ($-\cdot 0010$). $22 \frac{34^{\mathrm{h}}}{}$ to 24^{h} Decrease in V.F. ($-\cdot 0006$).
$22^{\mathrm{d}} \circ_{\frac{1}{4}}{ }^{\mathrm{h}}$ to 3^{h} Irregular double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+5^{\prime}\right)$, both portions flat-crested. 1^{h} to 2^{h} Waves in H.F. (-.0015) and V.F. $(+\cdot 0003)$. $2^{\frac{3}{4} \mathrm{~h}}$ to 5^{h} Flat-crested wave in H.F. ($-\cdot 0015$). 3^{h} to $5^{\frac{1}{4} \text { h }}$ Slow wave in V.F. $(+\cdot 0004)$. $4^{\text {h }}$ to $5^{\frac{1 \mathrm{~h}}{}}$ Wave in Dec. $\left(+5^{\prime}\right)$. 9^{h} to 11^{h} Wave in H.F. $\left(-\cdot 0015\right.$). $16 \frac{1}{2}^{\mathrm{h}}$ to 18^{h} Wave in Dec. $\left(-5^{\prime}\right)$. $16 \frac{1 \mathrm{~h}}{}$ to 17^{h} Wave in H.F. (- ool2). 19^{h} to $20 \frac{3 \mathrm{~h}}{4}$ Sharp wave in Dec. (-10^{\prime}). $19 \frac{1}{4}_{\text {h }}$ to $2 \mathbf{I}^{\mathrm{h}}$ Wave in H.F. (+0032). $22^{\mathrm{d}} 23^{\frac{1 \mathrm{~h}}{}}$ to $23^{\mathrm{d}} \frac{1}{2}^{\frac{1 \mathrm{~h}}{}}$ Irregular double-crested wave in H.F. $(+.0033) .22^{\mathrm{d}} 23^{\frac{1}{h}}$ to $23^{\text {d }}{ }^{1{ }^{1 \mathrm{~h}}}$ Double wave in Dec. $\left(+6^{\prime}\right.$ to $\left.-7^{\prime}\right)$, followed till $2^{\text {h }}$ by a wave $\left(-4^{\prime}\right) . \quad 22^{\mathrm{d}} 23^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $23^{\mathrm{d}} 22^{\frac{1}{\mathrm{~h}}}$ Wave in V.F. (-0005), steep at commencement.
 Hluctuations. $14^{\frac{3}{4}}$ to 16^{h} Wave in V.F. (-0003). $15^{\text {h }}$ to 18^{h} Irregular quadruple wave in H.F. $(-.0015,+0012,-0011,+\cdot 0024) .5^{\text {h }}$ to 16^{h} Truncated wave in Dec. (-4^{\prime}), followed till $183^{3}{ }^{\mathrm{h}}$ by an irregular triple-crested wave (-12^{\prime}). $192^{\frac{1}{2}}$ to 20^{h} Wave in Dec. (-5^{\prime}), followed till 24^{h} by an irregular double wave (-10^{\prime} to $+4^{\prime}$), the first portion quadruple-crested. $199^{\frac{1}{1}}$ to $20 \frac{3^{h}}{}$ Wave in H.F. $\left(+.0028\right.$), followed till $23^{\frac{1}{h}}$ by an irregular double wave (+.0027 to -0020). $2 \frac{1}{3}^{\mathrm{h}}$ to $3^{2} 3^{\frac{1}{2}}$ Wave
 Slow wave in V.F. (-0004).
 wave in Dec. $15 \frac{3 \mathrm{~h}}{4}$ to $16 \frac{3 \mathrm{~h}}{} \mathrm{~h}^{2}$ Wave in Dec. $\left(-5^{\prime}\right)$. $15 \frac{3 \mathrm{~h}}{4}$ to $15 \frac{1 \mathrm{~h}}{}$ h Wave in H.F. (-0010). $20 \frac{3 \mathrm{~h}}{4}$ to ${ }_{21}{ }^{3 \mathrm{~h}} \mathrm{~h}$ Sharp decrease in Dec. $\left(-15^{\prime}\right)$, with partial return $\left(+10^{\prime}\right)$: sharp wave in H.F. $\left(+{ }^{\circ} 020\right.$),

 $5^{\frac{1}{2}}{ }^{\mathrm{h}}$ Irregular triple wave in H.F. $(-0014,+.0015,-0015)$. $6 \frac{3 \mathrm{~h}}{4}$ to $7 \frac{1 \mathrm{~h}}{4}$ Decrease in H.F.
 small. 16^{h} to $16 \frac{3 \mathrm{hh}}{4}$ Decrease in H.F. (- ooi 5), followed by increase $\left(+0027\right.$). $16 \frac{1 \mathrm{~h}}{4}$ to 17^{h} Wave in Dec. (-5^{\prime}). $172_{2}^{1 h}$ to $19^{\text {h }}$ Double wave in H.F. (-0011 to +0018), the middle portion steep. 18^{h} to $19 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-10^{\prime}\right)$, steep at commencement. $199^{\frac{3 \mathrm{~h}}{}}$ to $0^{1 \frac{1}{2}^{\mathrm{h}}}$ Wave in Dec. (-4^{\prime}), steep at commencement. $19 \frac{3 \mathrm{~h}}{4}$ to $21 \frac{1}{4}^{\text {h }}$ Double-crested wave in H.F. $(+0015)$. 213 ${ }^{\frac{h}{4}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Doublecrested wave in H.F. $(+\cdots 020)$. 22^{h} to $22^{3 \mathrm{~h}}$ Wave in Dec. $\left(+5^{\prime}\right)$. $22^{\frac{1 \mathrm{~h}}{}}$ to 23^{h} Decrease in V.F. $(-\cdot 0005) . \quad 25^{\mathrm{d}} 23^{\mathrm{h}}$ to $2^{6^{\mathrm{d}}} 0_{4}^{3}{ }^{\mathrm{h}}$. Wave in Dec. $\left(-5^{\prime}\right)$.

 crested wave in Dec. $\left(-6^{\prime}\right)$. $17 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{2}{2}^{\mathrm{h}}$ Irregular triple wave in H.F. $(+.0017,-0013,+0018)$, the first and second portions double-crested, followed till 211_{2}^{h} by a wave $(+.0013)$. 19^{h} to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. (-9^{\prime}), followed till 24^{h} by an irregular wave ($-1 \mathbf{1}^{\prime}$).
$27^{\mathrm{d}} 2^{\mathrm{h}}$ to 7^{h} Triple wave in Dec. $\left(+3^{\prime},-3^{\prime},+5^{\prime}\right)$. $4_{4}^{\frac{1 \mathrm{~h}}{} \text { to }} 5 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-0018). $8 \frac{1 \mathrm{~h}}{4}$ to $1^{\mathrm{o}^{\mathrm{h}}}$ Flat-

 triple-crested wave in Dec. (-10^{\prime}), steep at commencement. 20^{h} to $20^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ Decrease in V.F. (-0003). $27^{\mathrm{d}} 22^{\frac{1}{2}}$ to $28^{\mathrm{d}} 3^{\mathrm{h}}$ Irregular double wave in Dec. ($+7^{\prime}$ to -5^{\prime}). $27^{\mathrm{d}} 23^{\mathrm{h}}$ to $28^{\mathrm{d}} 2 \frac{1}{4}^{\mathrm{h}}$ Irregular wave in H.F. $(+-0022) . \quad 27^{\text {d }} 23^{\text {h }}$ to $28^{\text {d }} 3^{\text {h }}$ Wave in V.F. $(-\cdot 0005)$.
1911.

March $\quad 28^{\mathrm{d}} 4 \frac{1}{2}^{\mathrm{h}}$ to 8^{h} Wave in Dec. $\left(+12^{\prime}\right)$. $5^{\frac{1 \mathrm{~h}}{4}}$ to $6 \frac{1}{2} \mathrm{~h}$ Wave in H.F. (-0012). 16^{h} to $18 \frac{1 \mathrm{~h}}{4}$ Double wave in H.F. (+.0010 to -.0010), followed till $22 \frac{1}{4} \mathrm{~h}$ by another double wave (-.0013 to +0020). I $9 \frac{1}{2}{ }^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ Quadruple wave in Dec. $\left(+3^{\prime},-4^{\prime}\right.$, $\left.+3^{\prime},-3^{\prime}\right) .20^{\mathrm{h}}$ to $23^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in V.F. (-0004).
$29^{\mathrm{d}} \circ^{\mathrm{h}}$ to $\mathrm{I}^{\frac{3}{4} \mathrm{~h}}$ Dotuble wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-4^{\prime}\right)$. \circ^{h} to $4 \frac{1}{2} \mathrm{~h}$ Wave in V.F. (-0005). o $\frac{1}{4}^{\mathrm{h}}$ to $\mathrm{I}^{\frac{3}{4}} \mathrm{~h}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 016) . \quad 4^{\text {h }}$ to $5^{\frac{1}{2}}$ Wave in Dec. $\left(+4^{\prime}\right) . \quad 17^{\text {h }}$ to $19^{\text {h }}$ Double-crested wave in Dec. $\left(-4^{\prime}\right)$.
$3^{0^{d}} \frac{1 \frac{1}{4}^{\mathrm{h}}}{}$ to $3 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+5^{\circ}\right) . \quad 18 \frac{11^{\mathrm{h}}}{}$ to $19 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$31^{\text {d }} 18 \frac{1^{h}}{}$ to 20^{h} Wave in H.F. $(-.0014)$. 19^{h} to 20^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
 in Dec. $\left(-4^{\prime}\right)$. $22 \frac{1 \mathrm{~h}}{4}$ to $23 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. ($+\cdot 0013$).
 cated wave in Dec. $\left(-8^{\prime}\right)$. $\quad 2^{\mathrm{h}}$ to $2 \frac{1 \mathrm{~h}}{4}$ Decrease in H.F. (-0010). $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to $20^{\frac{1}{4} \mathrm{~h}}$ Double wave iu H.F. $\left(-\cdot 011\right.$ to $+\cdot 0017$). 19^{h} to 20^{h} Slightly truncated wave in Dec. $\left(-7^{\prime}\right)$.
$4^{\mathrm{d}} 20^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. 20^{h} to $2 \mathrm{I}_{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in H F. $(+\cdot 0023)$.
$6^{\mathrm{d}} 2^{\mathrm{h}}$ to $2 \mathbf{1}_{4}^{\frac{3 \mathrm{hb}}{}}$ Irregular flat-crested wave in H.F. ($+\cdot 0010$).
$7^{\mathrm{d}} 20^{\frac{3 \mathrm{~h}}{4}}$ to $23^{\frac{1 \mathrm{~h}}{\mathrm{~h}}}$ Wave in Dec. $\left(-6^{\prime}\right)$.
$8^{d} 11^{h}$ to 14^{h} Fluctuations in Dec. and H.F. $8^{d} 18^{h}$ to $9^{d} 18^{h}$ See Plate II.
$9^{\mathrm{d}} 22^{\frac{1}{4} \mathrm{~h}}$ to 24^{h} Irregular wave in H.F. $(+\cdot 0028)$, steep at commencement: wave in V.F. $(-\cdot 0003) .22 \frac{1^{\mathrm{h}}}{}$ to 24^{h} Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-4^{\prime}\right)$.
$10^{\mathrm{d}} 2^{\mathrm{h}}$ to $2^{3 \mathrm{~h}}$ Wave in Dec. $\left(-3^{\prime}\right)$, followed till 5^{h} by an irregular double wave $\left(-4^{\prime}\right.$ to $\left.+5^{\prime}\right)$. $2^{\frac{3}{4} \mathrm{~h}}$ to 5^{h} Double wave in H.F. (+0010 to -0017): small wave in V.F. 12^{h} to $14^{\frac{1}{\mathrm{~h}}}$ Wave in H.F. (-0017).
 Irregular double-crested wave in Dec. $\left(-9^{\prime}\right) . \quad 10^{d} 23 \frac{1}{2}^{\frac{1}{h}}$ to $11^{d} 0^{\frac{1}{2}}$ Irregular triple-crested wave in H.F. ($+\cdot 0024$), steep at end.
$11^{d} 14^{\text {h }}$ to $16 \frac{1}{2}^{\text {h }}$ Loss of H.F. and V.F. registers.
$12^{\mathrm{d}} 5_{4}^{3 \mathrm{~h}}$ to 7^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $17^{\frac{3}{4} \mathrm{~h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Irregular truncated wave in Des. $\left(-4^{\prime}\right)$. 18^{h} to $19 \frac{3 \mathrm{~h}}{4}$. Irregular triple-crested wave in H.F. $(+\cdot 0016)$.
$13^{\mathrm{d}} 19^{\frac{1}{2}}$ to 20^{b} Wave in Dec. $\left(-3^{\prime}\right) .22^{\mathrm{h}}$ to 23^{h} Wave in H.F. ($+\cdot 0010$).
$16^{\mathrm{d}} 0^{\mathrm{h}}$ to $17^{\mathrm{d}} 0^{\mathrm{b}}$ See Plate II.
 Irregular double wave in H.F. (-0011 to $+\circ 014$), both portions truncated. $2^{\text {h }}$ to $4 \frac{3 \mathrm{~h}}{4}$ Irregular wave in V.F. (-0003). $6 \frac{1 \mathrm{~h}}{}$ to 7^{h} Decrease in H.F. (-0018). $9^{\text {h }}$ to $10^{\text {h }}$ Double wave in H.F. (-0010

 $18 \frac{1 \mathrm{~h}}{}$ to 1^{h} Wave in H.F. $\left(+^{\circ} 0013\right.$). 20^{h} to 22^{h} Irregular wave in H.F. $\left(+{ }^{\circ} 0033\right)$. $21 \frac{1 \mathrm{l}}{4}$ to $22 \frac{3 \mathrm{~h}}{4}$ Double-crested wave in Dec. $\left(-4^{\prime}\right) . \quad 234^{\frac{1 \mathrm{~h}}{2}}$ to 24^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$18^{\mathrm{d}} 11^{1 \mathrm{~h}}$ to 12^{h} Wave in H.F. (-0018), followed till 13^{h} by another wave (-0008), superposed on an increase $(+0010)$. $11 \frac{3}{4}^{h}$ to $12 \frac{33^{h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$. $14 \frac{1^{h}}{}{ }^{\mathrm{h}}$ to 16^{h} Wave in Dec. $\left(-3^{\prime}\right)$, with
 $17^{3 \mathrm{3}}$ Wave in Dec. (-4^{\prime}), with superposed fluctuations, followed till 19^{h} by a double-crested wave $\left(-3^{\prime}\right)$. $17 \frac{1 \mathrm{hh}}{4}$ to 18^{h} Wave in H.F. $(+0016)$. 20^{h} to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. $20 \frac{1 \mathrm{~h}}{4}$ to $21^{\frac{\mathrm{hh}}{} \mathrm{h}}$ Double-crested wave in H.F. ($+\circ 0014$), followed till $22 \frac{3 \mathrm{~h}}{4}$ by a wave $(+\circ 011)$. $18^{\mathrm{d}} 23^{\mathrm{h}}$ to $19^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0020) . \quad 18^{\mathrm{d}} 23 \frac{3}{4} \mathrm{~h}$ to $19^{\mathrm{d}} 2 \frac{1 \mathrm{~h}}{}_{\mathrm{h}}$ Irregular double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+3^{\prime}\right)$.
$19^{\mathrm{d}} 10^{\mathrm{h}}$ to 13^{h} Slow wave in H.F. (-0018). $17 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1}{2}$ Wave in Dec. (-5^{\prime}). $17 \frac{1}{4}^{\frac{1 \mathrm{~h}}{2}}$ to 18^{h} Wave in H.F. (-0016). $20^{\text {h }}$ to $21 \frac{1^{h}}{}$ S Sharp double wave in Dec. $\left(+5^{\prime}\right.$ to $\left.-7^{\prime}\right)$: two successive waves in H.F.
 wave in Dec. $(+4)$.
$20^{\mathrm{d}} 2 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $53^{\frac{3}{4}}$ Slow irregular double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-3^{\prime}\right)$. 3^{h} to 5^{h} Wave in H.F. $(+$ oor 8$)$. 3^{h} to $5^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in V.F. (-0003). $20 \frac{3 \mathrm{4}}{}{ }^{\mathrm{h}}$ to 21^{h} Sharp wave in Dec. $\left(-5^{\prime}\right)$, followed till 24^{h} by an irregular wave $\left(-8^{\prime}\right) . \quad 20 \frac{3 \mathrm{~h}}{}$ to $22 \frac{3 \mathrm{~h}}{}$ Irregular sharp double wave in H.F. (+0038 to $-\cdot 0010$): the intermediate portion interrupted half-way by a nearly quiescent period from $21 \frac{1}{4}^{\frac{h}{h}}$ to $22^{\mathrm{h}} .203^{\frac{3}{h}}$ to $21_{4}^{\frac{3}{4}}$ Decrease in V.F. (- -0004).
1911.

April
$21^{\mathrm{d}} \mathrm{I}^{\frac{3 \mathrm{~h}}{4}}$ to $2 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$. $\mathrm{I}^{\frac{3 \mathrm{~h}}{4}}$ to $3 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ Wave in H.F. (-OOI 3). $3^{\frac{1 \mathrm{~h}}{4}}$ to 5^{h} Flat-crested wave in Dec. (-3^{\prime}). 4^{h} to $52^{\frac{1}{\mathrm{~h}}}$ Wave in H.F. (-0013). 13^{h} to 14^{h} Wave in H.F. (-0014). 18^{h} to 20^{h} Double wave in H.F. (-.0015 to $+\cdot 0015$), continued to $20 \frac{1 \mathrm{~h}}{4}$ by a decrease (-.0012). $18 \frac{1}{4}$ h to $20 \frac{3}{4} \mathrm{~h}$
 Flat-crested wave in H.F. $\left(+\cdot \mathrm{OO}_{3} 3\right)$: irregular wave in V.F. $(-\cdot 0003)$.
 in Dec. (-6^{\prime}): double wave in H.F. (-0010 to +.0019): wave in V.F. (+0003). $17 \frac{3 h^{h}}{4}$ to $18 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0012)$. $18 \frac{1}{2}$ h to $19 \frac{1}{4}^{\mathrm{h}}$ Truncated wave in Dec. $\left(-3^{\prime}\right) . \quad 20 \frac{3 \mathrm{~h}}{4}$ to $21 \frac{3 \mathrm{~h}}{4}$ Double-crested
 $22^{\mathrm{d}} 23 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $23^{\mathrm{d}} 0 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. $(+\cdot 0012)$.
$23^{\mathrm{d}} 0^{\mathrm{h}}$ to $0 \frac{1}{2}^{\mathrm{h}}$ Decrease in V.F. $(-\cdot 0003)$. 2^{h} to $3 \frac{3 \mathrm{~h}}{} \mathrm{~h}$ Slow waves in Dec. $\left(+3^{\prime}\right)$ and H.F. $(-\cdot 0 \mathrm{OI} 3)$. $\quad 1 \mathrm{I}_{2}^{\mathrm{h}}$ to $12 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (-0010). 19^{h} to $19 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$. 19^{h} to 20^{h} Wave in H.F. $(+$ OOI $) .22 \frac{3 \mathrm{~h}}{4}$ to 24^{h}. Wave in Dec. $\left(+3^{\prime}\right)$.
$25^{\mathrm{d}} \mathrm{O}^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ to $\mathrm{I}^{\frac{3 \mathrm{~h}}{}}$ Slow wave in Dec. $\left(+3^{\prime}\right)$.
$26^{\mathrm{d}} \circ \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Wave in Dec. $\left(+4^{\prime}\right)$.
$28^{\mathrm{d}} 13^{\mathrm{h}}$ to $\mathrm{I} 5^{\mathrm{h}}$ Wave in H.F. (-OOI4). $17 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-5^{\prime}\right)$: in H.F. small.
$29^{\mathrm{d}} 2 \frac{1}{2} \mathrm{~h}$ to 4^{h} Wave in Dec. $\left(+3^{\prime}\right)$.
$30^{\mathrm{d}} 7^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $8 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. $(-.0016)$. $7 \frac{3 \mathrm{~h}}{4}$ to $9 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+5^{\prime}\right)$. ${ }^{1} 4 \frac{3 \mathrm{~h}}{4}$ to $15 \frac{3 \mathrm{~h}}{4}$ Truncated wave in H.F. (- .OOI I). 15^{h} to $19 \frac{1}{2}^{\mathrm{h}}$ Slow wave in V.F. ($+\cdot 0007$). $16 \frac{1}{2}^{\mathrm{h}}$ to 18^{h} Waves in Dec. (-9^{\prime}) and H.F. $(+0036)$. 20^{h} to 22^{h} Double-crested wave in Dec. (-10^{\prime}). $20 \frac{1^{\mathrm{h}}}{}$ to $21^{\frac{1}{2} \mathrm{~h}}$ Irregular wave in H.F. (+.0020). 22^{h} to $23 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $\left(+.0014\right.$). $22 \frac{1}{4} \mathrm{~h}$ to 24^{h} Double-crested waves in Dec. (-7^{\prime}) and V.F. ($-\cdot 0003$).

May $\quad 3^{\text {d }} 19 \frac{3}{4}^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$: in H.F. small.
$4^{\mathrm{d}} 11^{\frac{1 \mathrm{~h}}{4}}$ to $5^{\mathrm{d}} \mathrm{I}_{\frac{1}{4}}$ Loss of Dec. and H.F. Registers.
$5^{\mathrm{d}} 18 \frac{3 \mathrm{~h}}{4}$ to $20 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 5^{\mathrm{d}} 22 \frac{1}{2} \mathrm{~h}$ to $6^{\mathrm{d}} \circ \frac{3 \mathrm{~h}}{4}$ Double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-3^{\prime}\right) . \quad 5^{\mathrm{d}} 22 \frac{1}{2} \mathrm{~h}$ to $6^{\mathrm{d}} \circ^{\frac{1}{4}}{ }^{\mathrm{h}}$ Wave in H.F. $(+\cdot 016) . \quad 5^{\mathrm{d}} 2^{2 \frac{3}{4}}$ to $6^{\mathrm{d}} 0_{2}^{\frac{1}{h}}$ Wave in V.F. (-.0003).
$6^{\mathrm{d}} 5^{\frac{1}{2} \mathrm{~h}}$ to 17^{h} Double-crested wave in H.F. ($-\cdot 0012$). 20^{h} to 23^{h} Decrease in V.F. (-0007). $20 \frac{1 \mathrm{lh}}{4}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$. $20 \frac{1}{2}$ h to $21 \frac{1}{4} \mathrm{~h}$ Wave in H.F. $(+\cdot 0018) .22 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ to $23 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Double-crested wave in H.F. $(+\cdot 016) . \quad 22 \frac{3}{4} \mathrm{~h}$ to $23 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-5^{\prime}\right)$.
 Double wave in H.F. ($+\cdot 0008$ to -.0011). $14^{\frac{1}{2}}$ to $15^{\frac{1 \mathrm{~h}}{4}}$ Very sharp double-crested wave in H.F. ($+\cdot 0016$), followed till $16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ by an irregular wave ($+\cdot 0040$). 15^{h} to 19^{h} Slow wave in V.F. $(+\cdot 0005$). ${ }^{1} 5 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $16 \frac{1}{2} \mathrm{~h}$ Irregular wave in Dec. $\left(+4^{\prime}\right)$. $16 \frac{3 \mathrm{~h}}{4}$ to $18 \frac{1}{2} \mathrm{~h}$ Double-crested wave in Dec. $\left(-6^{\prime}\right) . \quad 17^{\mathrm{h}}$ to ${ }_{19}{ }^{\frac{3}{4}} \mathrm{~h}$ Irregular triple-crested wave in H.F. ($+\cdot 0028$).
$8^{\mathrm{d}} 0 \frac{1^{h} \mathrm{~h}}{2}$ to I^{h} Increase in H.F. $(+0012)$, $\mathrm{O} \frac{3 \mathrm{~h}}{4}$ to $2 \frac{1}{4} \mathrm{~h}$ Irregular double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-3^{\prime}\right)$. 1^{h} to 2^{h} Decrease in V.F. (-0004). $1^{\frac{3 \mathrm{~h}}{4}}$ to $3^{\frac{1 \mathrm{~h}}{4}}$ Flat-crested wave in H.F. (-0012), followed till 6^{h} by a slow double-crested wave (-.0014). $5^{\text {h }}$ to 6^{h} Truncated wave in Dec. ($+3^{\prime}$).
$9^{\mathrm{d}} \mathrm{I}^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $16 \frac{33^{\mathrm{h}}}{}$ Wave in H.F. (-.0012).
 $22 \frac{1}{2}{ }^{h}$ to $22 \frac{3{ }^{h}}{4}$ Decrease in Dec. $\left(-4^{\prime}\right)$.
 Double wave in H.F. (-0010 to $+\circ 010$) : the first two movements sharp. 1^{h} to 4^{h} Wave in V.F. (-.0005), steep at commencement. $12 \frac{3 \mathrm{~h}}{4}$ to $14 \frac{3 \mathrm{~h}}{4}$ Flat-crested wave in H.F. (-0016). $16 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to $17 \frac{3}{4} \mathrm{~h}$ Waves in Dec. $\left(-5^{\prime}\right)$ and H.F. (+0020). $21 \frac{3}{4}$ to $23 \frac{1}{2} \mathrm{~h}$ Two successive waves in Dec. ($+3^{\prime}$ and $\left.+5^{\prime}\right) . \quad 22^{\text {h }}$ to $23^{\text {h }}$ Wave in H.F. (--0010) : in V.F. small.
$14^{\mathrm{d}} 16^{\mathrm{h}}$ to $15^{\mathrm{d}} 16^{\mathrm{h}}$ See Plate III.
$15^{\mathrm{d}} 182^{1 \mathrm{~h}}$ to $20^{\text {hi }}$ Irregular double-crested waves in Dec. $\left(-8^{\prime}\right)$ and H.F. (+0037). ${ }^{21} \frac{3}{4}^{\frac{h}{4}}$ to $2^{22 \frac{3}{4}}$ Irregular wave in Dec. $\left(+6^{\prime}\right)$. $21^{3 \mathrm{~h}}$ to 22^{h} Sharp increase in H.F. $(+.0019) .22^{\mathrm{h}}$ to 24^{h} Wave in V.F.

$16^{\mathrm{d}} 3 \frac{1}{2}^{\mathrm{h}}$ to 5^{h} Wave in H.F. $\left(+\circ 017\right.$). $4 \frac{1}{2}^{\mathrm{h}}$ to $8 \frac{3}{4} \mathrm{~h}$ Irregular triple wave in Dec. $\left(-3^{\prime},+6^{\prime},-4^{\prime}\right)$. $5 \frac{1}{4}^{\text {h }}$ to $6 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (-0011). $12 \frac{1}{2} \mathrm{~h}^{\text {h }}$ to $13 \frac{1}{2} \mathrm{~h}$ Wave in H.F. $\left(-0013\right.$). 17^{h} to $18 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-6^{\prime}\right) .17 \frac{1}{4}^{\mathrm{h}}$ to 19^{h} Double wave in H.F. $(-.0014$ to +0012$)$: the first two movements steep. $16^{\mathrm{d}} 22 \frac{1}{2} \mathrm{~h}$ to $17^{\mathrm{d}} 0 \frac{1}{4}^{\mathrm{h}}$ Slow wave in Dec. $\left(-3^{\prime}\right)$.
1911.

May

June
$17^{\mathrm{d}} 13^{\mathrm{h}}$ to 14^{h} Wave in H.F. (->019). 15^{h} to $16 \frac{1}{4} \mathrm{~h}$ Wave in H.F. $\left(+{ }^{\circ} \mathrm{OO} 11\right)$.
$18^{\mathrm{d}} 22 \frac{1 \mathrm{~h}}{4}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+\dot{3}^{\prime}\right)$.
$19^{\text {d }} 17^{\mathrm{h}}$ to 18^{h} Wave in Dec. $\left(-3^{\prime}\right)$. 17^{h} to $17 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (-0012). 17^{h} to 18^{h} Increase in V.F. $(+\cdot 0003)$. $19^{\text {h }}$ to $19 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. (-4^{\prime}), steep at commencement. $19^{\text {h }}$ to $20^{\text {h }}$ Wave in H.F. $(+\cdot 0020) .22 \frac{1}{2} \mathrm{~h}$ to $23 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0020)$: decrease in V.F. (-.0004). $22 \frac{3 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ to $23 \frac{3 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right)$.
$20^{d}{ }^{1} 6^{\mathrm{h}}$ to $17 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. ($+\cdot 0010$).
$21^{d} 9 \frac{1}{2}^{h}$ to $10 \frac{1}{2}^{h}$ Flat-crested wave in H.F. ($-\circ 010$). $14 \frac{11^{h}}{4}$ to 16^{h} Two successive flat-crested waves in H.F. (- . 0013 and -.0017). $17 \frac{1}{4} \mathrm{~h}$ to $18 \frac{1}{2}{ }^{\mathrm{h}}$ Flat-crested wave in H.F. (+0010). $20 \frac{1}{2}^{\mathrm{h}}$ to $21 \frac{1}{2}{ }^{\mathrm{h}}$ Waves in Dec. $\left(+3^{\prime}\right)$ and H.F. $(+\cdot 0018) . \quad 20 \frac{1}{2}{ }^{\mathrm{h}}$ to $2 \mathrm{I}_{\frac{1}{4}}^{\mathrm{h}}$ Decrease in V.F. ($-\cdot 0003$).
$2^{\text {d }} 14 \frac{1}{2}^{\mathrm{h}}$ to $15^{\frac{1}{2}}$ Loss of V.F. register. $17 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Loss of V.F. register.
$23^{\mathrm{d}} 22 \frac{11^{\mathrm{h}}}{}$ to $24^{\mathrm{d}} 0^{\frac{1}{2}}{ }^{\mathrm{d}}$ Irregular double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-7^{\prime}\right)$. $22 \frac{1}{2}{ }^{\mathrm{h}}$ to $23 \frac{3 \mathrm{~h}}{4}$ Wave in V.F. ($-\cdot 0003$).
$25^{\mathrm{d}} \mathrm{I}^{\frac{1}{4}}{ }^{\mathrm{h}}$ to $18 \frac{1}{2} \mathrm{~h}$ Septuple wave in H.F. $(+.0017,-\cdot 0013,+\cdot 0012,-.0014,+\cdot 0028,-\cdot 0008,+\cdot 0009)$, the second portion double-crested, the third triple-crested: small waves in Dec.
$26^{\mathrm{d}} 1 \frac{1 \mathrm{~h}}{4}$ to $2 \frac{1 \mathrm{~h}}{2}$ Double-crested wave in Dec. $\left(+7^{\prime}\right)$, steep at commencement: wave in H.F. $(+\cdot \circ \mathrm{IO})$. $1 \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Sharp increass in V.F., with slower decrease (+.0001 and -0003). $14^{\frac{3}{4}}{ }^{\mathrm{h}}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Flatcrested wave in H.F. (- -0016).
$27^{\mathrm{d}} 2 \frac{1}{4}^{\mathrm{h}}$ to $3 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right) . \quad 2 \frac{1}{2}^{\mathrm{h}}$ to 4^{h} Wave in H.F. ($+\cdot 0011$). $2^{\frac{3}{4}}$ to 5^{h} Slow wave in V.F. (-.0003).
$28^{\mathrm{d}} 1 \frac{1}{2}^{\mathrm{h}}$ to 3^{h} Wave in Dec. $\left(+6^{\prime}\right)$. $15^{\frac{3}{4}} \mathrm{~h}$ to 17^{h} Wave in H.F. (--0012).
$3^{0^{d}} 16 \frac{1 \mathrm{~h}}{4}$ to 17^{h} Sharp wave in H.F. (-.0017). $20 \frac{3}{4} \mathrm{~h}$ to $21_{4}^{\frac{1}{4}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $\quad 22 \frac{1}{2}^{\mathrm{h}}$ to 23^{h} Sharp wave in H.F. (+ -0010).
$3^{1^{d}} 0^{h}$ to $\frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(+3^{\prime}\right)$: in H.F. small. $1^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $2^{\frac{1}{2} \mathrm{~h}}$ Truncated wave in Dec. $\left(+8^{\prime}\right)$. $\mathrm{I}^{\frac{1}{2}}$ to $3 \frac{1 \mathrm{~h}}{4}$ Irregular triple-crestcd wave in H.F. $(+\cdot 014)$: wave in V.F. $(-.0003)$. $4^{\frac{3}{4}}$ to $5 \frac{1}{2} \mathrm{~h}$ Wave in Dec.
 Two successive waves in H.F. ($+\cdot 010$ and $+\cdot 013$).
$1^{\mathrm{d}} \circ \frac{1}{2}^{\mathrm{h}}$ to $2 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular double wave in Dec. $\left(-2^{\prime}\right.$ to $\left.+4^{\prime}\right) . \quad 15^{\mathrm{h}}$ to 18^{h} Irregular triple wave in H.F. (-.0011, + $0012,-0010$).
$3^{\mathrm{d}} 20 \frac{1}{2}^{\mathrm{h}}$ to $5^{\mathrm{d}} 20 \frac{1}{2}^{\mathrm{h}}$ Loss of Dec. register.
$4^{\mathrm{d}} \mathrm{I}_{7} \frac{1}{2}^{\mathrm{h}}$ to $\mathrm{I} 8 \frac{1}{2} \mathrm{~h}$. Irregular wave in H.F. (+.001 I), followed till $20 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ by a double wave (+.00 I 2 to -.0024), both portions donble-crested. $17 \frac{1}{2}^{\mathrm{h}}$ to 22^{h} Wave in V.F. ($+\cdot 0007$). $20 \frac{1}{2}^{\mathrm{h}}$ to $21 \frac{1}{2}^{\mathrm{h}}$ Truncated wave in
 Wave in V.F. (-0005).
$5^{\text {d }} 7 \frac{3}{4}^{\mathrm{h}}$ to $9 \frac{1}{2}^{\mathrm{h}}$ Quadruple-crested wave in H.F. (-.0015). $15 \frac{1}{2}^{\mathrm{h}}$ to ${ }_{17} \frac{1}{4}^{\mathrm{h}}$ Irregular wave in H.F. (-0017). $21 \frac{1 \mathrm{~h}}{4}$ to $23 \frac{3 \mathrm{hh}}{4}$ Flat-crested wave in H.F. (-.0010). 23^{h} to 24^{h} Wave in Dec. $\left(+3^{\prime}\right)$.
$6^{\mathrm{d}} 19 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{1}{2} \mathrm{~h}$ Wave in H.F. $(+\cdot 0012)$: in Dec. small.
$7^{\mathrm{d}} \circ \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Wave in Dec. $\left(+4^{\prime}\right)$. $0 \frac{1}{2}^{\mathrm{h}}$ to 4^{h} Slow wave in V.F. $(-\cdot 0003)$.
$9^{\mathrm{d}} \mathbf{2 0 ^ { \mathrm { h } }}$ to $\mathbf{2} \mathbf{1}^{\mathrm{h}}$ Sharp wave in H.F. $\left(+.0022\right.$), followed till 23^{h} by a double wave $\left(+\cdot 0020\right.$ to -.0018). $\mathbf{2 2}^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{4}$ Sharp decrease in Dec. $\left(-12^{\prime}\right)$, followed till 23^{h} by slower return $\left(+6^{\prime}\right)$.
 to $2 \frac{1}{2}^{\frac{1}{h}}$ Truncated wave in V.F. (-0005). $3 \frac{1}{2}^{\mathrm{h}}$ to $4 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-3^{\prime}\right)$. 4^{h} to $5 \frac{1}{2}^{\frac{\mathrm{h}}{}}$ Irregular double-crested wave in H.F. ($-\cdot 0 \mathrm{II}$). $6 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $8 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Flat-crested wave in H.F. ($-\cdot 0 \mathrm{OI} 3$). $142^{\frac{1}{h}}$ to $14 \frac{3 \mathrm{~h}}{4}$ Very sharp double-crested wave in H.F. ($+\cdot 0014$). $16 \frac{3 \mathrm{~h}}{4}$ to 18^{h} Sharp donble-crested wave
 Dec. $\left(+9^{\prime}\right)$, very steep at commencement. 22^{h} to 24^{h} Wave in V.F. ($-\cdot 0004$).
 $\left(-3^{\prime}\right) . \quad 1 \frac{3}{4}$ h to $5^{\frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}}$ Irregular double wave in H.F. $\left(+.0022\right.$ to -.0013). 5^{h} to $7^{\frac{3}{4}}{ }^{\mathrm{h}}$ Slow wave in Dec. $\left(-7^{\prime}\right)$, with two very sharp waves superposed at $7^{\mathrm{h}}\left(-3^{\prime}\right.$ and $\left.-5^{\prime}\right)$. $7^{\frac{3}{4} \mathrm{~h}}$ to 8^{h} Decrease in Dec. $\left(-4^{\prime}\right)$. $16 \frac{1}{2}^{\mathrm{h}}$ to $17 \frac{3 \mathrm{~h}}{4}$ Truncated wave in Dec. $\left(-4^{\prime}\right)$. $16 \frac{3 \mathrm{~h}}{4}$ to 18^{h} Irregular wave in H.F. $\left(+{ }^{\circ} 0023\right) . \quad 19^{\mathrm{h}}$ to $21^{\frac{1}{n}}$ Wave in H.F. $(+\cdot 0020)$.
$12^{\mathrm{d}} 2 \mathrm{I}^{\frac{3 \mathrm{~h}}{4}}$ to $22^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in H.F. (+ +0011): small double wave in Dec.
$13^{\mathrm{d}} 0 \frac{10}{4}^{\mathrm{h}}$ to $1 \frac{3}{4}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. 14^{h} to 16^{h} Double wave in H.F. (-.0013 to $+\cdot 0010$).

I9II.
June
$14^{d} 2 \frac{3}{4}_{4}$ to 224^{h} Wave in Dec. $\left(+5^{\prime}\right)$ and H.F. $(+\cdot 0012)$. $14^{d} 23^{h}$ to $15^{d} 2 \frac{1}{2} h$ Irregular triple wave in Dec. $\left(-3^{\prime},+4^{\prime},-3^{\prime}\right) . \quad 14^{\text {d }} 23^{\frac{31}{4}}$ to $15^{\text {d }} 0^{\frac{11}{4}}$ Wave in H.F. (-0010).
 $\left(-3^{\prime}\right)$.
$16^{d^{\mathrm{d}}} 19 \frac{3}{4}^{\frac{\mathrm{h}}{2}}$ to $20 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0010)$.
$21^{\text {d }} 12 \frac{3^{h}}{}{ }^{\mathrm{h}}$ to $13 \frac{1}{2} \mathrm{~h}$ Wave in H.F. $(+0015)$, with superposed fluctuations. 14^{h} to 15^{h} Two successive sharp waves in H.F. $(+.0012$ and +.0013$) . \quad 15 \frac{1 \mathrm{~h}}{}$ to $15^{3 \frac{3}{4}}$ Sharp wave in H.F. $(+\cdot 0012)$, followed till 17^{h} by very sharp fluctuations ($+\cdot 0008$): small sharp fluctuations in Dec. 18^{h} to 19^{h} Wave in H.F.
 Wave in H.F. $\left(+{ }^{\circ} \mathrm{oO}_{13}\right)$: small wave in V.F.
 $18 \frac{1}{4}^{\text {h }}$ to $19 \frac{1}{2}^{\text {b }}$ Wave in H.F. (--001I).

 Wave in Dec. (-3^{\prime}).

$3^{0^{d}} 23^{\mathrm{h}}$ to $23 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Decrease in Dec. $\left(-6^{\prime}\right)$.

July $\quad 1^{d} 2^{\mathrm{h}}$ to $3 \frac{3 \mathrm{~h}}{4}$ Two successive irregular waves in Dec. (-4^{\prime} and -3^{\prime}). $5^{\frac{1}{2} \mathrm{~h}}$ to $6 \frac{11^{\mathrm{h}}}{}$ Wave in Dec. $\left(+4^{\prime}\right)$, with very sharp superposed fluctuations. 12^{h} to $13^{\frac{1 \mathrm{~h}}{}}$ Double crested wave in H.F. ($-\circ 015$), followed till $14^{\frac{1}{4}}$ by an irregular truncated wave (-0024), followed till $16 \frac{1 \mathrm{~h}}{4}$ by a triple wave ($-001 \mathrm{I},+.0053$, -.0030), the third movement very sharp. $14 \frac{1}{2}^{\mathrm{h}}$ to $16 \frac{1}{4}^{\mathrm{h}}$ Double wave in Dec. ($+5^{\prime}$ to -4^{\prime}): small wave in V.F. $16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 17^{h} Wave in H.F. $(+0012)$. $17 \frac{12^{\mathrm{h}}}{}$ to 18^{h} Increase in H.F. $(+.0014) .20 \frac{3 \mathrm{3h}}{4}$ to $22 \frac{11^{\mathrm{h}}}{}$ Irregular wave in Dec. $\left(-5^{\prime}\right) . \quad 21^{\mathrm{h}}$ to $22 \frac{14^{\mathrm{h}}}{}$ Wave in H.F. $\left(+{ }^{\circ} 0017\right)$.
 $17 \frac{1}{2}^{\mathrm{h}}$ to $18 \frac{3 \mathrm{4}}{4}$ Wave in H.F. (-0012).
$3^{d} 15 \frac{3 h}{4}$ to $16 \frac{1}{2}^{h}$ Wave in H.F. $(+.0010)$. $173^{\frac{3}{4}}$ to $18 \frac{1}{4}^{\text {h }}$ Wave in H.F. (-0012).
 Wave in H.F. ($+{ }^{\circ} 0012$).
$5^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to 20^{h} Wave in H.F. (+ -0011).
 144 $4^{\frac{3}{4}}$ to $16 \frac{3 \mathrm{~h}}{4}$ Double-crested wave in H.F. (-0018).
 in H.F. (-0012). $14 \frac{1}{2}^{\frac{1}{h}}$ to $16 \frac{11^{\mathrm{h}}}{}$ Wave in Dec. $\left(-4^{\prime}\right)$. $14 \frac{3}{4}^{\frac{3}{4}}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Three successive waves in H.F. $(+.0013,+.0018,+.0016)$.
$8^{\mathrm{d}} 0^{\mathrm{h}}$ to 5^{h} Wave in V.F. (- - 0007). $0 \frac{1}{2}^{\mathrm{h}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0013)$. 1^{h} to 3^{h} Double wave in Dec.
 ${ }^{17 \frac{3}{4} \mathrm{~h}}$ Two successive double-crested waves in H.F. $\left(+.0014\right.$ and $+{ }^{\circ} 0019$). 16^{h} to $16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Sharp irregular decrease in Dec. (-6^{\prime}).
$10^{\text {d }} 22^{\frac{1}{2}}$ to $2^{\frac{13}{h}}$ Sharp irregular waves in Dec. $\left(-5^{\prime}\right)$ and H.F. $(+\infty 020)$.
$11^{\mathrm{d}}{ }^{20 \frac{1}{2}}{ }^{\mathrm{h}}$ to $2^{2{ }^{\text {h }}}$ Wave in Dec. $\left(-3^{\prime}\right)$.

$17^{\mathrm{d}} 17 \frac{1}{2}^{\mathrm{h}}$ to $18 \frac{1 \frac{1}{2}^{b}}{}$ Jouble-crested wave in H.F. $(+\cdot 0020)$. $19 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $21 \frac{1}{2}^{\mathrm{h}}$ to ${ }^{2} 3^{\mathrm{h}}$ Double-crested wave in H.F. $(+-0020)$. $21 \frac{3 \mathrm{~h}}{4}$ to 24^{h} Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-9^{\prime}\right)$. $21 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $22 \frac{1}{2}{ }^{\mathrm{h}}$ Decrease in V.F. (-0005).
$18^{\mathrm{d}} 14^{\frac{3 \mathrm{~h}}{}}$ to $1^{\frac{1}{2}}{ }^{\mathrm{h}}$ Jecrease in H.F. and sharp increase ($-\cdot 0012,+\cdot 0022$). $19 \frac{1}{4}^{\mathrm{h}}$ to 20^{h} Wave in Dec. (-4). $19 \frac{1}{2}^{h}$ to $20 \frac{1}{4}^{h}$ Wave in H.F. $(+\cdot 0016)$. $2 \frac{1}{4}^{3 h}$ to $223^{3 h}$ Wave in Dec. $\left(-5^{\prime}\right)$. $2^{2^{h}}$ to 23^{h} Double-crested wave in H.F. $\left(+{ }^{-0012) \text {. }}\right.$

 Wave in Dec. $\left(+4^{\prime}\right)$. 8^{h} to 12^{h} Two successive waves in H.F. $(-0017$ and -0015$)$. $14^{\frac{3 \mathrm{a}}{4}}$ to $16 \frac{1 \mathrm{~h}}{\mathrm{~h}}$
 Dec. $19^{\text {d }} 23^{\frac{\text { ha }}{}}$ to $20^{\text {d }} 1^{\text {hi }}$ Wave in Dec. $\left(+3^{\prime}\right)$.
1911.

July $\quad 20^{d} 63^{h}$ to 8^{h} Truncated wave in H.F. (-.001I).
$21^{\mathrm{d}} 20 \frac{1}{2}^{\mathrm{h}}$ to 22^{h} Wave in H.F. ($+\cdot 0012$).
$22^{\mathrm{d}} 15^{\frac{1}{2}}$ to 17^{h} Wave in H.F. ($+\cdot 0014$).
$24^{\mathrm{d}} 12 \frac{1}{2}^{\mathrm{h}}$ to $13 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. ($-\circ 017$) : in Dec. small. 14^{h} to 15^{h} Wave in H.F. ($+\cdot 0010$). $16 \frac{1}{2}{ }^{\mathrm{h}}$ to ${ }^{1} \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (+ 'OOI2).

$28^{\mathrm{d}} 5^{\mathrm{h}}$ to $6 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(+\circ 010)$. 6^{h} to 7^{h} Double-crested wave in Dec. $\left(-3^{\prime}\right)$. $10 \frac{33^{\mathrm{h}}}{4}$ to $12 \frac{1 \mathrm{~h}}{4}$ Irregular wave in H.F. (- 0016). $12 \frac{3 \mathrm{~h}}{4}$ Increase in H.F. ($+\cdots 010$). 13^{h} to $14 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(+4^{\prime}\right)$. $\quad 3^{\frac{1}{4} \mathrm{~h}}$ to 15^{h} Irregular double-crested wave in H.F. (-0025). $1^{15^{\frac{1}{4}}}$ to $17 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular triple-crested wave in H.F. ($-\cdot 0020$). $17 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1 \mathrm{~h}}{4}$ Sharp triple wave in H.F. $(+\cdot 0043,-\cdot 0017$, $+{ }^{\circ} 0030$). 18^{h} to $18 \frac{1}{4}^{\mathrm{h}}$ Sharp wave in Dec. $\left(-5^{\prime}\right)$. $18 \frac{1}{2} \mathrm{~h}$ to $21 \frac{1}{2}^{\mathrm{h}}$ Irregular quadruple-crested wave in
 to 23^{h} Wave in H.F. $\left(-{ }^{\circ} \mathrm{OOI} 3\right)$. $28^{\mathrm{d}} 22 \frac{3 \mathrm{~h}}{4}$ to $29^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Irregular triple wave in Dec. $\left(-4^{\prime},+9^{\prime},-6^{\prime}\right)$. $28^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $29^{\mathrm{d}} 0_{4}^{\frac{1 \mathrm{~h}}{}}$ Decrease in V.F. ($-{ }^{-0007}$).
 (- OOIO). $15 \frac{3 \mathrm{~h}}{4}$ to $16 \frac{3}{4} \mathrm{~h}$ Wave in H.F. $(-\cdot 0012)$. $18 \frac{1 \mathrm{~h}}{4}$ to 19^{h} Wave in Dec. $\left(-3^{\prime}\right)$: small double wave in H.F. $22 \frac{1}{4}$ h to $23 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0010)$.

$4^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ to 4^{h} Slow double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-3^{\prime}\right) . \quad 2 \frac{1}{4}^{\mathrm{h}}$ to 23^{h} Wave in H.F. $(+\cdot 0018)$: in Dec. small.
$5^{\mathrm{d}} 1 \frac{1}{2}^{\mathrm{h}}$ to 3^{h} Wave in Dec. $\left(+7^{\prime}\right)$. 19^{h} to $19 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. $(+.0014)$. $2^{21 \frac{3}{4}}$ to $2^{\frac{1}{4} \mathrm{~h}}$ Double-crested wave in H:F. $(+.0016) .22 \frac{1 \mathrm{~h}}{4}$ to 23^{h} Decrease in V.F. $(-\cdot 0004) . \quad 5^{\mathrm{d}} 22 \frac{3 \mathrm{~h}}{4}$ to $6^{\mathrm{d}} 3 \frac{1}{2} \mathrm{~h}$ Slow triplecrested wave in Dec. $\left(-9^{\prime}\right)$.
$13^{d} 5^{\mathrm{h}}$ to 9^{h} Slow flat-crested wave in Dec. $\left(-7^{\prime}\right)$.
$18^{\mathrm{d}} 0 \frac{3}{4}^{\mathrm{h}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+5^{\prime}\right)$.
$19^{\mathrm{d}} 12 \frac{1 \frac{1}{4}^{\mathrm{h}}}{}$ to 13^{h} Truncated wave in H.F. $(+\circ 012)$: in Dec. small. 16^{h} to $17 \frac{3}{4}^{\mathrm{h}}$ Two successive waves in H.F.
 (- -0012).
$20^{\mathrm{d}} 3 \frac{3 \mathrm{~h}}{4}$ to 5^{h} Wave in Dec. $\left(+3^{\prime}\right)$.
$23^{\mathrm{d}} 9 \frac{3}{4}^{\mathrm{h}}$ to $10 \frac{1 \mathrm{~h}}{4}$ Increase in Dec. $\left(+7^{\prime}\right)$. $12 \frac{3 \mathrm{~h}}{4}$ to $13 \frac{3 \mathrm{~h}}{4}$ Triple-crested wave in Dec. $\left(-3^{\prime}\right)$. $13 \frac{14^{\mathrm{h}}}{}$ to $14 \frac{14^{\mathrm{h}}}{4}$ Double wave in FFF. ($+\cdot 0016$ to -.0018), followed till $14 \frac{3}{4}$ by a decrease (-0016), followed till $15 \frac{1}{2}^{\mathrm{h}}$ by a sharp double wave (+.0030 to - 0025), followed till $16 \frac{1}{2}^{\mathrm{h}}$ by a sharp triple wave (-.0012 , $+\cdot 0013,-0018$). 14^{h} to 15^{h} Increase in V.F. ($+\cdot 0010$). $14^{\frac{1}{4} \mathrm{~h}^{2}}$ Increase in Dec. $\left(+3^{\prime}\right)$. $14 \frac{1}{2}^{\mathrm{h}}$ to $14 \frac{3 h^{h}}{}$ Sharp decrease in Dec. $\left(-12^{\prime}\right)$, followed till $15 \frac{3 \mathrm{~h}}{4}$ by a sharp triple wave $\left(+3^{\prime},-5^{\prime},+3^{\prime}\right)$. 17^{h} to $17 \frac{1}{2}^{\mathrm{h}}$ Sharp wave in H.F. (--0015). $177^{\frac{1 \mathrm{~h}}{}}$ to $18 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-5^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Triplecrested wave in H.F. (+.0025), followed till $24^{d}{ }^{\mathrm{d}} \frac{1 \mathrm{~h}}{} \mathrm{~h}$ by a triple wave $(+.0017,-.0017,+.0020)$. $203_{4}^{3 \mathrm{~h}}$ to 24^{h} Double wave in Dec. $\left(-6^{\prime}\right.$ to $+15^{\prime}$), the first portion triple-crested, the rest steep. $20^{\frac{3}{4} \mathrm{~h}}$ to $22 \frac{1}{4}$ Decrease in V.F. ($-\cdot 0007$). $23^{\text {d }} 23^{\frac{1}{4}}{ }^{\text {h }}$ to $24^{\text {d }} 3^{\text {h }}$ Wave in V.F. ($-\cdot 0009$), steep at commencement.
$24^{\mathrm{d}} 0^{\mathrm{h}}$ to $0_{2}^{\frac{1}{\mathrm{~h}}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $\quad \mathrm{I}^{\frac{3 \mathrm{~h}}{4}}$ to 2^{h} Decrease in Dec. $\left(-4^{\prime}\right) . \quad 2^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 3^{h} Increase in Dec. $\left(+6^{\prime}\right)$. $8 \frac{1^{h}}{}$ to 10^{h} Wave in H.F. (-0016). $14^{\frac{1}{2} \mathrm{~h}}$ to $15 \frac{1}{2}^{\mathrm{h}}$ Waves in Dec. $\left(-3^{\prime}\right)$ and H.F. $(+\cdot 0016)$. $15^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $16 \frac{3 \mathrm{~h}}{}$ Wave in Dec. $\left(-4^{\prime}\right)$. $177^{\frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}}$ to $18 \frac{3 \mathrm{~h}}{4}$ Double-crested wave in Dec. $\left(-7^{\prime}\right)$. $17 \frac{3 \mathrm{~h}}{4}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Wave in
 crested wave in Dec. $\left(-4^{\prime}\right) . \quad 20_{4}^{3 \mathrm{~h}}$ to 21^{h} Increase in Dec. $\left(+3^{\prime}\right) . \quad 22 \frac{33^{\mathrm{h}}}{}$ to 24^{h} Wave in Dec. (-3^{\prime}).
$25^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-3^{\prime}\right)$. $11^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 14^{h} Slow wave in Dec. $\left(+4^{\prime}\right)$. $133^{\frac{1}{2}}$ to $15 \frac{1}{2}{ }^{\mathrm{h}}$
 in Dec. $\left(+4^{\prime}\right)$.
$26^{\mathrm{d}} 14^{\mathrm{h}}$ to 15^{h} Wave in H.F. (-0018). $14^{\frac{3}{4}}$ to $15 \frac{3 \mathrm{~h}}{4}$. Truncated wave in Dec. $\left(-4^{\prime}\right)$. 17^{h} to 19^{h} Truncated wave in Dec. $\left(-+^{\prime}\right)$. $17 \frac{1}{4}^{\mathrm{h}}$ to 19^{h} Wave in H.F. (+0012). $21_{2}^{1 \mathrm{~h}}$ to $23^{\frac{1 \mathrm{~h}}{4}}$ Wave in H.F. $(+.0022) .21 \frac{3 \mathrm{~h}}{4}$ to $22 \frac{1^{\mathrm{h}}}{}{ }^{\text {(}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$27^{\mathrm{d}} 1^{\mathrm{h}}$ to 3^{h} Irregular wave in Dec. $\left(+7^{\prime}\right)$. $14^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 16^{h} Flat-crested wave in H.F. (- - Oo 10). $15 \frac{1}{2}$ h to $16 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$. $16 \frac{3}{4}$ h to $18 \frac{1}{4} \mathrm{~h}$ Double wave in H.F. (-0012 to +0012). 17^{h} to $18 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-5^{\prime}\right) . \quad 22^{\mathrm{h}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $\left(+{ }^{\circ} \mathrm{OO22}\right)$.
1911.
 wave in Dec. $\left(-5^{\prime}\right)$.
$3^{0^{d} 2^{b}}$ to $3 \frac{14^{h}}{}$ Wave in Dec. $\left(+3^{\prime}\right)$.

September $1^{\text {d }} 0^{\text {d }}$ to $2^{\text {h }}$ Slow wave in Dec. $\left(+4^{\prime}\right)$
$11^{\mathrm{d}} 12^{\mathrm{h}}$ to $13^{\frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}}$ Wave in H.F. (- -0014). 16^{h} to 17^{h} Wave in H.F. (- -0010). 20^{h} to $22 \frac{1}{2}^{\mathrm{h}}$ Irregular truncated wave in Dec. $\left(-8^{\prime}\right)$: double-crested wave in H.F. $\left(+{ }^{\circ} \mathrm{OO} 17\right)$.
 wave in Dec. (-5^{\prime}).
 in H.F. ($+{ }^{\circ} \mathrm{OO} \mathrm{I}_{5}$).

 Decrease in Dec. $\left(-6^{\prime}\right) . \quad 23 \frac{1}{4}$ to $24^{\text {h }}$ Wave in H.F. $(+0011)$.
${ }^{1} 7^{\mathrm{d}}{ }^{\mathrm{d}} \mathrm{I}_{4}^{\mathrm{h}}$ to 3^{h} Flat-crested wave in Dec. $\left(-3^{\prime}\right)$. $\quad 18 \frac{33^{\mathrm{h}}}{}$ to 19^{h} Decrease in Dec. $\left(-4^{\prime}\right)$. $\quad 22^{\mathrm{h}}$ to 23^{h} Wave in Dec. $\left(+6^{\prime}\right)$.
 $+{ }^{\circ} \mathrm{OO} \mathrm{I}_{3}$).
$2^{0^{\mathrm{d}}} \mathrm{I}^{\frac{1}{2}}$ to 2^{h} Wave in Dec. (-3^{\prime}), followed till 5^{h} by an irregular triple wave $\left(-4^{\prime},+9^{\prime},-4^{\prime}\right)$. $3^{3^{\mathrm{h}}}$ to $9^{\text {hh }}$
 Irregular decrease in H.F. (-0036). $9^{\frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}}$ to $11 \frac{12^{\mathrm{h}}}{}$ Irregular wave in H.F. (-0021). $10^{0^{\mathrm{h}}}$ to 13^{h} Wave in Dec. $\left(+6^{\prime}\right) . \quad 14 \frac{1}{2}^{\frac{1}{h}}$ to $16^{\frac{h}{h}}$ Wave in Dec. $\left(-8^{\prime}\right)$, sharp at commencement: double wave in H.F. (-0.0025 to +0016), the first two movements sharp. $17^{\text {h }}$ to $19^{\text {h }}$ Irregular wave in Dec. (-10^{\prime}) followed till 20^{h} by another $\left(-10^{\prime}\right)$, both steep at commencement. $17 \frac{1 \mathrm{4}}{}{ }^{\mathrm{h}}$ to $18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular sharp wave in H.F. $(+.0025)$. 19^{h} to $20 \frac{31}{}$ Triple wave in H.F. ($-0013,+0014,-0010$). $2 \frac{1}{2}^{\frac{1}{h}}$ to 22^{h} Increase in Dec. $\left(+5^{\prime}\right) . \quad 20^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $21^{\mathrm{d}} 2^{\mathrm{h}}$ Two successive waves in Dec. (-4^{\prime} and -5^{\prime}).
 $\left(-5^{\prime}\right)$, followed till 16^{h} by an irregular decrease $\left(-4^{\prime}\right)$. 144^{in} to 15^{h} Double-crested wave in H.F. (-.0014). $14 \frac{3 \mathrm{~h}}{4}$ to $18 \frac{1}{2} \mathrm{~h}$ Wave in V.F. $\left(+.0005\right.$). 16^{h} to $16 \frac{3 \mathrm{~h}}{4}$ D Double-crested wave in H.F. (-0010). $17 \frac{1}{4}^{\mathrm{h}}$ to 18^{h} Sharp decrease and increase in Dec. (-15^{\prime}, $+11^{\prime}$) : sharp movements in H.F. (-0013 ,
 22^{h} to 24^{h} Double waves in Dec. $\left(+4^{\prime}\right.$ to -2^{\prime}) and H.F. $(+.0012$ to -.0012$)$: small wave in V.F.
$2^{\text {d }} 1 \frac{3}{4}^{\mathrm{h}}$ to $2 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right) .3^{\mathrm{h}}$ to 6^{h} Irregular double wave in H.F. $\left(+0011\right.$ to -0010). 5^{h} to $7^{\text {h }}$ Flat-crestel wave in Dec. $\left(+4^{\prime}\right)$. $8 \frac{1}{2}$ h to $12^{\text {h }}$ Wave in H.F. ($-{ }^{\circ} 0033$). $16 \frac{1}{2}^{\text {h }}$ to $17 \frac{1}{4}^{\text {h }}$ Wave in H.F.

 Sudden increase in H.F. $(+-\infty 010)$: in V.F. small.
$23^{\mathrm{h}} 16^{\mathrm{h}}$ to $16 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$. $19_{4}^{3 \mathrm{~h}}$ to 21_{2}^{h} Irregular donble-crestel wave in Dec. $\left(-6^{\prime}\right)$. 20^{h} to 21^{h} Wave in H.F. (+ OO13).
$27^{\mathrm{d}} \circ_{\frac{1 \mathrm{~h}}{4}}$ to 2^{h} Irregular wave in Dec. $\left(+5^{\prime}\right)$: in H.F. small.
$29^{4} 11_{2}^{\frac{1 \mathrm{~h}}{\mathrm{~h}}}$ to $16 \frac{1 \mathrm{l}}{}{ }^{\mathrm{h}}$ Loss of V.F. register.

October $\quad 3^{\text {d }}{ }^{1} 7 \frac{1}{2}$ h to $18 \frac{1}{2}{ }^{h}$ Flat-crested wave in Dec. $\left(-3^{\prime}\right)$. $19 \frac{3 \mathrm{~h}}{}{ }^{\frac{h}{4}}$ to $20 \frac{3}{4}$ h Waves in Dec. $\left(-4^{\prime}\right)$ and H.F. $(+0013)$. $4^{\mathrm{d}} 23^{\mathrm{h}}$ to 24^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$5^{\mathrm{d}} 0^{\mathrm{ol}}$ to $\frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$7^{\text {d }} 0_{4}^{\frac{1 / 4}{h}}$ to $I_{4}^{\text {h }}$ Wave in H.F. $(+\cdot$ ooio).
$8^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ to $\frac{1}{2}^{\text {h }}$ Wave in Dec. $\left(+3^{\prime}\right)$. $0 \frac{3 \mathrm{~h}}{4}$ to $2^{\text {h }}$ Wave in H.F. $(+\cdot 0010)$.

 15^{h} to $16 \frac{14}{h}^{\mathrm{h}}$ Wave in I)ec. $\left(-4^{\prime}\right) . \quad 22 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $232^{\frac{1 \mathrm{~h}}{}}$ Wave in H.F. $(+0013)$.
$10^{d} 8^{h}$ to $1 I^{d} 8^{\text {h }}$ See Plate III.
1911.

October $12^{\mathrm{d}} 22 \frac{1_{2}^{\mathrm{h}}}{}$ to $23 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (+ . OO 10).
$13^{\mathrm{d}} 20^{\mathrm{h}}$ to 22^{h} Two successive waves in H.F. $\left(+.0010\right.$ and +0012). $20 \frac{1}{4}^{\mathrm{h}}$ to $21^{\frac{1 \mathrm{~h}}{4}}$ Wave in Dec. (-3^{\prime}).
$14^{\mathrm{d}} 1^{\mathrm{h}}$ to 3^{h} Slow wave in Dec. $\left(+3^{\prime}\right) . \quad 14^{\mathrm{d}} 23^{\frac{1}{4} \mathrm{~h}}$ to $15^{\mathrm{d}} 0_{4}^{\frac{1 \mathrm{~h}}{}}$ Wave in 1)ec. $\left(+4^{\prime}\right)$.
$16^{d} 15^{\mathrm{h}}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Loss of H.F. and V.F. registers. $\quad 16^{\mathrm{h}}$ to $16 \frac{1^{\mathrm{h}}}{}$ Wave in Dec. $\left(-3^{\prime}\right)$. $\quad 19 \frac{1}{4}^{\mathrm{h}}$ to 20^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$17^{\mathrm{d}} 9 \frac{1 \mathrm{~h}}{4}$ to $11 \frac{1 \mathrm{hh}}{4}$ Wave in H.F. $(-\cdot 0015)$. 10^{h} to $10 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$. $14 \frac{1 \mathrm{~h}}{4}$ to 6^{h} Two successive waves in H.F. $\left(-.0010\right.$ and - 0010). $15 \frac{3 \mathrm{~h}}{}{ }^{\circ}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 16 \frac{3}{4} \mathrm{~h}$ to $17 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-3^{\prime}\right) . \quad 17^{\mathrm{h}}$ to $17 \frac{3}{4} \mathrm{~h}$ Wave in H.F. $(+\circ 010), \quad 20 \frac{1}{2}^{\mathrm{h}}$ to $2 \mathrm{I}_{2}^{\mathrm{h}}$ Irregular wave in H.F. $(+\cdot 0013)$: small double wave in Dec.
$18^{\mathrm{d}} 7 \frac{1}{4}^{\mathrm{h}}$ to $1 \mathrm{I}_{4}^{\frac{1 \mathrm{~h}}{4}}$ Irregular double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+3^{\prime}\right) . \quad 9 \frac{3 \mathrm{~h}}{4}$ to $11 \frac{1 \mathrm{~h}}{4}$ Double-crested wave in H.F. ($-\cdot 0018$). $133^{\frac{1}{2}}$ to $15^{\frac{3 \mathrm{~h}}{4}}$ Two successive waves in H.F. (-0010 and -.0012). 15^{h} to $16 \frac{1}{2} \mathrm{~h}$ Wave in Dec. (-4^{\prime}). $\quad 17^{\mathrm{h}}$ to 19^{h} Double wave in H.F. (-0017 to +0015). $17 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(-7^{\prime}\right)$. I $9^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $21_{4}^{3 \mathrm{~h}}$ Irregular double wave in Dec. $\left(-7^{\prime}\right.$ to $+5^{\prime}$), followed till 23^{h} by a wave ($+3^{\prime}$). $19 \frac{3 \mathrm{~h}}{4}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in H.F. (- ooro). $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Irregular double-crested wave in H.F. $(+.0033) . \quad 21^{\text {b }}$ to $21 \frac{3}{4} \mathrm{~h}$ Sharp decrease in V.F. $(-\cdot 0007)$.
$19^{\mathrm{d}} \mathrm{II}_{2}^{\frac{1}{\mathrm{~h}}}$ to $12 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (-0012). $\quad 20^{\mathrm{h}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in Dec. $\left(-7^{\prime}\right) . \quad 20 \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Triplecrested wave in H.F. $(+\cdot 0013)$.
 Irregular waves in Dec. $\left(+4^{\prime}\right)$ and H.F. $(+\cdot 0010)$.

$2^{2^{d}} 18^{\mathrm{h}}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$. $21 \frac{1}{2}{ }^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. $(+\cdot \infty 15$).
 to $+\cdot 010$).
$25^{\mathrm{d}} 20^{\mathrm{h}}$ to 22^{h} Two successive waves in Dec. (-5^{\prime} and -3^{\prime}). 20^{h} to $21^{\frac{1}{2}}{ }^{\mathrm{h}}$ Two successive waves in H.F. (- .0011 and - ${ }^{-0013 \text {). }}$

November $\quad 3^{\mathrm{d}} 3^{\mathrm{h}}$ to $4^{\frac{1}{2} \mathrm{~h}}$ Truncated wave in Dec. $\left(-3^{\prime}\right)$. 9^{h} to $9 \frac{3 \mathrm{~h}}{4}$ Decrease in V.F. $(-\cdot 0003)$. 13^{h} to 15^{h} Wave in H.F. (- -OOI3). $18 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. ($-\cdot 0010$). $18 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Truncated wave in Dec. (-8^{\prime}), steep at commencement.
$5^{\mathrm{d}} \circ \frac{1_{2}}{}{ }^{\mathrm{h}}$ to $\frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$8^{\mathrm{d}} 21^{\mathrm{h}}$ to 23^{h} Irregular wave in Dec. $\left(-6^{\prime}\right) . \quad 21^{\frac{3 \mathrm{~h}}{}}$ to 24^{h} Slightly truncated wave in H.F. (-0021).

$10^{d} 0^{h}$ to I^{h} Waves in Dec. $\left(+5^{\prime}\right)$, and H.F. $(+\cdot 0016)$. $0 \frac{1 \mathrm{~h}}{4}$ to 1^{h} Decrease in V.F. $(-\cdot 003)$.
$12^{\mathrm{d}} 22 \frac{12^{\mathrm{h}}}{}$ to $13^{\mathrm{d}} 2^{\mathrm{h}}$ Triple-crested wave in Dec. $\left(-6^{\prime}\right)$. $\quad 12^{\mathrm{d}} 23 \frac{1}{4} \mathrm{~h}$ to $13^{\mathrm{d}} 1^{\mathrm{h}}$ Irregular wave in H.F. ($+{ }^{\circ} \mathrm{oozo}$).
 crested wave in H.F. (- .ooi2), followed till $17 \frac{1}{2}{ }^{\mathrm{h}}$ by a triple wave ($-0018,+\cdot 0019,-.0012$). $14^{\frac{1}{2}}$ to $15^{\frac{3}{4}}$ Irregular wave in Dec. $\left(-6^{\prime}\right)$, followed till $174^{\frac{3}{4}}$ by an irregular double-crested wave (-15^{\prime}).
 sharp wave (-7^{\prime}). $18 \frac{1^{h}}{}{ }^{\mathrm{h}}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (+0016), followed till $19 \frac{1}{2}^{\mathrm{h}}$ by an increase (+.0010). $19 \frac{3 \mathrm{~h}}{4}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Irregular double wave in H.F. (- 0013 to +0023). 21^{h} to $21^{\frac{1}{\mathrm{~h}}}$ Decrease in V.F. ($-\cdot 0004$).
$14^{\mathrm{d}} 1 \frac{1}{2}^{\mathrm{h}}$ to 4^{h} Wave in Dec. $\left(+6^{\prime}\right)$. 11^{h} to 12^{h} Decrease in H.F. (-0028). 12^{h} to $13^{\frac{1}{2}}{ }^{\mathrm{h}}$ Flat-crested wave in Dec. $\left(+4^{\prime}\right) . \quad 14^{\mathrm{h}}$ to $15 \frac{1}{2}^{\mathrm{h}}$ Sharp double wave in H.F. (-.0018 to +.0017), followed till $6 \frac{3}{4}$ h by a
 Wave in V.F. $\left(+{ }^{\circ} 0003\right)$. $14^{\mathrm{d}} 23 \frac{1}{4}^{\mathrm{h}}$ to $15^{\mathrm{d}}{ }^{1} \frac{3 \mathrm{~h}}{4}$ Double wave in Dec. $\left(+8^{\prime}\right.$ to $\left.-3^{\prime}\right)$. $14^{\mathrm{d}} \quad 23 \frac{1}{2}^{\mathrm{h}}$ to

$15^{\mathrm{d}} 13^{\mathrm{h}}$ to 16^{h} Two successive waves in H.F. (-0011 and - -0012). $15^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 16^{h} Wave in Dec. (-3^{\prime}). $18 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-10^{\prime}\right)$. 19^{h} to 20^{h} Wave in H.F. $(+\circ 020) . \quad 23 \frac{1}{4}^{\mathrm{h}}$ to 24^{h} Wave in Dec. $\left(+3^{\prime}\right) . \quad 15^{\mathrm{d}} 23 \frac{1}{4}^{\mathrm{h}}$ to $16^{\mathrm{d}} 0_{2}^{1 \mathrm{~h}}$ Wave in H.F. $(+\cdot 0013) . \quad 23^{\frac{1}{\mathrm{~h}}}$ to 24^{h} Decrease in V.F. $\left(-{ }^{\circ} \mathrm{OOO} 3\right)$.
 in H.F. (+0010).
$19^{\mathrm{d}} 1^{8 \frac{1}{2}}{ }^{\mathrm{h}}$ to 19^{h} Wave in H.F. ($+\circ 0 \mathrm{o} 0$).

1911.

November $21^{\text {d }} 9^{\text {h }}$ to $11^{\text {h }}$ Wave in H.F. ($-\cdot 0011$).
$23^{\mathrm{d}} 55^{\frac{1 \mathrm{~h}}{}}$ to $16 \frac{1 \mathrm{~h}}{4}$ Loss of V.F. register.
$26^{\mathrm{d}} 1_{2}^{\frac{1}{2}}$ to 2^{h} Wave in Dec. $\left(+3^{\prime}\right)$.
$27^{\text {d }} 19^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Loss of Dec. H.F. and V.F. registers.

December $1^{d} 1^{h}$ to 2^{h} Waves in Dec. $\left(+5^{\prime}\right)$ and H.F. ($+\cdot 0011$). $I^{\frac{1}{4} h}$ to $1^{\frac{3}{4}}$ Decrease in V.F. ($-\cdot 0003$). $6^{\mathrm{d}} 11 \frac{3 \mathrm{~h}}{4}$ to $12 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$. $16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $19 \frac{1 \mathrm{~h}}{4}$ Irregular triple wave in Dec. $\left(+4^{\prime},-14^{\prime},+5^{\prime}\right) . \quad 17^{\mathrm{h}}$ to 20^{h} Wave in H.F. $(-005 \mathrm{I})$, with irregular return. $17 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{3 \mathrm{~h}}{4}$ Wave in V.F. ($+\circ 000$). $22 \frac{1 \mathrm{~h}}{4}$ to $23 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0019)$, $6^{\mathrm{d}} 22 \frac{1_{2}^{\mathrm{h}}}{}$ to $7^{\mathrm{d}} 1^{\mathrm{h}}$ Triple wave in Dec. $\left(+4^{\prime},-3^{\prime},+3^{\prime}\right)$. $8^{d} 18 \frac{1}{2}{ }^{h}$ to $19 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$11^{d} o^{h}$ to $12^{d} O^{h}$ See Plate III.
$12^{\mathrm{d}} 0^{\mathrm{h}}$ to $0 \frac{3}{4}{ }^{\mathrm{h}}$ Decrease in H.F. ($-{ }^{\circ} \mathrm{OO26}$).
 Wave in H.F. ($-\cdot 0015$). $18 \frac{11^{\mathrm{h}}}{}$ to 20^{h} Wave in Dec. $\left(-8^{\prime}\right)$.
$18^{d} I^{\frac{3}{4} h}$ to $2 \frac{1}{2}^{h}$ Wave in Dec. $\left(+3^{\prime}\right)$.
 till 18^{h} by a decrease $\left(-4^{\prime}\right)$. ${ }^{18 \frac{1}{2}}{ }^{\mathrm{h}}$ to 20^{h} Wave in Dec. $\left(-5^{\prime}\right)$, followed till 22^{h} by a double-crested wave $\left(-5^{\prime}\right) . \quad 18 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-0011). $\quad 20 \frac{1}{2}^{\mathrm{h}}$ to $21_{2^{\mathrm{h}}}$ Wave in H.F. (-OOI2).
$27^{\mathrm{d}} 0^{\mathrm{h}}$ to 3^{h} Double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-3^{\prime}\right)$: the first portion double-crested.
$28^{\mathrm{d}} 0 \frac{3 \mathrm{~h}}{4}$ to 2^{h} Wave in Dec. $\left(+6^{\prime}\right) . \quad 1^{\mathrm{h}}$ to $1^{\frac{1}{2}}$ Decrease in V.F. (-0003).
$30^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $31^{\mathrm{d}} 2^{\mathrm{h}}$ Irregular double-crested wave in Dec. $\left(-5^{\prime}\right)$: small irregular double wave in H.F.
$3^{1^{\mathrm{d}}} 5 \frac{1}{2}^{\mathrm{h}}$ to $7 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Two successive waves in H.F. $(+.0010$ and $+\cdot 0011) . \quad 5^{\mathrm{h}}$ to $7 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+5^{\prime}\right)$. 15^{h} to $16 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$: irregular wave in H.F. (-0016).

Explanation of the Plates.

The magnetic motions figured on the Plates are :-
 April $8^{d} 18^{h}$ to $9^{d} 18^{h}, 16$, May $14^{d} 1^{\text {b }}$ to $15^{d} 16^{h}$, October $10^{d} 8^{h}$ to $11^{d} 8^{h}$, December 11 .
(2.) Those for four quiet days-March 11, May 13, August 12, November 7-which are given as types of the ordinary diurnal movement at four seasons of the year.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from o to 24).
The magnetic declination, horizontal force, and vertical force are indicated by the letters D., H., and V. respectively ; the declination (west) is expressed in minutes of arc, the units for horizontal and vertical force are -0000 of the whole horizontal and vertical forces respectively, the corresponding scales being given on the sides of each diagram. Equal changes of amplitude in the several registers correspond nearly to equal changes of absolute magnetic force, 0.001 of a C.G.S. unit being represented by $0^{\mathrm{in} .} 80=20.2$ in the declination curve, by $0^{\mathrm{in} .} 74=18.7$ in the horizontal force curve, and by $0^{\text {in. }} 73={ }_{1}^{\mathrm{mm} .6}$ in the vertical force curve.

Downward motion indicates increase of declination and of horizontal and vertical force.
The temperatures (Fahrenheit) of the horizontal and vertical force magnets at each hour are given in small figures on the Diagrams. ROYAL OBSERVATORY, GREENWICH, 1911.

MAGNETIC DISTURBANCES RECORDED AT THE ROYAL OBSERVATORY GREENWICH I9II

ROYAL OBSERVATORY, GREENWICH, 1911.

-

TYPES OF MAGNETIC DIURNAL VARIATIONS AT FOUR SEASONS OF THE YEAR RECORDED AT THE ROYAL OBSERVATORY, GREENWICH, I91I.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

METEOROLOGICAL OBSERVATIONS.

1911.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, $1841-1005$ The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns $3,4,5,14$, and I_{5} are derived from eye-readings of self-registering thermometers.

* Rainfall (Coimm 17). Amounts entered on January 15, 24, and 29 are derived from fog and frost.

The mean reading of the Barometer for the month was $3^{\text {in }}{ }^{1}{ }_{3} 6$, being $0^{\text {in }} \cdot 342$ higher than the average for the 65 years, $1841-1905$.
Temperatule of the Aif.
The highest in the month was $51^{\circ} \cdot 7$ on January 26 ; the lowest in the month was $24^{\circ} \cdot 1$ on January 15 ; and the range was $27^{\circ} .6$.
The mean of all the highest daily readings in the month was $42^{\circ} \circ$, being 1°. lower than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $34^{\circ}{ }^{\circ}$, being $0^{\circ} .5$ higher than the average for the 65 years, 184i-1905.
The mean of the daily ranges was $7^{\circ} \cdot 8$, being $1^{\circ} \cdot 6$ less than the average for the 65 years, 1841-1905.
The mean for the month was $38^{\circ} \cdot 2$, being $0^{\circ}{ }_{4}$ lower than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $3^{\circ} \cdot 8$, being $\circ^{\circ}{ }_{4}$ lover than
The mean T'emperature of the Dew Point for the month was $34^{\circ} 7$, being $0^{\circ} 6$ lower than
The mean Degree of Humidity for the month was $87^{\circ} 5$, being 0.5 less than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 201$, being oin $\cdot 00$; less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $\boldsymbol{2}^{\mathrm{grs}}{ }^{\circ}$, being ogr•a less than
The mean Weight of a Cubic Foot of Air for the month was 5^{61} grains, being 7 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was $7 \% 9$
The mean proportion of Sunshine for the month (constant sunshine being represented by r) was $0 \cdot 127$. The maximum daily amount of Sunshine was 8.0 hours on January \boldsymbol{j}^{1}.
The highest reading of the Solar Radiation Thermometer was $74^{\circ} \cdot 2$ on January 30 ; and the lowest reading of the Terrestrial Radiation Thermometer was $19^{\circ} \circ$ on Jannary 15 .
The Proportions of Wind referred to the cardinal points were N. 5, E. 6, S. 4, and W. ir. Five days were calm.
The Greatest Pressure of the Wind in the month was $20^{\circ} 5 \mathrm{lbs}$. on the square foot on January 12 . The mean daily Horizontal Movement of the Air for the month was $28+$ miles; the greatest daily value was 609 miles on January 12 ; and the least daily value was 78 miles on January 20.
Rain (oin. 005 or over) fell on 12 days in the month, amounting to $\mathrm{I}^{\text {in }}{ }^{2} \mathbf{2}_{3}$, as measured by gange No. 6 partly sunk below the ground; being oin 648 less than the average fall for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { rgin. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$	Baro－ 	Temperature．							Difference between the Air Temperature and Dew Point Temperature．				Temperature．				Electricity．	
			Of the Air．					$\begin{gathered} \text { Of } \\ \text { Evapo- } \end{gathered}$	Of the Dew Point．				Of Radiation．						
				$\begin{aligned} & \text { 宮 } \\ & \stackrel{y}{8} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	Daily Range．	Mean Hourly Values		$\begin{aligned} & \text { Mean } \\ & \text { Mof } 24 \\ & \text { Hourly } \\ & \text { Valunes. } \end{aligned}$	De－ duced Mean Daily Value．	$\begin{aligned} & \text { E゙ } \\ & \text { تٌِ } \end{aligned}$					Highest in Sun＇s Rays．	Lowest Grass． Grass．			
		in．	－	\bigcirc	－	－	－	－	\circ	－	\bigcirc	－			${ }^{\circ}$	\bigcirc	\bigcirc	in．	
Feb． 1		30．574	37°	21.6	$15^{\circ} 4$	29.4	－10．2	28.2	$24^{2} 2$	$5 \cdot 2$	$9 \cdot 4$	$0 \cdot 0$	80	$66 \cdot 0$	151	$42^{\circ} \mathrm{O}$	$0 \cdot 000$		
		30.532	34.7	22.6	12．1	30.6	－8．9	29.5	26.4	$4 \cdot 2$	$5 \cdot 9$	$0 \cdot 0$	84	323	$14^{\circ} \mathrm{O}$	41 5°	$0 \cdot 000$	mP	
3	In Equator	$30 \cdot 383$	41.2	32.2	9°	$38 \cdot 0$	－ 1.5	$36 \cdot 7$	34.9	$3 \cdot 1$	$3 \cdot 8$	$2 \cdot 2$	89	$45 \cdot 5$	28°	41.05	$0 \cdot 002$	mP ：wwP ：wwP	
		30．36	$43^{\circ} \mathrm{O}$	37×2	$5 \cdot 8$	$40^{\circ} 1$	＋ 0.6	$38 \cdot 7$	$36 \cdot 9$	3.2	$4 \cdot 8$	0.7	89	55°	32°	$40 \cdot 80$	$0 \cdot 018$	wwP	
5		$30 \cdot 346$	$42 \cdot 1$	$38 \cdot 0$	$4 \cdot 1$	$39 \cdot 6$	$0 \cdot 0$	$38 \cdot 1$	${ }^{36} \cdot{ }^{\text {I }}$	$3 \cdot 5$	$5 \cdot 1$	$1 \cdot 8$	88	$48 \cdot 8$	$35^{\circ} \mathrm{O}$	$40 \cdot 86$	0.014	wwP	
6	First Quarter	30.439	38.6	34.9	3.7	$36 \cdot 7$	－ 29	34.7	31.8	$4 \cdot 9$	$8 \cdot 2$	1.7	83	$46 \cdot 0$	$32 \cdot 8$	$4{ }^{\circ} \cdot 02$	－000	$v \mathrm{P}: \mathrm{sP}$	
7	\ldots	30.477	$37^{\circ} 8$	$32 \cdot 8$	$5^{\circ} \mathrm{O}$	34.8	－ 47	33.2	$30 \cdot 6$	4.2	7°	3．8	84	$36 \cdot 0$	28.4	4111	$0 \cdot 000$	sP	
8		30.469	$40 \cdot 1$	$34^{\circ} \mathrm{I}$	6.0	$37 \cdot 6$	－I＇7	$35 \cdot 3$	32.1	$5 \cdot 5$	$7 \cdot 1$	2.9	81	54.1	31.9	41111	$0 \cdot 000$	$\mathrm{P}: \mathrm{sP}: \mathrm{sP}$	
9	Perigee	30.257	$38 \cdot 8$	33.3	$5 \cdot 5$	$35 \cdot 8$	-3.3	33.4	29.7	6．1	10＇1	$2 \cdot 2$	78	$46 \cdot 3$	$30 \cdot 5$	41．06	－00		
10	Greatest Declination N．	29．861	$43 \cdot 5$	25 I	18.4	35\％9	－ $3^{\circ} 0$	33.4	29.5	6.4	$9 \cdot 7$	0.5	78	73．1	18.5	$41^{\circ} \mathrm{c} 9$	0．085	${ }_{w P} \mathrm{~m}$ mP： sP, sN	
11	兂	29.914	44%	33.2	117	39°	$+0.2$	36.7	33.7	$5 \cdot 3$	11.0	$0 \cdot 2$	82	64.4	$26 \cdot 3$	40.90	0.015	mP，wN：sP：sP	
12	\ldots	30.141	44.5	$29^{1} 1$	15.4	$36 \cdot 9$	－I＇9	34.3	$30 \cdot 6$	$6 \cdot 3$	10.6	0.0	78	$60 \cdot 5$	22.2	40•88	I＊	$m \mathrm{P}: \mathrm{mP}: \mathrm{sP}$	
I 3	Full	$30 \cdot 306$	$4^{2}{ }^{\circ}$	30＇1	11.9	$35^{\circ} 9$	－3＇1	34°	$3{ }^{1 \times 1}$	$4 \cdot 8$	$10 \cdot 3$	$3{ }^{\circ}$	83	47.0	23.6	$40 \cdot 80$	$0 \cdot 000$	$m P: s P: s P$	
14	．．．	$30 \cdot 337$	$46 \cdot 0$	$26 \cdot 3$	197	38.2	－1．1	$35^{\circ} \mathrm{O}$	$30 \cdot 7$	$7 \cdot 5$	$11^{\circ} \mathrm{O}$	$5 \cdot 3$	74	82.7	20.8	$40 \cdot 70$	$0 \cdot 000$		
15	\ldots	30.308	$4^{8 \cdot 1}$	$32 \cdot 9$	15.2	$41 \cdot 6$	$+2.2$	$38 \cdot 7$	$35^{\circ} 2$	$6 \cdot 4$	15.3	$1 \cdot 1$	79	74.3	25.6	$40 \cdot 60$	$0 \cdot 073$	$\mathrm{vP}, \mathrm{vN}: \mathrm{v}$ ： sP	
16	In Equator	30．091	$50^{\circ} 0$	$35^{\circ} \mathrm{O}$	$15^{\circ} \mathrm{O}$	$46 \cdot 3$	$+6 \cdot 8$	$44^{\circ} 3$	$4^{2 \cdot 0}$	4.3	$7 \cdot 6$	0.2	86	57.3	28.0	$40 \cdot 71$	$0 \cdot 040$	wP： wP ： mP	
17	In Equar	29.923	55°	$48 \cdot 7$	$6 \cdot 3$	50.9	＋113	$47 \cdot 5$	$43 \cdot 9$	$7{ }^{\circ} \mathrm{O}$	12.6	2.7	78	81.9	$43^{\circ} \mathrm{O}$	$40 \cdot 94$	$0 \cdot 000$	$w_{w P}: m P: m P$	
18	\ldots	29.625	$55^{\circ} 2$	$48 \cdot 8$	$6 \cdot 4$	51.8	＋123	49°	$46 \cdot 6$	$5 \cdot 2$	$9 \cdot 0$	34	83	65°	43.5	41.47	$0 \cdot 006$	wP ：wP ：wP，wN	
		29378	$49^{\circ} 2$	$37 * 4$	11．8	$44^{\circ} 6$	＋ $5^{\prime} 1$	$41^{\circ} \mathrm{O}$	$36 \cdot 8$	$7 \cdot 8$	12.6	$2 \cdot 3$	73	79°	30°	42.07	$0 \cdot 190$	$w \mathrm{P}, \mathrm{vN}: \mathrm{mP}: \mathrm{mP}$	
20	\cdots	29.797	48.0	$33^{\circ} \mathrm{I}$	149	$40 \cdot 2$	＋ 0.7	37°	$32 \cdot 9$	$7 \cdot 3$	14．1	3.2	75	$76 \cdot 2$	$25^{\circ} \mathrm{O}$	42.45	$0 \cdot 000$	mP：sP：sP	
21	Last Quarter ： Apogee	29793	$49 \cdot 7$	$35^{\circ} \mathrm{I}$	14.6	$42 \cdot 6$	＋ 30	41.4	$40 \cdot 0$	$2 \cdot 6$	5•1	0.8	90	$64 \cdot 7$	297	$42 \cdot 48$	0.125	$m P: w N, w P: w P$	
22	－	29.594	$5^{2} 0$	$43^{\circ} 6$	8.4	$48 \cdot 5$	＋ $8 \cdot 8$	447	$40 \cdot 6$	$7{ }^{\circ} 9$	17°	0.8	74	$87 \cdot 0$	38.0	42.45	0.022	$w \mathrm{P}, \mathrm{wN}: \mathrm{mP}: \mathrm{mP}$	
23	\cdots	29.348	52.0	$43 \cdot 0$	9＊0	$47 \cdot 4$	＋ 76	$44 \cdot 5$	$41 \cdot 3$	$6 \cdot 1$	12.0	$1 \cdot 7$	80	64.9	37°	$42 \cdot 70$	－139	wP ：wP，vN ：w	
24	Greatest Declination S ．	29.456	51.0	$42 \cdot 8$	$8 \cdot 2$	$45^{\circ} 9$	＋ 59	$41 \cdot 3$	$36 \cdot 0$	$9 \cdot 9$	17°	57	69	82.5	36.4	42.90	0．005		
25	\ldots	29.490	55°	41＊2	13.8	$48 \cdot 3$	$+8.2$	$46 \cdot 1$	437	$4 \cdot 6$	9.5	0.7	85	$66 \cdot 6$	37.5	43.08	O＇IIO	$v N$ ，wP ：wP ：mP	
26	\ldots	29.759	48.9	$37 \cdot 8$	11•1	$44^{\cdot 1}$	＋ 39	$39 \cdot 5$	$34^{\circ} \mathrm{I}$	10.0	17.6	$3 \cdot 3$	68	87.0	$31^{\circ} \mathrm{O}$	43.25	$0 \cdot 035$	vP，vN ：mP ：sP	
27	\ldots	29799	$48 \cdot 8$	34.3	145	42.5	＋ 22	$41 \cdot 6$	$40 \cdot 5$	$2 \cdot 0$	$4 \cdot 8$	$0 \cdot 0$	93	63.2	29＊I	43.35	0＇347		
28	\cdots	29390	$5^{2} 0$	$45^{\circ} \mathrm{I}$	6.9	49°	$+8.9$	$47 * 9$	$46 \cdot 5$	$2 \cdot 7$	4.6	0.6	91	$58 \cdot 0$	39°	43.35	O． 149	wP ：wP，ww $\mathrm{N}: \mathrm{wP}$ ，vN	
Means	\ldots	$30 \cdot 006$	$46 \cdot 0$	353	107	$4^{1 / 2}$	＋ 1.6	$38 \cdot 8$	357	$5 \cdot 5$	97	1.8	81．3	63.0	297	41.67	11376	\cdots	
Number of Column for Reference． ，	1	2	3	4	5	6	7	8	9	10	I 1	12	13	14	15	16	17	I 8	

The results apply to the civil day．
The mean reading of the Parometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Gaishers Angrather ege mean difference between the Air and Dew Point Temperatures（Column ro）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns in and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column 16 are taken daily at noon．
The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．
＊Rainfall（Column 17）．Amount entered on February 12 is derived from frost．
The mean reading of the Brrometer for the month was $30^{\text {in }} \cdot 006$ ，being $0^{\text {in }} \cdot 204$ higher than the average for the 65 years， $1841-1905$ ．
Temperatioe of the Air．
The highest in the month was $55^{\circ} \cdot 2$ on February 18 ；the lowest in the month was $21^{\circ} \% 6$ on February 1 ；and the range was $33^{\circ} \cdot 6$ ．
The mean of all the highest daily readings in the month was $46^{\circ} \circ$ ，being $0^{\circ} \cdot 8$ higher than the average for the 65 years， $1841-1905$
The mean of all the lowest daily readings in the month was $35^{\circ}{ }_{3}$ ，being $1^{\circ} \cdot{ }^{\circ}$ higher than the average for the 65 years， $1841-1905$ ．
The mean of the daily ranges was $10^{\circ} \cdot 7$ ，being $0^{\circ} \cdot 3$ less than the average for the 65 years，1841－1905．
The mean for the mouth was $41^{\circ} \cdot \mathbf{2}$ ，being $1^{\circ} \cdot 6$ higher than the average for the 65 years，1841－1905．

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 vears' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Coluwn in) deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference berwen the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Collmms in and 12) are deduced from the 24 honrly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 727$, being oin $\cdot 19$ lower than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $61^{\circ} \cdot 8$ on March 21 ; the lowest in the month was $29^{\circ} 1$ on March 10 and 17 ; and the range was $32^{\circ} .7$
The mean of all the highest daily readings in the month was $48^{\circ} .4$, being $1^{\circ}{ }^{\circ} 4$ lower than the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was $35^{\circ} \cdot 8$, being $0^{\circ} \cdot 7$ higher than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $12^{\circ} \cdot 6$, being $2^{\circ}{ }^{\circ} 1$ less than the average for the 65 years, 1841-1905.
The mean for the month was $41^{\circ} 9$, being the same as the average for the 65 years, 1841-1905

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 1 i and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 836$, being $0^{\text {in }} \cdot 088$ higher than the average for the 65 years, $1841-1905$.
'Temperature of the Aif.
The highest in the month was $67^{\circ} 3$ on April 22; the lowest in the month was $26^{\circ} \cdot 7$ on April 6 ; and the range was $40^{\circ} \cdot 6$.
The mean of all the highest daily readings in the month was $55^{\circ}{ }^{\circ} 3$, being $1^{\circ} 9$ lower than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $38^{\circ} \cdot 6$, being $0^{\circ}{ }_{4}$ lower than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $16^{\circ} \%$, being $1^{\circ} .4$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $4^{\circ}{ }^{\circ} 3$, being $1^{\circ} \circ$ lower than the average for the 65 years, $184^{1-1905 .}$

The mean Temperature of Evaporation for the month was $42^{\circ} \cdot 4$, being $1^{\circ} .5$ lower than
The mean Temperature of the Dew Point for the month was $3^{\circ} \cdot 1$, being $2^{\circ} \circ$ lower than
The mean Degree of Humidity for the month was $73^{\circ} 8$, being $2^{\circ} \circ$ less than
The mean Elastic Force of Vapour for the month was oin $\cdot 230$, being oin $\cdot 018$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2{ }^{\mathrm{grs}} \cdot 7$, being ogr ${ }_{2}$ less than
The mean Weight of a Cubic Foot of Air for the month was 546 grains, being 3 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by 10) was $7^{\circ} 1$.
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was $0 \cdot 365$. The maximum daily amount of Sunshine was 119 hours on April 19 .
The highest reading of the Solar Radiation Thermometer was $123^{\circ} \cdot 5$ on April 22 ; and the lowest reading of the Terrestrial Radiation Thermometer was $21^{\circ} \cdot 5$ on April 12 .
The Proportions of Wind referred to the cardinal points were N. 10, E. 4. S. 5, and W. ro. One day was calm.
The Greatest Pressure of the Wind in the month was $15{ }^{\circ} 9$ lbs. on the square foot on April 5. The mean daily Horizontal Movement of the Air for the month was 386 miles ; the greatest daily value was 609 miles on April 19 ; and the least daily value was 143 miles on April 2 .
Rain (oin 005 or over) fell on 12 days in the month, amounting to $\mathrm{I}^{\text {in }} 734$, as measured by gauge No. 6 partly sunk below the ground ; being oin 168 greater than the average fall for the 65 years, $18+1-1905$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.

 daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 805$, being oin $\cdot 011$ higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $81^{\circ} \cdot 7$ on May 31 ; the lowest in the month was $35^{\circ} \circ$ on May 22; and the range was $46^{\circ} \cdot 7$.
The mean of all the highest daily readings in the month was $68^{\circ} \cdot 1$, being $4^{\circ} \cdot 2$ higher than the average for the 65 years, $184 \mathbf{I}-\mathbf{1 9 0 5}$.
The mean of all the lowest daily readings in the month was $46^{\circ} 3$, being $2^{\circ} \cdot 6$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $21^{\circ} \cdot 8$, being $1^{\circ} \cdot 6$ greater than the average for the 65 years, 1841-1905.
The mean for the month was $5^{\circ} \cdot 1$, being $3^{\circ} 1$ higher than the average for the 65 years, 184_{1-1905}.

The mean Temperature of Evaporation for the month was $52^{\circ} \circ$, being $3^{\circ} \circ$ higher than
The mean Temperature of the Dew Point for the month was $48^{\circ} \cdot 2$, being $3^{\circ} \cdot 2$ higher than
The mean Degree of Humidity for the month was 75°, being $1^{\circ} \circ$ greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 338$, being ${ }^{\text {in }} \cdot{ }^{\circ} 39$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\mathrm{grr}} \cdot 8$, being $\mathrm{ogr}_{4} \cdot \mathbf{g r e a t e r}$ than
The mean Weight of a Cubic Foot of Air for the month was 535 grains, being 3 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was 6.2 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0^{\circ} 459$. The maximum daily amount of Sunshine was 14.7 hours on May 29 .
The highest reading of the Solar Radiation Thermometer was $144^{\circ} \circ$ on May 29 ; and the lowest reading of the Terrestrial Radiation Thermometer was $25^{\circ} \cdot 0$ on May 22.
The Proportions of Wind referred to the cardinal points were N. 8, E. 8, S. 5, and W. 6. Four days were calm.
The Greatest Pressure of the Wind in the month was $15^{\circ} \mathrm{lbs}$. on the square foot on May. 3. The mean daily Horizontal Movement of the Air for the month was 225 miles; the greatest daily value was 509 miles on May 3; and the least daily value was 105 miles on May 13.
Rain (oin $\cdot 005$ or over) fell on 8 days in the month, amounting to $\mathrm{r}^{\mathrm{in}} \cdot 876$, as measured by gauge No. 6 partly sunk below the ground; being oin $\cdot 039$ less than the average fall for the 65 years, 1841 -1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 vearg' observations, 1841 -1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Colunns 6 and 9 , and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 82 \mathrm{I}$, being $0^{\text {in }} \cdot 006$ higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was 83°.9 on June 5 ; the lowest in the month was $40^{\circ} .6$ on June 1_{11}; and the range was $43^{\circ} \cdot 3$.
The mean of all the highest daily readings in the month was $70^{\circ} \cdot 9$, being $0^{\circ} \cdot 2$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $50^{\circ}{ }_{3}$, being $0^{\circ}{ }_{4}$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $20^{\circ} \%$, being $0^{\circ} \cdot 1$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $59^{\circ} 6$, being $0^{\circ} \cdot 2$ higher than the average for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { PAY, } \\ \text { igri. } \end{gathered}$	Daily Duration of Sunshine.		Wind as dedeced from Self-Registerina Anemometers.					Clouds and Weather.					
			Osler's.				$\left\lvert\, \begin{gathered} \text { Robin- } \\ \text { SON's. } \end{gathered}\right.$						
			General Direction.		Pressure on the Square Foot								
			A.M.	P.M.				A.M.			P.M.		
	hours.	hours.			lbs.	lbs.	miles.						
June 1	13.9	$16 \cdot 2$	E	E : ESE : ENE	4.3	$0 \cdot 30$	270	p.-cl :	1	0	\bigcirc	: 0	
	14.7	$16 \cdot 2$	ENE : NE	ENE : E	3.0	$0 \cdot 17$	239		: 0		\bigcirc	I, ci.-s :	p.-cl
3	$10 \cdot 5$	$16 \cdot 3$	ENE : Calm	SW : SSW	$0 \cdot 9$	0.02	145	9	p.-cl	5, cu	3, cu	2, ci, ci.-s, cu:	I, d
4	$8 \cdot 7$	$16 \cdot 3$	WSW : Calm : N	Variable : Calm	$0 \cdot 1$	$0 \cdot 00$	111	p.-cl :	O.	5, s, n	9, s, n	5, ci.-s	h, d
5	13.9	$16 \cdot 3$	Calm : NE	NE : ESE : Calm	1.6	0.03	${ }_{1} 3^{6}$	- :	o, m	0	2, cu :	2, ci.-s :	\bigcirc
6	14.2	$16 \cdot 4$	Calm : NNE : ENE	NE : ESE : ENE	2.0	$0 \cdot 14$	259	$\bigcirc \quad:$	\bigcirc	I, ci, ci.-s	2, ci, cu :	1 :	p.-cl
	11.7	16.4	ENE : E	E : ESE	3.4	$0 \cdot 30$	302	p.-cl :	9	2, cu, cu.-s	0	$1 \quad$:	I, d
8	15.4	$16 \cdot 4$	E : Calm	E : ESE : Calm	$2 \cdot 5$	- 0.16	211	1 :	\bigcirc	\bigcirc	\circ	$: 2$	
9	73	$16 \cdot 4$	Calm : SW : Variable	E : NE	4.0	$0 \cdot 30$	285	p.-cl, m :	li.-cl	8, cu	9, s :	Io, cu, n :	p.-cl
10	10.7	$16 \cdot 5$	NE : NNE	N : Variable	$2{ }^{\circ}$	0.18	239			8, cu, n	8, cu, cu.-s :	$8, \mathrm{ci}, \mathrm{n}$	
11	$7 \cdot 1$	$16 \cdot 5$	SW : WSW : Calm	WSW : SSW : SW	$1 \cdot 2$	0.04	169	p.-cl :	1	6, cu, n	$8, \mathrm{n}$:	9, n	10
12	I. 6	16.5	WSW	WSW: NW	$1 \cdot 2$	0.03	187	$10 \text { : }$		8, cu	$7, \mathrm{cu}, \mathrm{n}$:	p.-cl	10, n, sh.-r
13	$9^{\circ} 0$	$16 \cdot 5$	NNE: NE	NNE : N	3.6	- 3	343	9, sh.-r :	9	6, cu	6, cu :	8, cu	p.-cl
14	$7 \cdot 3$	16.5	N: NNW	N: NE	4.0	$0 \cdot 33$	313	1 :	9	10, n, slt.-r	9,cu, \mathbf{n}, oc. silt.-r:	$\text { p. } \mathrm{cl}$	9
15	13.7	16.5	NE: NNE:N	Variable	0.8	$0 \cdot 04$	153	p.-cl :	1, cu	3, cu	$3, \mathrm{ci} \quad:$	p.-cl :	th.-cl, h
16	1.2	$16 \cdot 5$	ESE : SE	SSE : ESE : SE	1×5	$0 \cdot 10$	199	9	: 9		9	10	10, oc.-shs
17	$7 \cdot 8$	$16 \cdot 5$	SE : Variable : SW	SW : SSW	3.1	0.20	254	ıo, fq. shs :		9, 1	7, cu :	p.-cl, m :	p.-cl, l
18	$8 \cdot 6$	$16 \cdot 6$	S : SSW : SW	SW	9.5	0.84	464	p.cl, slt.sh :	$\mathrm{p} . \mathrm{cl}, \mathrm{slt} . \mathrm{sh}, \mathrm{w}$	9, cu, n,slt.sh,st. w	7, cu, n, w :	p.-cl, w :	p.-cl, d
19	$2 \cdot 3$	16.6	SW : SSW	SW : WSW	$3 \cdot 8$	0.36	351	p.-cl, r :	p.-cl,so.-ha	го, n,s,sh.-r,so.ha	19, n, s, sh.-r :	io, s, n, fq.rr:	10, r
20	$8 \cdot 6$	16.6	WSW : W	W: SW	$4 \cdot 1$	$0 \cdot 43$	404	ı0, li.-shs :	10 :	9, cu, n	$8, \mathrm{cu}, \mathrm{n} \quad:$		
21	1.5	$16 \cdot 6$	SW : WSW	WSW : SW	3.3	$0 \cdot 26$	337	p.-cl :	9, cu, n	io, cu, n	$9, \mathrm{cu}, \mathrm{n} \quad:$	$9, \mathrm{cu}, \mathrm{n}:$	th.-cl
22	0.3	16.6	SW	SW : SSW	$6 \cdot 5$	0^73	478	p.-cl :	10	ro, sc, n, s, slt.-r, w	10, n, slt.-sh, w:	10, w	9, li.-shs
23	$2 \cdot 2$	$16 \cdot 6$	SW	SSW : SW : NW	$1 \cdot 5$	0.13	250	ı0, li.-shs :	10	8, cu, n	9, cu, n :	$10, \mathrm{r}$:	10, c.rr
24	$7 \cdot 8$	$16 \cdot 6$	Variable : SW	WSW : SW	1100	0.67	430	10, c.-r :	10, fq-r	9, slt.-r, w	5, slt.-sh, w :	p.-cl,slt.-sh,w:	
25	I•I	16.6	SW : WSW	WSW : W	$3 \cdot 1$	$0 \cdot 32$	363	p.-cl :	p.-cl,slt.-1	ıo, n, fq-r	10, n, s, fq.-r :	10, r	10, slt.-r
26	$2 \cdot 0$	$16 \cdot 6$	W : WNW	NW : Variable : W	$4 \cdot 8$	$0 \cdot 39$	361	io, slt.-r :	10	p.-cl, cu, n	9, cu, n, shs.r. $1, \mathrm{t}$:	10	Io, slt.-r
27	$6 \cdot 4$	$16 \cdot 5$	WNW : NW	WNW: W	I.8	0.16	262	9 :	9	Io, cu, n, s	p.ecl, cu	6, ci, cu	p.cl
28	$8 \cdot 7$	$16 \cdot 5$	WSW : W				403				9, cu, n :	6, ci, cu	p.-cl
29	$6 \cdot 0$	$16 \cdot 5$	W : WSW	WSW : SW WSW . SW	$5^{\circ} \circ$	0.50	428		p.-cl	$9, \mathrm{ci} .-\mathrm{cu}, \mathrm{cu}, \mathrm{n}$	$9, ~ c u, n$		10, r
30	$0 \cdot 4$	$16 \cdot 5$	SW : WSW	WSW : SW	2.9	$0 \cdot 35$	376	$10, \mathrm{r}$:	$\mathrm{p} .-\mathrm{cl}$	10		10, th.-r :	9
Means	$7 \cdot 5$	$16 \cdot 5$	\cdots	\cdots	.	0.28	291						
Number of Column for Reference. -	19	20	2 I	22	23	24	25		26			27	

The mean Temperature of Evaporation for the month was $54^{\circ} \cdot 5$, being $0^{\circ} \cdot 4$ lower than
The mean Temperature of the Dew Point for the month was $49^{\circ} 9$, being $1^{\circ} \circ$ lower than
The mean Degree of Humidity for the month was $70^{\circ} 6$, being $3^{\circ} \circ$ less than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 360$, being $0^{\text {in }} \cdot{ }^{\circ}{ }_{3} 3$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs}} \cdot \mathrm{o}$, being $0 \mathrm{gr} \cdot{ }_{2}$ less than
The mean Weight of a Cubic Foot of Air for the month was 531 grains, being the same as
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was 6.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.454 . The maximum daily amount of Sunshine was $15{ }^{\circ} 4$ hours on June 8.
The highest reading of the Solar Radiation Thermometer was $\mathbf{1} 52^{\circ} \cdot 5$ on June 16 ; and the lowest reading of the Terrestrial Radiation Thermometer was $26^{\circ}{ }_{5}{ }_{5}$ on June in.
The Proportions of Wind referred to the cardinal points were N. 4, E. 7, S. 6, and W. ir. Two days were calm.
The Greatest Pressure of the Wind in the month was $11 \circ \mathrm{l}$ bs. on the square foot on June 24. The mean daily Horizontal Movement of the Air for the month was 29I miles; the greatest daily value was 478 miles on June 22 ; and the least daily value was 111 miles on June 4 .
Rain (oin $\cdot 005$ or over) fell on 12 days in the month, amounting to $2^{\text {in }} \cdot 096$, as measured by gauge No. 6 partly sunk below the ground; being oin 058 greater than the average fall for the 65 years, 1841 -1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. . Cemperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Leas Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Burometer for the month was $29^{\text {in }} \cdot 98 \mathrm{I}$, being $\mathrm{o}^{\mathrm{in}} \cdot 182$ higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $95^{\circ} .6$ on July 22 ; the lowest in the month was $45^{\circ} \cdot 8$ on July 16 ; and the range was $49^{\circ} \cdot 8$,
The mean of all the highest daily readings in the month was $81^{\circ} \cdot 1$, being $6^{\circ} 9{ }^{\circ}$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $55^{\circ} \circ$, being $1^{\circ} 7$ higher than the average for the 65 years, $184^{1-1905 .}$
The mean of the daily ranges was $26^{\circ} \cdot 1$, being $5^{\circ} \cdot 2$ greater than the average for the 65 years, 1841-1905.
The mean for the month was $67^{\circ} \cdot 3$, being $4^{\circ} \cdot 7$ higher than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $59^{\circ} \cdot 6$, being $1^{\circ} 7$ higher than
The mean Temperature of the Dew Point for the month was $53^{\circ} \cdot 6$, being 0°. lover than The mean Degree of Humidity for the month was $6 r \cdot 8$, being $11 \circ 0$ less than
The mean Elastic Force of Vapour for the month was oin 412 , being oin 003 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs}} \cdot 5$, being ${ }^{\mathrm{gr} \cdot \mathrm{I}}$ I less than
The mean Weight of a Cubic Foot of Air for the month was 526 grains, being 1 grain less than
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by ro) was $4^{\circ} 3$.
The mean proportion of Sunshine for the month (constant sumshine being represented by 1) was 0.67 I . The maximum daily amount of Sunshine was $15 \% 2$ hours on July 13 . The highest reading of the Solar Radiation Thermometer was $161^{\circ} \circ$ on July 22 ; and the lowest reading of the Terrestrial Radiation Thermometer was $35^{\circ} \circ$ on July 4. The Proportions of Wind referred to the cardinal points were N. 5, E. 7, S. 5, and W. 10. Four days were calm.
The Greatest Pressure of the Wind in the month was 8.8 lbs . ou the square foot on July 29. The mean daily Horizontal Movement o, the Air for the month was 247 miles ; the greatest daily value was 407 miles on July 18; and the least daily value was 126 miles on July 28 .
 for the 65 years, 1841-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, $1841-1905$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Burometer for the month was $29^{\text {in }} \cdot 836$, being oin $\cdot 053$ higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $100^{\circ} \circ$ on August 9 ; the lowest in the month was $48^{\circ} 1$ on August 31 ; and the range was $51^{\circ} 9$.
The mean of all the highest daily readings in the month was $81^{\circ} \cdot 1$, being $8^{\circ} .4$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $57^{\circ} \circ$, being $4^{\circ} \circ$ higher than the average for the 65 years, $1841-1905$.
The mean of the dally ranges was $24^{\circ} \cdot 1$, heing $4^{\circ} 4$ greater than the average for the 65 years, 1841-1905.
The mean for the month was $67^{\circ} .5$, being $5^{\circ} .8$ higher than the average for the 65 years, 1841-1905.

[^1]

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, r841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Burometer for the month was $29^{\text {in }} \cdot 883$, being oin 072 higher than the average for the 65 years, 1841-1905.
Temperatere of the Air.
The highest in the month was 94° I on Sentember 8 ; the lowest in the month was $37^{\circ} \cdot 7$ on September 22 ; and the range was $56^{\circ}{ }^{\circ} 4$
The mean of all the highest daily readings in the month was $72^{\circ} \cdot 1$, being $4^{\circ} \cdot 8$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $47^{\circ} 9$, being $1^{\circ} \cdot 2$ lower than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $24^{\circ} 2$, being $6^{\circ} \circ \circ$ greater than the average for the 65 years, $184^{1-1905 .}$
The mean for the month was $60^{\circ} \%$, being $3^{\circ} \circ$ higher than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $54^{\circ} \cdot 3$, being $0^{\circ} \cdot 2$ higher than
The mean Temperature of the Dew Point for the month was $49^{\circ} \cdot 1$, being $2^{\circ} \cdot 1$ lower than
The mean Degree of Humidity for the month was 67.6 , being 12.6 less than
The mean Elastic Force of Vapour for the month was o ${ }^{\text {in }} \cdot 349$, being $0^{\text {in }} \cdot 028$ less than
the average for the 65 years, $\mathbf{1 8 4 1 - 1 9 0 5 .}$
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\mathrm{grs}} \cdot 9$, being ogr 3 less than
The mean Weight of a Cubic Foot of Air for the month was 532 grains, being I grain less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was 4.7 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.616 . The maximum daily amount of Sunshine was $\mathbf{1 3} \mathbf{2}$ hours on September $\mathbf{1}$.
The highest reading of the Solar Radiation Thermometer was $\mathbf{1 4 7}{ }^{\circ} \circ$ on September 8 ; and the lowest reading of the Terrestrial Radiation Thermometer was $\mathbf{2 8} 8^{\circ} \cdot 8$ on September $\mathbf{2 3}$.
The Proportions of Wind referred to the cardinal points were N. 7, E. 3, S. 6, and W. ro. Four days were calm.
The Greatest Pressure of the Wind in the month was 13.8 lbs . on the square foot on September 30 . The mean daily Horizontal Movement of the Air for the month was 235 miles ; the greatest daily value was 616 miles on September 3°; and the least daily value was 108 miles on September 7 .
Rain (oin•005 or over) fell on 10 days in the month, amounting to $\mathrm{I}^{\text {in }} 336$, as measured by gauge No. 6 partly sunk below the ground; being oin 812 less than the average fall for the 65 years, 1841 -1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 184i-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }}{ }^{7} \mathbf{7 3 2}^{2}$, being oin ori higher than the average for the 65 years, $1841-1905$.

Temperature of the Air.

The highest in the month was $67^{\circ} \cdot 6$ on October 12; the lowest in the month was $28^{\circ} \cdot 1$ on October 29 ; and the range was $39^{\circ} \cdot 5$.
The mean of all the highest daily readings in the month was $57^{\circ} 4$, being $0^{\circ} \cdot 1$ lower than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $43^{\circ} 9$, being $0^{\circ}{ }_{7}$ higher than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $13^{\circ} .5$, being $0^{\circ} .8$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $50^{\circ} 5$, being $0^{\circ} .5$ higher than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $48^{\circ}{ }_{3}$, being $\circ^{\circ}{ }_{4}$ higher than
The mean Temperature of the Dew Point for the month was $46^{\circ} \circ$, being $0^{\circ} \cdot 3$ higher than
The mean Degree of Humidity for the month was $85^{\circ} \mathrm{I}$, being $0^{\circ} \mathrm{I}$ greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 311$, being oin 004 greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {rrs }} \cdot 5$, being the same as
The mean Weight of a Cubic Foot of Air for the month was 539 grains, being I grain less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was $7^{\circ} 0$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.292 . The maximum daily anount of Sunshine was 8.7 hours on October $\mathbf{1 2}$.
The highest reading of the Solar Radiation Thermometer was $113^{\circ} .6$ on October 10 ; and the lowest reading of the Terrestrial Radiation Thermometer was $\mathbf{2 2}{ }^{\circ} \circ$ on $\mathbf{O c t o b e r} \mathbf{2 9}$.
The Proportions of Wind referred to the cardinal points were N. 7, E. 9, S. 6, and W. 6. Three days were calm.
The Greatest Pressure of the Wind in the month was 12.7 lbs . on the square foot on October 30 . The mean daily Horizontal Movement of the Air for the month was 288 miles ; the greatest daily value was 646 miles on Octobor 30 ; and the least daily value was 77 miles on October 13.
 for the 65 years, 1841 -1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns II and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). o $^{\text {in }}$. 003 of the amount measured on November 30 is derived from fog.

The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 559$, being $0^{\text {in }} \cdot 199$ lower than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $59^{\circ} \circ$ on November 5 ; the lowest in the month was $28^{\circ} \cdot 3$ on November 22 ; and the range was $30^{\circ} \%$.
The mean of all the highest daily readings in the month was $49^{\circ} \cdot 2$, being $0^{\circ} \cdot 2$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $38^{\circ}{ }^{\circ}$, being $0^{\circ} .5$ higher than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $10^{\circ} \cdot 8$, being $0^{\circ} \cdot 3$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $44^{\circ} \cdot 2$, being $0^{\circ} \cdot 7$ higher than the average for the 65 years, $1841-1905$.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAYY, } \\ \text { Igri. } \end{gathered}$			Wind as Deduced from Self-Registering Anemometers.					Clouds and Weather.		
			OsLer's.				RobinSON's.			
			General Direction.		$\begin{gathered} \text { Pressure } \\ \text { on the } \\ \text { Square Foot. } \end{gathered}$					
			A.M.	P.M.				A.M.	P.M.	
Nov. $\begin{array}{r}1 \\ 2 \\ 3 \\ \\ 4 \\ 4 \\ 5 \\ 6\end{array}$	hours. hours .		$\begin{gathered} \text { WSW :W } \\ \text { SSW:SW } \\ \text { WSW :SW! :SSW } \end{gathered}$	$\begin{gathered} \text { WSW : SW : SSW } \\ \text { SW : WSW } \\ \text { SW : SSW } \end{gathered}$	lbs.t.8-	$\begin{array}{c\|c} \text { lbs. } \\ 0.14 \end{array}$	$\begin{gathered} \text { miles. } \\ 32 \mathrm{I} \end{gathered}$	th.-cl : 0 : 1 p.-cl,slt.-sh: $10, \mathrm{~s}: 10, \mathrm{~s}$, so.-ha		: p.eel,1u-ba,lu.-co,d
	$8 \cdot 3$	97								
	$0 \cdot 4$	9.6			47	0.23	353		10, n, s : $10, \mathrm{fq} . \mathrm{r}$:	
	4.9	$9 \cdot 5$			6.4	0.58	43^{2}	th.-cl : li.-cl : $7, \mathrm{ci}, \mathrm{ci} .-8, \mathrm{ci} .-\mathrm{cu}$	9, r, w : 10, w	10, oc.-slt.-r, w
	1.6	9.5	SW : WSW	SW : SSW	12.0	0.72	516	IO,slt.-r, w: 9 : 6, ci,ci.-s, ci..cu	Io, n, s : 10	10,oc.-m.-r,st.-w
	$6 \cdot 2$	$9{ }^{\circ} 4$	SW : WSW	WSW	16.5	2.58	817	ro, fq.-m.-r, g: ro, r,hy.sh,st.-w: p.-cl, sh.-r, g	p. cl, cu.-s, sl, g: p.cl, slt.sh, st.-w :	I, w
	$7 \cdot 6$	$9 \cdot 4$	WSW : SW	WSW	$10 \cdot 0$	$1 \cdot 33$	640	p.-cl, li.-shs, w : 2, cu, st.-w	2, cu, st.-w : $1, \mathrm{cu}, \mathrm{w}$:	
7	4.2	$9 \cdot 3$	WSW : SW : SSW	WSW : SW : SSW	$7 \cdot 5$	0.44	436	$\bigcirc \quad: \quad \mathrm{p} .-\mathrm{cl}, \mathrm{n}, \mathrm{s}: ~ \mathrm{p} . \mathrm{cl}, \mathrm{r}, \mathrm{w}$	7, ci.-cu, cu,sc: p.-cl	ro, sc, li.-shs, lu.-ha, w
8	$0 \cdot 0$	$9 \cdot 3$	SW:SSW	SW : SSW	11.0	0.40	365		10, n, s, slt.-sh: 10	
9	5°	$9 \cdot 2$	S : SSE : SW	SW : SSW : S	3.7	0.07	266	p.-cl, r : 10 , hy.-r : p.ecleci, ci.-s, ci.-cu	p.-cl, li.-shs: 0	1, ho.-fr
10	$0 \cdot 5$	$9 \cdot 2$	S : SSW	WSW : W	$0 \cdot 9$	$0 \cdot 03$	237	p.cl,ho.-fr, l: 10, sh.-r : 9, sh.-r	10, fq.-th.-r : 10, fq.-r	p.-cl
11	$2 \cdot 8$	$9 \cdot 1$	WSW: SW	S : SE : ESE	3.2	$0 \cdot 10$	207	p.-cl, ho.-fr : p.-cl	$9, \mathrm{n}, \mathrm{~s}: \mathrm{ro}, \mathrm{r}:$	$\mathrm{r} 0, \mathrm{r}$
12	$1 \cdot 9$	$9^{\circ} 0$	S : SW	SW : WSW	10.5	I•I4	572	10, r : 9, st.-w : 8, sh.-r, w	IO, shs.-r, w : 9,cu,n,st.-w:	$0, \mathrm{w}$
13	$0 \cdot 3$	$9{ }^{\circ}{ }^{\circ}$	SW : WSW	WSW	$8 \cdot 4$	0.73	473	I, w : p.-cl, r, w : 10, r, w	9, ci.-cu,n,s: p.-cl	th.-cl
14	3.5	8.9	SW : SSW : S	SW : SSW	$4^{\cdot 1}$	$0 \cdot 27$	345	th.-cl, lu.-ha: li.-cl : 9, li.-cl, n, s	$8, \mathrm{ci} .-\mathrm{cu}, \mathrm{cu}, \mathrm{n}: \text { p. } \mathrm{cl} \text {, }$	
15	$0 \cdot 0$	$8 \cdot 9$	SSW : S	SSW : SW	777	$0 \cdot 51$	415	p.-cl : 10	10, n, slt.-sh : p.-cl,li.-cl,cu:	8, li.-shs, w
16	$0 \cdot 5$	$8 \cdot 8$	WSW : SW	WSW : SW	9.4	1×07	577	9,slt.sh,st.-w : 10 , sh.-r, st.-w: 10, n, s, sc, w	9, n, s,sc, sh.-r: p.-cl	10, m.-r
17	$0 \cdot 9$	$8 \cdot 8$	SSW : SW	SW : SSW	$8 \cdot 5$	$0 \cdot 84$	490	ıo, r : io, r, w: 9, n, s, w	p.cl,ci,ci.-s,n: p.-cl, sh.-r	p.-cl,oc.-shs, w
18	$0 \cdot 0$	$8 \cdot 7$	SSW : SSE	Variable : N : NW	$5 \cdot 6$	$0 \cdot 38$	34^{2}	9, r: $\quad 10, \mathrm{r}: 10, \mathrm{n}, \mathrm{s}, \mathrm{r}$	10, c.-r : 10 , r, w:	10, w
19	$0 \cdot 0$	8.7	W	W : WNW : NW	9.2	$1 \cdot 03$	644	p.-cl $: 10, \mathrm{w} \quad: \quad \begin{gathered}\text { ro, ci.-s, slit.-r, st.-w, } \\ \text { so. hat }\end{gathered}$		
20	0.2	$8 \cdot 6$	NW	NNW: N	$3 \cdot 8$	$0 \cdot 34$	346	$10, \mathrm{r}: \mathrm{p} . \mathrm{cl}: 10, \mathrm{n}, \mathrm{~s}$	$9, \mathrm{cu}, \mathrm{n}: 9, \quad:$	$\mathrm{p} .-\mathrm{cl}$
21	3.0	$8 \cdot 6$	N	N : NNW : WSW	$1 \cdot 3$	$0 \cdot 08$	212	$9: 9: 6, \mathrm{cu}, \mathrm{cu} . \mathrm{s}$	2, cu, cu.-s : 10, th.-cl :	p.-cl, s, ho.-fr
22	$0 \cdot 0$	$8 \cdot 5$	WSW : SW : N	E: NE	$\bigcirc \cdot 7$	$0 \cdot 03$	193	p.-cl,ho.ff: 9, slt.-sn : 10, glm, slt.-f		p.cl, slt.-f, ho.-fr
23	$0 \cdot 0$	$8 \cdot 5$	NE: ENE	E $:$ ENE	13.0	$1 \cdot 12$	547	$\text { p.cl, ho.-fr } \quad: 10 \text {, st.-w }$	10,oc.-r, sl,st.-w: Io, oc.-r, sl, w :	ro, w
24		$8 \cdot 5$	E : ENE	NE: ENE	12.7	1-31	584	10,w : io,w : 9, cu, n, w	ıo, cu, n, st.-w : Io, w	
25	0.5	$8 \cdot 4$	ENE : NE	ENE : NE	6.5	0.65	421	IO, w : $9: 9$, ci, ci.-s, cu, w		
26	$2 \cdot 1$	$8 \cdot 3$	NE: NNE	NE	$2 \cdot 3$	0.15	245	p.-cl,ho.-fr: p.-cl : 7, ci.-s, cu, sc	9, slt.-r, sl, sn : 10	io, slt.-sn
27	$0 \cdot 0$	$8 \cdot 3$	Calm : Variable	SW : S : SE	0.6	$0 \cdot 01$	108	10, slt.-sn : 10, slt.-sn : $10, \mathrm{n}, \mathrm{s}, \mathrm{sn}, \mathrm{r}, \mathrm{sl}$	p.-cl, sl : p.-cl, ho.-fr :	10, oc.-sn
28	0.0	$8 \cdot 3$	S : SE		0.6	0.03	174	p.-cl : 10 : $10, \mathrm{n}, \mathrm{s}$	9, ci.-cu, n, s: 9	10
29	$0 \cdot 0$	$8 \cdot 2$ 8.2	SSE : SW : WSW	N : Calm SW: SSW: S	0.5	-0.01	$\begin{array}{r}159 \\ \hline\end{array}$	9, sh.-r : $10: 9$, s, slt.-f	8, s, slt.-f : s, f	tk.-f, ho.-fr
30.	$0 \cdot 0$	$8 \cdot 2$	Calm : SSE	SW : SSW : S	0.8	-.03	159	tk.-f : 10, slt.-f : $10, \mathrm{n}, \mathrm{s}$	$10, \mathrm{n}, \mathrm{~s} \quad: 10$	
Means	I.8	$8 \cdot 9$	\ldots	\cdots	\ldots	0.55	387			
iumber of Refomn for Rorenc	19	20	21	22	23	24	25	26	27	

The mean Temperature of Evaporation for the month was $42^{\circ} \circ$, being 0° I higher than
The mean Temperature of the Dew Point for the month was 39°, being $0^{\circ}{ }_{7}$, lower than
The mean Degree of Humidity for the month was $83^{\circ} \cdot 6$, being $3^{\circ} 7$ less than
The mean Elastic Force of Vapour for the month was oin $\cdot 240$, being $0^{\text {in }}$ - 007 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{~g}^{r r} \cdot 8$, being the same as
The mean Weight of a Cubic Foot of Air for the month was 543 grains, being 5 grains less than
The mean amount of cloud for the month (a clear sky being represented by o , and an overcast sky by 10) was 7%.
The mean proportion of Sunshine for the month (constant sunshine being represented by \mathbf{r}) was 0.205 . The maximum daily amount of Sunshine was $8 \cdot 3$ hours on November t .
The highest reading of the Solar Radiation Thermometer was $95^{\circ} 5$ on November 3 ; and the lowest reading of the Terrestrial Radiation Thermometer was $22^{\circ}{ }^{\circ} 4$ on November 22 .
The Proportions of Wind referred to the cardinal points were N. 4, E. 4, S. ir, and W. ıo. One day was calm.
The Greatest Pressure of the Wind in the month was 16.5 lbs. on the square foot on November 5 . The mean daily Horizontal Movement of the Air for the month was 387 miles; the greatest daily value was 817 miles on November 5 ; and the least daily value was 108 miles on November 27 .
Rain (oin $\cdot 005$ or over) fell on 21 days in the month, amounting to $3^{\text {in }} \cdot 422$, as measured by gauge No. 6 partly sunk below the ground ; being $\mathrm{I}^{\text {in }} \cdot 202$ greater than the average fall for the 65 years, 8841 -1905.

The re-ult, apply to the civil day.
The In*an reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temprature (Column 7) is deduced from the 65 years observations, 1841-1905. The temperature of the Dew Point (Column 9) and the 1) egree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difierence between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columws 6 and 9 and the Greatest and Least bifirences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The valuets given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Columin 17). Amount entered on December 3_{1} is derived from fog.

Tise mean reading of the Barometer for the month was $29^{\text {in }} \cdot 573$, being $o^{\text {in }} \cdot \mathbf{2 1 2}$ lower than the average for the 65 years, $1841-1905$.
Tempefatife of the Air.
The highest in the month was $53^{\circ} 9$ on Derember 17 ; the lowest in the month was $28^{\circ} .9$ on December 8 ; and the range was $25^{\circ} \circ$.
The mean of all the highest daily realings in the month was $48^{\circ} \cdot 6$, being $4^{\circ} .4$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $39^{\circ} 7$, being $4^{\circ} \cdot 7$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $8^{\circ} 9$, heing $0^{\circ} \cdot 3$ less than the average for the 65 years, $1841-1905$.
Th, mean for the month was $44^{\circ} 5$, being $4^{\circ} .6$ higher than the average for the 65 yuars, $1841-1905$.

The mean Temperature of Evaporation for the month was $43^{\circ} \circ$, being $4^{\circ} 5^{\circ}$ higher than
The mean Temperature of the Dew Point for the month was $41^{\circ}{ }^{\circ} 3$, being $4^{\circ} \cdot 6$ higher than
The mean Degree of Humidity for the month was $89^{\circ} \circ$, being $0^{\circ} 4$ greater than
The mean Elastic Force of Vapour for the month was $\mathrm{o}^{\text {in }} \cdot 260$, being $\mathrm{o}^{\text {in }} \cdot 042$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was 2 grs ${ }^{\prime} 9$, being ogr 3 greater than
The mean Weight of a Cubic Foot of Air for the month was 543 grains, being 9 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was $7 \cdot 2$.
The mean proportion of Sunshine for the month (constant sunshine being represented by r) was 0 '168. The maximum daily amount of Sunshine was 6.3 hours on Deeember 6 . The highest reading of the Solar Radiation Thermometer was $66^{\circ} \cdot 6$ on December 16 ; and the lowest reading of the Terrestrial Radiation Thermometer was $21^{\circ} \circ$ on December 8 .
The Proportions of Wind referred to the cardinal points were N. 1, E. 1, S. 16, and W. 12. One day was calm.
The Greatest Pressure of the Wind in the month was $17^{\circ} 5 \mathrm{lbs}$. on the square foot on December 10 . The mean daily Horizontal Movement of the Air for the month was 358 miles; the greatest daily value was 599 miles on December 10 ; and the least daily value was 164 miles on December 31 .
 for the 65 years, $1841-1905$.

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records.

ma.		minima.		haxima.		minima.		maxima.		minima	
Greenwich Civil Time, 19 r.	Reading.	Greenwich Civil Time, 1911	Readiug.	Greenwich Civil lime, xgir.	Reading.	Greenwich Civil Time, 1911.	Reading.	Greenwich Civil Time, 19 II.	Reading.	Greenwich Civil Time, igir.	Reading.
January		January		May		May		October		October	
d h m	in.	m	in.	d h m	in.	d h m	in.	h m	in.	d h m	in.
		I. 12.40	29.899	I. 22. 25	29.849	2. 19. 40	29.668	I. 21. 20	30.078	3. 4. 55	29.618
1. 19. 15	29.967	3. 3. 15	29.592	3. 6. 15	29.753	3. 19. 15	29.537	6. 19. 25	29.937	7. 14. 45	29.659
3. 19. 10	30.046	6. 17. 0	29.579	6. 10. 30	30.112	14. 12. 20	29.423	10. 23.20	$30 \cdot 366$	14. 3. 30	29.775
8. 23. 40	$30 \cdot 178$	9. 15. 25	30.039	20. 21.25	30.059	22. 17. 20	29795	15. 9. 0	$30 \cdot 073$	20.10. 10	29.539
10. 10.10	$30 \cdot 397$	12. I. 10	$29 \cdot 196$	24. 21.0	29.920	26. 11. 55	29.710	20. 19. 0	29.741	22. 10. 20	28.833
17. 10. 40	$30 \cdot 597$	21. 17. 20	30.061	28. 8. 50	$30 \cdot 060$	31. 15.55	29.730	23. 21.0	29.503	24. 21. 50	$22^{2} \cdot 090$
23. 23.40	$30 \cdot 258$	25.15.30	$30 \cdot 059$					26. 1. 15	29.211	26. 14. 35	28.812
28. 11.10	30.332	30. $4 \cdot 30$	$30 \cdot 132$	June		June		27. 2. 5	28.974 30.095	$\begin{array}{llll} 27 & 12 . & 0 \\ 30 . & 16 . & 35 \end{array}$	28.896 29.556
February		February		1. 22. 45	29.988	3. 15.25	29.762	31. 10. 10	29.900	31. 15. 10	29.829
2. I. 50	30.610	5. 5. 50	30.315	7. 7.5	$30 \cdot 326$	9.12. 25	29.712				
6. 23. 55	30.491	10. 18. 0	39 29	11. 15. 23. 23. 2	29.860 30.054	$\begin{array}{llll}13 . & 0 . & 55 \\ 18 . & 7 . & 5 \\ 18 . & \end{array}$	29.645 29.373				
14. 9. 45	$30 \cdot 369$	15.4 .0	$30 \cdot 232$ 29.819	15. 18.23 .20 18.23 .15	30.054 29.580	18. 7. 55 19. 15.35	29.373 29.441				
15. 20.45 17. 14.40 10	$30 \cdot 371$ 30.005	$\begin{array}{llll}\text { 17. } & 3 . & 5 \\ \text { 19. } & \text { 1. } & 4\end{array}$	29.819 29.252	$\begin{array}{llll}\text { 18. } 23 . & 23 . & 15 \\ \text { 21. } & 14 . & 30\end{array}$	29.580 29.909	19. 15. 35	29.441 29.266	November		November	
17. 21. 1. 1. I.	$30 \cdot 005$ 29.951	$\begin{array}{ll}\text { 19. } & \text { 1. } \\ \text { 22. } & 40 \\ \text { 5. } & 30\end{array}$	29.252 29.379	28. $\quad 9.15$	$30 \cdot 105$			I. 10. 40	30.010	2. 15. 20	29.768
22.22. 25	29.795	23. 14. 30	29.072			July		3. 7.45	29.859	4. 2. 25	29.580
24. 22. 15	29.691 20.598	25.13 .40	29.385	July		1. 4. 30	29.494	4. 12. 20	29.730	5. 5. 15	29.221
25.22. 20	29.598	26. 3. 45	29.477	4. 8. 35	$30 \cdot 291$	6. 19. 5	30.035	7. 4. 20	29.823	9. 6. 35	29.321
26. 22. 45	29.999	28. 14. 40	${ }^{29} 2882$	11. 6. 30	$30 \cdot 370$	18.4.45		11. 10. 15	29.653		29.088
March		March		${ }^{2}$ I. 9. 35	30.061	26. 5. 55	29.666	$\begin{array}{llll}14 . & 9 . & 25 \\ 16 . & 8 . & 10\end{array}$	$30 \cdot 146$ 29.397	16. I. 0 18.16. 5	$\begin{aligned} & 29305 \\ & \end{aligned}$
				28. 21. 30	29.856	29. 18. 35	29.649 29.666		29.397 29.44 .2	$\begin{array}{ccr}\text { 18. } & 16 . & 5 \\ \text { 22. } & 6 . & 10\end{array}$	28.467 29.227
1. 22. ${ }^{\text {2. }}$ 21. 35	30.127 $30 \cdot 205$	2. $\begin{array}{r}\text { 5. } \\ \text { 4. } 18 . \\ \text { 6. } \\ \text { a }\end{array}$	30.030 29.816	${ }^{29}$. 19. 45	29.736	29. 23.10	29.666	25.16. 40	29.817	27. 6. 10	29.664
5. 9. 20	30.024	6. 14. 10	29.732	Augus		Augu		29. 22. 30	30.262		
7. 22. 25	30.003	9. 7. ○	29714	Augus		Angu					
10. 5. 35	29.969	11. 5. 50	29.695	2. 9. 4^{0}	30.015	5. 15.40	29.636				
11. 22. 30	29.827	13. 3. 50	29.086	7. 23.25	30.082	9. 17. 35	29.847			December	
14. 10. 35	29.482	15. 15. 35	29.234	10. 22. 15	29.956	I2. 14. 50	29.802	December			
19. 9. 45	29.700	21. 4.45	29.548	17. 2.30	$30 \cdot 013$	21. 6. 20	29.393 29.606			3. 13. 50	29.642
23. 11. 25.10 29.	29.872 29.940	25. 3. 50 27. 17. 20	29.775 29.610		29.722 29.852	24. 16. 28. 19. 20	29.606 29.741	4. 17. 10	29.766	5. 9. 30	$29 \cdot 364$
28. 21. 40	29.729	30.15.30	29.652 29.4	$\begin{array}{rrrr}\text { 26.rrer } & 105 \\ \text { 31. } & 7 . & 45\end{array}$	29.852 30.098	28. 19. 20	${ }^{29} 741$	6. 11. 30	29.93 I	7. 13.5	29.228
						September		$\begin{array}{lrr} \text { 8. } & 3 . \\ \text { 9. } & \text { 2I. } & 20 \end{array}$	29.626 29.523	$\begin{array}{rr} \text { 9. } & \text { I. } \\ \text { II. } & \text { I. } 55 \end{array}$	29.056 28.778.
April		April		September		2. 15.35	29.883	12. 20. 40	29.527	13. 14. 5	29.286
4. 0. 50	$30 \cdot 069$	5. 4. 10	29.846	4. 10. 0	$30 \cdot 158$	5. 3. 25	29.966	13. 21. 30	29.37 I	14. 5. 0	29.276
6. 21 1. 50	$30 \cdot 049$	7. 12. 10	29.968	6. 9. 50	30.101	9. 2. 0	29.758	14. 18. \bigcirc	29.533	15. 10. 40	29.167
9. 8. 0	$30 \cdot 182$	10. 15. 20	29.818	10. 9. 45	29.995	12. 17. 45	29.680	17. 22. 50	29.798	19. 5. 10	29.515
12. 0.5	$30 \cdot 134$	12. 17. 30	30.006	18. I. 0	30•197	21. 5. 15	29.220	19. 16. 30	29.627	20. 12. 20	28.942
13. 20.20	$30 \cdot 246$	18. 20. 40	29.308	22. 21. 10	29.709	24. 4. 20	29.575	20. 22. 55	29.443	21. 11.0	28.878
21. 21.15	$30 \cdot 288$	26. 5. 15	29.545	25.9. 0	29.956	26. 0. 55	29.788	22. 3. 30	29.662	22. 20. 30	29.020
26. 20.15	29.721	27.18 .5	29.210	27. 9. 15	30.055	28. O. 10	29.933	23. 14. 50	29.990 2.690	25. 6. 10	29.155
28. 12. 5	29.453	28.22. 20	29.171	29.12. 0	$30 \cdot 066$	30. 10. 35	29.474	26. 9. 5	29.630	26. 19. 5°	29.296

The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period.
The time is expressed in civil reckoning, commencing at midnight and counting from ob to 24^{h}.
The height of the harometer cistern above mean sea level is 159 feet : no correction has been applied to the readings to reduce to sea level.

Highest and Lowest Readings of the Barometer in each Month for the Year igif.

	January.	February.	March.	April.	Мау.	June.	July.	August.	September.	October.	November.	December.
	in.											
Highest	$30 \cdot 597$	30.610	30.205	30.288	$30 \cdot 112$	$30 \cdot 326$	$30 \cdot 370$	30.098	30'197	30.366	$30 \cdot 262$	$30 \cdot 246$
Lowest.	$29 \cdot 196$	29.072	29.086	29.171	29.423	29.266	29.494	29.393	29.220	28.812	28.467	28.778
Rallge.	1.401	$1{ }^{1} 538$	1.19	$1 \cdot 117$	$0 \cdot 689$	1.060	0.876	$0 \cdot 705$	$\bigcirc \cdot 977$	1.554	$1 \cdot 795$	1.468
The highest reading in the year was $30^{\text {in }} 610$ on February 2.The range of reading in the year was $2^{\text {in. }} 143$.												

Monthly Results of Meteorological Elements for the Year igif.

The greatest recorded pressure of the wind on the square foot in the year was $20^{\circ} 5 \mathrm{lbs}$. on January $\mathbf{1 2}$.
The greatest recorded daily horizontal movement of the air in the year was 817 miles on November 5 .
The least recorded daily horizontal movement of the air in the year was 77 miles on October 13.

Monthly Mean Reading of the Barometer at every Hour of the Day, as deduced from the Photographic. Records.

$\begin{aligned} & \text { Hour, } \\ & \text { Greenwich } \\ & \text { Civil Time. } \end{aligned}$	1911.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{ }$
	January.	February.	Iarch.	April.	May.	June.	July.	August.	September.	October.	Novembe	December.	
$\underset{\mathbf{I}^{\mathrm{h}}}{\text { Midnt }}$	$30 \cdot 139$		29.727		in_{29}	29.835	29.988	$\stackrel{\text { in. }}{2 Q_{2} \cdot 8_{42}}$	$\begin{gathered} \text { in. } \\ 29.892 \end{gathered}$	29.743	$\begin{gathered} \text { in. } \\ 29 \cdot 561 \end{gathered}$	${ }_{\substack{\text { in } \\ 20.587}}$	$\stackrel{\text { in. }}{29 \cdot 855}$
	30.139 3013	$30 \cdot 042$ $30 \cdot 033$	29.727 29.726	$\begin{aligned} & 29.846 \\ & 29.841 \end{aligned}$	$\begin{aligned} & 29812 \\ & 29.810 \end{aligned}$	$\begin{aligned} & 29 \cdot 835 \\ & 29 \cdot 830 \end{aligned}$	29.988 29.987	$\begin{aligned} & 29.842 \\ & 29.842 \end{aligned}$	$\begin{aligned} & 29 \cdot 899 \\ & 29 \cdot 889 \end{aligned}$	29.743 29.743	$\begin{aligned} & 29.561 \\ & 29.556 \end{aligned}$	$\begin{aligned} & 29.587 \\ & 29.582 \end{aligned}$	$\begin{aligned} & 29.835 \\ & 29.831 \end{aligned}$
2	30.131	30.027	29.719	$29 \cdot 836$	29.806	29.823	29.984	29.840	29.883	29.738	29.551	29.579	29.826
3	30.128	30.013	29.711	29.834	29.804	29.819	29.982	29.838	29.877	29.734	29.546	29.573	29.822
4	$30 \cdot 121$	$30 \cdot 002$	29.707	29.830	29.804	29.817	29.981	29.836	29.874	29.732	29.539	29.56	29.817
5	30:119	29.998	29.709	29.831	29.809	29.819	29.984	29.839	29.875	29.732	29.538	29.558	29.818
6	$30 \cdot 122$	29.997	29.713	29.836	29.813	29.822	29.986	$29 \cdot 843$	29.878	29.733	29.540	29.557	29.820
7	30.128	29.997	29.720	29.842	29.819	29.824	29.990	$29 \cdot 846$	29.883	29.738	29.548	29.558	29.824
8	30.136	30.006	29.727	29.845	29.822	29.827	29.992	29.850	29.892	29.742	29.558	29.561	29.830
9	$30 \cdot 143$	30.011	29.731	29.848	29.822	29.826	29.990	29.851	$29 \cdot 893$	29.742	29.562	29.564	29.832
10	30.149	30.012	29.733	29.848	29.818	29.828	29.988	29.848	29.897	29.739	$29 * 566$	29.568	29.833
11	$30 \cdot 150$	30.014	29.735	29.845	29.812	29.826	29.986	29.84 I	29.895	29.736	$29 \cdot 565$	29.563	29.831
Noon	$30 \cdot 140$	30.008	29.733	29.838	29.806	29.822	29.981	29.835	29.893	29.728	29.558	29.554	29.825
$13^{\text {h }}$	30.131	29.996	29.728	29.833	29.802	29.819	29.977	29.831	29.887	29.719	29.556	29.553	29.819
14	30.127	29.988	29.723	29.827	29.796	29.816	29.972	29.826	29.880	29.712	29.551	29.560	29.815
15	30.125	29.986	29.720	29.821	29.790	29.811	29.968	29.820	29.872	29.708	29.551	29.569	29.812
16	30.127	29.985	29.718	29.818	29.786	29.807	29.962	29.817	29.867	29.709	29.555	29.577	29.811
17	30.134	29.989	29.721	29.818	29.784	29.805	29.960	29.815	29.868	29.715	29.561	29.581	29.813
18	30.138	29.998	29.728	$29 \cdot 821$	29.786	29.807	29.963	29.816	29.870	29.725	29.572	29.583	29.817
19	$30 \cdot 144$	30.004	29.736	29.830	29.791	29.811	29.967	29.821	29.877	29.732	29.574	29.585	29.823
20	$30 \cdot 147$	30.006	29.740	29.841	29.799	29.817	29.978	29.832	29.886	29.736	29.576	29.588	29.829
21	30.150	$30 \cdot 008$	29746	29.844	29.807	29.828	29.991	29.840	29.891	29.742	29.577	29.590	29.834
22	30.151	$30 \cdot 0$	29.746	29.845	29.813	29.830	29.996	29.844	29.891	$29.74{ }^{2}$	29.573	${ }^{2} 29.593$	29.836
23	30.152	$30 \cdot 005$	29.742	29.845	29.815	29.830	29.998	29.848	29.890	29.742	29.571	29.594	29.836
24	$30 \cdot 150$	30.003	29.738	29.845	29.815	$29 \cdot 826$	29.997	$29 \cdot 847$	29.888	29.744	29.567	29.592	29.834
$\stackrel{n}{\sim} \int^{\text {b }} .-2$	30.136	30.006	29.727	29.836	29.805	29.821	29.981	29.836	29.883	29.732	29.559	29.573	29.825
$\pm\left\{\mathrm{I}^{\mathrm{h}} .-24^{\mathrm{h}}\right.$.	30'137	30.004	29.727	29.836	29.805	29.820	29.982	29.836	29.883	29.732	29.559	29.573	29.825
$\left.\begin{array}{c}\text { Number of Days } \\ \text { emplosed. }\end{array}\right\}$	31	28	31	30	31	30	31	31	30	31	30	31	

Monthly Mean Temperature of the Air at every Hour of the Day, as deduced from the Photographic Records.

$\begin{gathered} \text { Greour } \\ \text { Givil Time. } \\ \text { Creone } \end{gathered}$	1911.												$\underbrace{\text { a }}_{\substack{\text { Yearly } \\ \text { Means. }}}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$3{ }^{\circ} \cdot 8$	$39^{\text {c }} \cdot 6$	$40^{\circ} \mathrm{O}$	$42^{\circ} \cdot 8$	$50^{\circ} 7$	$54^{\circ} \mathrm{I}$	59×7	$6{ }^{\circ} 7$	$55^{\circ} \cdot 6$	$48^{\circ} \cdot 5$	$43^{\circ} 1$	$43^{\circ} \cdot 8$	$48^{\circ} \cdot 1$
$\mathrm{I}^{\text {h }}$	$37 \cdot 6$	39°	$39 \cdot 6$	$42 \cdot 1$	$50 \cdot 0$	53.7	58.7	61.0	54.8	$48 \cdot 2$	$42 \cdot 9$	$43 \cdot 7$	$47 \cdot 6$
2	37.3	38.9	$39 \cdot 5$	417	$49^{\circ} 5$	53.3	$58 \cdot 2$	$60 \cdot 5$	$54 \cdot 1$	$48 \cdot 0$	$42 \cdot 8$	$43 \cdot 6$	47.3
3	$37 \cdot 1$	38.7	39.3	41.5	$49^{\circ} \mathrm{O}$	53.1	57.8	59.9	53.8	47.7	42.7	43.5	47°
4	$36 \cdot 9$	$38 \cdot 8$	39^{2}	$41 \cdot 2$	$48 \cdot 5$	52.9	57.3	59.4	53.5	$47 \cdot 6$	42.6	43.4	$46 \cdot 8$
5	$36 \cdot 9$	38.9	39°	$41 \cdot 2$	$48 \cdot 6$	53.3	$57 \cdot 6$	59.3	53.4	473	$42 \cdot 8$	$43 \cdot 6$	$46 \cdot 8$
6	$36 \cdot 9$	38.8	38.7	41.5	$49 \cdot 7$	54.7	59.4	$60 \cdot 1$	53.5	$47 \cdot 4$	$42 \cdot 8$	43.3	$47 \cdot 2$
7 8	$36 \cdot 9$ 37	$38 \cdot 8$	38.9	42.9	51.5	56.7	$62 \cdot 3$	62.3	55°	47.6	$42 \cdot 7$	43.4	$48 \cdot 3$
8	$37 \cdot 1$	38.9	39.7	$44 \cdot 7$	54.5	59.6	$66 \cdot 1$	65.4	58.1	48.4	429	$43 \cdot 6$	49.9
9	37.4	40.0	$4{ }^{1} 3$	$46 \cdot 5$	$57 \cdot 4$	62.0	$70 \cdot 0$	$68 \cdot 8$	$62 \cdot 0$	$50 \cdot 1$	$44^{\text {I }}$	44°	52.0
10	$38 \cdot 3$	$41^{1} 2$	43°	47.8	59.9	64.0	72.4	719	64.7	519	$45^{\circ} 5$	$44 \cdot 8$	53.8
11	$39 \cdot 3$	$4{ }^{2} 7$	44.3	49.7	62.2	$65 \cdot 1$	74.6	74.2	$67 \cdot 1$	53.6	$46 \cdot 4$	45.8	55.4
Noon	$40 \cdot$	$43 \cdot 8$	$45^{\circ} 9$	50.8	63.6	$66 \cdot 2$	$76 \cdot 2$	$76 \cdot 1$	$67 \cdot 9$	54.7	$47 \cdot 3$	$46 \cdot 5$	56.6
$13^{\text {h }}$	$40 \cdot 6$	$44^{\prime} 5$		52.3	64.4	$66 \cdot 6$	77.6	77.0	69°	55.4	473	$46 \cdot 9$	57.3
14	$40 \cdot 6$	$44 \cdot 7$	$46 \cdot 6$	$52 \cdot 8$	$64 \cdot 8$	66.9	78.5	$77 \cdot 6$	69.5	55.6	47.3	$46 \cdot 7$	57.6
15	40.5	44^{6}	$46 \cdot 2$	52.9	$64 \cdot 2$	$66 \cdot 7$	78.5	$76 \cdot 8$	$69 \cdot 3$	55.4	$46 \cdot 8$	$46 \cdot 2$	57.3
16	39.9	$44^{\prime 2}$	$45 \cdot 8$	$52 \cdot 3$	63.3	$66 \cdot$	$77 \cdot 4$	75.6	67.9	54.4	45.8	$45^{\circ} 5$	56.5
17	$39^{\cdot 2}$	43.4	44^{6}	$50 \cdot 9$	$62 \cdot 1$	64.7	$75^{\circ} 4$	$74^{\circ} \mathrm{O}$	$65 \cdot 8$	52.9	$44^{\circ} 9$	44.7	55°
18	38.6	$42 \cdot 6$	4.35	$49 \cdot 3$	$60 \cdot 5$	63.4	$73 \cdot 1$	$71 \cdot 5$	63.2	51.6	44^{2}	44.4	53.8
19	38.2	$42 \cdot 1$	$42 \cdot 4$	47.4	58.4	$61 \cdot 3$	$70 \cdot 5$	68.9	$60 \cdot 7$	50.5	$43 \cdot 7$	$44 \cdot 3$	52.4
20	37.9	416	$41 \cdot 4$	$46 \cdot 2$	$56 \cdot$	$58 \cdot 9$	$66 \cdot 9$	$66 \cdot 6$	58.7	49.6	$43 \cdot 6$	44^{\prime} I	51.0
21	37.7	41.1	$40 \cdot 8$	45°	$54^{\circ} 2$	57.1	64.2	64.7	56.9	49°	$43 \cdot 2$	44^{1}	49.8
22	37.5	$40 \cdot 8$	$40 \cdot 4$	$44^{\prime 2}$	$53^{\circ} \mathrm{O}$	$55 \cdot 8$	${ }^{62} 4$	63.4	$56 \cdot 1$	48.8	43^{1}	44^{1}	49^{1}
23	37.5	$40 \cdot 4$	$40 \cdot 2$	43.4	52°	54.8	$60^{\circ} 9$	62.4	55.7	48.6	43°	$44^{1} 1$	$48 \cdot 6$
24	$37 \cdot 4$	$40 \cdot 2$	39.9	42'9	$51 \cdot 1$	54.1	59.9	6r'5	55°	48.5	43^{1}	$43^{\circ} 9$	$48 \cdot 1$
$\stackrel{0}{0} \int^{\text {a }}$. $-23^{\text {b }}$.	$38 \cdot 2$	$4{ }^{1} 2$	$41^{\circ} 9$	$46 \cdot 3$	$56 \cdot 2$	59.6	673	67.5	$60 \cdot 3$	$50 \cdot 5$	$44^{\prime 2}$	$44^{\circ} 5$	515
盛 $11^{\text {b }} .24^{\text {b }}$.	$38 \cdot 2$	$41^{\circ} 2$	$41^{\circ} 9$	$46 \cdot 3$	$56 \cdot 2$	$59^{\circ} 6$	673	67.4	60:2	$50 \cdot 5$	44^{2}	44×5	51.5
$\left.\begin{array}{c}\text { Number or Days } \\ \text { emplojed. }\end{array}\right\}$	31	28	31	30	31	30	31	31	30	31	30	31	...

$\begin{gathered} \text { Hour, } \\ \text { Criven Tim } \\ \text { Civil } \\ \text { Time. } \end{gathered}$	1911.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{\text { chen }}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
$\underset{\mathbf{I}^{\text {h }}}{\text { Midnight }}$	$36^{\circ} \cdot 4$	379	$38 \cdot 6$	$40^{\circ} 7$	$49^{\circ} \mathrm{O}$	$52 \cdot 1$	$56^{\circ} \cdot 4$	$59^{\circ} \cdot$	$52 \cdot 6$	473	41_{1-2}	$42^{\circ} \cdot 5$	$46^{\circ} \mathrm{I}$
	$36 \cdot 3$	37.7	$38 \cdot 4$	403	$48 \cdot 5$	51.6	5509	$58 \cdot 6$	$52 \cdot 1$	$47 \cdot 1$	$41^{1} 2$	42.4	$45 \cdot 8$
${ }^{2}$	$36 \cdot 1$	$37 \cdot 6$	$38 \cdot 3$	$40 \cdot 2$	$4{ }^{8.0}$	514	55.6	58.4	51.7	$46 \cdot 9$	$4 \mathrm{I}^{\circ} \mathrm{O}$	$42 \cdot 3$	$45 \cdot 6$
3	35.9	$37 \cdot 4$	$38 \cdot 1$	$40 \cdot 1$	$47 \cdot 8$	$51 \cdot 2$	55.3	58.0	$51 \cdot 5$	$46 \cdot 5$	$41^{\cdot 1}$	$42 \cdot 5$	45.4
$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	35.8	37.4	37.9	$39^{\prime} 9$	47%	51.0	55°	57.6	51.2	46.4	41.1	42.5	45.3
	35.8 35.8	37.4 37.2	$37 \cdot 8$ 37.6	$39^{\circ} 9$	47.5	51.4	55.2 56.3	57.5 58.0	51.2 51.4	$46 \cdot 3$	$41 \cdot 2$	42.5	45.3
6	$35 \cdot 8$ 35.8	$37 \cdot 2$ 37.2 37	37.6 37.7	$40 \cdot 0$ $40 \cdot 8$	$48 \cdot 3$	$52 \cdot 1$ 53.2	56.3	58.0	51.4	$46 \cdot 4$	41.2 40.9	42.2 42.2	$45^{\circ} 5$
8	35.8 35.9	37.2 37.3	37.7 38.4	$40 \cdot 8$ 41.8	49.6 51.4	53.2 54.8	57.9 59.6	59.3 60.9	$52 \cdot 3$ 54.1	$46 \cdot 2$ $46 \cdot 9$	$40 \cdot 9$ $41 \cdot 2$	42.2 42.4	$46 \cdot 1$
9	36.2	38.0	39.4	$42 \cdot 9$	$53 \cdot 1$	56	61.1	62.4	55.9	$48 \cdot 2$	$4 \mathrm{4} \cdot 9$	$42 \cdot 8$	$48 \cdot 2$
10	$36 \cdot 8$	38.8	$40 \cdot 5$	$43 \cdot 5$	54.1	56.7	62.0	63.5	$56 \cdot 8$	49^{2}	$42 \cdot 8$	$43 \cdot 3$	$49 \cdot$
11	$37 \cdot 6$	$39 \cdot 8$	41.4	$44^{\circ} 2$	$55 \cdot 6$	57.2	$62 \cdot 9$	$64 \cdot 1$	57.3	$50 \cdot 1$	$43 \cdot 5$	$44^{2} \cdot 6$	$49 \cdot 8$
Noon	$38 \cdot 2$ 38.6	40.4	$42 \cdot 3$	$44 \cdot 6$	$56 \cdot 1$	57.4	63.4	64.5	57.0	$50 \cdot 7$	43.9	$44^{6} 6$	$50 \cdot 3$
$13^{\text {h }}$	$38 \cdot 6$	$40 \cdot 8$	$42 \cdot 6$	$45 \cdot 3$	56.3	57.6	64.0	$64 \cdot 8$	57.5	$51 \cdot 1$	$43 \cdot 9$	44^{6}	50.6
14	38.6	$40 \cdot 8$	42.4	$45 \cdot 4$	56.4	$57 \cdot 6$	643	$64 \cdot 8$	57.5	51.2	437	$44^{\circ} 5$	$50 \cdot 6$
15	38.5	$40 \cdot 7$	$42 \cdot 2$	45^{6}	$56 \cdot 1$	57.6	64.1	$64 \cdot 6$	57.3	$51^{\circ} \mathrm{O}$	43.5	$44^{\circ} \mathrm{O}$	$50 \cdot 4$
16	38.1 37.6	$40 \cdot 5$	$41 \cdot 9$	45.2	$55 \cdot 7$	57.2	63.4	$64 \cdot 1$	$56 \cdot 7$	$50 \cdot 6$	43°	$43 \cdot 5$	$50 \cdot 0$
1718	37.6	$40^{\circ} \mathrm{O}$	$41 \cdot 3$	$44 \cdot 7$	$55^{\circ} \mathrm{O}$	$56 \cdot 6$	62.6	$63 \cdot 6$	$55^{\circ} 9$	$49^{\circ} 9$	42.5	43°	49.4
	$37 \cdot 1$	39.6	$40 \cdot 7$	$44^{\circ} \mathrm{I}$	54.5	$56 \cdot 0$	$6 \mathrm{I} \cdot 8$	62.9	55°	$49^{\text {I }}$	$42 \cdot$	429	$48 \cdot 8$
1920	$36 \cdot 9$	39.4	$40 \cdot 3$	$43 \cdot 2$	53.7	55.2	$60 \cdot 7$	$62 \cdot 1$	$54 \cdot 5$	$48 \cdot 5$	41^{16}	42.8	$48 \cdot 2$
	$36 \cdot 5$	$39^{\circ} \mathrm{I}$	39.6	42.5	52.3	54.3	59.5	$61 \cdot 2$	53.9	$48 \cdot 1$	41^{6}	42.8	$47^{\circ} \cdot 6$
21	$36 \cdot 3$	38.8	39.2	41.8	513	53.5	$58 \cdot 5$	$60 \cdot 4$	53.1	$47 \cdot 7$	41.4	$42 \cdot 8$	$47 \cdot 1$
22	$36 \cdot 1$	$38 \cdot 7$	39°	41.5	$50 \cdot 7$	52.9	577	59.9	$52 \cdot 7$	$47 \cdot 6$	$4{ }^{1} 3$	$42 \cdot 7$	$46 \cdot 7$
2324	$36 \cdot 1$	38.5	$38^{\circ} 9$	$4{ }^{1 \cdot 1}$	49.9	52.4	57.1	59.3	52.5	$47 \cdot 5$	41.3	42.7	$46 \cdot 4$
	$36 \cdot 1$	38.5	38.6	$40 \cdot 8$	493	$52 \cdot \mathrm{I}$	$56 \cdot 5$	$58 \cdot 8$	$52 \cdot 2$	473	$4^{1 / 2}$	42.5	$46 \cdot 2$
	$36 \cdot 8$	38.8	39^{8}	42.5	52.0	54%	59.6	61.2	54°	$48 \cdot 4$	42.0	43°	477
	$36 \cdot 8$	38.8	39^{8}	42.5	52.0	54 '5	$59 \cdot 6$	$61 \cdot 2$	$54 * 2$	$48 \cdot 4$	$42^{\circ} \mathrm{O}$	$43^{\circ} \mathrm{O}$	$47 \cdot 7$
$\underbrace{}_{\substack{\text { Number of Days } \\ \text { emploged. }}}$	31	28	31	30	31	30	31	31	30	31	30	31	\ldots
Monthly Mean Temperature of the Dew Point at every Hour of the Day, as deduced by Glaisher's Table													
Hour$\substack{\text { Greenwich } \\ \text { Civil Time. }}$	1911.												¢ $\begin{gathered}\text { Yearly } \\ \text { Heans. }\end{gathered}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
$\underset{\mathbf{I}^{\mathrm{h}}}{\text { Midnt }}$	$34^{\circ} 5$	$35^{\circ} 7$	$3{ }^{\circ} \cdot 8$	$38^{\circ} \cdot 2$	$47^{\circ} 2$	$50^{\circ} 1$	$53^{\circ} 5$	$56^{\circ} 7$	$49^{\circ} \cdot 8$	$46^{\circ} \mathrm{O}$	$38^{\circ} \cdot 9$	$4 \circ^{\circ} 9$	$44^{\circ} \mathrm{O}$
	34.5	35.8	$36 \cdot 8$	$38 \cdot 1$	$46 \cdot 9$	$49^{\prime} 6$	53.4	$56 \cdot 5$	$49^{\circ} 5$	$45^{\circ} 9$	$39^{\circ} 2$	$40 \cdot 8$	43.9
-	34.4	35.9	$36 \cdot 7$	$38 \cdot 3$	$46 \cdot 4$	$49 \cdot 5$	53.3	$56 \cdot 6$	$49 \cdot 3$	457	$38 \cdot 8$	$40 \cdot 7$	43.8
3	$34 \cdot 2$	35.7	$36 \cdot 5$	$38 \cdot 3$	$46 \cdot 5$	$49 \cdot 3$	$53 \cdot 1$	$56 \cdot 4$	493	$45^{\circ} 2$	$39^{\circ} 2$	41.3	43.7
4	$34 \cdot 3$	35.5	$36 \cdot 2$	$38 \cdot 2$	$4.6 \cdot 2$	$49^{1} 1$	$53^{\circ} \mathrm{I}$	56.0	49°	45.1	39.3	41.4	$43 \cdot 6$
5	$34 \cdot 3$	35.4	$36 \cdot 2$	$38 \cdot 2$	463	$49 \cdot 5$	53.0	$55^{\circ} 9$	49°	$45 \cdot 2$	393	$41^{\circ} 2$	$43 \cdot 6$
	$34 \cdot 3$	35°	$36 \cdot 1$	$38 \cdot 1$	$46 \cdot 8$	$49 \cdot 6$	53.5	$5^{6 \cdot 1}$	$49^{\circ} 3$	$45 \cdot 3$	39.3	$40 \cdot 9$	$43 \cdot 7$
7	34.3	35°	$36 \cdot 1$	$38 \cdot 3$	$47 \cdot 7$	50.0	54.2	56.7	49.7	44.7	$38 \cdot 8$	$40 \cdot 8$	43.9
8	34.2	35°	$36 \cdot 7$	38.4	$48 \cdot 4$	$50 \cdot 5$	54.3	57°	$50 \cdot 5$	45.3	$39^{\circ} \mathrm{C}$	41°	44.2
910	34.6	35.4	37°	$38 \cdot 9$	$49^{\circ} 2$	$50 \cdot 8$	54.2	57.4	$50 \cdot 6$	$46 \cdot 2$	39.3	$4{ }^{1.4}$	$44^{\cdot 6}$
	$34 \cdot 8$	$35^{\circ} 8$	37.5	$38 \cdot 7$	49°	$50 \cdot 7$	54.3	57.2	$50 \cdot 3$	$46 \cdot 5$	$39 \cdot 7$	41.6	$4+7$
11	35.4 35.9	36.3 36.4	$38 \cdot 0$ $38 \cdot 2$	$38 \cdot 3$ $38 \cdot 1$	49.9 49.9	$50 \cdot 7$ 50.3	$54 \cdot 5$ 54.4	$56 \cdot 8$ $56 \cdot 3$	49.5 48.4	$46 \cdot 7$ $46 \cdot 9$	$40 \cdot 2$ $40 \cdot 1$	42.4 42.5	44.9 44.8
Noon	35.9 36.1 36.	$36 \cdot 4$ $36 \cdot 5$	$38 \cdot 2$ $38 \cdot 3$ 38	$38 \cdot 1$ $38 \cdot 2$	$49 \cdot 9$ 49.6	$50 \cdot 3$ $50 \cdot 4$	54.4 54.5	$56 \cdot 3$ $56 \cdot 3$	48.4 48.5	46.9 47.0	$40 \cdot 1$ $40 \cdot 1$	42.5 42.	$44 \cdot 8$ 44.8
$13^{\text {h }}$	$36 \cdot 1$ $36 \cdot 1$	$36 \cdot 5$ $36 \cdot 3$	$38 \cdot 3$ 37.7	38.2 38.0	$49 \cdot 6$ 49.5	50.4 50%	54.5 54.5	56.3 559	$48 \cdot 5$ 48.2	$47^{4} 7^{\circ}$	$40 \cdot 1$ 39	$44^{2 \cdot}{ }^{2} \cdot{ }^{\circ}$	44.8 44.6
1516	$36 \cdot$	$36 \cdot 2$	37.6	$38 \cdot 3$	49.4	$50 \cdot 3$	54.2	56.0	$48 \cdot$	$46 \cdot 8$	39.8	41.5	44.5
	35.8	$36 \cdot 2$	37.4	38.0	493	$50 \cdot 1$	53.6	$55^{\circ} 9$	$47 \cdot 8$	$46 \cdot 9$	39.8	41.2	$44 \cdot 3$
17 18 18	35.5	36.0	37.5	$38 \cdot 3$	$48 \cdot 9$	49.9	53.4	$56 \cdot 0$	47.9	$47^{\circ} \mathrm{O}$	39.7	$41^{\circ} \circ$	44.3
18	$35 \cdot 1$ 35.1 3	$36 \cdot 0$ $36 \cdot 1$	37.4 37.7	$38 \cdot 5$ $38 \cdot 5$	49.2 49.5	$49 \cdot 8$ 49	53.5 53.1	$56 \cdot 4$ $56 \cdot 8$	$48 \cdot 3$ $49 \cdot 1$	$46 \cdot 6$ 46.4	39.4 39.2	$41 \cdot 1$ 4.0	$4+3$
19	$35 \cdot 1$ $3+6$		377 37 3	$38 \cdot 5$ $38 \cdot 3$	$49 \cdot 5$ 48.8	49.9 50.2	53.1 53.6	$56 \cdot 8$ 56.9	$49 \cdot 1$ 49.6	$46 \cdot 4$ $46 \cdot 5$	39.2 39.3	$41 \cdot 0$ $41 \cdot 2$	$\left.\right\|^{44.4}$
20	34.6 34.4	$36 \cdot$ 35.9	$37 \cdot 3$ 37.2	$38 \cdot 3$ $38 \cdot 1$	$48 \cdot 8$ 48.5	$50 \cdot 2$ $50 \cdot 2$	53.6 537	56.9 56.9	$49 \cdot 6$ $49 \cdot 6$	$46 \cdot 5$ $46 \cdot 3$	39.3 39	$41 \cdot 2$ $41 \cdot 3$	44.4 $4+3$
21	34.4 34.2	$36 \cdot$	37.2	38.3	$48 \cdot 4$	$50 \cdot 2$	53.7	57°	$49 \cdot 5$	+6.3	39°	$41^{\circ} \mathrm{O}$	$4+3$ 44
22 23	34.2	$36 \cdot 1$	37.2	38.4	47.8	$50 \cdot 1$	53.9	$56 \cdot 7$	$49 \cdot 5$	$46 \cdot 3$	39.3	41.0	$44^{\cdot 2}$
24	343	$36 \cdot 3$	36.9	$38 \cdot 4$	$47 \cdot 4$	$50 \cdot 1$	53.5	$56 \cdot 5$	$49^{\prime} 3$	$4^{6} 0$	38.9	$40 \cdot 8$	$44^{\circ} \mathrm{O}$
$\begin{aligned} & 0^{\mathrm{h}} \cdot-23^{\mathrm{h}} . \\ & \mathrm{I}^{\mathrm{h}} \cdot-24^{\mathrm{h}} . \end{aligned}$	$34^{\circ} 9$	35.8	37^{1}	$38 \cdot 3$	$48 \cdot 3$	$50 \cdot 0$	53.8	56.5	$49^{\circ} 2$	$46 \cdot 2$	39.4	$41 \cdot 3$	44°
	34.9	$35^{\circ} 9$	$37^{1} 1$	38.3	483	50.0	53.8	56.5	49^{-2}	$46 \cdot 2$	394	$4^{1} 3$	44°

Monthly Mean Degree of Humidity（Saturation＝ioo）at every Hour of the Day，as deduced by Glaisher＇s Tables from the corresponding Air and Evaporation Temperatures．

$\begin{gathered} \text { Hour, } \\ \text { Greenwich } \\ \text { Civil Time. } \end{gathered}$	1911.												YearlyMeaus．
	January．	February．	March．	April．	May．	June．	July．	August．	September．	October．	November．	December．	
Midnight	88	86	89	84	88	86	81	84	82	92	85	90	86
$\mathbf{I}^{\text {b }}$	89	88	90	86	89	86	83	86	82	92	86	90	87
2	89	90	90	89	90	87	84	87	84	92	86	90	88
3	89	90	90	89	92	87	84	89	85	92	87	92	89
4	91	89	90	90	92	88	86	89	84	92	88	93	89
5	91	88	90	90	92	87	85	89	85	93	87	91	89
6	91	87	91	88	90	82	82	87	86	93	87	91	88
7	91	87	91	84	87	78	75	82	83	90	86	90	85
8	90	87	90	78	79	72	66	76	76	89	86	90	82
	98	84	85	75	74	67	57	66	67	87	83	90	77
10	88	82	8 I	72	67	62	53	60	59	82	8 I	89	73
11	86	79	78	65	64	59	50	55	53	77	80	88	69
Noon	86	75	75	62	61	57	47	50	48	75	77	87	67
$13^{\text {b }}$	85	73	74	59	59	57	46	49	48	74	77	84	65
14	85	72	72	58	57	56	43	48	47	73	76	85	64
15	85	72	73	58	59	56	43	48	47	73	78	85	65
16	86	73	73	59	61	57	44	50	48	76	80	85	66
17	87	75	75	62	62	59	47	54	52	81	83	87	69
18	88	78	79	66	67	61	50	59	59	83	83	89	72
19	89	80	84	72	72	67	54	64	66	86	84	89	76
20	88	81	86	75	77	73	62	72	72	90	85	90	79
21	88	82	87	77	81	77	69	76	76	91	86	90	82
22	88	84	89	79	84	82	74	80	79	92	86	89	84
23	88	85	90	82	85	84	78	82	81	92	86	89	85
24	89	87	90	84	87	86	80	84	81	92	85	89	86
$\int^{0 b} \cdot-23^{\text {b }}$ ．	88	82	84	75	76	72	64	70	69	86	83	89	78
$11^{\text {b }} \cdot-24^{\text {b }}$ ．	88	82	84	75	76	72	64	70	69	86	83	89	78

Total Amount of Sunshine registered in each Hour of the Day in each Month，as derived from the Records of the Campbell－Stokes Self－Registering Instrument for the Year igif．

Month， 19II．	Registered Duration of Sunshine in the Hour ending																			
	in	\％	$亡$	¢	\％	$\stackrel{\text { \％}}{\circ}$	$\dot{\square}$	言	$\stackrel{3}{\circ}$	${ }_{4}^{4}$	$\dot{3}$	咅	$\dot{8}$	玉	家	\％				
January	h	h \ldots	h \ldots	h 0.1	$\underset{2}{\mathrm{~h}}{ }_{2}$	$\begin{gathered} \mathrm{h} \\ 4 \cdot 0 \end{gathered}$	$\begin{gathered} \mathrm{h} \\ 5 \cdot 5 \end{gathered}$	$\begin{gathered} \mathbf{h} \\ 3 \cdot 9 \end{gathered}$	$\begin{gathered} h \cdot 6 \\ 5 \cdot 6 \end{gathered}$	$\begin{gathered} \mathrm{h} \cdot 6 \\ 5 \cdot 6 \end{gathered}$	$\begin{aligned} & \mathrm{h} \\ & 3 \cdot 8 \end{aligned}$	$\begin{gathered} \mathrm{h} \\ 2 \cdot 4 \end{gathered}$	h \ldots	h .	h \cdots	h \cdots	$\stackrel{\mathrm{h}}{ }{ }^{\text {3 }}$ ¢ 9	$\underset{258 \cdot 6}{\stackrel{h}{8}}$	$0 \cdot 127$	18
February．．．	\ldots	\ldots	\ldots	1.8	47	$6 \cdot 3$	$9{ }^{\text {9 }}$	8.8	$9 \cdot 0$	9.2	8.4	$5 \cdot 4$	$1 \cdot 4$	\ldots	\ldots	\cdots	$64 \cdot 1$	$276 \cdot 5$	0.232	26
March．		\ldots	14	$3 \cdot 8$	73	$9 \cdot 8$	$8 \cdot 2$	8.6	$8 \cdot 1$	8.0	$8 \cdot 1$	7.8	4.4	$0 \cdot 5$	\ldots	\ldots	$76 \cdot 0$	365.3	0.208	37
April	\ldots	14	49	$8 \cdot 9$	114	$10 \cdot 4$	14.1	15.8	17.2	14.5	13.4	15.2	12.5	10.0	1.0	\ldots	150.7	$412 \cdot 7$	$0 \cdot 365$	48
May ．	$1{ }^{\circ}$	10.8	14°	14.9	16.4	17.1	19＊0	19.4	18.2	18.2	17×1	13.6	15.4	$14^{\circ} 0$	9.5	1．9	220.5	$480 \cdot 8$	0.459	57
June．	$3 \cdot 3$	10.8	14.3	15.5	$14^{8} 8$	16.1	17.4	17.5	16.8	16.3	16.1	$17 \cdot 1$	16.2	16.0	12.7	3.7	224.6	4943	0.454	62
July ．．．	$5 \cdot 5$	17.5	20.6	21.6	23.8	24.2	24^{1}	23.7	25.8	27＊	25.9	24.4	23.5	20.6	19.7	6.4	334.3	$498 \cdot 2$	0.671	60
August	$1{ }^{\circ}$	71	15.2	18.1	20.6	22.1	23.2	22.8	22.9	22.3	19.8	18.8	18.9	16.2	10.9	\cdots	259.9	451.2	$0 \cdot 576$	52
September．．．．	\ldots	1.0	12.1	19.8	22.7	22.1	$24^{\circ} 2$	23.1	22°	20.6	20.3	$20^{\circ} 0$	15.9	9.5	$0 \cdot 6$	\ldots	233.9	$379 \cdot 6$	0.616	41
October	\ldots	\ldots	．．．	$4 \cdot 1$	$7 \cdot 4$	$10 \cdot 3$	12.3	11．1	12%	117	10.8	$10 \cdot 6$	$5 \cdot 6$	．．．	\cdots	\ldots	$96 \cdot 6$	$331^{\circ} \mathrm{O}$	0.292	30
November	\ldots	\ldots	\ldots	$\bigcirc \cdot 7$	$5 \cdot 4$	$8 \cdot 5$	77	8.6	7.0	7．1	$4 \cdot 8$	4.2	$0 \cdot 5$	\ldots	\ldots	\ldots	54.5	266.4	0.205	20
December．．．	\cdots	\ldots	\cdots	\ldots	15	5.5	7×1	$6 \cdot 1$	$6 \cdot 2$	6.9	$6 \cdot 6$	1.2	\ldots	\ldots	\ldots		$41^{1} 1$	2443	$0 \cdot 168$	16
For the Year	$10 \cdot 8$	48.6	$82 \cdot 5$	109.3	138.0	156	171.9	169.4	171.5	1674	55＇1	$140 \cdot 7$	1143	86.8	54.4	12.0	1789 I	4458.9	$0 \cdot 401$	\ldots

	Dry-Bulb Thermometers, ${ }_{4} \mathrm{ft}$. above the Ground.						Wet-Bulb Thermometer 4 ft . above the Ground.				$\begin{gathered} \text { Days } \\ \text { of he } \\ \text { of } \\ \text { Monthe } \end{gathered}$	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb 'Thermometer, 4 ft . above the Ground.			
M	Maxi.	$\begin{aligned} & \text { Mini.i.i. } \\ & \text { mum. } \end{aligned}$	$9^{\text {b }}$	n.	$\mathrm{rs}^{\text {b }}$	$27^{\text {h }}$	$9^{\text {b }}$	Noon.	${ }^{\text {5 }}{ }^{\text {b }}$	${ }_{2 \mathrm{r}}{ }^{\text {b }}$		$\begin{aligned} & \text { Maxi. } \\ & \text { mum. } \end{aligned}$	$\begin{aligned} & \text { Mini- } \\ & \text { mum. } \end{aligned}$	$9^{\text {b }}$	on.	$15^{\text {b }}$	$23^{\text {h }}$	$9^{\text {b }}$	Noon.	$15^{\text {b }}$	
January.											March.										
${ }_{\text {d }}^{\text {d }}$	$45^{\circ} 6$	34.3	$42 \cdot 8$		$41 \times$											48.6			$43^{\circ} \mathrm{I}$	9	$\stackrel{2}{2}$
2	$37 \cdot 8$	$32 \cdot 6$	35^{\prime} I	36.8	36.6	36.6	$32 \cdot 2$	34.0	34.9	34.9	-	513 59	37 43	49.7	$55^{\circ} 9$	57.6	40.6	38.9 47	51.5	$52 \cdot 3$	48.7
3	$40^{\prime} 2$	$32 \cdot 2$	34.6	38.4	38.4	$36 \cdot 6$	34.3	$35^{\circ} 8$	35^{6}	$33 \cdot 8$	3	53.6	48.0	50.6	51.8	53.2	$49^{\circ} \mathrm{I}$	$48 \cdot 3$	$48 \cdot 3$	$47^{\circ} 7$	$46 \cdot 8$
4	$40 \cdot 5$	$36 \cdot 1$	38.5	40.1	39.8	37.4	$37^{1.1}$	38.5	38.3	35.9	4	$50^{\circ} 4$	$41^{\circ} \mathrm{O}$	$48 \cdot 2$	$48 \cdot 5$	49.6	$4^{\circ}{ }^{\circ}$	45.1	$44^{\circ} 8$	45°	$39^{\circ} 9$
5	39°	$35 \cdot 3$	$36 \cdot 2$	37.6	38.6	37.5	$35 \cdot 6$ 37	$36 \cdot 8$	37.8	36.9	5	$46 \cdot \circ$	32.6	38.5	44.7	44°	34.9	35.8	$40 \cdot 7$	40°	33.9
6	$42^{\circ}{ }^{\circ}$	$36 \cdot 0$	38.7	41.5	$39^{\circ} 6$	$40 \cdot 7$	37.8	39°	38.8	39°	6	$46 \cdot 7$	$32 \cdot 6$	$40 \cdot 8$	45.7	$41^{\circ} 9$	$40 \cdot 6$	38.2	$41 \cdot 3$	39.7	$40 \cdot 0$
7	$41^{\circ} \mathrm{O}$ 49	31.9 32.2	$32 \cdot 6$ 45	$36 \cdot 6$	38.6	32.6	31.8	34.8	$36 \cdot 7$	31.8	7	45.9	39.1	$41^{\circ} \mathrm{O}$	45.5	43.2	$40^{\circ} 2$	39.8	$42 \cdot 3$	$4{ }^{1 \cdot 1}$	38.6
8	49°	$32 \cdot 2$	$45 \cdot 5$	47^{6}	$48 \cdot 6$	$48 \cdot 6$	$45 \cdot 4$	$47^{\circ} 4$	$47 \cdot 8$	48.0	8	$48 \cdot 1$	29.7	37 ${ }^{1}$	44.7	$46 \cdot 6$	411	$36 \cdot 2$	$39^{\circ} 9$	41^{6}	39.7
	$50 \cdot 0$	$40 \cdot 3$	$48 \cdot 5$	$49 \cdot 5$	$49^{6} 6$	$40 \cdot 8$	$47 \cdot 8$	$48 \cdot 8$	49°	$38 \cdot 1$	9	$47^{\circ} 9$	$39 \cdot 6$	$4{ }^{1} 7$	44°	$45^{\circ} 4$	$41 \cdot 1$	$4{ }^{1} \cdot$	$40 \cdot 6$	40.4	$36 \cdot 8$
10	42.5	34.9	$36 \cdot 8$	$39^{\circ} 9$	41.1	$37^{\circ} \mathrm{O}$	$35 \cdot 3$	37.7	$38 \cdot 8$	$35 \cdot 7$	1	51.0	29.1	415	$46 \cdot 7$	$47 \cdot 6$	$43 \cdot 8$	38.8	$4{ }^{1 \cdot} 2$	42.8	$39^{\circ} 8$
11	44.3	$35^{\prime} 9$	$4{ }^{1} 6$	$42 \cdot 9$	$43 \cdot 6$	$43 \cdot 8$	$40 \cdot 0$	41.2	42.0	43°	11	$44 \cdot 8$	40.1	41.6	$43 \cdot 8$	44.4	$41^{\circ} \mathrm{P}$	$40^{\circ} 6$	41.8	42.8	$40 \cdot 2$
12	44.7	33.1	38.6	39.5	37.6	33.6	35.4	$35 \cdot 8$	$34 \cdot 8$	$32 \cdot 6$	12	$47 \cdot 1$	$30 \cdot 7$	$40 \cdot 8$	$45 \cdot 5$	44.6	37.5	$38 \cdot 0$	41.4	$40 \cdot 8$	$36 \cdot 8$
13	$33^{\circ}{ }^{\circ}$	32.3 26.3	34.6 26.5	$35 \cdot 5$	35.9	32.7	33.7	34°	33.8	$30 \cdot 7$	13	$43^{\circ} \mathrm{O}$	33° -	$36 \cdot 0$	$38 \cdot 6$	41.3	$36 \cdot 7$	32.5	34.8	36.9	34.8
14	33.1 38.0	26.3	26.5	28.5	29.3 37.6	26.6	$26 \cdot 1$	27.8	28.4	$26 \cdot 1$	14	$43^{\circ} 2$	33.3	$36 \cdot 9$	41.4	$4 \mathrm{r} \cdot 6$	38.6	33.5	$36 \cdot 7$	36.8	34.8
15	38.0 44°	24.1 27 27	27.6 34.0	$33 \cdot 7$ 36.4	37.6 $43^{\circ} 5$	29.1 38.1	$27 \cdot 3$ 33.0	32.8	35°	28.7	15	$40 \cdot 4$	33.2	33.8	35.3	38.9	37.9	32.8	$34 \cdot 8$	37.2	$36 \cdot 8$
16	$44^{\circ} \mathrm{O}$	$27 \cdot 1$ 37.6	34°	$36 \cdot 4$	43.5	38.1	$33^{\circ} \mathrm{O}$	35°	41°	37.3	16	45.3	34^{6}	$39^{6} 6$	$43 \cdot 8$	$42 \cdot 9$	37.6	37.5	$39 \cdot 1$	38°	$36 \cdot 0$ $36 \cdot 8$
$\begin{array}{r}17 \\ 18 \\ \hline\end{array}$	$43 \cdot 0$ $42^{2} 5$	$37 \cdot 6$ $40 \cdot 3$	$41 \cdot 1$ 41.7	$42 \cdot 1$ 41.8	42.5 42.1	42.0 40.6	39.6 39.4	$40 \cdot 3$ 39	$40 \cdot 5$ 39.8	$40 \cdot 8$ 38.8	17 18 18	$46 \cdot$ 45°	29.1 37.2	35.9 41.1	44.5 43	$38 \cdot 5$ $40 \cdot 7$	$37 \cdot 6$ 39.8	34.6 38.6	$40 \cdot 7$ 407	$36 \cdot 9$ $39 \cdot 3$	$36 \cdot 8$ 39.6
19	$4{ }^{4} 10$	${ }_{36}{ }^{40} 1$	417 37	41.8 37	$42 \cdot$ 37	46.6 36.4	39.4 36.8	$3{ }^{3} 9.4$	39 $36 \cdot 3$	$38 \cdot 8$ 357	18 19	45° 43°	37.2 39.1	$41 \cdot 1$ 397	43.9 41.6	$40 \cdot 7$ 418	39.8 39.6	38.6 38.9	$40 \cdot 7$ 39	$39 \cdot 3$ 40.1	39.6 38.6
20	$39^{\circ} 6$	33.1	34°	35.9	$38 \cdot 9$	37°	$33 \cdot 8$	35.6	$38 \cdot 1$	$36 \cdot 8$	20	51.5	$37^{\circ} 1$	$44 \cdot 9$	$50 \cdot 1$	48.5	39.2	$42 \cdot 6$	$45 \cdot 8$	43.2	37.6
21	38.0	$35 \cdot 3$	36.3	37.6	$37 \cdot 6$	36.9	357	$36 \cdot 8$	37°	$36 \cdot 5$	21	61.8	$37^{\circ} 2$	$43 \cdot 5$	547	$58 \cdot 5$	$45 \cdot 6$	$42 \cdot 7$	$50 \cdot 6$	51.8	$43 \cdot 8$
22	$38 \cdot 2$	36.1	$36 \cdot 6$	377	37.7	$36 \cdot 2$	$35^{\circ} 6$	36.3	$36 \cdot 0$	$35^{\circ} \mathrm{I}$	22	$60 \cdot 0$	$37^{\circ} 2$	$43 \cdot 6$	57.6	$57 \cdot 9$	$46 \cdot 4$	43.4	52.2	516	$44 \cdot 8$
23	$39^{\circ} \mathrm{O}$	32.4	$36 \cdot 6$	$37 \cdot 6$	$38 \cdot 3$	$32 \cdot 8$	$35 \cdot 8$	37^{2}	37°	32.7	23	$49 \cdot 5$	$40^{\circ} 1$	$45^{\circ} 5$	48.7	$44 \cdot 6$	$40^{\circ} \mathrm{I}$	44.9	47.7	44°	39
24	$46 \cdot 1$	29.5	34.6	43.5	45°	43.7	$34^{\circ} 4$	$41^{\circ} 4$	$41^{1} 9$	$4{ }^{1 \cdot 8}$	24	$47 \cdot 3$	37.6	41.5	44.6	44.7	$37 \cdot 6$	39°	39^{-8}	$39^{\circ} 6$	35.8
25	$48 \cdot 5$	43.1	$44 \cdot 6$	$47^{1} 1$	$48 \cdot 1$	47.3	41.8	$43^{\circ} 9$	45.6	$46 \cdot 0$	25	$42 \cdot 0$	33.2	$36 \cdot 8$	38.9	38.7 4	34.9	33.8	34.7	32.9 38.1	$32 \cdot 8$
26	517	$46 \cdot 6$	47.4	$50 \cdot 6$	$49^{\cdot 6}$	$47^{\circ} 9$	$45 \cdot 6$	$47 \cdot 6$	$46 \cdot 8$	$45 \cdot 8$	26	44.0	33.3	$36 \cdot 8$	$38 \cdot 8$	43.8	$37^{\circ} 6$	33.3	35°	$38 \cdot 1$	$34^{\circ} 9$
27 28	48.3	$43 \cdot 1$	43.6	44°	43.8	$43 \cdot 6$	$40 \cdot 8$	$40 \cdot 7$	$40 \cdot 6$	$4^{1 \cdot 1}$	27	$39 \cdot 7$	$35 \cdot 6$	$37 \cdot 6$	$39^{\circ} \mathrm{J}$	39^{2}	35%	$37 \cdot 3$	37.8	37°	$34^{\circ} 9$
29	47 41 4	34.1 28.1	$3{ }^{3} 1.6$	45'1	47.4	35.5	348	42	443	$35^{\circ} 3$	28	53.1	33.1	43.8	50°	51	39.9	402 41.8	44.4	47.8	39^{2} 42 4 4
30	$4{ }^{4} 1{ }^{\circ} \mathrm{O}$	33.	$36 \cdot 9$	38.8	36.9	40.5 33	$35^{3} 5$	$36 \cdot 1$	34°	38.7 30%	28 30	$51 \cdot 0$ $47 \cdot 2$	39.6 39	41	$4{ }^{4} \cdot 8$	46.7	$4{ }^{4}{ }^{\circ} 9$	41.3	44°	$45 \cdot 4$	$45 \cdot 3$
31	35°	28.3	29.7	$33^{\circ} 6$	$34^{\circ} 1$	28.4	$26 \cdot 9$	$29 \cdot 8$	$30^{\circ} 4$	27.4	3 I	56.0	44*1	47'5	54.2	54.6	$45^{\circ} 3$	$46 \cdot 2$	50'3	48.9	44
Means	$42 \cdot 2$	34	37.	$40 \cdot 0$	$40 \cdot 5$	37.7	$36 \cdot 2$	38.2	38.5	$36 \cdot 3$	Means	48.4	$36 \cdot 5$	$1 \cdot$	45.9	$46 \cdot 2$	40.8	39.4	423	42.2	$39^{\circ} 2$
February.											April.										
${ }_{\text {d }}^{\text {d }}$	$37 \times$	21.6	24.8	$34^{\circ} \cdot 6$	$36 \cdot 3$	29.3	24.4	$31^{\circ} 7$	$33^{\circ} 2$	$28^{\circ}{ }^{\circ}$	${ }_{\text {d }}^{\text {d }}$	53.2	41.5		$49^{\circ} 2$	51.1	$45^{\circ} 4$	$43^{\circ} 6$	46°	$47 \cdot 3$	$4{ }^{\circ}$
2	347	22.6	26.8	32°	$33 \cdot 2$	$34 \cdot 6$	$26 \cdot 3$	30.8	31.5	$32 \cdot 8$	2	45.5	39.3	$40 \cdot 6$	$41 \cdot 3$	41.5	41.3	39^{-8}	$40^{\circ} \mathrm{I}$	40.7	$39^{\text {I }}$
3	$41^{\circ} 2$	32.2	38.6	$40 \cdot 6$	$4{ }^{1 \cdot 1}$	39.7	37.4	$39^{\prime} 3$	$39 \cdot 8$	$38 \cdot 6$	3	$46 \cdot 3$	$35 \cdot 8$	39°	+199	$45 \cdot 3$	$36 \cdot 2$	$35 \cdot 8$	$35 \cdot 8$	37°	$32 \cdot 8$
4	$43^{\circ} \mathrm{O}$	37.2	$39^{\circ} 2$	417	42.5	$40^{\circ} 6$	$37 \cdot 8$	39.7	$40 \cdot 3$	38.7	4	$44^{\circ} 8$	$32 \cdot 1$	37.7	$36 \cdot 6$	$41 \cdot 1$	34.6	35.2	34.9 308	37°	33.4
5	42^{\prime} I	38.0	38.9	$40 \cdot 8$	$41^{\prime} 7$	39.6	37.7	$38 \cdot 8$	39^{2}	$38 \cdot 5$	5	$36 \cdot 1$	27.2	323	34^{6}	$29^{\circ} 9$	27.8	$30 \cdot 3$	$30 \cdot 8$	28.4	$26 \cdot 8$
6	$39 \cdot 8$ 36.6	$35 \cdot 3$ 32.8	37 $34^{\circ} \mathrm{O}$	38.4 34.9	$37 \cdot 6$	$35 \cdot 7$ 36.4	34.6 3.3	35.0 $33^{\circ} 8$	34.5 33.4	33.7	6	38.0 43.0	26.7 30.6	33.4 35.6	34.6 39^{2}	$35 \cdot 1$ 38.5	33.9 34.4	29.5 34.6	$30 \cdot 1$ $35^{\circ} 9$	$30^{\circ} 9$ 33.8	31.4 31.7
7	$36 \cdot 6$ $40 \cdot 1$	$32 \cdot 8$ 34.1	34.6 37.2	34.9 39	38.8	$36 \cdot 4$	$33 \cdot 3$ 34	33.8 36.6	33.4 3.8	33.4	8	43.0 50.6	$30 \cdot 6$ 32.2	35.6 41.4	39° 4 4	$38 \cdot 5$	34.4	$34 \cdot 6$ 39.2	$35 \cdot 9$ 41.1	$33 \cdot 8$ $44^{\circ} \mathrm{O}$	317 37.8
9	$40 \cdot 1$	34.1 33.3	37.6	37.9	$38 \cdot 8$ $37 \cdot 5$	37.1 34.8	34.8 $33^{\circ} \mathrm{O}$	$36 \cdot 6$ $3+4$	$35 \cdot 8$ 33.8	$35 \cdot 3$ 3.8 3	8	50.6 48.2	$32 \cdot 2$	41.4 42.6	$45^{\circ} 9$ $44^{\prime} \cdot 6$	49.5 47	39.1 43 4	39^{\prime} 401	41.1 42.8	44° 4 4	$37 \cdot 8$ $40 \cdot 8$
9 10	$43 \cdot 5$	$33 \cdot 3$ 25 25	$33^{\circ} \mathrm{C}$	$37 \cdot 9$ 41.2	37.5 41.6	34.8	33.0 30.6	$3+4$ 369	33° 37	318 $36 \cdot 8$	10	48.2 45.2	$35 \cdot 6$ 38.1	42.6 40.6	$4{ }^{4} 4.6$	47 42	43 409	47	42.8 38	438 38	$40 \cdot 8$ 37
11	44.9	$35^{\circ} 2$	35.9	$41^{1} 1$	$42 \cdot 6$	37.3	$34 \cdot 7$	$37 \cdot 7$	$37 \cdot 6$	34.7	11	$50 \cdot 5$	$39^{\prime 2}$	$44 \cdot 5$	$47 \cdot 6$	$48 \cdot 6$	400	$40 \cdot 8$	$42 \cdot 9$	$42^{2} 9$	37.7
12	$44 \cdot 5$	$29^{1} 1$	$33^{\prime} 1$	$39^{\circ} 6$	$42 \cdot 8$	$40 \cdot 6$	32.0	37.4	$38 \cdot 8$	$35 \cdot 8$	12	57.7	$30 \cdot 3$	$42 \cdot 6$	51^{16}	56.9	50'5	$39 \cdot 3$	44.6	$46 \cdot 8$	44°
13	42.0	30.1	$35^{\prime} 6$	$40 \cdot 7$	$41^{\circ} \mathrm{O}$	32.9	34°	$38 \cdot 1$	$37 \cdot 3$	$31^{\circ} 6$	13	55.3	$39^{\circ} 6$	$43^{\circ} 6$	49.5	54.5	39°	39.9	42.9	45.8	$37 \cdot 8$
14	$46 \cdot 0$	26.3	$34^{\prime 2}$	$43 \cdot 6$	45.5	39.8	$31 \bigcirc 5$	$38 \cdot 3$	$40 \cdot 5$	37.4	14	63.0	31.2	$47^{\circ} 7$	59.6	62.4	49°	$43 \cdot 8$	51.2	53.6	$46 \cdot 7$
15	$48 \cdot 1$	33.7	$44^{\circ} 4$	47.5	$46 \cdot 1$	33.7	$43 \cdot 2$	$39^{\circ} 8$	$39 \cdot 8$	$32 \cdot 6$	15	$66 \cdot 9$	395	53.4	$61^{\circ} 6$	$65 \cdot 6$	$50 \cdot 7$	$47 \cdot 1$	$50 \cdot 6$	51.6	473
16	$50 \cdot 0$	32.9	$46 \cdot 1$	48.6	49.5	$48 \cdot 2$	44.3	$46 \cdot 2$	$46 \cdot 1$	45.9	16	$58 \cdot 3$	$39^{\circ} 9$	51.	55.7	57.3	$46 \cdot$	$46 \cdot 5$	$46 \cdot 8$	$48 \cdot 7$ 50	42.4 4.2
17	55°	$47 \cdot 6$	$49^{\circ} 6$	52.8	53.7	511	$46 \cdot 1$	477	$48 \cdot 0$	47.7	17	65°	37.4	53.4	58.6 62.6	61.	$46 \cdot 4$	47.4	50.1	$50^{\prime} 7$	+3.2 49.8
18	$55^{\circ} 2$	$49^{\circ} 2$	$50 \cdot 7$	$52 \cdot 6$	53.7	51.7	49.1	50.2	51.6	$49^{4.2}$	18 19	65° 5	$40 \cdot 3$	53.4 53.2	62.6	60.4 56.6		$49 \cdot 8$ 46.4	54.1 $46 \cdot 2$	52.2 47.8	$49 \cdot 8$ $+2 \cdot$
19	52°	$39^{1} 1$	$42 \cdot 6$	$47 \cdot 2$ $46 \cdot 5$	${ }_{4}{ }^{8 \cdot}{ }^{\circ} \mathrm{I}$	39 $41^{\prime} 7$	$40 \cdot 8$ 35.8	41.7 40.1	4.8 $40 \cdot 7$	35.8 38.3	19 20	59 59°	$45 \cdot 6$ $42 \cdot 6$	53.2 514	55.5	$56 \cdot 6$	46.1 47.7	$45 \cdot 6$	42.9	47.88	${ }^{2}{ }^{2}{ }^{\circ}$
21	48.0 48	33.1 35.1	$41^{\circ} \mathrm{O}$	$45 \cdot 6$	45%	$48 \cdot 3$	$39 \cdot 8$	43.4	$44^{\circ} 2$	473	21	59.5	42.1	50.	52.6	56.0	516	$45^{\circ} 9$	$49 \cdot 4$	52.	493
22	$52^{\circ} \mathrm{O}$	$43 \cdot 6$	$48 \cdot 6$	48.9	$50 \cdot 8$	$44^{\circ} 2$	43.9	42.5	43.4	$4{ }^{1} 7$	22	$67 \cdot 3$	47°	54°	$6+6$	$63 \cdot 3$	516	$48 \cdot 8$	49.2	51.1	$46 \cdot 3$
23	52.0	$43^{\circ} \mathrm{O}$	$46 \cdot 2$	$47 \cdot 6$	$49 \cdot 4$	$48 \cdot 4$	43.3	46.8	47°	$44^{\prime 6}$	23	63.0 66.0	$50 \cdot 1$	55.7	59.1	59.6 69.8	52.6	51.8	$52 \cdot 8$	52.8	473 +6.8
24	$51^{\circ} \mathrm{O}$	$42 \cdot 8$	$44^{\circ} 9$	48.7	49^{-8}	43.7	$40^{\circ} 4$	42.5	$4{ }^{1} 9$	$40 \cdot 8$	24	$66 \cdot 0$	$44^{\circ} 6$	52.1	59.7	63.8	$53 \cdot 6$	47.0	$49^{\circ} 7$	51.8	$\begin{array}{r}6 \cdot 8 \\ +7 \\ \hline\end{array}$
25	55°	$4{ }^{1 / 2}$	50.2	52.4	54°	47.5	48.0	$50^{\prime} 4$	50.7	$43 \cdot 5$	25	$60 \cdot 9$	44.4	$53 \cdot 5$	57.9	57.3	$49 \cdot 6$ 47.2	$48 \cdot 5$ 4 4	50.3	498 468	$+7 \cdot 8$
26 27	48.9	$41^{\circ} \mathrm{O}$	43.5	$46 \cdot 6$	$47 \cdot 4$	41.6 48.2	$38 \cdot 7$	39^{-8}	39^{2}	37.8	26 27	$\begin{aligned} & 59^{\circ} 5 \\ & 60^{\circ} 0 \end{aligned}$	$47 \cdot 1$ $42 \cdot$	49° 48 8	537 54	58.9 58.2	$47 \cdot 2$ $50 \cdot 5$	478 4.4	$45 \cdot 4$ 52.4	$46 \cdot 8$ 518	413 47.0
27 28	$48 \cdot 2$ 52.0	34.3 $46 \cdot 9$	$40 \cdot 5$ 49	$43 \cdot 6$ 50	$4{ }^{4.2}$	$48 \cdot 2$ $46 \cdot 9$	39.4 48%	$42 \cdot 1$ $49 \cdot 1$	437 49	47.8 447	27 28	$60 \cdot$ 62.0	$42 \cdot$ $48 \cdot 1$	$48 \cdot 7$ 51.6	547 55	$58 \cdot 2$ $60 \cdot 9$	50.5 48.6	47.4 476	52.4 47.8	$51 \cdot 8$ 49.1 1	47.0 46.7
											${ }^{2} 9$	$55^{\circ} \mathrm{I}$	$4^{2}{ }^{\circ}$	$48 \cdot 0$	$46 \cdot 6$	$50 \cdot 3$	454	$43 \cdot 6$	$44^{\circ} \mathrm{O}$	$45 \cdot 5$	$4+3$
											30	$58 \cdot 0$	42°	$48 \cdot 6$	52.5	$56 \cdot 6$	+7\%	453	$46 \cdot 8$	48.9	$45 \cdot 7$
Means	$46 \cdot 1$	35.6	$40^{\circ} 0$	43.8	$44 \cdot 6$	41.I	38.0	$40 \cdot 4$	$40 \cdot 7$	38.8	Means	55.4	$39 \cdot 1$	$46 \cdot 5$	$50 \cdot 8$	529	$+5^{\circ}$	+2.9	$44 \cdot 6$	$45 \cdot 6$	41.8

Readings of Thermometers on the Ordinary Stand in the Magnetic Pavilion Enclosure-continued.
(The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at $2 \mathbf{I}^{\mathrm{h}}$.)

	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.				$\begin{gathered} \text { Days } \\ \text { of the } \\ \text { Mouth. } \end{gathered}$	Dry-Bulb Thermometers 4 ft . ahove the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.			
	$\xrightarrow{\text { Ma }}$	${ }_{\text {Mini. }}^{\text {mum. }}$	$9^{\text {b }}$	Noon.	${ }_{15}{ }^{\text {b }}$	${ }^{21^{\text {h }}}$	$9^{\text {b }}$	Noon	${ }_{15}{ }^{\text {h }}$	${ }_{21}{ }^{\text {b }}$			ini-	$\mathrm{g}^{\text {h }}$		${ }^{15}{ }^{\text {b }}$	$21^{\text {b }}$	$9^{\text {b }}$	Noon	${ }^{5} 5^{\text {b }}$	$2^{\text {b }}$
May.											July.										
${ }_{1}^{\text {a }}$	$63^{\circ} 5$	$40 \cdot 7$	52.9	$58 \cdot 1$	$61^{\circ} 6$	$49^{\circ} 9$	$46 \cdot 8$	50°	50.8	$47 \cdot 5$	1	67°	$55^{\circ} \mathrm{I}$	59.7	59.6	63.7	58.6	$55^{\circ} 2$. 4	5.8	2.7
2	$56 \cdot$	47^{1}	51.7	$54 \cdot 2$	55°	$49^{\circ} 3$	477	50.4	50.6	490	2	66.8	$51^{\circ} \mathrm{C}$	59.6	63.6	63.6	$56 \cdot 2$	52°	51.8	51.0	49.3
3	$56 \cdot 5$	40.1	49°	54.1	52.4	$49 \cdot 6$	$4{ }^{7} 7$	$47 \cdot 9$	47.3	$48 \cdot 8$	3	$68 \cdot 2$	48.4	58.9	$64 \cdot 1$	64.6	56.9	50.4	$52 \cdot 8$	52.9	$52 \cdot 8$
4	$60 \cdot 9$	41.6	51.8	57	56.0	48.0	$47^{\circ} 2$	49°	$46 \cdot 8$	44.3	4	$75^{1.1}$	$48 \cdot 2$	64.4	71.1	69.9	61.6	$55 \cdot 6$	59.1	58.8	$56 \cdot 3$
5	61.5 62.2	40	53.3 56.3	$56 \cdot 6$ 6.8	56.8 58.6	$52 \cdot 6$	$48 \cdot 5$	$50 \cdot 6$	$49^{\circ} 9$	$48 \cdot$	5	86	$56 \cdot 6$	68.6	$76 \cdot 1$ $80 \cdot 8$	79.2 8.1	$65^{\circ} 6$	61.3 5.8	64.6	$65 \cdot 8$ 68.8	$62 \cdot 3$ 6.8
6	62.2 67.5	$43 \cdot 1$ 36.7	563 58.8	61.8 $63 \cdot 7$	58.6 62.5	43.2 51.7	49 50 50	52.5 51.9	$47 \cdot 9$ $52 \cdot 1$	$40 \cdot 3$ $45^{\circ} 6$	6	86.3 87	54.6 56.8	$74 \cdot 1$ 74.6	$80 \cdot 8$ 84.2	$84^{\circ} \mathrm{I}$ 85	$69 \cdot 3$ $6 \div 6$	59.8 67.2	$66 \cdot 4$ 71.0	68.8 70.6	$63 \cdot 8$ $59 \cdot 3$
8	65°	43^{1}	59.6	$63 \cdot 1$	63.9	50.6	$50 \cdot 3$	$50 \cdot 8$	51.5	$44^{\circ} 8$	8	88°	55.2	$74 \cdot 6$	83.6	84.6	64.2	66.8	$69^{\circ} 9$	67.9	$60 \cdot 1$
9	$70^{\circ} \mathrm{O}$	$42 \cdot 1$	59.3	$65^{\circ} \mathrm{I}$	$68 \cdot 1$	57.6	$53 \cdot 8$	58.6	593	54.6	9	73.2	55°	$66 \cdot 6$	68.4	$7 \mathrm{I} \cdot \mathrm{I}$	57.5	59.8	59^{6}	$61 \cdot 3$	$53 \cdot 8$
10	756	47.1	52.8	68.8	73.5	58.8	$51^{\circ} \mathrm{O}$	61.4	62.5	54^{+8}	10	72.4	$49^{\text {' }}$	58	$65 \cdot 4$	$72 \cdot 1$	56.4	52.9	$55^{\circ} 9$	59^{-8}	$54 \cdot 8$
11	75	48	56.7	69.0	68.4	57.1	53.7	$61 \cdot 3$	59.8	55	11	82.	$50 \cdot 2$	$66 \cdot 6$	$78 \cdot 1$	81.5	67.4	54:8	593	62.9	57.6
12	65.6	47°	50.6	$56 \cdot 6$	66*	55°	$49 \cdot 8$	54°	59.8	53.6	12	83.0	54.2	72.2	78.9	$8 \mathrm{I}^{\circ} \mathrm{C}$	$66 \cdot 6$	62.8	65°	64.7	$54 \cdot 6$
13	75\%	49	576	$66 \cdot 6$	72.6	59.6	56.2	61.4	63°	56.2	13	83.7	53.3	73.3	$80 \cdot 6$	81.6	$64 \cdot 8$	59^{-2}	64^{6}	$64 \cdot 8$	$58 \cdot 3$
14	$6 \%^{\circ}$	52.2	57.1	$60 \cdot 1$	57.8	53.6	$56 \cdot 2$	58.3	$56 \cdot 8$	51.9	14	$85^{\circ} \mathrm{O}$	55.3	72.6	$79^{\circ} 2$	83.5	$6{ }_{1} \cdot 2$	59.8	$62 \cdot 6$	64.2	$56 \cdot 7$
15	65°	5 I	56.6	60.1	62.6	54.6	54°	55.4	$56 \cdot 5$	53.7	15	69.1	55°	$66 \cdot 1$	$66 \cdot 3$	63.1	57.7	$60 \cdot 6$	$60 \cdot 4$	58.7	$52 \cdot 6$
16	$72 \cdot 2$	47^{12}	62.5	$69 \cdot 6$	${ }^{70} 1$	553	57.1	61.6	59.9	53.8	16	79.4	$45 \cdot 8$	64.1	$76 \cdot 6$	78.4	61.7	55.7	$62 \cdot 8$	64.2	$56 \cdot 3$
17	$70 \cdot+$	47.3	62.	69^{6}	$66 \cdot 5$	50.1	57.7	59.8	59.3	49.8	17	79°	54°	63.6	70.8	74.6	$66 \cdot 6$	56.9	$60 \cdot 8$	$62 \cdot 6$	58.4
18	$6+0$	$4^{8 \cdot 1}$	52.4	58.2	61.6	53.8	503	54°	56°	50.9	18	$76 \cdot 6$	$59^{1.1}$	$66 \cdot 2$	$71^{1.2}$	74.7	62.6	59.5	$57^{\circ} 6$	59°	54
19	56	47.0	53.6	52.6	51.6	$49^{\circ} 8$	49°	$48 \cdot 6$	$48 \cdot 0$	$45 \cdot 8$	19	78	53.4	$66 \cdot 2$ 71.6	$70^{\circ} 2$	$76 \cdot 9$ 8.9	$66 \cdot 2$	59.4	$59 \cdot 3$ 6.6	61.7	${ }^{60 \cdot 7}$
20	52.3	$45^{\circ} 3$	47.6	49.4	$50 \cdot 9$	47°	$44 \cdot 3$	45.7	$46 \cdot 9$	44	20	83.0 93.7	56.7 61.6	71.6 82.6	79.4	81.5	67.6 71.7	61.6 66.8	64. 65°	65 68. 68	$61 \cdot 1$ $61 \cdot 9$
21 22	53.0 69.8	41.5 350	${ }_{56 \cdot 1}^{46 \cdot 1}$	$48 \cdot 4$ 62.3	$50 \cdot 8$ 67.9	41 51.6	$43 \cdot 1$ 51 1.8	44.7 55	47.0 58.8	$40 \cdot 6$ 50	21 22	93.7 95.6	61.6 58.1	82.6 83	$89^{\circ} 9$ 91.4	$90 \cdot 7$ 92.2	71.7 75	66.8 67.8	$65^{\circ} 9$ 70.0	68.1 69.3	61.9 67.3
23	71.0	47	57.8	$64 \cdot 6$	$65^{\circ} 6$	$56 \cdot 6$	54°	55.3	57.3	$52 \cdot 8$	23	81.3	$60 \cdot 1$	74.1	$77 \cdot$	773	63.6	61.8	647	65°	57^{8}
24	719	53.6	$60^{\circ} 4$	69.1	$68 \cdot 7$	$61 \cdot 2$	57°	63.3	61.9	. 2	24	79.3	58.8	71.6	74.9	$73 \cdot 6$	$63 \cdot 6$	6 I 7	62.8	$63^{\circ} \mathrm{O}$	$61 \cdot 2$
25	78.0	$49 \cdot 3$	68	71.6	715	59°	6_{1}	59°	59.8	. 9	25	85.1	59.1	$72 \cdot 1$	77.5	$82 \cdot 6$	$67 \cdot 1$	$66 \cdot 6$	67.7	68.7	$60 \cdot 7$
26	75.6	53.9	$63 \cdot 6$	72.6	$65^{\circ} 2$	58.1	$60 \cdot 0$	63.9	$58 \cdot 8$	54.8	26	$80^{\circ} 9$	58°	64.1	65^{6}	$78 \cdot 7$	63.9	$6 \mathrm{~F}^{6} 4$	61.8	$67 \cdot 8$	$60 \cdot 4$
27	757	-1		$2 \cdot 1$	73.9	58.6	58.3	$61 \cdot 3$	59.5	$54^{\circ} 6$	27	87.4	54.7	$76 \cdot 2$	83.2	.	$66 \cdot 5$	$66 \cdot 5$	69.3	69.8 72.8	$60 \cdot 4$ $66 \cdot 6$
28	5'3	$49^{\circ} 9$	65.3	$73 \cdot 6$	71.6	62.7	59.5	62.4	I.8	57.9	28 29	91.9 89.0	61.7 64	79.5 80.2	87.4 8.4	$88 \cdot 5$ 87 7	$70 \cdot 7$ 66.8	$69^{\circ} 9$ $71 \cdot 2$	$72 \cdot 6$ 71.5	$72 \cdot 8$ $70 \cdot 1$	$66 \cdot 6$ 64.3
29 30	93	$52 \cdot 9$	$70 \cdot 2$	75.4	$75 \cdot 1$		$64^{\circ} 4$	63.0 6.6	$\begin{aligned} & 62 \cdot 3 \\ & 58 \cdot 0 \end{aligned}$	54°	29 30	89° 80 80	64.1 61 61.0	$\begin{array}{r} 80 \cdot 2 \\ 71 \cdot 9 \end{array}$	$85^{\circ} 4$	87.3 77 8	66.8 61.6	712 65.6	71.5 66.8	$70 \cdot 1$ 66.5	64.3
$\begin{aligned} & 30 \\ & 3 \mathrm{I} \end{aligned}$	$7{ }^{7 \cdot 1}$ 81.7	50.9 54.3	6.2	73.4 72.8	65.4 76.6	$62 \cdot 1$	$59 \cdot 2$	61.6 6.0	$\begin{aligned} & 58 \cdot 0 \\ & 68^{\circ} 4 \end{aligned}$	58.5 59.9	30 31	$80^{\circ} 0$ $85^{\circ} 3$	61.0 53.7	$\begin{aligned} & 71 \cdot 9 \\ & 72 \cdot 9 \end{aligned}$	78 83	$77 \cdot 6$ $82 \cdot 1$	61.6 64.9	65° 65.0	$66 \cdot 8$ $70 \cdot 5$	$66 \cdot 5$ $65 \cdot 8$	57.7 59.7
Mean	$68 \cdot 1$	$46 \cdot 7$	574		$64 \cdot 2$	54*2	53.1			513	Means	81	55°		$76 \cdot 2$	78;	64.2	61.1	63.4	64	58.
June.											AUGUST.										
$\stackrel{1}{1}$	76.5	53.1	71	$74^{\circ 6}$	74.4	61.8	$63 \cdot 3$	63.8	62.8	542	1	$86^{\circ} \cdot 2$		71.6	$81 \cdot 5$	$76 \cdot 5$	$64^{\circ} 2$	64×3	68.2	66.7	$61 \cdot 7$
2	$76 \cdot$	$47 \cdot 8$	67.6	74°	$72 \cdot 8$	$60 \cdot 5$	$59 \cdot 7$	$60 \cdot 8$	$60 \cdot 7$	573	2	83.2	$56 \cdot 6$	$68 \cdot 1$	78.2	79.6	61.7	63.3	$66 \cdot 5$	$67 \cdot 6$	4
3	81.1	$56 \cdot 1$	69.9	$75 \cdot 7$	771	$60 \cdot 9$	63.5	$66 \cdot 6$	$66 \cdot 8$	59.9	3	$76 \cdot 3$	58.0	697	75.3	71.6	63.6	$63 \cdot 8$	64.5	64.9	$58 \cdot 8$
4	$78 \cdot 5$	$52 \cdot 6$	72.4	73.8	$75 \cdot 8$	$67 \cdot 1$	$65 \cdot 1$	$65 \cdot 8$	$65 \cdot 7$	63.3	4	$80 \cdot 2$	$55^{\circ} 3$	69.2	75.4	$76 \cdot 8$	$64 \cdot 8$	59.8	6_{1}	$62 \cdot 1$	59.7
	83.9	$5+4$	${ }^{72 \cdot 1}$	81.6	$82 \cdot 1$	63.5	65.3	67.8	66.8	$60 \cdot 2$	5	79.0	59.4	69.8	$73 \cdot 6$	74.6	65.2	-8	62.4	63.5	61.5
6	81.1	54.4	$73^{\circ} \mathrm{O}$	78.3	79°	593	$63 \cdot 8$	$64^{\circ} 5$	65.4	$56 \cdot 2$	6	$79 \cdot 5$	54.6	68.4	$74^{\circ} 6$	74.6	63.7	59.7 6.8	$\mathrm{I}^{\circ} \mathrm{O}$	$62 \cdot 3$	$60 \cdot 3$
7	69°	51.2	58.4	63.8	$66 \cdot 5$	53.6	52.3	56°	57.9	51.5	7	84.2	$59^{\circ} \mathrm{O}$	72.4	79.9	84.2	$66 \cdot 3$	63.8 6.6	65.7	$67 \cdot 3$ 70.2	$62 \cdot 2$ 6.8
8	$75^{1.1}$	47.1	${ }^{69} 1$	73.1	$72 \cdot 6$	$60 \cdot 3$	60°	63°	$62 \cdot 1$	$57 \cdot 2$	8	89.1	$55^{\circ} 6$	$77 \cdot 5$	86	86	69.7	64^{6}	68.2	$70 \cdot 2$	65.8
9	74.3	50.0	70.3	$69^{\circ} 7$	62.1	54^{2}	629	619	55^{3}	48.9	9	100°	$61 \cdot 2$	83.7	95^{6}	977	74.9	$72 \cdot 0$	72.1	714	$64 \cdot 8$
10	647	$42 \cdot 1$	5\%.1	58.6	61	$48 \cdot 6$	$47 \cdot 3$	49.4	50.4	$45^{\circ} 9$	10	85.5	62.9	$72 \cdot 1$	794	$83 \cdot 6$	65^{6}	$64 \cdot 5$	$68 \cdot 3$	$68 \cdot 8$	59°
11	$67 \cdot 2$	$40 \cdot 6$	61.6	63°	61.6	549	52.0	$52 \cdot 8$	53.3	$49^{\circ} 6$	II	$87 \cdot$	$60 \cdot 1$	65^{1}	$76 \cdot 5$	85.5	68.3	624	68.0	$70 \cdot 3$	$65^{\circ} 2$
12	$72 \cdot 1$	$5^{1 \cdot 1}$	58.6	$69^{\circ} 5$	713	$60 \cdot 5$	52.4	57.		52.8	12	89.7	59°	73.6	83.6	88.9	$72 \cdot 9$	$66 \cdot 8$	$70 \cdot 5$	68.8	65.4
13	6; 3	49^{11}	$55 \cdot 1$	$62 \cdot 6$	60.1	493	$48 \cdot 8$	$50 \cdot 8$	$48 \cdot 8$		13	$9{ }^{\circ} 9$	62.9	78.6	$8{ }^{89} 4$	88.9	71.7	$70 \cdot 8$		67.1	62.7
14	63°	43.3	$52 \cdot 1$	57.3	57.8	51.4	47.2	493	51.5	$46 \cdot 6$	14	87.9	$60 \cdot 6$	78.0	$84 \cdot 7$	83.9	65°	67.7	674	$65 \cdot 8$	$59 \cdot 8$
15	$67^{\circ} \mathrm{O}$	$42 \cdot 1$	57.1	62.6	$64 \cdot 6$	50.6	49°	51.8	51.8	$47 \cdot 5$	15	77.7	$56 \cdot 1$	$66 \cdot$	74°	743	$62 \cdot 0$	59.8	623	${ }_{6} \cdot 1$	$55^{\circ} 4$
16	74°	$46 \cdot 7$	59.6	69.6	$68 \cdot 6$	$60 \cdot 6$	53.5	57.8	55.5	$54 \cdot 7$	16	$76 \cdot 4$	53.1	$60^{\prime} 9$	$69^{\circ} 9$	$75^{\circ} 5$	61.1 68.	53.3	57.3	$60^{\circ} 5$	57
17	74.1	$55 \cdot 1$	$63 \cdot 6$	$68 \cdot 7$	$70 \cdot 6$	$60 \cdot 1$	$60 \cdot 2$	$60 \cdot 6$	${ }_{61} 3$	56.9	17	$85^{\circ} 9$	51.3	$66 \cdot 0$	$78 \cdot 8$	$8 \mathrm{I} \cdot 3$	68.5	61.2	65^{8}	66°	58.9
18	71.9	54.8	58	64.6	$70 \cdot 5$	57.6	$55^{\circ} 2$	57°	${ }^{60 \cdot 4}$	$54^{\circ} 6$	18	86°	$60 \cdot 3$	$69 \cdot 6$	$80 \cdot 7$	- ${ }^{\circ}$	$72 \cdot 8$	${ }^{61} 7$	64.4	65°	64.1 62.8
19	$66 \cdot 6$	53.	62	$60 \cdot 6$	${ }^{1} 18$	54.	577	55.8	$56 \cdot 3$	53°	19	84.4	58.4	64.6	77.2	$77 \cdot 8$	63.9	$60 \cdot 5$	68.	$66 \cdot 3$	$62 \cdot 8$
20	69.0	5	61	$65 \cdot 6$	64.9	58.2	5.9	8	54.6	51°	20	$82 \cdot 2$	57.	71.	79.5	79°	$66 \cdot 1$	$65^{\prime} 1$	68.	67.4	63.2
21	$70^{\circ} \mathrm{O}$	52.9	$62 \cdot 1$ $60 \cdot 4$	$6{ }^{66} 6$	64.6 61.6	58.3	$55^{\circ} \mathrm{O}$	55.9	56.9	53.4	21	$73^{\circ} \mathrm{O}$	62	62.3 6.1	67.9	$69 \cdot 7$ 66.1	$6{ }^{\text {P }}$	$61 \cdot 1$ 6.3	64.5	$65^{\circ} 4$	64.1 57.4
22	$66 \cdot 0$	52.9	$60 \cdot 4$ $66 \cdot 1$	$60 \cdot 6$ 67.8	61.6 64.2	57.8 56.6	$55^{5 \cdot 8}$	$56 \cdot 6$	57.8	56	22	$67 \cdot 3$	$59^{\prime} 1$	63.1 60.6	65.1.	$66 \cdot 1$ $68 \cdot \mathrm{I}$	59.4	613	$61 \cdot 6$	61.4	57.4 57.8
23 24	73.6	$56 \cdot 2$	$66 \cdot 1$ 54.2	$65 \cdot 8$ 63.6	64.2 63.6	$56 \cdot 6$ 53.0	$60 \cdot 3$ 52.8	$58 \cdot 3$	58.4	$56 \cdot 3$	23 24	713	54.4 54	$60 \cdot 6$ 69.1	65.9 73.1	$68 \cdot 1$ $66 \cdot 1$	593 $60 \cdot 7$	$58 \cdot 2$ $62 \cdot 5$	59 62.8 6.8	$60 \cdot 1$ 61.8	$57 \cdot 8$ 59.5
24	68.0	52.1	54.2 54.7	$63 \cdot 6$ 54.6	63.6 55	53.0 52.6	$52 \cdot 8$ 52.7	543	$54 \cdot 8$	$49^{\circ} 4$	24	$76 \cdot 1$ 76.0	54.1 53.1	$69 \cdot 1$ $66 \cdot 0$	73.1 68.6	$68 \cdot 1$ 66.6	$60 \cdot 7$ $60 \cdot 8$	$62 \cdot 5$ 60.8	$62 \cdot 8$ 61.3	61.8 60.5	59.5 56.9
25	58.8	$50 \cdot 6$	54.7 54.	$54^{\circ} 6$	$55 \cdot 6$ 54.5	52.6 49.5	52.7 47 1	$52 \cdot 3$ 48	$52 \cdot 8$ 49.8	$50 \cdot 9$ 47.8	25 26	$76 \cdot$ 77.2	${ }_{5}^{51} 5$	$66 \cdot 0$ $66 \cdot 6$	68.6 71.0	66.6	60.8 63.6	$60 \cdot 8$	61.3 59.8	$60 \cdot 5$ 60.6	$56 \cdot 9$ 59.3
26	59.0 69.5	49.1 48.2	54.0 53	$55^{\circ} 9$ 57	54.5 65.3	49.5 63.2	47.8 4 8	$48 \cdot 3$ 498	49.8	47.8	26	77.2	52.7 62.2	$66 \cdot 6$ $60 \cdot 2$	71.0 69.3	71°	63.6 6.2	58.8 6.3	59.8 65.5	60.6 6.0	593 61.4
27 28	69.5 $75 \cdot 7$	48.2	53.6 63.2	57.1 67.6	65 69 69	63.2 60.6	478 58.2	$49 \cdot 8$	55.3 $60 \cdot 3$	$56 \cdot 3$	27 28	75.9 78.8 75	62.2 58.1	69.2 69.3	$69 \cdot 3$ 70.0	72.4 66.1	65° 62.0	65.3 62.9	$65^{\circ} 5$ 64.2	65° 64.	61.4 61.1
29	71.0	$56 \cdot 7$	$62 \cdot 6$	68.4	$65 \% 2$	56.9	$56 \cdot 7$	$59 \cdot 8$	58.9	54.4	29	75.9	55.6	$65 \cdot 6$	$69 \cdot 8$	72.2	62.7	$59 \cdot 7$	$60 \cdot 1$	59°	557
30	$65 \cdot 5$	53.8	583	$60 \cdot 5$	61.1	56.9	$55^{\circ} 5$	$56 \cdot 8$	57-1	56.2	30	74.7	543	61.6	$72 \cdot 7$	69°	$55^{\circ} 7$	$57^{\circ} \mathrm{O}$	$60 \cdot 4$	59.4	$55^{\circ} 7$
											31	76	$48 \cdot 1$	62.6	71.5	73.6	60.0	$57 \cdot 6$	$60 \cdot 1$	61.0	3
Means	$70 \cdot 9$	50.7	62.0	$66 \cdot 2$	$66 \cdot 7$	57.1	560	57.4	57.6	53	eans	81.	57^{1}	68.8	$76 \cdot 1$	$76 \cdot 8$	64.7	62	64.5	64.6	$60 \cdot 4$

Readings of Thermometers on the Ordinary Stand in the Magnetic Pavilion Enclosure-concluded.
(The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at $2 \mathrm{I}^{\mathrm{h}}$.)

\begin{tabular}{|c|}
\hline \& \multicolumn{6}{|c|}{Dry-Bulb Thermometers, 4 ft . above the Ground.} \& \multicolumn{4}{|l|}{Wet-Bulb Thermometer, 4 ft . above the Ground.} \& \multirow[t]{2}{*}{Days of the Month.} \& \multicolumn{6}{|c|}{Dry-Bulb Thermometers, 4 ft . above the Ground.} \& \multicolumn{4}{|l|}{Wet-BuIb Thermometer, 4 ft . above the Ground.} \\
\hline \& Maximum. \& \[
\begin{aligned}
\& \text { Mini- } \\
\& \text { mum. }
\end{aligned}
\] \& \(9^{\text {b }}\) \& Noon. \& \(15^{\text {b }}\) \& \(2 \mathrm{x}^{\text {h }}\) \& \(9^{\text {h }}\) \& Noon. \& \({ }_{15}{ }^{\text {h }}\) \& \(21^{\text {b }}\) \& \& Maxinium. \& Minimum. \& \(9^{\text {h }}\) \& Noon. \& \({ }_{15}{ }^{\text {b }}\) \& \({ }_{21}{ }^{\text {b }}\) \& \(9^{\text {b }}\) \& Noon. \& \(\mathrm{r}^{\text {h }}\) \& \(2 \mathrm{x}^{\text {h }}\) \\
\hline \multicolumn{11}{|c|}{September.} \& \multicolumn{11}{|c|}{November.} \\
\hline \({ }_{\text {I }}{ }^{\text {d }}\) \& \(79^{\circ} 5\) \& \(49^{\circ} 2\) \& \(65^{\circ} 8\) \& \(76^{\circ}\) \& \(79^{\circ}\) \& \(61{ }^{\circ} \mathrm{I}\) \& 58.7 \& \(61 \cdot 6\) \& \(62 \cdot 9\) \& \(55^{\circ} \mathrm{I}\) \& \({ }_{\text {I }}\) \& \(54^{\circ} \mathrm{O}\) \& \(40^{\circ} \mathrm{I}\) \& \(44^{\circ} \mathrm{O}\) \& \(51 \cdot 1\) \& \(52^{\circ} 7\) \& \(43 \cdot 9\) \& \(41 \cdot 7\) \& \(46^{\circ} 0\) \& \(45^{\circ} 8\) \& \(42 \stackrel{\circ}{7}\) \\
\hline 2 \& \(89^{\circ}\) \& 51.3 \& \(78 \cdot 8\) \& \(87 \cdot 7\) \& \(88 \cdot 7\) \& \(68 \cdot 3\) \& \(66 \cdot 3\) \& \(64 \cdot 8\) \& \(68 \cdot 0\) \& 64.2 \& 2 \& 57.0 \& 43*9 \& \(49^{\circ} 9\) \& 53.9 \& 53.6 \& 49.9 \& 47.3 \& \(49^{\circ} \mathrm{I}\) \& \(49^{-8}\) \& \(49^{\circ} 2\) \\
\hline 3 \& \(78 \cdot 0\) \& 59.2 \& 67.0 \& 71.7 \& \(73 \cdot 6\) \& \(62 \cdot 6\) \& \(59 \cdot 7\) \& \(60 \cdot 2\) \& 61.7 \& \(59^{\circ}\) \& 3 \& \(57^{\circ}\) \& \(39^{-2}\) \& \(48 \cdot 1\) \& \(56 \cdot 2\) \& 53.6 \& \(52 \cdot 6\) \& \(45 \cdot 7\) \& 5 I 3 \& \(50 \cdot 1\) \& \(49^{1}\) \\
\hline 4 \& \(74^{\circ} 0\) \& 52.1 \& \(67 \cdot 6\) \& \(72 \cdot 3\) \& \(72 \cdot 8\) \& \(60 \cdot 1\) \& \(60 \cdot 4\) \& 63.0 \& 62.7 \& \(57 \cdot 1\) \& 4 \& 55.2 \& \(49^{\circ} 9\) \& 52.0 \& 54.4 \& 53.5 \& 52.6 \& \(49^{\circ}\) \& \(49^{\circ} 2\) \& \(48 \cdot 4\) \& 51.8 \\
\hline 5 \& \(80 \cdot 3\) \& 54.7 \& 61.5 \& \(72 \cdot 2\) \& \(79^{\prime} 6\) \& \(60 \cdot 4\) \& 59.3 \& 6I•9 \& \(60 \cdot 4\) \& \(54 \cdot 8\) \& 5 \& \(59^{\circ}\) \& \(45^{\cdot 1}\) \& 54.0 \& 54.6 \& 54.1 \& \(45^{\circ} \mathrm{I}\) \& \(49^{\circ} \mathrm{I}\) \& \(47^{\circ} 0\) \& \(45 \cdot 7\) \& \(40 \cdot 3\) \\
\hline 6 \& \(86 \cdot 3\) \& \(50 \cdot 1\) \& \(69 \cdot 1\) \& \(80 \cdot 6\) \& \(85 \cdot 3\) \& \(65 \cdot 5\) \& \(60 \cdot 3\) \& \(62 \cdot 9\) \& \(65 \cdot 9\) \& 6I•I \& 6 \& \(5 \mathrm{I}^{\circ} 5\) \& \(39^{\circ}\) \& \(43^{\circ} \mathrm{O}\) \& 49.9 \& \(50 \cdot 0\) \& \(42 \cdot 9\) \& \(39^{\circ} 9\) \& 44.5 \& \(44^{\circ} 5\) \& \(40 \cdot 2\) \\
\hline 7 \& 91.6 \& \(52 \cdot 3\) \& 69.6 \& \(85^{\circ}\) \& 89.6 \& \(64 \cdot 8\) \& \(62 \cdot 7\) \& \(65 \cdot 3\) \& \(64 \cdot 8\) \& \(59^{\circ}\) \& 7 \& 54.4 \& \(38 \cdot 1\) \& \(45^{\circ} 2\) \& 51.4 \& 52.3 \& \(50 \cdot 0\) \& 42.5 \& 47.5 \& \(48 \cdot 4\) \& \(48 \cdot 3\) \\
\hline 8 \& 94.1 \& \(52 \cdot 1\) \& \(76 \cdot 9\) \& 91.8 \& \(9^{2 \cdot 1}\) \& \(69^{\cdot 6}\) \& 64.3 \& \(68 \cdot 3\) \& \(68 \cdot 5\) \& 6I•I \& 8 \& \(52 \cdot 8\) \& 42.4 \& \(47 \cdot 7\) \& \(47 \cdot 6\) \& \(47 \cdot 8\) \& \(42 \cdot 7\) \& \(43 \cdot 8\) \& 44.8 \& \(45 \cdot 3\) \& \(40 \cdot 3\) \\
\hline 9 \& \(65 \cdot 9\) \& 58.9 \& 64.2 \& \(65^{\circ} 1\) \& 64.2 \& \(58 \cdot 9\) \& \(61 \cdot 3\) \& \(60 \cdot 3\) \& \(58 \cdot 1\) \& 53.4 \& 9 \& \(49 \cdot 3\) \& \(37^{1} 1\) \& 40.1 \& \(47^{\circ} 2\) \& \(46 \cdot 3\) \& \(37 \cdot 9\) \& \(39^{\circ} 2\) \& \(42 \cdot 8\) \& \(42 \cdot 8\) \& \(37^{\circ}\) \\
\hline 10 \& \(72 \cdot 1\) \& \(47^{\circ} 2\) \& \(66 \cdot 6\) \& \(70 \cdot 5\) \& 69.3 \& \(60 \cdot 0\) \& 593 \& \(60 \cdot 4\) \& 59.8 \& \(56 \cdot 4\) \& 10 \& 43.7 \& \(35^{\circ} 4\) \& 41.7 \& 40'9 \& \(40 \cdot 9\) \& \(40 \cdot 6\) \& \(40 \cdot 2\) \& 397 \& \(40 \cdot 2\) \& \(39^{\circ} 8\) \\
\hline 1 I \& \(83^{\circ} \mathrm{O}\) \& \(49^{1} 1\) \& \(73 \cdot 1\) \& \(80 \cdot 2\) \& \(80 \cdot 3\) \& \(59^{\circ} 6\) \& \(59^{\circ}\) \& \(60 \cdot 3\) \& \(58 \cdot 8\) \& \(52 \cdot 0\) \& 11 \& \(46 \cdot 9\) \& \(34^{\circ} \mathrm{I}\) \& \(38 \cdot 6\) \& \(46 \cdot 2\) \& \(45^{1} \mathrm{I}\) \& 43.5 \& \(36 \cdot 6\) \& \(4 \mathrm{I} \cdot 6\) \& 41.8 \& 42.9 \\
\hline 12 \& \(88 \cdot 5\) \& \(51^{\prime} 7\) \& 74.9 \& 84.9 \& 83.2 \& 70.4 \& \(62 \cdot 1\) \& \(66 \cdot 0\) \& 64.4 \& \(63 \cdot 8\) \& 12 \& \(56 \cdot 5\) \& \(42^{\circ} 9\) \& 54.8 \& \(55^{\circ} 3\) \& \(53^{\circ} \mathrm{O}\) \& 467 \& \(51 \cdot 8\) \& 52.0 \& \(49 \cdot 8\) \& \(42 \cdot 2\) \\
\hline 13 \& 71.0 \& \(56^{\circ} \mathrm{I}\) \& 61.3 \& \(60 \cdot 7\) \& \(6 \mathrm{r} \cdot 6\) \& \(56 \cdot 4\) \& 59.9 \& 58.4 \& \(58 \cdot 9\) \& \(56 \cdot 0\) \& 13 \& 51.0 \& \(44^{\circ} \mathrm{I}\) \& 44.6 \& \(49^{\prime} 9\) \& \(49^{\circ} 6\) \& \(46 \cdot 2\) \& \(43^{\circ} \mathrm{O}\) \& \(46 \cdot 4\) \& \(46 \cdot 2\) \& 44.2 \\
\hline 14 \& \(63 \cdot 1\) \& 53.8 \& 57.8 \& \(60 \cdot 2\) \& 61.3 \& 54* \& 54.5 \& \(55^{\circ} \mathrm{O}\) \& 53.5 \& \(5 \mathrm{I} \circ\) \& 14 \& 55.7 \& \(38 \cdot 2\) \& 5 I 3 \& 53.7 \& 54.1 \& \(48 \cdot 6\) \& 47.5 \& \(49 \cdot 6\) \& \(50 \cdot 4\) \& \(46 \cdot 7\) \\
\hline 15 \& \(62 \cdot 7\) \& \(45 \cdot 6\) \& \(55^{\circ} 9\) \& \(58 \cdot 8\) \& \(60 \cdot 8\) \& \(51 \cdot 1\) \& 51.0 \& \(50 \cdot 8\) \& 51.6 \& \(48 \cdot 5\) \& 15 \& \(52 \cdot 6\) \& \(44 \cdot 6\) \& 47.5 \& \(50 \cdot 2\) \& 50.6 \& \(51 \cdot 1\) \& 44.5 \& \(46 \cdot 7\) \& \(48 \cdot 0\) \& \(48 \cdot 7\) \\
\hline 16 \& \(65 \cdot 1\) \& \(45 \cdot 4\) \& \(56 \cdot 8\) \& \(62 \cdot 2\) \& \(61 \cdot 8\) \& 52.1 \& \(50 \cdot 6\) \& 53.8 \& 51.4 \& \(49 \cdot 4\) \& 16 \& \(58 \cdot 0\) \& \(50 \cdot 1\) \& 53.7 \& 57.5 \& 54.0 \& \(50 \cdot 1\) \& 51.6 \& 54.5 \& 51.2 \& 47.9 \\
\hline 17 \& \(62 \cdot 1\) \& \(45^{\circ} \mathrm{I}\) \& 54.6 \& 59.4 \& 61.3 \& 47.5 \& \(50 \cdot 1\) \& \(50 \cdot 8\) \& \(51 \cdot 7\) \& \(46 \cdot 3\) \& 17 \& \(54^{\circ}\) \& 47*1 \& 51.0 \& 51.9 \& \(52 \cdot 0\) \& 47.9 \& 493 \& 47.7 \& \(46 \cdot 9\) \& \(46 \cdot 1\) \\
\hline 18 \& 69.4 \& \(40 \cdot 3\) \& \(55 \cdot 2\) \& \(63 \cdot 2\) \& 68.6 \& \(55 \cdot 1\) \& \(50 \cdot 3\) \& 54.8 \& 57.3 \& 517 \& 18 \& \(49^{\circ}\) \& \(41^{\circ} 0\) \& 447 \& 45.3 \& 43.1 \& 41.5 \& 44.3 \& \(44^{\circ} 9\) \& 41.9 \& \(39^{\circ} 2\) \\
\hline 19 \& 69.3 \& \(46 \cdot 1\) \& \(59^{\circ} \mathrm{I}\) \& 65.3 \& 67.3 \& \(56 \cdot 5\) \& \(52 \cdot 1\) \& 54.2 \& \(56 \cdot 5\) \& 54.7 \& 19 \& \(44^{6} 6\) \& \(38 \cdot 2\) \& \(39^{\circ} 9\) \& \(41^{\circ} \mathrm{O}\) \& 41.6 \& \(44^{6} 6\) \& \(36 \cdot 8\) \& \(39^{\circ}\) \& \(40 \cdot 6\) \& \(43^{\circ} \mathrm{O}\) \\
\hline 20 \& \(67 \cdot 6\) \& 54.8 \& 62.7 \& 63.6 \& 62.6 \& 54.9 \& 57.8 \& 57.8 \& \(58 \cdot 3\) \& 49.9 \& 20 \& \(47 \cdot 0\) \& \(41 \cdot 1\) \& 44.5 \& 45.7 \& \(46 \cdot 8\) \& 41.8 \& 42.4 \& 43.3 \& 43.5 \& \(39 \cdot 5\)
\(30 \cdot 6\) \\
\hline 21 \& 63.0 \& \(45^{\circ} 6\) \& 53.0 \& 57.5 \& \(58 \cdot 6\) \& 47.9 \& \(48 \cdot 7\) \& \(49 \cdot 8\) \& \(50 \cdot 8\) \& \(45 \cdot 8\) \& 21 \& 42.0 \& 32.1
28.3 \& \(36 \cdot 6\) \& \(38 \cdot 5\) \& 37.5 \& \begin{tabular}{l}
\(32 \cdot 1\) \\
\hline 3.2
\end{tabular} \& \(34 \cdot 2\)
\(33 \cdot 2\) \& 34.1 \& 32.0
35.2 \& 30.6
32.4 \\
\hline 22 \& \(62 \cdot 6\) \& 37.7 \& 47.9 \& 58.9 \& 60.9 \& \(44^{\circ} 6\) \& \(45 \cdot 8\) \& \(49 \cdot 8\) \& \(50^{\circ}\) \& 43.3 \& 22 \& 38.0 \& 28.3 \& 34.5 \& 37.4 \& \(36 \cdot 2\) \& 33.2 \& 33.2
38.5 \& \(35 \cdot 8\)
39.1 \& \(35 \cdot 2\)
\(38 \cdot 3\) \& 32.4
38.8 \\
\hline 23 \& 68.0 \& \begin{tabular}{l}
39.1 \\
\hline 8.6
\end{tabular} \& 60.4
58.6 \& \(66 \cdot 2\)
63.1 \& \(65 \cdot 6\) \& 52.4 \& 53.3 \& 54.8 \& 54.4 \& \(52 \cdot 0\) \& 23 \& \(42 \cdot 5\) \& \(33 \cdot 1\)
\(40 \cdot 1\) \& 41.5 \& 42.5
42.2 \& \(41 \cdot 2\)
4
1 \& 4.4
4.9 \& \(38 \cdot 5\)
38.1 \& 39.1
39 \& \(38 \cdot 3\)
\(38 \cdot 1\) \& \(38 \cdot 8\)
38.8

3

\hline 24 \& 67° \& $48 \cdot 6$ \& $58 \cdot 6$ \& 63.1 \& $65 \cdot 1$ \& $48 \cdot 6$ \& 54.7 \& 54.8 \& 54.5 \& 47.2 \& 24 \& $42 \cdot 8$ \& $40 \cdot 1$ \& $40 \cdot 6$ \& $42 \cdot 2$ \& 41.1 \& $41^{\circ} 9$ \& $38 \cdot 1$ \& 39.3 \& $38 \cdot 1$
38.0 \& $38 \cdot 8$
34.8

\hline 25 \& 69.I \& $42 \cdot 6$ \& $58 \cdot 6$ \& 63.8 \& 64.4 \& $60 \cdot 2$ \& 53.9 \& 53.8 \& 563 \& 55.8 \& 25 \& 43.0 \& 37.0 \& 39.7 \& $42 \cdot 3$ \& $41 \cdot 4$ \& $37^{\circ} \mathrm{O}$ \& 37.7 \& 38.9 \& 38.0 \& $34 \cdot 8$

\hline 26 \& $7 \mathrm{I} \cdot 7$ \& 53° \& 59.9 \& $65 \cdot 6$ \& $68 \cdot 8$ \& 54° \& $55 \cdot 3$ \& 55.5 \& 56.4 \& 51.8 \& 26 \& 39.7 \& 32.9 \& $34^{\circ} \%$ \& $38 \cdot 3$ \& $36 \cdot 3$ \& 34.3 \& 33.7 \& $35^{\circ} 5$ \& $34^{\circ} 8$ \& 33.5

\hline 27 \& $70 \cdot 9$ \& $49^{\circ} \mathrm{I}$ \& $60 \cdot 5$ \& $65 \cdot 5$ \& $68 \cdot 7$ \& 59*1 \& $55^{\circ} \mathrm{O}$ \& 56.8 \& $58 \cdot 6$ \& $57^{\circ} \mathrm{O}$ \& 27 \& $36 \cdot 6$ \& $30 \cdot 5$ \& $33^{\circ} \mathrm{2}$ \& 34.8 \& $35^{\circ} 9$ \& 33.3 \& $33^{\circ} \mathrm{I}$ \& 34.4 \& 34.7 \& 32.4

\hline 28 \& $60 \cdot 9$ \& 50.7 \& $54^{\circ} 6$ \& $57 \cdot 8$ \& $58 \cdot 1$ \& $50 \cdot 8$ \& $50 \cdot 3$ \& $50 \cdot 3$ \& $50 \cdot 3$ \& $46 \cdot 1$ \& 28 \& 49° \& $33^{\circ} 2$ \& $39^{\circ} 9$ \& $46 \cdot 6$ \& $48 \cdot 0$ \& $44^{6} 6$ \& $39^{\circ} 2$ \& $45^{\circ} 6$ \& $46 \cdot 9$ \& 44*

\hline 29 \& $60 \cdot 2$ \& $40 \cdot 3$ \& $51 \cdot 1$ \& 57.1 \& $56 \cdot 6$ \& $52 \cdot 6$ \& $46 \cdot 1$ \& $48 \cdot 3$ \& $46 \cdot 9$ \& $4^{6 \cdot 1}$ \& 29 \& 47.5 \& 34.4 \& 44.6 \& 46.2 \& $45 \cdot 8$ \& 34.4 \& 43.3 \& 43.5 \& $42 \cdot 9$ \& 34.2

\hline 30 \& $59^{\circ} 4$ \& $46 \cdot 9$ \& 57.9 \& 51.5 \& 50.5 \& $47 \cdot 2$ \& $54^{1} \mathrm{I}$ \& $46 \cdot 4$ \& $45^{\circ} 2$ \& $42 \cdot 7$ \& 30 \& $45 \cdot 8$ \& $30 \cdot 1$ \& $40 \cdot 9$ \& $45 \cdot 6$ \& $45 \cdot 2$ \& $44 \cdot 6$ \& $40 \cdot 9$ \& $44^{\circ} \mathrm{O}$ \& 44^{2} \& $43 \cdot 8$

\hline Means \& $72 \cdot 2$ \& 49 \& $62 \cdot 0$ \& 67.9 \& $69 \cdot 3$ \& 56.9 \& $55^{\circ} 9$ \& $57^{\circ} \mathrm{O}$ \& 573 \& $53^{\circ} 1$ \& Mean \& 49° \& $38 \cdot 8$ \& $44^{1} 1$ \& 473 \& $4^{6 \cdot 8}$ \& 43° \& 419 \& 439 \& $43 \cdot 5$ \& 414

\hline \multicolumn{11}{|c|}{October.} \& \multicolumn{11}{|c|}{December.}

\hline ${ }^{\text {a }}$ \& $51^{\circ} 7$ \& $41^{\circ} \mathrm{I}$ \& $45^{\circ} 8$ \& $50 \cdot 5$ \& $51{ }^{\circ} \circ$ \& $44^{\circ} 2$ \& $41 \stackrel{\circ}{1}$ \& $44^{\circ} 4$ \& $44 \stackrel{\circ}{\circ}$ \& $40^{\circ} 3$ \& ${ }^{\text {a }}$ \& $46^{\circ} 7$ \& 41% \& $43^{\circ} 5$ \& $45^{\circ} 6$ \& $46^{\circ} 3$ \& $45^{\circ} 9$ \& $42^{\circ} \mathrm{I}$ \& $44^{\circ} 6$ \& $44^{\circ} \cdot 6$ \& $45^{\circ} \mathrm{O}$

\hline 2 \& 52.5 \& $34^{\circ} 4$ \& $42 \cdot 7$ \& 51.1 \& 50.9 \& $41^{\circ} \mathrm{O}$ \& $40 \cdot 2$ \& $43 \cdot 1$ \& $44^{\circ} \mathrm{O}$ \& 40'1 \& 2 \& 47.5 \& $44^{\circ} 2$ \& $45 \cdot 6$ \& $46 \cdot 6$ \& $46 \cdot 9$ \& $47^{\circ} 5$ \& 44% \& $45^{\prime} 4$ \& $45^{\circ} 7$ \& $46 \cdot 4$

\hline 3 \& 56.4 \& 39° \& $44 \cdot 6$ \& $55^{\circ} \mathrm{I}$ \& 55% \& $48 \cdot 5$ \& 41.8 \& $47 \cdot 3$ \& $48 \cdot 0$ \& $46 \cdot 6$ \& 3 \& $53 \cdot 8$ \& $45^{\circ} \mathrm{I}$ \& $50 \cdot 6$ \& $53 \cdot 1$ \& $51 \cdot 2$ \& $45^{\circ} 9$ \& 50.2 \& $50 \cdot 5$ \& $48 \cdot 5$ \& $45^{\circ} 3$

\hline 4 \& 55° \& $43^{\circ} \mathrm{O}$ \& $48 \cdot 1$ \& $50 \cdot 7$ \& $52 \cdot 6$ \& $47^{\circ} 9$ \& $44^{6} 6$ \& $47 \cdot 2$ \& $48 \cdot 3$ \& $46 \cdot 2$ \& 4 \& $4^{6 \cdot 1}$ \& 33.9 \& $42 \cdot 4$ \& 454 \& 43.9 \& 34° \& $41 \cdot 8$ \& $42 \cdot 7$ \& 39.9 \& 33.4

\hline 5 \& $57 \cdot 8$ \& 45.4 \& $49^{\cdot 6}$ \& 54.3 \& $56 \cdot 7$ \& 53.4 \& $48 \cdot 8$ \& 51.6 \& 51.5 \& $50 \cdot 8$ \& 5 \& $49 \cdot 2$ \& 33.2 \& 47*1 \& $46 \cdot 9$ \& $46 \cdot 8$ \& $39^{\circ} 3$ \& $46 \cdot 2$ \& $45^{\prime} 1$ \& $43 \cdot 8$ \& 37.9

\hline 6 \& 59.5 \& $45^{\circ} \mathrm{O}$ \& $51 \cdot 3$ \& $55^{\circ} 4$ \& $58 \cdot \mathrm{I}$ \& $46 \cdot 2$ \& 49.4 \& 51.0 \& 51.6 \& $45 \cdot 9$ \& 6 \& $45 \cdot 6$ \& $30 \cdot 8$ \& $33^{\circ} \mathrm{O}$ \& 41.2 \& 43.4 \& $40 \cdot 4$ \& $32 \cdot 6$ \& 38.8 \& $40 \cdot$ \& $38 \cdot 5$

\hline 7 \& 53.6 \& $44^{.6}$ \& 49 ${ }^{\text {I }}$ \& $53^{\circ} \mathrm{O}$ \& 53.4 \& $50 \cdot 6$ \& $48 \cdot 0$ \& $51 \cdot 1$ \& 51.7 \& 49.7 \& 7 \& $45 \cdot 4$ \& 37.8 \& $42 \cdot 1$ \& $42 \cdot 8$ \& 42.5 \& $37 \cdot 8$ \& $40 \cdot 8$ \& 41.8 \& $40 \cdot 9$ \& $36 \cdot 0$

\hline 8 \& $60 \cdot 0$ \& 397 \& 49^{-1} \& 57.3 \& $57 \cdot 8$ \& 50° \& $48 \cdot 1$ \& 53.5 \& 53.3 \& $49 \cdot 3$ \& 8 \& $43 \cdot 0$ \& 28.9 \& 33.9 \& 41.1 \& $42 \cdot 6$ \& $37 \cdot 8$ \& 31-8 \& $38 \cdot 3$ \& $39^{\circ} 3$ \& 37.1

\hline 9 \& $55^{\circ} \mathrm{I}$ \& $44^{1} 1$ \& $52 \cdot 1$ \& 53.7 \& 52.5 \& $45^{\prime} 1$ \& $48 \cdot 4$ \& 47.5 \& $46 \cdot 8$ \& 43.4 \& 9 \& $43 \cdot 8$ \& $36 \cdot 5$ \& $40 \cdot 2$ \& $42 \cdot 6$ \& 43.3 \& 37.3 \& $39^{\circ} 3$ \& 39° \& 39° \& $35 \cdot 3$

\hline 10 \& $58 \cdot 8$ \& $40 \cdot 2$ \& 49.9 \& 56.8 \& $54 \cdot 8$ \& 47.7 \& $46 \cdot 8$ \& $50 \cdot 5$ \& 49.4 \& $45 \cdot 9$ \& 10 \& $48 \cdot 0$ \& $36 \cdot 1$ \& $46 \cdot 2$ \& $45 \cdot 3$ \& $46 \cdot 0$ \& $48 \cdot 0$ \& 44.5 \& $44^{\circ} \mathrm{I}$ \& $44^{\circ} 9$ \& $46 \cdot 8$

\hline 11 \& $60 \cdot 0$ \& 47.2 \& 52.4 \& $55^{\circ} 9$ \& $56 \cdot 6$ \& $47 \cdot 6$ \& $50 \cdot 5$ \& 52.0 \& 5I•1 \& 47° \& 11 \& $48 \cdot$ \& 39*0 \& $43 \cdot 3$ \& $46 \cdot 9$ \& 449 \& 39° \& $39^{\circ} 8$ \& 42.4 \& 413 \& $37 \cdot 1$

\hline 12 \& $67 \cdot 6$ \& 417 \& 510 \& 62.5 \& 64.9 \& $49 \cdot 6$ \& 493 \& $55^{\circ} 7$ \& 57.6 \& $49 \cdot 4$ \& 12 \& $49 \cdot 5$ \& $34^{\circ} \mathrm{I}$ \& $39 \cdot 8$ \& $46 \cdot 5$ \& $47 \cdot 6$ \& $40 \cdot 8$ \& $38 \cdot 8$ \& $44^{\circ} \mathrm{O}$ \& 45.7 \& $40 \cdot 7$

\hline 13 \& $60 \cdot 0$ \& $48 \cdot \mathrm{I}$ \& 52.0 \& 56.6 \& 59.6 \& $56 \cdot 1$ \& 52.0 \& $56 \cdot 1$ \& 58.4 \& $56 \cdot 0$ \& 13 \& $47 \cdot 8$ \& $39 \cdot 3$ \& 42.9 \& $45 \cdot 7$ \& 47.3 \& $45^{\circ} 7$ \& 41.0 \& $43 \cdot 8$ \& 45.7 \& $44 \cdot 8$

\hline 14 \& 57.4 \& 53.9 \& $55^{\circ} 6$ \& $55 \cdot 5$ \& 57.2 \& $55 \cdot 0$
52.6 \& 55.6
52.8 \& $55 \cdot 3$
53.8 \& $56 \cdot 0$
53.4 \& 54.2
52.1 \& 14 \& $50 \cdot 0$
$50 \cdot 7$ \& $41 \cdot 3$
$42 \cdot 1$ \& $42 \cdot 6$
$48 \cdot 6$ \& 48.1
48.5 \& 47.7
46.0 \& $46 \cdot 9$
$42 \cdot 3$ \& 416
47
4 \& $45^{\circ} 6$
47 \& $45 \cdot 2$
42.5 \& $45^{\circ} \mathrm{O}$
$40 \cdot 8$

\hline 15 \& 57.4 \& $52 \cdot 1$ \& 54.3 \& 56.6 \& 54.4 \& $52 \cdot 6$ \& $52 \cdot 8$
5 \& 53.8 \& 53 \& 52.1 \& 15 \& $50 \cdot 7$ \& $42 \cdot 1$
$38 \cdot 3$ \& $48 \cdot 6$
39 \& $48 \cdot 5$ \& $46 \cdot 0$
48.8 \& $42 \cdot 3$
$50 \cdot 2$ \& 47.4
38.8 \& 47.1
45.0 \& 4.5
47.5 \& $40 \cdot 8$
48.9

\hline 16 \& 54.7 \& 51.4 \& 53.5 \& 52.6 \&	53.9
57.2	\& 52.2

48.6 \& 51.8

51.7 \&	517
53.4	\& 52.2

53.4 \& $51 \cdot 9$
$48 \cdot 4$ \& 16 \& $50 \cdot 4$

53.9 \& | $38 \cdot 3$ |
| :--- |
| 48. | \& 39.4

51.6 \& 47.2
53.6 \& $48 \cdot 8$
51.3 \& $50 \cdot 2$
49.9 \& $38 \cdot 8$
$50 \cdot 1$ \& $45 \cdot$

50 \& | $47 \cdot 5$ |
| :--- |
| $48 \cdot 8$ | \& $48 \cdot 9$

$48 \cdot 0$

\hline 17 \& $58 \cdot 6$ \& 48.1 \& 53.6 \& 57.3 \& 57.2 \& $48 \cdot 6$ \& 51.7 \& 53.4 \& 53.4 \& $48 \cdot 4$ \& 17 \& 53.9 \& $48 \cdot 9$ \& 51.6 \& 53.6 \& 51.3 \& 49.9
50.6 \& $50 \cdot 1$
47.3 \& $50 \cdot 3$
47.3 \& $48 \cdot 8$
$46 \cdot 7$ \& $48 \cdot 0$
$49 \cdot 3$

\hline 18 \& $62 \cdot 7$ \& $45 \cdot 1$ \& $48 \cdot 3$ \& 54.6 \& 61.6
62.8 \& 50.1 \& $48 \cdot 2$ \& 53.3 \& 56.8 \& $50 \cdot 1$ \& 18 \& $5^{1} 10$ \& $47 \cdot 3$ \& 49.7 \& 49.9 \& 47.9
50.8 \& $50 \cdot 6$
49.2 \& 47.3
50.6 \& 473
49.8 \& 46%
49 \& $49 \cdot 3$
$48 \cdot 4$

\hline 19 \& $64 \cdot 1$
$63 \cdot 0$ \& $48 \cdot 1$
$52 \cdot 7$ \& $55 \cdot$
58.3 \& $60 \cdot 9$
$62 \cdot 1$ \& $62 \cdot 8$
59.0 \& 55.7
55.9 \& 54.3
57.4 \& 58.4
59.4 \& 59.0
56.5 \& $55 \cdot 0$
54.8 \& 19 \& $52 \cdot 7$
51.0 \& $46 \cdot 0$
$43 \cdot 8$ \& 1.6
49.5 \& .515
49.6 \& $50 \cdot 8$
$46 \cdot 6$ \& 49.2
43.8 \& 50.6
48.8 \& $49 \cdot 8$
$49 \cdot 1$ \& 49°
$44^{\circ} 5$ \& $48 \cdot 4$
$42 \cdot 2$

\hline 20 \& 63.0 \& 52.7 \& $58 \cdot 3$
58.6 \& $62 \cdot 1$ \& 59.0
60.9 \& $55 \cdot 9$
$52 \cdot 1$ \& 57.4
55.6 \& 59.4
56.8 \& $56 \cdot 5$
56.3 \& $54 \cdot 8$
$51 \cdot 2$ \& 20 \& 51.0
45° \& $43 \cdot 8$
41.1 \& 49
43
4 \& 49.6
44.7 \& $46 \cdot 6$
$43 \cdot 8$ \& $43 \cdot 8$
43.1 \& $48 \cdot 8$
43.5 \& $49 \cdot 1$
44^{-6} \& 44.5
$43 \cdot 3$ \& $42 \cdot 2$
$+1 \cdot 8$

\hline 21 \& 62.0 \& 52.1 \& $58 \cdot 6$ \& $60 \cdot 6$
57.0 \& $60 \cdot 9$
55 \& 52.1 \& 55.6

52.9 \& | $56 \cdot 8$ |
| :--- |
| 5 | \& $56 \cdot 3$

$53 \cdot 1$ \& 512 \& 1 \& $45^{\circ} 3$
44.6 \& 41.1
$39 \cdot 3$ \& $43 \cdot 9$
41.1 \& 44.7
$42 \cdot 3$ \& $43 \cdot 8$
41.2 \& $43 \cdot 1$
$44^{.6}$ \& 43.5 \& 44.6
$40 \cdot 8$ \& + 43.3 \& $+1 \cdot 8$
$44 \cdot 2$

\hline 22 \& 61.5 \& $50 \cdot 8$ \& 54.7 \& $57^{\circ} \mathrm{O}$ \& $55 \cdot 8$
56.7 \& 53.2
51.9 \& 52.9
51.1 \& 5199 \& $53 \cdot 1$
$49 \cdot 8$ \& 51.0 \& 23 \& $44^{\circ} 6$ \& 39.3
$35 \cdot 1$ \& $41 \cdot 1$
37.5 \& $42 \cdot 3$
$40 \cdot 2$ \& 41.2
41.9 \& $44^{\circ} 6$
37 \& 39
364 \& $40 \cdot 8$
38 \& 49\% \& 44°
$36 \cdot 2$

\hline 23 \& 59° \& $50 \cdot 1$ \& 53.6 \& $55^{\circ} 6$ \& $56 \cdot 7$ \& 519 \& 5 I '1 \& 511 \& 49.8 \& $49 \cdot 7$ \& 23 \& 45.9
52.8 \& $35 \cdot 1$
$36 \cdot 8$ \& 37.5
51.6 \& $40 \cdot 2$
51.6 \& 419
49 \& $37 \cdot 1$
44.4 \& 36.4
$50 \cdot 8$ \& $38 \cdot 8$

49 \& | 39 |
| :--- |
| 45° | \& $36 \cdot 2$

41.8

\hline 24 \& 57° \& | 49 |
| :--- |
| $4{ }^{1} 1$ |
| 18 | \& $53 \cdot 8$

44.9 \& 53.6
50.1 \& $56 \cdot 5$
48.9 \& 49.9
$42 \cdot 2$ \& 52.1
43.9 \& 52.4
$46 \cdot 0$ \& 53.9

43.8 \& | 49 |
| :--- |
| 40 | \& 24

25 \& $52 \cdot 8$
44.6 \& $36 \cdot 8$
40 \& 11.6
41.0 \& 51.6
43.6 \& 49°
44° \& 44.4
42.6 \& $50 \cdot 8$
38.8 \& $49 \cdot 8$
$40 \cdot 8$ \& $45 \cdot 2$
$40 \cdot 2$ \& 41.8
$40 \cdot 4$

\hline 26 \& 54.3

55.6 \& | $45 \cdot 1$ |
| :--- | \& 46.8

4 \& $48 \cdot 3$ \& $55 \cdot 3$ \& 47.9 \& 44.9 \& $46 \cdot 5$ \& $50 \cdot 2$ \& $44^{\circ} 2$ \& 26 \& 49.4 \& $39^{\circ} 2$ \& $40 \cdot 7$ \& 43.9 \& $42 \cdot 3$ \& $49 \cdot 3$ \& $39^{\circ} 8$ \& $42 \cdot 6$ \& $42 \cdot 1$ \& $47 * 5$

\hline 27 \& $50 \cdot 5$ \& $38 \cdot 2$ \& $45 \cdot 6$ \& $50 \cdot 2$ \& $48 \cdot 1$ \& $46 \cdot 6$ \& $43^{6} 6$ \& $45^{\circ} \mathrm{I}$ \& 45.4 \& 44.4 \& 27 \& $49^{\circ} 3$ \& $38 \cdot 1$ \& 38.6 \& $41 \cdot 7$ \& 41.1 \& 41.7 \& 37.9 \& $40 \cdot 0$ \& $39^{\circ} 8$ \& $40 \cdot 3$

\hline 28 \& $50 \cdot 2$ \& $38 \cdot 1$ \& 41.2 \& $48 \cdot 8$ \& $48 \cdot 0$ \& $39^{\circ} 2$ \& $39^{\circ} 1$ \& $43 \cdot 1$ \& 42.5 \& 37.5 \& 28 \& 517 \& 40.1 \& $46 \cdot 6$ \& 51.3 \& 51° \& $49^{\circ} 6$ \& $46 \cdot 2$ \& $50 \cdot 5$ \& $49^{\circ} 2$ \& $47 \cdot 8$

\hline 29 \& 49° \& $28 \cdot 1$ \& 34.6 \& $46 \cdot 7$ \& 473 \& $46 \cdot 8$ \& $33 \cdot 8$ \& 4I.9 \& 41.4 \& 45.4 \& 29 \& $50 \cdot 0$ \& $46 \cdot 5$ \& $48 \cdot 2$ \& $49^{\circ} 6$ \& $49^{\circ} 2$ \& $47 \cdot 3$ \& $47^{\circ} \mathrm{O}$ \& $47 \cdot 8$ \& $46 \cdot 9$ \& 4.9
47

\hline 30 \& $59^{\circ} 2$ \& $46 \cdot 2$ \& $56 \cdot 3$ \& $58 \cdot 3$ \& 55° \& $46 \cdot 6$ \& 52.8 \& $52 \cdot 8$ \& 53.0
46.8 \& $43 \cdot 8$ \& 30 \& 51.3 \& $46 \cdot 2$ \& 47.6 \& $50^{\circ} \mathrm{O}$ \& $50 \cdot 6$
45.6 \& $48 \cdot 5$
$47 \cdot 0$ \& $46 \cdot 4$
$43 \cdot 7$ \& 48.4
$44^{\circ} \mathrm{O}$ \& $48 \cdot 9$
$44 \cdot 3$ \& $47 \cdot 8$
$45 \cdot 9$

\hline 31 \& 54.5 \& $38 \cdot 2$ \& $46 \cdot 3$ \& $52 \cdot 6$ \& 53° \& $45^{\prime \prime}$ \& $42 \cdot 4$ \& $46 \cdot 6$ \& $46 \cdot 8$ \& $43 \cdot 5$ \& 3 I \& 49° \& $42 \cdot 1$ \& 437 \& $45^{\circ} 6$ \& $45^{\circ} 6$ \& 47° \& $43 * 7$ \& 44 \& $44^{\circ} 3$ \& $45^{\circ} 9$

\hline Means \& 57\%4 \& $44^{\circ} 3$ \& 50'1 \& 547 \& $55^{\circ} 4$ \& 49° \& $48 \cdot 2$ \& $50 \cdot 7$ \& 510 \& 477 \& Means \& $48 \cdot 6$ \& $39 \cdot 8$ \& 44° \& 46% \& $46 \cdot 2$ \& $44^{\circ} \mathrm{I}$ \& $42 \cdot 8$ \& 44.6 \& 44° \& $42 \cdot 8$

\hline
\end{tabular}

Excess of Mean Monthly Readings of Thermometers placed in a Stevenson’s Screen above those of the corresponding Thermometers on the adjacent Ordinary Stand in the Magnetic Pavilion Enclosure in the Year igif.
(The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at $2 \mathrm{I}^{\mathrm{h}}$.)

момth,19п1.	Dry Bulb Thermometers, 4 ft above the Ground.						Wet Bulb Thermometer, 4 ft . above the Ground.			
	Maximum.	Minimum.	$9^{\text {b }}$	Noon.	${ }^{15}{ }^{\text {b }}$	$21^{\text {h }}$	$9^{\text {b }}$	Noon.	$\mathrm{rs}^{\text {b }}$	$21^{\text {b }}$
	。	-	-	-	-	。	-	-	-	-
January	$+0.1$	+0.4	$+0.2$	$\bigcirc \circ$	+0.1	$+0.2$	$\bigcirc \cdot 0$	$0 \cdot 0$	+0.1	+0.2
February.	0.2	+ 0.6	$\bigcirc \cdot 0$	- 0.2	$\bigcirc \cdot$	+0.3	-0.0	-0.2	+ 0.1	+ $0 \cdot 1$
March.	-0.6	+ 0.4	$\bigcirc \cdot 0$	- $0 \cdot 1$	-0.1	+ 0.2	+ 0.1	+ 0.1	+ $0 \cdot 1$	+0.3
April.	1×0	+0.5	- 0.4	- 0.3	- 0.4	+ 0.1	-0.2	-0.1	-0.3	+ 0.2
May	- 1.9	$+0.5$	-0.5	-0.6	-0.5	+ 0.2	- 0.6	- 0.6	- 0.5	$0 \cdot 0$
June..	$2 \cdot 0$	+ 0.7	-0.8	-0.9	- 0.7	+ 0.2	- 0.6	-0.5	- 0.4	+ $0 \cdot 1$
July.	- 2.4	+ 0.8	-0.8	- I'I	- I'I	+0.3	-0.5	- 0.4	- 0.4	+0.3
August..	-2.6	+0.8	- 0.8	- 1.0	- 0.8	+0.3	- 0.7	- I'0	- 0.7	+ $0 \cdot 1$
September	$1 \cdot 2$	+ 0.8	0.2	-0.2	-0.3	+ 0.4	-0.2	$-{ }^{-1}$	-0.2	+0.3
October.	-0.6	+ 0.6	- 0.1	-0.2	- $0 \cdot 1$	+0.3	$\bigcirc \cdot 1$	-0.2	- 0.1	+ 0.2
November.	- 0.3	+ 0.4	+ 0.1	$0 \cdot 0$	+ $0 \cdot 1$	+0.4	+ 0.2	$+0.2$	+ 0.4	+ 0.4
December	$\bigcirc \cdot$	+ 0.6	+ 0.1	+ $0 \cdot 1$	+ ${ }^{\circ} \mathrm{I}$	+ 0.4	+ 0.2	+ 0.1	+ 0.2	+ 0.3
Means.	- I•I	$+0.6$	-0.3	-0_{4}	-0.3	$+0.3$	- 0.2	- 0.2	- 0.1	$+0.2$

Amount of Rain Collected in each Month of the Year igif.

moNTH, 1911.	Number of Rainy Days (oin 005 or over).	Monthly Amount of Rain collected in each Gauge.							
		Selfregistering Gauge of Anemometer. \qquad No. 1.	Second Gauge at Osler's Anemometer. No. 2.	On the roof of the Octagon Room. No. 3 .	On the roof of the Magnetic Observatory. No. 4.	On the roofof thePhotographicThermometerShed.	Gauges partly sunk in the ground.		
							In Magnetic Pavilion Enclosure.	In Observatory Grounds.	In Magnetic Pavilion Enclosure.
						No. 5.	No. 6.	No. 7.	No. 8.
January February		in.							
	12	0.582	0.494	0.910	0.898	I 1 52	$1 \cdot 233$	I 129	I-180
	16	0.576	0.446	$0 \cdot 918$	- 989	$1 \cdot 243$	1.376	1-262	1.329
	15	- 545	$0.66 ;$	1220	$1 \cdot 399$	$1 \cdot 615$	1.655	I 561	1.596
April.........................	12	$1{ }^{1} 105$	1×049	1.408	$1 \cdot 548$	I. 658	I 734	I 666	I 686
May June..	8	I. 658	1.683	I 860	I 994	2.079	1.876	2.085	I 848
	12	$1 \cdot 614$	I 568	1957	2.032	2.098	2.096	$2 \cdot 088$	$2 \cdot 102$
July	4	0.227	$\bigcirc \cdot 164$	0.219	0.245	0.267	0.268	0.259	0.278
August........................	8	1.006	I.087	1.233	I 325	1-372	I 343	1.334	I 324
September	10	0.843	0.856	I. 175	1-275	I 343	1 336	1.323	1319
October	17	2.485	$2 \cdot 219$	2.810	3.041	$3 \cdot 361$	3-299	3.267	3 273
November	21	$2 \cdot 112$	1916	2.630	$2 \cdot 842$	$3 \cdot 264$	3.422	3 254	3.392
December	23	$2 \cdot 592$	$2 \cdot 393$	$2 \cdot 884$	$3{ }^{\circ} 10$	$3 \cdot 890$	$4^{\circ} \mathrm{O} 20$	3787	3.982
Sums	158	15.345	14.540	19.224	$20 \cdot 998$	23.342	$23 \cdot 658$	23.015	23.309
Height ofreceivingSurface $\quad\left\{\begin{array}{c}\text { ground } \\ \text { above mean } \\ \text { sea level }\end{array}\right.$	$\} \ldots$	$\begin{gathered} \text { ft. in. } \\ 50.8 \end{gathered}$	$\begin{aligned} & \text { ft. in. } \\ & 50.8 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 38.4 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & \text { 2 I. } 6 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & \text { IO. } \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 0.5 \end{aligned}$	ft. fn. 1. 0
	\} \ldots	$\begin{gathered} \text { ft. } \\ 205.6 .6 . \end{gathered}$	205.6	$\begin{gathered} \mathrm{ft} . \mathrm{in} . \\ 193.2 \end{gathered}$	$\begin{array}{r} \text { ft. in. } \\ 176.4 \end{array}$	$\begin{array}{cc} \text { ft. } & \text { in. } \\ 164 . & 10 \end{array}$	$\begin{gathered} \text { ft. in. } \\ \text { 149. } 6 \end{gathered}$	$\begin{gathered} \text { ft. in. } \\ 155.3 \end{gathered}$	$\begin{aligned} & \mathrm{ft.} \mathrm{in.} \\ & \mathrm{I} 50 . \mathrm{I} \end{aligned}$

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer in the Year igit.
(It is to be understood that the direction of the wind was nearly constant in the intervals between the times given in the second column and those next following in the first column.)

Directions are given to 16 points of the Compass, $O=N, I=$ NNE $15=$ NNW.
Note.-The time is expressed in civil reckoning, commencing at midnight and counting from 0^{h} to 24^{h}.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

$\underset{\substack{\text { Greenwich } \\ \text { civi Time. }}}{\text { cel }}$		$\underset{\substack{\text { Change of } \\ \text { Direction. }}}{ }$	Amount of ${ }_{\text {M }}$		(treenwich		Change of Direction			GreenwichCivil Time.		$\underset{\text { Change of }}{\text { Direction. }}$	$\underset{\substack{\text { Amount } \\ \text { Motion. }}}{\substack{\text { of }}}$				Change ofDirection.	${ }_{\text {Amount of }}^{\text {Motion. }}$	
From	To		Direct.	Retro grade	From	то		Direct.	Retro grade	From	To		Dir	Retrograde.	From	то		Direct.	Retro grade.
June-cont.					July--cont.					July-cont.					Aug.-cont.				
$\left\|\begin{array}{cc} d & h \\ 17 & 19 \frac{1}{2} \end{array}\right\|$	$\left\lvert\, \begin{array}{cc} d & \text { b } \\ 17 . & 20 \frac{1}{2} \end{array}\right.$				d h 4. $\frac{3}{4}$	d. ${ }_{\text {d }}{ }^{\text {h }}$	11-12	1		drd I 9. 1	19. $22^{\text {b }}$	10-11	1		$\begin{array}{lll}\text { d } & \text { h } \\ \text { 1. } 23\end{array}$	$\begin{array}{ll}\text { d } & \text { b } \\ \text { 2. } & 1 \\ \text { 2 }\end{array}$	10-11	I	
17.23	$17.23 \frac{1}{2}$	9-8		1	4. 11	4. $11 \frac{1}{2}$	12-11		1	20. 4	20. $5 \frac{3}{4}$	9		2	2. $111 \frac{3}{4}$	2. 12	11-10		1
18. 2	18. $2 \frac{3}{4}$	8-9	1		4. $12 \frac{3}{4}$	4. 13	$11-12$	1		20. 7	20. $7 \frac{1}{4}$	9-10	1		3. $3 \frac{1}{4}$	3. 4	10-9		1
18. $6 \frac{3}{4}$	18. 8	9-10	1		4. $16 \frac{3}{4}$	4.17	12-11		1	20.20	20.21	10-9		1	3. $8 \frac{3}{4}$	3. $9 \frac{1}{4}$	9-10	1	
19. 6^{3}	19. $7 \frac{1}{2}$	10-9		I	4. $18 \frac{3}{4}$	4. $19{ }^{\frac{3}{4}}$	11-13	2		21. 7	21. $8 \frac{3}{4}$	9-10	1		3. $20 \frac{1}{2}$	3.21	10-11	1	
19. $10 \frac{1}{2}$	19.11	9-10	1		4. 201	4. $20 \frac{1}{2}$	13-9		4	21.22	22. ${ }^{\text {a }}$	10-9		1	4. $6 \frac{1}{4}$	4. $7 \frac{3}{4}$	$1 \mathrm{II}^{12} 12$	1	
19. 22	19.23	10-11	1		4. $21 \frac{1}{4}$	5. $0 \frac{1}{2}$	9-11	2		22. $4 \frac{3}{4}$	22. $5 \frac{1}{4}$	9-10	1		4. 14	4. $14 \frac{1}{4}$	12-11		1
20. 5	20. $5^{\frac{1}{2}}$	$11-12$	1		5. $9 \frac{1}{3}$	5. $10 \frac{1}{4}$	11-10		1	22. $7 \frac{1}{4}$	22. $7 \frac{1}{2}$	10-12	2		4. 21	4. $22 \frac{1}{2}$	11-10		1
20. $20 \frac{3}{4}$	20. $21 \frac{1}{4}$	12-10		2	5. $15 \frac{3}{4}$	5. $17 \frac{3}{4}$	10-2	8		22. 11.1	22. $11 \frac{1}{2}$	12-11		I	5. 2	5. $3 \frac{1}{2}$	10-9		I
21. 6	21. 8	10-11	1		5. 19	5. 20	2-10	8		22. $17 \frac{1}{4}$	22.174	11-15	4		5. $5 \frac{1}{2}$	5. $5 \frac{3}{4}$	9-8		1
21. 17	21.183	11-10		1	6. 10	6. 13	10-5		5	22. $19 \frac{1}{2}$	22. 20	15-1	2		5. 7	5. 9	8-10	2	
23.112	23.12	10-9		1	6.20	6. $21 \frac{1}{4}$	5-10	5		23. O_{4}	23. 1	1-2	1		5. $18 \frac{1}{4}$	5. 19	10-11	1	
23.193	23.203	9-10	1		7. I_{2}^{1}	7. 23	10-6		4	23. $12 \frac{1}{4}$	23. $12 \frac{1}{2}$	2-3	1		$5 \cdot 21 \frac{1}{2}$	5. 22	11 -12	1	
23.22	23. $22 \frac{1}{4}$	10-14	4		7. $6 \frac{1}{2}$	7. $6 \frac{3}{4}$	6-0		6	$23.15 \frac{1}{2}$	23.17	3-5	2		6. 1	6. $1 \frac{1}{2}$	12-11		1
24. $1 \frac{1}{4}$	24. $2 \frac{1}{4}$	14-0	2		7. 10	7. $11 \frac{1}{2}$	-2	2		23.20	23.2012	5-4			6. $23 \frac{1}{2}$	7. 0	11-10		I
24. 3	24. 4	0-15		1	7. $15 \frac{1}{4}$	7.161	2-5	3		24. $1 \frac{1}{4}$	24. $\mathrm{I}^{\frac{1}{2}}$	4-3		1	7. $6 \frac{1}{2}$	7. 7	10-11	1	
24. 5	24. $5^{\frac{1}{2}}$	15-13		2	7. $18 \frac{3}{4}$	7. $19 \frac{1}{4}$	5-6	1		24. 7	24. 8	3-5	2		7. 18	7. $19 \frac{1}{2}$	11-10		1
24. 7	24. $7 \frac{1}{2}$	13-12		1	8. $8 \frac{1}{2}$	8. $8 \frac{3}{4}$	6-1		5	$24.21 \frac{1}{2}$	24. $22 \frac{3}{4}$	5-6	1		8. $3 \frac{3}{4}$	8. $4 \frac{1}{4}$	10-7		3
24. $8 \frac{1}{3}$	24. $9 \frac{1}{4}$	${ }_{12-11}^{11}$		${ }^{1}$	8. $15 \frac{3}{4}$	8. 16	-2			25. 2	25.341	6-7	1		8. $6 \frac{1}{3}$	8. 7	7-8	1	
24.13 ${ }^{\frac{3}{3}}$	24. 14	11-10		1	8. 19	8. 193	2 -5	3		25.63 ${ }^{\frac{3}{4}}$	25. $7 \frac{1}{2}$	7-10	3		8. $9 \frac{3}{4}$	8. 10	8 -9	1	
25. $9 \frac{3}{4}$	25. $11 \frac{1}{4}$	10-12	2		$8.22 \frac{1}{2}$	9. $1 \frac{3}{4}$	5-3		2	25.181	25.183	10-9		1	8. $11 \frac{1}{4}$	8. $11 \frac{1}{2}$	9-6		3
25.123 ${ }^{\frac{1}{2}}$	25.13	12 -11		1	9. $10 \frac{3}{4}$	9. 11	3-4	1		25. $22 \frac{1}{2}$	25. 23	9-10	1		8. $14 \frac{1}{4}$	8. $14 \frac{3}{4}$	6-5		1
26. ${ }^{\text {26 }}$	26. ${ }^{\text {26 }}$	$11-12$	1		9. $21 \frac{1}{2}$	9. $22 \frac{1}{4}$	4-2		2	26. 6	26. $6 \frac{3}{4}$	10-11	1		9. 5	9. 6	5-4		1
26. $5 \frac{3}{1}$	26. $6 \frac{1}{4}$	12-13	1		10. 4	10. $4 \frac{1}{2}$	2 -1		1	26. $12 \frac{1}{4}$	26. $12 \frac{3}{4}$	11-10				9. $8 \frac{1}{2}$	4-2		2
26. $10 \frac{1}{4}$	26.11 $\frac{1}{2}$	$13-14$	1		10. $9 \frac{1}{2}$	10. 10	-2	1		27. $0 \frac{1}{4}$	27. ${ }^{1}$	10-9		1	9. $9 \frac{1}{\frac{1}{2}}$	9. 12	2 -8		10
26. $13 \frac{1}{4}$	26. 14	14-11		3	10.12	10. $12 \frac{1}{2}$	$2-3$	1		27. $5 \frac{3}{4}$	27. 6	9-8		1	9. $14 \frac{3}{4}$	9. $15 \frac{1}{2}$	8-10	2	
26. $15 \frac{1}{4}$	26. $15 \frac{1}{2}$	11-15	4		10. $15 \frac{1}{4}$	10. $15 \frac{3}{4}$	3-6	3		27. $10 \frac{1}{4}$	27.12 ${ }^{\frac{1}{2}}$	8-10	2		9. $18 \frac{1}{2}$	9. 194	10-9		1
26. 16	26. $17 \frac{1}{4}$	$15-14$			10. $21 \frac{1}{2}$	11. $12 \frac{1}{2}$	6-2		4	27. $23 \frac{1}{2}$	28. 0_{2}^{1}	10-11	1		9. $21 \frac{1}{4}$	9. $23 \frac{1}{4}$	9-11	2	
26.19	26.23	14-11		3	12. $2 \frac{1}{2}$	12. $2 \frac{3}{4}$	2 -0		2	28. $2 \frac{1}{4}$	28. $5 \frac{1}{2}$	11-0	5		10. $0 \frac{1}{2}$	10. $1{ }^{\frac{1}{4}}$	11-0	5	
26. $23 \frac{1}{4}$	27. $1 \frac{1}{2}$	$11-13$	2		12. 6	12. $6 \frac{3}{4}$	$0-2$	2		28.10	28. $10 \frac{1}{4}$	$0-2$	2		10. $12 \frac{1}{4}$	10. $12 \frac{3}{4}$	$0-1$	1	
27. 27 $27.10 \frac{3}{4}$	27. $4 \frac{1}{2}$	13-14	1		13. $1 \frac{1}{4}$	13. $1 \frac{3}{4}$	2 -1		1	28. $15 \frac{1}{2}$	28.17	2-4		14	Io. 20	10. $20 \frac{1}{2}$	I-2	1	
27. $10 \frac{3}{4}$ 27. 14	27.11	14-13		1	13. $4 \frac{1}{2}$	13. $5 \frac{1}{4}$	1-2	1		29. $1 \frac{1}{4}$	29. $1 \frac{3}{4}$	4-6	2		11. 3	III. $3 \frac{1}{4}$	2 -		1
27. 14 27. 214	27.14 ${ }^{\frac{1}{2}}$	13-12		1	13. 9	13. $9 \frac{1}{2}$	1		1					3	11. 6	III. $6 \frac{1}{2}$	$1-2$	1	
27. $21 \frac{1}{2}$ 28. 83 23	27. $23 \frac{3}{1}$	12-11		1	13.1941	13.193	-2	1		29. 94	29. 9 年	3-4	1		11.12	III. $12 \frac{1}{2}$	$2-3$	1	
28. $\begin{aligned} & \text { 283 } \\ & \text { 28. } 22\end{aligned}$	28. 91	11-12	I		14.111	14. $11 \frac{3}{4}$	${ }^{2-1}$		1	29.1214	29.123	4-5	1		11.15	III. $16{ }^{1}$	3-5	2	
28.22 $29.13 \frac{1}{2}$	28. $23 \frac{1}{4}$	12-11			14.161	14. 17	-4	3		29.181	29. 23	5-9	20		11. 188	II. 183	5-2		3
29. $13 \frac{1}{2}$ 30.0	29. 14	11-10		1	14.182	14.20	4-5	1		30. 7	30. $7 \frac{1}{4}$	9-10	1		12. ${ }^{\text {a }}$ 12	12. $4 \frac{1}{2}$	${ }^{2-1}$		1
30.30 30.19 1	30. 2	10-11	1		$14.23 \frac{1}{2}$	15.014	5-10	5		30. 10	30. $10 \frac{1}{2}$	10-11	1		12. $8 \frac{3}{4}$	12. 12	1 -4	3	
30. $19 \frac{1}{4}$	30.20	$11 .-10$		1	$15.11 \frac{1}{2}$	15. $1{ }^{13}$	10-11			30. $11 \frac{1}{2}$	30.12	11-10		1		13. $8 \frac{1}{4}$	4-2		2
					15. 5	15.6	11-1	6		30. $23 \frac{1}{4}$	30. $23 \frac{3}{4}$	10-9		1	13. $8 \frac{1}{2}$	13.10	2-4	2	
					15.10 ${ }_{4}^{1}$	15.103	1 -2	1		31. 3	31. $3 \frac{1}{4}$	9-2		7	13. $11 \frac{1}{4}$	13. $11 \frac{1}{2}$	4-5	1	
		Sums	128	138	15.173	15.184.	2-1		1	31. 7	31. $7 \frac{1}{4}$	2 -9	7		13.23 ${ }^{3}$	14. ${ }^{1}$	5-4		
					15.20-1	$15 \cdot 20 \frac{1}{1}$	${ }^{1}-2$	1		$31.14 \frac{1}{4}$	31. $14 \frac{1}{2}$	9-10	1		14. ${ }^{2}$	14. ${ }^{3 \frac{3}{4}}$	4-2		2
					15.233	16. $6 \frac{3}{4}$	2-13	11		31.20	31.22	10-9		1	14. $8 \frac{1}{4}$	14. 83	2 -3	1	
					16.12 $16.16 \frac{1}{2}$ 16.21	16.13 16.163	13-15	2							14.11	14.132	3-6	3	
					16.21	$16.21 \frac{1}{2}$	0		1			Sums	174	111	14. $20 \frac{1}{2}$	14.223	5-2		3
					17. $1 \frac{1}{2}$	17. $1{ }^{3}$	15 -13		2						15. $2 \frac{1}{2}$	15.4	2 -1		1
$\begin{array}{ll}\text { 1. } \\ \text { I. } & 6 \\ \\ \text { l }\end{array}$	1. 2_{4}^{1}	10-12	2		17. 4	17. $4 \frac{1}{4}$	13-12		1							15.15	1-2	1	
1. 6	I. $7 \frac{1}{2}$	12-11		1	17. $5 \frac{1}{2}$	7. $5 \frac{3}{4}$	12-14	2							16. $0 \frac{1}{2}$	16. $0 \frac{3}{4}$	2-1		
1. 10 1.18	I. $11 \frac{1}{2}$,	11-14	3		17. $9 \frac{3}{4}$	17. $10 \frac{1}{4}$	14-11		3	Aug	ust.				16. $1 \frac{3}{4}$	16. 2	1 -0		1
1. 18 1. $20 \frac{1}{4}$ 2.	1. $18 \frac{1}{4}$	14-12		2	17.14	17.14 ${ }^{\frac{3}{4}}$	$11-12$	1							16. $6 \frac{1}{2}$	16. 7	$0-1$	1	
1. $20 \frac{1}{4}$ 2. $4 \frac{1}{2}$ 2.	1. $21 \frac{3}{4}$	12-11		1	17.163	17.173	12-10		2						16. 9	16. $9 \frac{1}{1}$	I-O		1
2. $4 \frac{1}{2}$	2. 7	11-14	3		17.19	17.20	10-11	1		1. I	I. $1^{\frac{1}{4}}$	9-7		2	16. 12	16. $12 \frac{1}{4}$	$0-1$	1	
2. 21		14-11		3	18. 9 9 ${ }^{\frac{1}{1}}$	18.1012	$11-12$	1		I. $2 \frac{1}{2}$	1. $3 \frac{1}{2}$	7-5		2	16. $14 \frac{1}{2}$	16.15	1 -0		I
3. 3. 3.		11-12	1		18.1741	18.18 18	12-11		1	1. 5	1. $5 \frac{1}{2}$	5-7	2		16. $17 \frac{1}{4}$	16.193	0-4	4	
3. 5		$12-15$ $15-0$	3		19. $7 \frac{1}{2}$	19. 8	$11-12$	1		1. $7 \frac{1}{4}$	I. $7 \frac{1}{2}$	7-8	1		$16.21{ }^{\frac{1}{4}}$	16.21 ${ }^{\frac{1}{2}}$	4-6		
3. ${ }^{\text {3. }} 16$	3. 174	$15-0$ $0-6$	1	10	19.10 ${ }^{19}$	19. 10_{4}^{4}	12-11		1	I. $10 \frac{1}{2}$	1. 11.1	8-9	1		17.	17. $7 \frac{1}{2}$	6-10	4	
3. 20	4. 2	6-10	4	10	19.17 19.17	19.15 $17 \frac{1}{4}$	$11-13$ $13-12$	2		1. 1215	1. 123	9--10	1		17.8 17.111^{1} 17	17. 9 91	$10-9$ $9-12$	3	1
4. 54	4. $5 \frac{3}{4}$	10-11	1		$19.18{ }^{4}$	19.1914	12-10		2	1. $17 \frac{3}{4}$	I. $18 \frac{1}{2}$	$11-10$		1	17.174	$17.17{ }^{1}$	12-10		2

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-concluded.

Greenwich Civil Time.		Change of Direction.	Amount of Motion.		Greenwich Civil Time.		Change of Direction.	Amount of Motion.		Greenwich Civil Time.		Change of Direction.	Amount of Motion.		Greenwich Civil Time.		Change of Direction.	Amount of Motion.	
From	To		Direct.	Retrograde.	From	To		Direct.	Retrograde	From	To		Direct.	Retro. grade.	From	To		Direct.	Retrograde.
Dec.	cont.				Dec.	cont.				Dec.	cont.				Dec.	cont.			
$\begin{gathered} \text { d } \begin{array}{c} h \\ \text { I } 8 . \end{array} 4_{4}^{6} \end{gathered}$		8-9	I		$\begin{array}{rr} d \\ 22 & 10 \end{array}$	$\begin{array}{r} \mathrm{d} \\ \text { 22. }{ }^{\mathrm{h}} \mathrm{~m}^{2} \end{array}$	I I - 9		2	$\begin{gathered} d \quad h \\ 25 . \\ \hline 11 \frac{1}{2} \end{gathered}$	$\begin{gathered} \mathrm{d} \\ 25.13 \end{gathered}$	11-I2	I		$\begin{array}{cc} d & h \\ 29 . & 16 \frac{1}{4} \end{array}$	$\begin{array}{cc} \text { d } & \text { h } \\ \text { 29. } & 17 \frac{1}{4} \end{array}$	$11-10$		1
19. $2 \frac{3}{4}$	19. $3 \frac{1}{4}$	9-10	I		22. 14	22.15	9-6		3	25.16^{2}	25.16 ${ }^{4}$	$12-11$		I	30. 5	30. $6 \frac{1}{4}$	10-11	I	
19.14	19.15	10-9		1	22. $20 \frac{1}{2}$	22.211 ${ }^{2}$	6-0	10		26. $3 \frac{1}{4}$	26. $3 \frac{3}{4}$	$11-12$	I		$30.13 \frac{1}{4}$	30. $13 \frac{1}{2}$	II- 12	1	
$19.17 \frac{1}{4}$	19. $17 \frac{1}{2}$	9-8		1	22. $23 \frac{1}{4}$	22. $23 \frac{1}{2}$	$0-1$	1		26. 6	26. 7	$12-11$			30. 15 ${ }^{\frac{1}{4}}$	30. $17 \frac{3}{4}$	$12-0$	4	
19. $21 \frac{1}{2}$	19.22	8-9	I		23. 2	23. $4 \frac{1}{2}$	I-I 5		2	26. $11 \frac{3}{4}$	26.16	$1 \mathrm{I}-7$			30. $18 \frac{1}{2}$	30. $19 \frac{1}{2}$	$0-10$		6
20. $0 \frac{3}{4}$	20. 1	9-8		I	23. 7	23. $8 \frac{3}{4}$	15-12		3	26. 161	26. 199 ${ }^{1}$	7-12	5		$30.20 \frac{3}{4}$	30. $23 \frac{1}{4}$	$10-0$	6	
20. $2 \frac{3}{4}$	20. 3	8-7		1	$23.11 \frac{1}{4}$	23.13	$12-11$		I	27. 0	27. 2	$12-0$	4		$31.1 \frac{3}{4}$	31. $2 \frac{1}{2}$	$0-10$	10	
20. $8 \frac{1}{2}$	20. 9	$7-8$	1		23. $16 \frac{1}{2}$	$23.16 \frac{3}{4}$	11-10		1	27. $7 \frac{1}{2}$	27. 9	O-II			3 I . $9 \frac{1}{2}$	3 I . 11	10-11	I	
20.11	20. $12 \frac{3}{4}$	8-13	5		23. $18 \frac{1}{4}$	23.18 $\frac{3}{4}$	10-8		2	27.11	27. $11 \frac{1}{2}$	$1 \mathrm{I}-12$	1		$3 \mathrm{I} .15 \frac{3}{4}$	3I. $16 \frac{1}{2}$	1 I-10		I
20.15	20.154	$13-12$		1	24. 3	24. $3 \frac{1}{4}$	8-9	1		27.14	27.15	$12-10$			$31.18 \frac{3}{4}$	3 I . $19 \frac{3}{4}$	10-11	I	
20. $18 \frac{1}{2}$	20.21	$12-10$		2	24. $5 \frac{3}{4}$	24.7	9-10	I		27. $22 \frac{1}{2}$	27.22 $\frac{3}{4}$	10-8							
21. I	2I. $2 \frac{3}{4}$	10-8		2	24. 11	24. $11 \frac{1}{4}$	10-11	I		28. $0 \frac{1}{4}$	28. $0 \frac{1}{2}$	8-10	2						
$\text { 2I. } \quad 5 \frac{1}{2}$	21. $7 \frac{1}{2}$	8-5		3	24. I4 $\frac{3}{4}$	$24.15 \frac{1}{2}$	II- 10		I	28. $1 \frac{3}{4}$	28. 2	I O-8		2			Sums	108	I 21
2I. $9 \frac{1}{4}$	$2 \mathrm{I} .12 \frac{1}{2}$	5-0		5	24. $17 \frac{1}{2}$	24.18	IO-II	I		28.6	28. $6 \frac{1}{2}$	8-9	I						
2 I I6	21. $16 \frac{1}{2}$	O-I 5		1	24.22	24.23	I I - 8		3	28. $9 \frac{1}{4}$	28.10 $\frac{1}{4}$	9-II	2						
21. $17 \frac{3}{4}$	21. $19 \frac{1}{4}$	$15-12$			25.0	25. 1	8-10	2		28.12	$28.12 \frac{1}{4}$	II-I2	I						
21.23	$21.23 \frac{3}{4}$	12-11			25.4	25. 5	IO-II	I		29. $3 \frac{1}{4}$	29. $4 \frac{1}{2}$	$12-11$		1					

Excess of Motion in each Month.

	Direct. Retrograde.		Direct.	Retrograde.
1911.		1911.		
January	24	July	63	
February .	44	August...................	49	
March.....	3	September.................	70	
April	38	October...................		5
May	28	November.................	13	
June..	10	December.................		13

The whole excess of direct motion for the year was $304=6840^{\circ}$.

Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from the Records of Robinson's Anemometer.

Hour ending	1911.												$\begin{gathered} \text { Mean for } \\ \text { the } \\ \text { Year. } \end{gathered}$
	January.	February.	March.	April.	May.	June.	July.	Angust.	September.	October.	November.	December.	
$\mathrm{I}^{\text {h }}$	$\begin{gathered} \text { Miles. } \\ 10.6 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 14 \neq 2 \end{gathered}$	Miles. $13 \cdot 1$	miles. 13.3	$\begin{gathered} \text { Miles. } \\ 8.2 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 9 \cdot 6 \end{gathered}$	$\begin{array}{r} \text { Miles. } \\ 8.2 \end{array}$	$\begin{array}{r} \text { Miles. } \\ 8.1 \end{array}$	$\begin{array}{r} \text { Miles.es. } \\ 8 \cdot 2 \end{array}$	$\begin{gathered} \text { Miles. } \\ 10 \% \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 157 \end{gathered}$	$\begin{aligned} & \text { Miles. } \\ & 14^{\circ} \end{aligned}$	Miles.
2	11°	14.2	12.9	12.5	$8 \cdot 0$	$9 \cdot 6$	8.4	7×4	$7 \cdot 6$	$9^{\circ} 4$	$16 \cdot 1$	14.6	11.0
3	11^{1}	14.3	13.1	12.6	$7 \cdot 6$	10.0	$8 \cdot 0$	73	$7 \cdot 9$	$9 \cdot 6$	157	14.4	$1 \mathrm{I}^{\circ} \mathrm{O}$
4	10.9	14.4	$14^{1 /}$	13.3	$7 \cdot 3$	$9 * 9$	$7 \cdot 5$	$7 \cdot 4$	$8 \cdot 2$	$9 \cdot 6$	15.2	15.1	11.1
5	11.0	14.8	13.9	$13^{\circ} \mathrm{O}$	7•1	$9 \cdot 8$	$7 \cdot 5$	$7 \cdot 8$	$7 \cdot 6$	$9 \cdot 3$	15.5	14.4	11.0
6	$11^{\circ} 0$	14.5	14.4	13.1	7×1	$9 \cdot 8$	73	$7 \cdot 8$	79	$10^{\circ} \mathrm{O}$	15.2	14.4	11.0
7	11.4	$15^{\circ} 1$	14.0	13.7	$7 \cdot 2$	10.5	8.0	$7 \cdot 9$	79	10.1	15^{2}	14.5	113
8	11.8	157	137	14.9	$7 \cdot 1$	11.3	$8 \cdot 5$	$8 \cdot 5$	7.9	10.8	14.4	14.5	1.6
9	117	$15 \cdot 2$	144	16.2	7%	12.1	$9 \cdot 6$	9.6	9.4	10.3	154	14°	12.1
10	12.0	$16 \cdot 2$	$15 \% 2$	17.6	$8 \cdot 2$	12.8	$10 \cdot 7$	$10 \cdot 5$	$10 \cdot 2$	12.6	16.0	139	$13^{\circ} \mathrm{O}$
11	12.3	16.7	159	177	9°	13.8	11.4	10.9	10.8	14^{1}	17.1	14^{2}	13.7
Noon.	12.8	18.2	16.4	$19^{\circ} 0$	$10 \cdot 1$	14.3	12.6	119	115	$14^{\circ 2}$	17.8	15°	14.5
$13^{\text {b }}$	139	$19^{\circ} 2$	$17 \cdot 6$	19.3	119	15.2	$13^{\circ} \mathrm{O}$	$13^{\circ} 0$	119	15^{1}	18.1	$16 \cdot 4$	15.4
14	13.2	$19^{\circ} 2$	$17^{\circ} \mathrm{O}$	19.2	11.6	149	13.2	12.6	119	157	18.9	17.2	$15 \% 4$
15	13.6	18.5	$16 \cdot 8$	20.1	12.2	$15^{\circ} \mathrm{O}$	13.5	13.3	12.2	15.9	17.8	17.2	15.5
16	12.8	17.8	$15^{\circ} 9$	20.2	12.5	15°	13.7	13.7	11.7	$15 \% 4$	17.2	$16 \cdot 1$	15.2
17	11.8	17%	154	197	12.6	14.6	13.6	13.4	11.6	13.8	15.8	14.7	14.5
18	11%	$16 \cdot 2$	15°	19°	11.6	14.3	12.9	12.6	10.8	12.5	16.0	$15^{\circ} 6$	14°
19	11.4	16.0	137	16.9	11.1	13.9	114	114	$10 \cdot 7$	12.5	15.6	15°	13.3
20	12.2	15.6	13.8	16.0	$10^{\circ} 4$	$13^{\circ} 0$	11.3	$10 \cdot 5$	10.6	11.8	15.6	147	$13^{\circ} 0$
21	11%	157	14.2	15.8	$9 \cdot 6$	114	$10 \cdot 5$	$10^{\prime 2}$	10.6	11.8	15.1	14.6	12.6
22	11.8	15.5	13.3	15.5	$9 \cdot 6$	10.5	$9 \cdot 2$	9.5	$10 \cdot 0$	11.3	15.9	14^{11}	12.2
23	11.6	14 '9	12.3	14^{11}	$9 \cdot 4$	$10^{\circ} 0$	$8 \cdot 7$	$9 \cdot 3$	$9^{\circ} 0$	113	$15 \cdot 6$	147	117
Midnight.	$10 \cdot 6$	14^{2}	$12^{\circ} \mathrm{O}$	13.5	$8 \cdot 7$	$9^{\circ} 3$	$8 \cdot 3$	$8 \cdot 4$	8.9	11.0	15^{6}	14^{2}	11.2
Mems	11.8	16.0	$14^{\prime} 5$	16.1	94	12.1	$10 \cdot 3$	10^{1}	$9 \cdot 8$	12.0	16.1	149	12.8
$\begin{gathered} \text { Great'st } \\ \text { Houriy } \end{gathered} \int^{(1)}$		47	43	37	35	31	27	25	35	38	42	41	...
Measures. (2)	29	35	33	29	27		22	21	27	29	32	31	\ldots

(1.) Deduced from the motion of the cups by the formula $\mathrm{V}=3 v$;
(2.) ,, ,, ,, ,, ,, $\mathrm{V}=2 v+4$;
where v is the hourly motion of the cups in miles. Ş̧e Introduction.

Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day.
(Each result is the mean of Twenty-four Hourly Ordinates from the Photographic Register. The scale employed is arbitrary : the sign + indicates positive potential.)
1911.

Day of Mouth.	January.	February.	March.	April.	May.	June.	July.	Angust.	September.	October.	November.	December.
$\begin{aligned} & \bar{d} \\ & 1 \end{aligned}$	+ 634	+1065	$+854$	+ 395	+ 753	+ 227	$+485$	+ 4^{69}	+ 589	+ 991	+ 543	$+383$
${ }^{2}$	+1033	+915	$+458$	- 87	+ 345	+ 350	$+463$	+ 528	+514	+1395	+ 351	+ 295
3	+ 709	+ 372	+ 552	+ 918	+ 552	$+250$	$+687$	$+455$	+ 457	+ 947	$+375$	$+322$
4	+ 678	+ 89	+ 455	+1129	+915	$+316$	$+567$	+ 594	+ 439	$+908$	+311	+ 567
5	+ 644	+ 53	+ 839	+ 93I	+ 956	+ 194	+ 425	$+44^{8}$	$+730$	+ 597	+274	$+465$
6	+ 105	+ 934	+ 685	+ 1081	+ 515	$+323$	+ 302	$+423$	$+704$	+ $54{ }^{8}$	$+573$	+ 784
7	+1105	+1342	+ 913	+1027	+ 358	+ 439	+ 324	$+330$	+ 749	+ 597	+ 491	+ 182
8	+ 275	+1107	+ 950	+ II 10 I	+ 604	+ 546	$+453$	+ 288	+ 559	+ 405	+ 42 I	+ 539
9	+ 189	+ 731	$+533$	$+780$	+652	$+415$	+ 283	$+353$	+ 523	+615	+ 764	+ 743
10	+ 909	+602	+923	+ 826	+620	+ 688	$+527$	$+583$	+ 425	+692	+ 597	+ 19
11	+. 340	+ 990	$+406$	+ 823	+ 540	+ 445	+ 593	+315	+ 583	$+47^{\circ}$	$+532$	+ 649
12	+ 551	+ 974	+631	+1218	+ 571	+ 656	+619	+ 238	+629	+ 495	+ 151	+ 710
13	+ 994	+1119	$+720$	+835	$+470$	$+780$	+ 776	+186	$+590$	+ 268	+ 349	+ 335
14	+1213	+ 1068	+1274	+ 684	+67	+1017	+ 5^{82}	$+356$	+ 823	+150	$+408$	+ 385
15	+1234	+ 960	+657	+ 693	+ 409	+ 663	+ 525	+ 676	+1005	+ 105	$+338$	+ 242
16	+1033	+ 491	+ 889	+ 684	+ 351	$+370$	+ 514	$+802$	+1002	\ldots	+ 243	$+547$
17	+ 801	+ 563	+314	+ 775	+ 359	$+302$	$+580$	+502	+ 815	+212	+ 249	$+142$
18	+ 767	+ 294	+ 339	+ 415	+ 425	+ 289	$+560$	+ 703	+ 934	$+358$	+ 95	+275
19	+ 871	+ 498	...	+ 312	+ 726	+313	+ 594	$+324$	+ 625	+ 154	+ 179	+ 268
20	+ 850	+1117	$+470$	$+716$	+ 827	+610	+ 439	+227	$+4^{60}$	+ 125	$+473$	+224
21	+ 834	+ 523	+ 424	+ 4^{81}	+ 618	+ 431	+ 469	+ 150	$+840$	+ 120	$+1093$	+223
22	+ 691	+ 557	+ 396	+ 705	+ 591	+301	$+538$	+ 286	+ 824	$+90$	+ 974	$+250$
23	+ 732	$+375$	+317	+ 443	+ 594	$+181$	$+228$	$+371$	$+550$	+ 259	+ 715	$+702$
24	+ 381	$+833$	+ 733	$+8_{4}$	+ 301	+ 292	+ 220	+ 238	+601	+ 95	$+604$	$+323$
25	+ 284	+ 445	+819	$+635$	+ 301	$+161$	$+420$	+ 363	+ 606	$+478$	$+678$	$+376$
26	$+4^{26}$	$+631$	$+42 \mathrm{I}$	+ 782	+ 258	$+618$	$+468$	+ 385	$+5^{81}$	$+400$	$+851$	$+423$
27	+ 767	+ 48 I	+ 97	+ 450	+ 306	+ 747	+ 455	+ 177	+ 496	$+373$	+783	$+6_{44}$
28	+8.59	+226	+ 749	+ 546	+ 257	+ 574	+ 558	+ 200	+927	+ 654	+ 457	+ 445
29	+ 785		+ 584	$+710$	+ 334	$+358$	+ 265	$+439$	+1160	$+603$	+ 447	$+447$
30	+614		...	$+848$	$+430$	$+314$	+ 306	+ 563	$+853$	+ 195	+619	$+423$
31	+ 931		...		+235			+569		+524		+ 519
Means	+ 717	+691	+622	+ 723 ,	+ 492	$+439$	+ 474	$+405$	+ 686	$+4^{61}$	$+49^{8}$	$+415$

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, at every Hour of the Day.
(The results depend on the Photographic Register, using all days of complete record. The scale employed is arbitary : the sign + indicates positive potential.)

$\begin{aligned} & \text { Hour. } \\ & \text { Greenwich } \\ & \text { Civil Time. } \end{aligned}$	1911.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{\text { a }}$
	January.	February.	March.	April.	May.	June.	July.	August.	Seprember.	October.	November.	December.	
Midnight	+ 731	+660	+621	$+772$	$+520$	+ 417	+ 498	+ 447	+ 640	+ 434	$+475$	+ 395	$+551$
$1^{\text {b }}$	+699	+ 603	+ 555	+ 655	$+486$	$+403$	+ 456	+ 405	+ 537	+ 441	$+433$	$+325$	$+500$
2	+612	+ 529	$+490$	+ 565	+ $47{ }^{1}$	+ 391	+ 418	+ 375	+ 525	$+408$	+ 371	+ 304	$+455$
3	$+535$	$+496$	$+466$	+ 538	+ 460	+ 357	+ 394	+ 347	+ 526	+ 371	+ 356	+ 307	+ 429
4	+ 524	+ 489	$+45^{2}$	+ 549	$+456$	$+358$	+ 391	+ 341	+ 518	$+384$	+ 389	+ 281	+ 428
5	+ 548	+ 52 I	$+442$	+ 554	$+4^{81}$	+ 389	+ 393	+ 342	+ 541	+ 399	$+435$	+ 253	+ 44^{1}
6	+ 58 I	+ 569	+ 435	$+600$	$+508$	$+4^{26}$	+415	+ 355	+ 574	+ 408	+ 457	+283	+ 468
7	+617	+633	$+498$	+ 708	+ 532	$+47^{8}$	$+486$	$+386$	+ 649	+ 442	+ 490	+285	+ 517
8	+ 657	+ 675	+ 563	$+769$	$+550$	$+495$	+ 528	$+415$	+723	+ 455	+ 519	$+330$	$+557$
9	+ 730	$+710$	$+672$	+ 794	$+550$	+ 511	+ 571	$+460$	+769	$+486$	+ 549	+ 387	+ 599
10	+ 795	$+762$	$+766$	+805	+ 557	+ 532	+ 595	+ 492	+ 820	+ 539	+ 579	+ 4^{81}	$+6_{44}$
11	+ 818	+ 773	+ 804	+ 735	+ 553	+ 529	+ 541	+ 471	+809	+ 5^{21}	+ 544	+ 497	$+633$
Noon	+ 802	$+743$	+ 751	+ 680	+ 474	+ 455	+ 457	+ 408	+ 743	+ 498	+ 495	$+500$	+ 584
$13^{\text {h }}$	+ 722	$+723$	$+710$	+ 657	+ 390	+ 398	+ 402	+ 353	+ 695	+ 44^{6}	$+4^{62}$	$+487$	+ 537
14	+710	+ 714	+ 711	+ 688	+ 370	$+381$	+ 398	+ 32 I	+673	+ 458	+ 471	$+436$	+ 528
15	+ 740	$+744$	$+698$	+ 690	+ 439	+ 405	+ 425	$+303$	+ 669	+ 44^{2}	+ 522	+ 4^{62}	+ 545
16	+ 787	+ 802	+ 687	+ 733	$+4^{81}$	+ 424	+ 466	+ 316	+ 664	+ 458	+ 526	+448	$+566$
17	+ 809	+ 825	+ 698	+ 779	+ 457	+ 453	+ 478	+ 377	+ 747	+ 503	+ 535	$+488$	$+596$
18	+ 787	$+846$	+ 706	+ 837	$+441$	$+456$	+ 509	+ 389	+ 775	+ 528	+ 550	+ 52 I	+612
19	+ 795	+ 846	+ 600	$+878$	+ 468	+ 459	+ 502	+ 445	+ 832	+ 523	+ 588	$+512$	$+621$
20	+ 807	$+823$	+ 568	+ 865	+ 504	+ 445	$+523$	+ 473	+ 796	+ 500	+ 593	+ 534	+ 619
21	+ 818	$+780$	+ 635	+ 845	+ 540	+ 453	+515	+ 501	+ 766	+ 4^{82}	+ 574	$+496$	+617
22	$+826$	+ 687	+ 697	+836	+ 566	$+462$	+503	+ 501	+ 754	+ 475	+ 523	$+476$	+ 609
23	$+767$	$+637$	+ 692	+ 826	+ 546	$+458$	+516	+ 486	+728	$+4^{61}$	+ 515	$+461$	+ 591
24	+ 732	+626	+62I	$+776$	+ 504	+ 419	+ 509	$+453$	+650	+ 414	+ 474	+398	$+548$
${ }^{\text {ob }} \cdot \underline{-23^{\text {b }}}$	+ 717	+ 691	$+622$	+ 723	$+49^{2}$	+ 439	+ 474	$+405$	+ 686	$+4^{61}$	+ 498	+ 415	+ 552
$=1 \quad 1^{\mathrm{h}} \cdot-24^{\mathrm{h}}$.	+ 717	+ 690	$+622$	+723	+ 491	+ 439	+ 475	+ 405	+687	+ 460	$+498$	+ 415	+ 552
$\left\{\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	31	28	28	30	31	30	30	$\cdot 31$	30	30	30	31	\ldots

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day.

(The results depend on the Photographic Register, using all days on which the rainfall amounted to or exceeded ${ }^{\text {in. }}$ ozo.
The scale employed is arbitrary : the sign + indicates positive potential.)

$\begin{aligned} & \text { Hour, } \\ & \text { Hreenwich } \\ & \text { Civil Time. } \end{aligned}$	1911.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{\text { a }}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	+617	$+577$	$+571$	$+712$	+ 557	+ 266	+ 407	$+404$	+ 564	+ 329	+ 358	$+348$	$+476$
$1^{\text {b }}$	+616	+ 432	+ 459	+ 547	+ 530	+ 226	+ 370	$+381$	+ 349	+ 358	+ 326	+ 268	$+405$
2	$+4^{62}$	+ 285	$+35^{8}$	+ 391	+ 505	+ 222	+ 387	+ 366	+ 383	+ 305	+269	+ 265	+ 350
3	+ 331	+ 298	+ 365	+ 366	+ 483	+ 159	+ 413	+ 333	+ 401	+ 242	+ 261	+ 270	+ 327
4	+ 291	+ 318	+ 349	+ 419	$+417$	+182	$+37.3$	+ 344	+ 420	+ 266	+ 297	+ 229	+ 325
5	+ 341	+ 315	+ 274	+ 424	$+388$	+ 260	+ 290	+ 329	+ 44°	+ 295	+ 349	178	+ 324
6	+ 402	+ 335	+ 228	$+468$	+ 335	+ 309	+ 133	+ 334	+ 484	+ 311	+ 348	+ 204	+ 324
7	+ 474	+ 422	+ 325	+ 667	+ 272	+ 390	$+437$	+ 324	+ 589	+ 328	+ 374	+ 168	+ 397
8	+502	$+4^{85}$	+ 442	$+748$	+ 268	$+401$	+ 393	+ 309	+ 745	+ 292	+ 385	196	+ 431
9	+ 570	+ 495	$+576$	+ 708	+ 253	$+421$	+ 303	+ 356	+ 850	+ 305	+ 445	+ 262	$+4^{62}$
10	+620	+ 557	+ 684	+ 696	+ 267	$+45^{6}$	+ 400	$+396$	+ 861	+ 332	+ 507	+ 385	+ 513
11	+630	+ 570	$+782$	+ 566	+ 335	$+4^{61}$	$+430$	$+373$	+ 792	$+304$	+ +74	+ 413	+ 5^{11}
Noon	+ 579	+ 546	+ 746	+ 488	+ 288	$+407$	+ 353	+ 357	+783	+ 329	+ 403	+ 418	+ 475
$13^{\text {h }}$	+ 426	+ 506	+ 734	+ 467	+ 220	$+389$	$+330$	+309	+ 816	+ 316	+ 381	+ 420	$+443$
14	+ 382	+ 526	+ 730	+ 530	+ 168	+ 340	+287	+ 284	$+8 \mathrm{Io}$	+287	+ 406	+ 333	+ 425
15	+ 388	+ 595	+ 685	+ 533	+ 173	+ 412	+ 240	+ 226	+ 747	+ 290	$+47^{\circ}$	+ 394	+ 429
16	+ 475	+ 695	+ 609	+617	+ 253	$+470$	+260	+ 229	+ 688	+ 259	$+448$	+380	+ 449
17	+ 528	+ 755	+ 577	+ 700	+ 230	+ 44^{2}	+307	+ 293	+ 864	+ 258	$+448$	$\bigcirc 436$	+487
18	+478	+ 789	+ 590	+ 844	$+\quad 53$	+ 431	$+320$	$+160$	+ 720	$+320$	+ 447	+481	+ 4^{69}
19	+ 547	+ 784	+ 468	+ 888	+ 108	+ 529	+ 243	+ 214	+ 836	+ 329	+ 516	+ 466	+ 494
20	+ 683	+ 744	+ 46	+ 831	+ 253	+ 509	+610	+ 343	+ 752	+ 325	+ 535	+ 500	$+546$
21	$+715$	$+676$	+ 600	+ 747	$+412$	+ 444	+ 207	$+430$	+786	+ 285	+ 511	+ 495	+526
22	+ 752	+ 500	+ 697	+ 768	+ 545	+ 370	- 3	+ 397	+ 803	+ 268	+ $4^{6} 4$	+ 503	+ 505
23	+ 701	$+423$	+ 733	+ 816	+ 582	$+357$	+ 143	+ 379	+ 858	+ 263	$+478$	+ 480	$+518$
${ }^{2} 4$	+ 654	+ 544	+ 695	+ 806	$+532$	+ 393	+ 337	+ $35+$	$+810$	+ 200	$+443$	+ 376	+ 512
$0^{b} .-23^{\text {b }}$.	+ 52 I	+ 526	+ 544	+623	+ 329	+ 369	$+318$	+ 328	+ 681	$+300$	+ 413	+ 355	$+4{ }^{2}$
$\sum^{2} \quad 11^{\text {h }} \cdot-24^{\text {b }}$.	+523	+ 525	+ 549	+ 626	$+328$	$+374$	$+315$	$+326$	+ 691	+ 294	$+416$	$+356$	+ 444
$\left.\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	10	11	13	9	. 6	9	3	7	8	13	18	21	\ldots

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non-Rainy Days, at every Hour of the Day.
(The results depend on the Photographic Register, using only those days on which no rainfall was recorded. The scale employed is arbitrary: the sign + indicates positive potential.)

$\begin{gathered} \text { Hour, } \\ \text { Greenwich } \\ \text { Civil Time. } \end{gathered}$	1911.												$\xrightarrow{\text { Yearly }}$ Means.
	January.	Feiraary.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	+ 799	$+885$	+614	+ 745	+ 514	+ 450	+ 517	$+4^{81}$	+ 681	$+5^{81}$	$+570$	$+477^{\circ}$	+610
$1^{\text {b }}$	+ 748	+ 901	+621	+ 656	+ 475	+ 457	$+475$	$+430$	+615	+ 563	+ 522	+ 429	+ 574
2	+ 694	+ 877	$+596$	+601	$+4^{61}$	$+460$	$+427$	+ 394	+ 5^{81}	+ 550	+ 475	$+385$	$+542$
3	+ 640	+ 795	+ 560	+ 576	+ 453	+ 442	+ 394	+ 367	+ 577	+ 526	+ 472	$+383$	+ 515
4	+ 638	+ 755	$+55^{1}$	+ 569	$+4^{63}$	+ 450	+ 394	$+356$	+ 561	+ 532	+ 503	+ 376	+ 512
5	+ 649	$+820$	+ 565	+ 568	$+496$	+ 459	+ 403	+ 359	+ 575	+ 53 3	+ 508	$+387$	+ 527
6	+672	+873	+ 607	+ 606	+ 536	+ 473	+ 447	+ 374	+ 608	+ 5.29	+ 573	+ 424	+ 560
7	+ 686	+ 921	+689	+ 662	+578	+ 502	+ 495	+ 423	+683	+ 571	+ 640	+ 494	+612
8	+ 737	+ 947	+ 748	$+707$	+ 606	+ 513	+ 546	+ 466	+ 732	+618	+ 697	+ 575	+ 658
9	+ 808	+1014	$+794$	+ 760	$+611$	+ 52 I	+601	+521	+ 766	+ 670	+ 715	+615	$+700$
10	+ 882	+1095	+ 854	+ 788	+611	+ 531	+618	$+548$	+ 839	+ 747	+ 718	+ 658	+ 741
11	+ 918	+1144	+ 83I	+ 779	$+584$	+519	+ 556	+ 521	+ 851	+ 736	+ 670	+ 641	+ 729
Noon	+ 912	+1077	$+756$	$+716$	+ 491	+ 451	+ 47.4	+ 430	+ 757	+ 66 I	+ 660	$+631$	+ 668
$13^{\text {h }}$	+ 876	+1075	+ 705	+ 684	+ 401	$+383$	+ 414	+ 373	+ 667	+612	+ 620	+ 585	+ 616
14	+ 877	+1035	+ 732	+ 700	+ 388	$+373$	+ 415	+ 347	+ 645	+ 637	+ 600	$+579$	+611
15	+ 904	+1031	$+775$	+698	+ 4^{69}	+ 367	+ 451	+ 336	+ 651	+ 649	+ 687	+ 57 I	$+63.2$
16	+ 929	+1063	+815	+ 724	+ 496	$+354$	+ 495	+ 353	+671	+ 684	+ 688	$+55^{2}$	+ 652
17	+ 938	$+1067$	+ 816	+ 774	+ 4^{81}	+ 377	$+498$	+ 402	+ 718	+ 745	+ 703	+ 566	+674
18	+ 935	+1101	$+776$	+ 811	+ 509	+ 393	+ 527	+ 465	+ 809	+ 750	+ 737	+ 585	$+700$
19	+ 919	+1133	$+663$	+ 846	+ 531	+ 373	+ 532	+ 518	+ 846	+ 724	+ 708	+ 5^{84}	+ 698
20	$+873$	+1115	$+615$	+ 858	+ 540	$+361$	+ 518	$+522$	$+831$	+ 68 I	+ 697	+ 603	+ 684
21	+880	+1081	$+650$	+ 858	+ 550	$+406$	+ 555	+ 533	+ 779	+ 675	+ 718	+ 554	$+687$
22	+ 875	+1043	+ 714	+ 838	+ 530	$+466$	+ 560	+ 54^{2}	+ 755	+ 679	+ 648	+ 524	$+683$
23	+ 809	+1015	+ 672	+ 813	+ 516	+489	$+553$	+ 528	+ 695	+ 650	+ 602	+ 456	+650
24	+ 779	$+896$	$+536$	+ 754	$+477$	$+468$	+ 525	$+492$	+598	+612	$+553$	+ 431	+ 593
$o^{\mathrm{h}} .-23^{\mathrm{l}} .$	+817	+ 994	+ 697	$+722$	+513	+ 440	+ 494	$+44 \mathrm{I}$	+ 704	+638	+ 630	$+526$	$+635$
$=1_{1}{ }^{\mathrm{h}} .24^{\mathrm{h}}$.	+ 816	+ 995	+ 693	+ 723	+ 511	+ 441	+ 495	+ 442	+ 700	$+639$	+ 630	+ 524	+ 634
$\left\{\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	19	11	8	17	22	15	26	21	20	14	6	8	\ldots

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

OF

LUMINOUS METEORS.

1911.

Month and Day, IgII.	Greenwich Civil Time.	Observer.	Brightness of Meteor in Star Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	Path of Meteor in the Sky.
	n m ${ }^{\text {m }}$				s		-	- 0
November 14	I. 35.25		1	White	$0 \cdot 4$	None	10	$62+5$ to $54-4$
	I. 50.18	T\&FB	2	Yellow	$0 \cdot 3$	Slight	20	$84+26$ to $105+33$
"	1. 55.51	T	3	...	$0 \cdot 1$	15	$55+36$ to $62+22$
	2. 19. 56	FB	2	White	0.5	Faint	11	$88+54$ to $105+58$
"	2. 57. 28	T\&FB	2	Yellow	$0 \cdot 5$	Slight	26	$120+34$ to $90+47$
",	3. 21. 18	FB	3	Bluish-white	$\bigcirc \cdot 3$	White	12	$150+64$ to $150+52$
"	3. 25.18	FB	2	White	$0 \cdot 3$	White	5	$158+40$ to $158+145$
	3. 41 I 14	T	3	Yellow	$0 \cdot 3$	None	14	$158+62$ to $150+75$
	22. 22. 士	T	2	Yellow	0.5	Slight	10	$293+78$ to $246+77$
"	23. 31. 7	D	3	White	0.5	None	23	$50+48$ to $15+56$
"	23. 48. 39	D	2	Yellow	$0 \cdot 3$	None	6	$108+30$ to $114+28$
	23. 59. 41	D	3	Bluish-white	0.2	Slight	1 I	$125+57$ to $130+47$
November 15	0. 12. 18		2	White			23	$77+61$ to $89+84$
,	-. 20. 34	T	3	Bluish-white	$0 \cdot 3$	Slight	10	$128+63$ to $132+54$
",	-. 23. 49	T	I	White	0.6	Slight	17	$123+33$ to $140+44$
"	1. 3. 22	D	2	Yellow	0.4	Faint	22	$99+40$ to $128+47$
"	1. 25. 12	T	1	Yellow	$0 \cdot 4$	Slight	14	81 - 12 to 95-13
"	I. 3I. 49	D	3	White	$0 \cdot 2$	None	15	$86-10$ to $98-17$
",	I. 33.40	T	2	Yellow	$0 \cdot 2$	None	10	$107+4$ to $117+3$
",	I. 40.25	T	1	White	0.8	None	21	$102-3$ to $96-22$
"	2. 18. 19	$\mathrm{T}_{\&-\mathrm{T}}^{\mathrm{D}}$	2	Bluish-white	0.8	1 sec .	23	$8+64$ to $330+85$
"	2. 25. 21	T \& D	2	Yellow	0.2	None	14	$39+46$ to $20+42$
November 17	20.47. 22	D	I	Yellow	1×0	2.5 secs.	34	$20+62$ to $74+47$
December II	20. 23. 11	D	I	White	0.5	I sec.	8	$83-2$ to $77-7$
	20. 29. 6	D	1	Yellow	$0 \cdot 3$	Slight	9	$84+7$ to $75+9$

The time is expressed in civil reckoning, commencing at midnight and counting from oh to 24^{h}.

[^0]: At the end of the year the magnet was readjusted, thus breaking the continuity of the values

[^1]: The mean Temperature of Evaporation for the month was $61^{\circ} \cdot 2$, being $3^{\circ} \cdot 7^{\circ}$ higher than
 The mean Temperature of the Dew Point for the month was $56^{\circ}{ }_{3}$, being $2^{\circ}{ }_{3}$ h higher than
 The mean Degree of Humidity for the month was $68 \cdot 1$, being $8 \cdot 2$ less than
 The mean Elastic Force of Vapour for the month was $0^{\text {in }} 454$, being $0^{\text {in }} \cdot 036$ greater than
 The mean Weight of Vapour in a Cubic Foot of Air for the month was $5{ }^{\mathrm{grs}} \cdot \circ$, being ${ }^{\circ \mathrm{gr}} \cdot 4$ greater than
 The mean Weight of a Cubic Foot of Air for the month was 523 grains, being 5 grains less than
 The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was 5 .r.
 The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.576 . The maximum daily amount of Sunshine was 13.6 hours on August 8 .
 The highest reading of the Solar Radiation Thermometer was $161^{\circ} \cdot 9$ on August 4 ; and the lowest reading of the Terrestrial Radiation Thermometer was $40^{\circ} \circ$ on August 3^{1}.
 The Proportions of Wind referred to the cardinal points were N. 4, E. 7, S. 8, and W. 10. Two days were calm.
 The Greatest Pressure of the Wind in the month was $5^{\circ} \circ \mathrm{lbs}$. on the square foot on August 6. The mean daily Horizontal Movement of the Air for the month was 243 miles; the greatest daily value was 390 miles on August 6; and the least daily value was 142 miles on August 9 and 23 .
 Rain (oin•005 or over) fell on 8 days in the month, amounting to $\mathrm{i}^{\mathrm{in}} \cdot 343$, as measured by gauge No. 6 partly sunk below the ground; being $\mathrm{r}^{\mathrm{in}} \cdot \mathrm{ool}$ less than the average fall for the 65 years, 1841 -1905.

