RESULTS

OF THE

Magnetacaland Meteorological observations

MADE AT

THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR

1912

UNDER THE DIRECTION OF
F. W. D Y S O N, M.A., LL.D., F.R.S., ASTRONOMER ROYAL.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY, IN OBEDIENCE TO HIS MAJESTY'S COMMAND.

LONDON:
PRINTED UNDER THE AUTHORITY OF HIS MAJESTY'S STATIONERY OFFICE By Neill \& CO., Limited, Bellevue, Edinburgh.
1914.
[Crown Copyright Reserved.]

I N D E X.

INTRODUCTION.page
Personal Establishment and Arrangements Ei
General Description of the Buildings and Instruments Ei
Subjects of Observation E ii
Magnetic Instruments-
Declination Magnet for Absolute Determinations E iii
Dip Instrument E iv
Deflection Instrument E v
Declination Variometer Evii
Horizontal Force Variometer E ix
Vertical Force Variometer Exi
Magnetic Reductions Exiii
Table of Magnetic Elements determined at Greenwich from 1841 Exviii
Metborological Instruments-
Standard Barometer Exix
Photographic Barometer E xx
Dry and Wet Bulb Thermometers Exxi
Photographic Dry and Wet Bulb Thermometers Exxiii
Radiation Thermometers Exxiv

- Earth Thermometers E $x \times v$
Osler's Anemometer Exxvi
Robinson's Anemometer Exxvii
Rain-Gauaes Exxviii
Eleotrometrr E xxx
Sunshine Recorder E $x x x$
Meteorological Reductions Exxxi
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABULAR ARRANGEMENT:- PAGE
Results of Magnetigal Observations E 1
Table I.-Mean Magnetic Declination West for each Civil Day E 2
Table II.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West. E 2
Table III.-Diurnal Range of Declination on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register E 3
Table IV.—Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Days, in each Month E 3
Table V.-Mean Horizontal Magnetic Force for each Civil Day E 4
Table VI.-Monthly and Annual Mean Diurnal Inequalities of Horizontal Magnetic Force E 4
Table VII.—Diurnal Range of Horizontal Magnetic Force on each Civil Day, as deduced from the Twenty four Hourly Measures of Ordinates of the Photographic Register E 5
Table VIII.-Monthly and Annual Mean Diurnal Inequalities of Horizontal Magnetic Force from Hourly Ordinates, on Five Selected Days, in each Month E 5
Table IX.—Mean Vertical Magnetic Force for each Civil Day E 6
Table X.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force E 6
Table XI.—Diurnal Range of Vertical Magnetic Force on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register E 7
Table XII.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Days, in each Month E 7
Table XIII.-Mean Temperature for each Civil Day within the box inclosing the Horizontal Force Magnet E. 8
Tabler XIV. - Monthly and Annual Mean Temperature at each Hour of the Day within the box inclosing the Horizontal Force Magnet E 8
Table XV.-Mean Temperature for each Civil Day within the box inclosing the Vertical Force Magnet E 9
T'able XVI.—Monthly and Annual Mean Temperature at each Hour of the Day within the box inclosing the Vertical Force Magnet E 9
Table XVII.-Values of the Coefficients in the Periodical Expression-

$$
\mathrm{V}_{t}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+\& c
$$

for the Magnetic Diurnal InequalitiesE 10
Table XVIII.-Values of the Coefficients and Constant Angles in the Periodical Expressions-

$$
\begin{aligned}
& \mathrm{V}_{t}=m+c_{1} \sin (t+a)+c_{2} \sin (2 t+\beta)+\& \mathrm{c} \\
& \mathrm{~V}_{t^{\prime}}=m+c_{1} \sin \left(t^{\prime}+a^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+\& \mathrm{c}
\end{aligned}
$$

for the Magnetic Diurnal Inequalities E 11
Table XIX. Determinations of the Absolute Value of Horizontal Magnetic Force E 12
Table XX.-. E 13
Table XXI. - Results of Observations of Magnetic Dip E 14
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS-continued. page
Table XXII --Monthly and Annual Means of Magnetic Dip E 15
Table XXIII.-Annual Summary of the Magnetic Elements E 15
Magnetic Disturbances E 16
Explanation of the Plates of Magnetic Disturbances E 16
Plates I.-II., photo-lithographed from tracings of the Photographic Registers of Magnetic Disturbances.
Plate III., photo-lithographed from tracings of the Photographic Registers of Magnetic Movements, as types of the Diurnal Variations, at four seasons of the year.
Brief description of Magnetic Movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 20γ in Horizontal Force, or 12γ in Vertical Force, taken from the Photographic Register E 18
Results of Meteorological Observations E 25
Daily Results of the Meteorological Observations E 26
Highest and Lowest Readings of the Barometer E 50
Highest and Lowest Readings of the Barometer for each Month E 50
Monthly Results of Meteorological Elements E 51
Monthly Mean Reading of the Barometer at every Hour of the Day E 52
Monthly Mean Temperature of the Air at every Hour of the Day E 52
Monthly Mean Temperature of Evaporation at every Hour of the Day E 53
Monthly Mean Temperature of the Dew-Point at every Hour of the Day E 53
Monthly Mean Degree of Humidity at every Hour of the Day E 54
Total Amount of Sunshine registered in each Hour of the Day in each Month E 54
Readings of Thermometers on the ordinary stand in the Magnetic Pavilion Enclosure E 55
Excess of Readings in Stevenson Screen above those in ordinary stand E 58
Amount of Rain collected in each Month by the different gauges E 58
Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer E 59
Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures as derived from the Records of Robinson's Anemometer E 66
Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day E 67
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, at every Hour of the Day E 68
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day E 69
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non- Rainy Days, at every Hour of the Day E 70
Orservations of Luminous Meteors E 71

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1912.

Introduction.

In the present volume a sufficient account is given of the instruments and methods of reduction now in use. Fuller information, principally of a historical nature, may be found in the Introductions to the volumes for 1909 and previous years.
§ 1. Personal Establishment and Arrangements.
During the year 1912 the personal establishment in the Magnetical and Meteorological Department of the Royal Observatory consisted of Walter William Bryant, Superintendent, aided by one Junior Assistant, David J. R. Edney, and four Computers. The Computers employed during the year were:-William H. Timbury, Sydney T. Divers, Frederick Brown and Harold George Showell.

Mr. Bryant controls and superintends the whole of the work of the Department. The routine magnetical and meteorological observations are in general made by the Computers.

§ 2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory.

The buildings and instruments remained substantially unchanged throughout the year 1912. For a detailed historical account of them, reference should be made to the Introductions to earlier volumes of these observations.

E ii Introduction to Greenwich Magnetical Observations, 1912.

The instruments for photographic registration of changes in the atmospheric pressure, magnetic declination, and horizontal and vertical magnetic force, are situated in an underground chamber (known as the Magnet Basement) ; this chamber is kept at a nearly uniform temperature by means of gas stoves. The small variations of temperature are recorded on a Richard thermograph. In the same room there are two mean solar clocks, one being of peculiar construction in order to interrupt the photographic traces at each hour. All these instruments are mounted on or suspended from supports carried by piers built from the ground.

In a wooden building (called the Magnet House) above this chamber are placed the standard barometer, and a Thomson electrometer for photographic registration of the variations of atmospheric electricity. A platform erected above the roof of the Magnet House is used for the observation of meteors; and a nephoscope is mounted there for occasional observations. On the same platform there is a rain-gauge, at a height of 20 feet above the ground.

Near the Magnet House, on what is known as the Magnet Ground, are the earth thermometers, the photographic dry and wet-bulb thermometer apparatus, a rain-gauge, and a set of dry-bulb, wet-bulb, and maximum and minimum thermometers in a Stevenson screen.

The Magnet House is built of non-magnetic material, but during the years 18911898 considerable masses of iron were introduced into its neighbourhood by the building of certain additions to the Observatory. Hence the instruments which were formerly placed in the Magnet House, for absolute determinations of magnetic declination, dip, and horizontal force, were transferred to the Magnetic Pavilion. This building is constructed of non-magnetic materials, and stands in an enclosure in Greenwich Park, 350 yards to the east of the Observatory, on a site carefully chosen for its freedom from abnormal magnetic conditions. In the enclosure there are two sets of thermometers used for ordinary eye observations, the thermometers for solar and terrestrial radiation, and two rain-gauges.

The anemometers, three rain-gauges, and the sunshine recorder are fixed above the roof of the Octagon Room (the ancient part of the Observatory).
§ 3. Subjects of Observation in the year 1912.
The observations comprise determinations of absolute magnetic declination, hor1zontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force; eye observations of the ordinary meteorological
instruments, including the barometer, dry and wet-bulb thermometers, radiation and earth thermometers; continuous photographic record of the variations of the barometer, dry and wet-bulb thermometers, and electrometer (for atmospheric electricity) ; continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine; observations of some of the principal meteor showers; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud, special cloud observations in connection with the International Balloon ascents, and occasional phenomena.

Since 1885, Greenwich civil time, reckoning from midnight to midnight, and counting from 0 to 24 hours, has been employed throughout the magnetical and meteorological sections.

§ 4. Magnetic Instruments.

Declination Magnet for Absolute Determinations.-Since 1899 January 1, regular observations of declination have been made in the Magnetic Pavilion. The hollow cylindrical magnet Elliot No. 75 is used in conjunction with a telescope by Troughton and Simms, placed on a pier about 2 feet south of the magnet. The magnet is about 4 inches long, and at one end is an engraved glass scale for collimation. The telescope is 21 inches long, and the aperture of its object-glass is 2 inches; its horizontal circle is 16.6 inches in diameter, divided to 5^{\prime} and read by verniers to $5^{\prime \prime}$. It has no vertical circle. The eye-piece has one fixed horizontal wire and one vertical wire, moved by a micrometer screw, the value of one revolution of which is $1^{\prime} 34^{\prime \prime} \cdot 2$. The adopted collimation reading was $100^{r} \cdot 280$ until November 15, when it became necessary to insert a new wire, for which the adopted reading was $100^{r} \cdot 300$.

The vertical axis of the telescope is adjusted by means of a fixed level, one division of which corresponds to $1^{\prime \prime} \cdot 15$. The level correction for inequality of the pivots of the axis of the telescope was found in 1898 to be $-6^{\text {div. }} 0$ or $-6^{\prime \prime} \cdot 9$.

The reading of the azimuth circle corresponding to the astronomical meridian is determined by observations of Polaris, taken once a week whenever practicable. The collimation error of the magnet collimator is also determined weekly, by observing the position of the magnet in its usual position with the scale direct, then with the scale reversed (by turning the magnet through 180° in its carrier, about the longitudinal axis) ; the observations are repeated quickly several times. In the reduction of the observations of declination, the determinations of collimation error and azimuth zero reading are combined into half-yearly means.

E iv Introduction to Greenwich Magnetical Observations, 1912.

The torsion effect of the silk suspending skein is eliminated as nearly as possible, and any small effect still remaining is allowed for. The reading of the torsion circle which corresponds to free suspension in the plane of the magnetic meridian, and the ratio of the torsion couple, due to 90° of twist on the thread, to the couple due to the Earth's horizontal magnetic force, are determined weekly.

Declination observations are usually made four times daily, at $9^{\mathrm{h}}, 12^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h}.
Dip Instrument.--This instrument was designed by Sir G. B. Airy, and constructed by Troughton and Simms. It is mounted in the Magnetic Pavilion on a slate slab supported by a braced wooden stand built upon a pier insulated from the floor. It was designed so that needles of three different lengths could be used, but in practice only those 3 inches in length have been used since 1898 September 30 . The pivots of the needles rest on agate bearings within a gun-metal box with back and front of glass. On the inner side of the front glass (which is parallel to the plane of vibration of the needle) is etched a graduated circle, $9 \frac{3}{4}$ inches in diameter, divided to 10^{\prime} and read by two verniers to $10^{\prime \prime}$. The verniers are thin plates of metal with notches instead of marks, for use with transmitted light. They are attached to a frame which can move about a horizontal axis nearly coincident with the pivot axis of the needles; two microscopes are mounted on this frame, for observation of the two ends of the needle.

The inclination of the needle is observed by turning the movable frame till the two ends of the needle (seen as a dark object in a bright field) come into view in the microscopes. The position of the movable frame is read by the circle and verniers, and the position of the needle relative to the frame is read off on glass scales within the microscopes. These scales are divided to $1000^{\prime \prime}$, and can be read by estimation to $100^{\prime \prime}$. A brass zenith-point needle is used to determine the zenith-point reading.

The gun-metal box is mounted on a circular horizontal plate which can be rotated in azimuth, its position being read on a graduated circle by fixed verniers.

There are two levels, at right angles, on the base-plate ; the level is adjusted from time to time, and the readings of dip are corrected for any small outstanding level error (generally amounting to a few seconds of arc).

Observations are made only in the plane of the magnetic meridian. The needle is first magnetised by double touch, giving it nine strokes on each of its sides. Its inclination to the horizontal, when placed in the instrument, having been read, the whole apparatus is reversed in azimuth, and another reading taken. The needle pivots are then reversed on the agate bearings, and two more observations, in reversed posi-
tions of the instrument, are made. We will denote the mean of these four determinations of dip by θ_{1}. The needle is then taken out, remagnetised in the reverse direction, and four more observations are made in the same way, giving another mean reading θ_{2}.

Dip observations are made twelve times in each calendar month, at approximately equal intervals.

A systematic difference between θ_{1} and θ_{2} is assumed to indicate that the mass centre of the needle is not in the axis of the pivots. It may easily be seen that, on this supposition, the true inclination θ is given by the relation,

$$
\tan \theta=\frac{1}{2}\left(\tan \theta_{1}+\tan \theta_{2}\right) .
$$

The values of the dip given in this volume are obtained from this formula.
A pivot of one of the needles in use (D_{1}) was broken in January and a new axle fitted by Mr. Dover.

An earth-inductor with galvanometer was obtained during the year from the Cambridge Scientific Instrument Company, with which it is hoped to obtain values of dip free from systematic errors such as are indicated by the usual want of agreement between similar dip-needles, but no complete observations were made with the new instrument in 1912.

Deflection Instrument for Absolute Determinations of Horizontal Force.This instrument (known as Gibson No. 3) is similar to those issued from the Kew Observatory. It is mounted on a slate slab in the Magnetic Pavilion in the same way as the dip instrument.

The deflected magnet, used merely to ascertain the ratio which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism, is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to, and rotating with, the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflection the deflecting magnet is placed on the transverse deflection rod, carried by the rotating frame, at the distances 1.0 foot and 1.3 foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected

Evi Introduction to Greenwich Magnetical Observations, 1912.

magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter: it is graduated to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$.

It will be convenient in this case to include with the description of the instrument an account of the method of reduction employed, in which the Kew precepts are followed. Previous to the establishment of the instrument at the Royal Observatory, the values of the various instrumental constants, as determined at the Kew Observatory, were kindly communicated by the late Professor Balfour Stewart, and these have been since used in reduction of all observations made with the instrument at Greenwich.

The instrumental constants as thus furnished are as follows :-
The increase in the magnetic moment of the deflecting magnet produced by the inductive action of unit magnetic force in the English system of absolute measurement $=\mu=0.00015587$.

The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35° Fahrenheit $=c$ $=0.00013126(t-35)+0.000000259(t-35)^{2} ; t$ representing the temperature (in degrees Fahrenheit) at which the observation is made.

Moment of inertia of the deflecting magnet $=K$. At temperature 30°, log. $K=0.66643$; at temperature 90°, log. $K=0.66679$.

The distance on the deflection rod from $1^{\mathrm{ft}} .0$ east to $1^{\mathrm{ft} .} 0$ west of the engraved scale, at temperature 62°, is too long by 0.0034 inch, and the distance from $1^{\mathrm{ft}} 3$ east to $1^{\mathrm{ft}} 3$ west is too long by 0.0053 inch. The coefficient of expansion of the scale for 1° is $\cdot 00001$.

The adopted value of K was confirmed in the year 1878 by a new and independent determination made at the Royal Observatory, giving log. K at temperature $30^{\circ}=0.66727$.

Let $m=$ Magnetic moment of deflecting or vibrating magnet.
$X=$ Horizontal component of Earth's magnetic force.
Then, if in the two deflection observations, r_{1}, r_{2}, be the apparent distances of centre of deflecting magnet from deflected magnet, corrected for scale-error and temperature (about 1.0 and 1.3 foot),
u_{1}, u_{2} the observed angles of deflection,

$$
\begin{aligned}
& A_{1}=\frac{1}{2} r_{1}^{3} \sin u_{1}\left\{1+\frac{2 \mu}{r_{1}^{3}}+c\right\} \\
& A_{2}=\frac{1}{2} r_{2}^{3} \sin u_{2}\left\{1+\frac{2 \mu}{r_{2}^{3}}+c\right\}
\end{aligned}
$$

$P=\frac{A_{1}-A_{2}}{\frac{A_{1}}{r_{1}-\frac{A_{2}}{r_{2}}} \text { 2 }}$ P being a constant depending on the distribution of magnetism in the we have, using for reduction of the observations a mean value of P :-

$$
\begin{aligned}
& \frac{m}{\bar{X}}=A_{1}\left(1-\frac{P}{r_{1}^{2}}\right), \text { from observation at distance } r_{1} . \\
& \frac{m}{\bar{X}}=A_{2}\left(1-\frac{P}{r_{2}^{2}}\right), \text { from observation at distance } r_{2} .
\end{aligned}
$$

The mean of these is adopted as the true value of $\frac{m}{X}$.
In calculating the value of P as well as the values of the four factors within brackets, the distances \dot{r}_{1} and r_{2} are taken as being equal to 1.0 ft . and 1.3 ft . respectively. The expression for P is not convenient for logarithmic computation, and, in practice, its value for each observation has, since the year 1877, been calculated from the expression $\frac{\text { Log. } A_{1}-\text { Log. } A_{2}}{\text { modulus }} \times \frac{r_{1}^{2} \times r_{2}{ }^{2}}{r_{2}^{2}-r_{1}{ }^{2}}=\left(\right.$ Log. $A_{1}-$ Log. $\left.A_{2}\right) \times 5.64$.

For determination, from the observed vibrations, of the value of $m X$:-let $T_{1}=$ time of vibration of the deflecting magnet, corrected for rate of chronometer and arc of vibration,
$\frac{H}{F}=$ ratio of the couple due to torsion of the suspending thread to the couple due to the Earth's magnetic force. [This is obtained from the formula $\frac{H}{F}=\frac{\theta}{90^{\circ}-\theta^{\prime}}$, where $\theta=$ the angle through which the magnet is deflected by a twist of 90° in the thread.]

$$
\begin{aligned}
& \text { Then } T^{2}=T_{1}{ }^{2}\left\{1+\frac{H}{F}+\mu \frac{X}{m}-c\right\} \\
& \text { and } m X=\frac{\pi^{2} K}{T^{2}} .
\end{aligned}
$$

The corrected time of vibration of the deflecting magnet, printed in the tables of results, is the mean of 100 vibrations observed immediately before, and of 100 vibrations observed immediately after the observations of deflection, corrected for temperature, rate of chronometer, semi-arc of vibration, induction, and torsion force.

From the values of $m X$ and $\frac{m}{X}$ thus calculated, m and X are deduced. The actual computation is made in the British system of units (foot—grain—second). The derived value of X is then reduced to C.G.S. units, as given in the tables.

Observations of the absolute horizontal magnetic force are made weekly since 1912 February, before which time they were made twice monthly.

Declination Variometer.-The magnet used in this instrument is 2 feet long, $1 \frac{1}{2}$ inches wide, and $\frac{1}{4}$ inch thick. It is suspended by a skein of silk, consisting of a bundle of fine threads bound together at intervals of 6 or 7 inches : the skein is about

E viii Introduction to Greenwich Magnetical Observations, 1912.
12 feet long, 6 feet of which is vertical. The magnet is taken from its carrier at the beginning of each year, in order to remove any torsion which may have accumulated; this is done by stretching the skein under the weight of a brass torsion rod for a few hours, adjusting the torsion circle till the bar rests in the magnetic meridian. The magnet is enclosed in a double wooden box, and is encircled by a copper damper to reduce accidental vibrations.

The photographic registration takes place in the usual way, on a horizontal cylinder which revolves once in 26 hours; the same sheet also receives the record of the horizontal force variometer. The illumination is by gas-light. The photographic sheets are changed daily at $11 \mathrm{a} . \mathrm{m}$. On each sheet a reference line is photographed by a fixed spot of light. The traces are interrupted automatically for 4 minutes at every hour, to afford a time scale. By another shutter the observer occasionally cuts off the light for a few minutes, noting the time ; this facilitates the numeration of the hourly breaks. The length of 24 hours on the sheet is about 13.3 inches.*

The distance between the concave speculum mirror carried by the magnet, and the surface of the cylinder, is 134.4 inches. Since a movement of the mirror through 1° produces 2° of motion in the reflected ray, a change of 1° in declination corresponds to 4.691 inches on the photographic paper. A card-board strip, graduated on this scale to degrees and minutes, is prepared for reading from the sheets.

The base line is laid down as follows: the movement of the magnet is assumed to be identical with that of the absolute declination magnet, so that every observation with the latter affords a value of the base line. These values (of which four are obtained daily) were formerly taken in monthly groups, the means being adapted for use throughout the corresponding months. Then, by means of the card-board scale, a base line (whose ordinate represents some convenient quantity) is laid down upon each sheet; from this line the hourly ordinates (see p. E xiii) are measured.

In consequence, however, of the unsatisfactory nature of the changes of torsion of the silk suspending thread of the absolute declination magnet, the ordinary daily eye observations during 1912 were ignored. The base-line was derived from weekly observations in which special precautions were taken to eliminate torsion.

No eye readings of the position of this magnet are taken.

* In accordance with a circular from Dr Chree requesting co-operation in "quick speed" magnetograms for the Term-days of the Antarctic Expedition, two new driving clocks were supplied, one for the Declination and Horizontal Force Maguetograph, and the other for the Vertical Force. By a simple changing device, these can be made to drive the cylinders at the ordinary rate, or at twelve times the ordinary rate.

Horizontal Force Variometer.-The magnet used in this instrument is 2 feet long, $1 \frac{1}{2}$ inches broad, and about $\frac{1}{4}$ inch thick; it is enclosed in a double wooden box. The bifilar suspension consists of a silk skein passing under two small pulleys, which are attached to a vernier piece used in connection with a torsion circle on the frame which holds the magnet. The effective length of each branch of the skein is about $7^{\text {tt. }} 6^{\text {in. }}$; the distances between the branches at the upper and lower ends are respectively ${ }^{\text {in. }} \cdot 14$ and $0^{\text {in. }} \cdot 80$. The present skein was mounted in 1909 December.

The torsion circle is fixed relative to the magnet, while the vernier is movable; the circle is divided to half degrees, and read by vernier to 1^{\prime}. The torsion is adjusted so as to make the magnet hang approximately transverse to the magnetic meridian, the north magnetic pole being west. Accidental vibrations of the magnet are reduced by a copper damper.

The changes of horizontal force are registered photographically on the cylinder already described in connection with the declination variometer; the same reference line is used for each trace, and the arrangements for interruption of the traces are similar.

In the present case eye-readings of the position of the magnet can also be taken by means of an auxiliary mirror, telescope, and scale. The eye observations are usually made at convenient times within a few minutes of $9^{\mathrm{h}}, 12^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h}.

Since 12 inches of the fixed seale corresponds to $30^{\text {div. }} 85$, while the mirror is 90.84 inches distant (in a normal direction) from the scale, it appears that, for a change of one division of scale-reading, the magnet is turned through an angle of $7^{\prime} \cdot 21^{\prime \prime} 6$, or (in circular measure) 0.002141 . We will denote these two corresponding quantities by k and k_{1} respectively.

The magnet should be within two or three degrees of are on either side of the ideal position (i.e. magnetic east and west direction), if it is to indicate truly the changes in the magnitude of the horizontal magnetic force, without regard to small changes in its direction. Suppose ϕ is the angle of torsion, and θ the circular measure of the deviation of the magnetic axis from the ideal position, θ being reckoned positive when the north pole of the magnet is north of west; then the variation of the horizontal force-in terms of the whole horizontal force as unit-which will produce angular motion of the magnet corresponding to change of one scale-division, is

$$
k(\cot \phi+\tan \theta)
$$

Greenwion Magnetical and Mereorological Observations, 1912.

Ex Introduction to Greenwich Magnetical Observations, 1912.

Changes in θ are easily measured by the fixed scale ; but there is no direct means of determining the scale zero, viz., the scale-reading for the position $\theta=0$. This, together with the value of the angle of torsion, is determined annually (in order to break the continuity of the photographic register as seldom as possible) by the following method.

The torsion-circle being set so that the magnet is nearly east and west, readings of the torsion vernier $\left(\mathrm{V}_{1}\right)$, of the scale $\left(\mathrm{S}_{1}\right)$, and of the time of vibration (T_{1}) in this position, are carefully taken. The magnet is then taken out and replaced in the reverse position, end to end, in its carrier; the magnetic couple being thus reversed, the vernier-reading on the torsion scale must be changed by twice the angle of torsion (which is approximately known beforehand) in order to maintain the magnet transverse to the meridian. A finer adjustment is made, if necessary, while the magnet is in position. Corresponding readings are taken, of vernier (V_{2}), scale (S_{2}), and time of vibration $\left(\mathrm{T}_{2}\right)$. Lastly, the magnet is replaced in its original position, in which it remains (in general) until the following year's torsion observations. Again the three readings, $\mathrm{V}_{3}, \mathrm{~S}_{3}, \mathrm{~T}_{3}$, are taken.

Then for the angle of torsion we have

$$
\phi=\frac{1}{4}\left(2 \mathrm{~V}_{2}-\mathrm{V}_{1}-\mathrm{V}_{3}\right)+\frac{1}{2} k_{1}\left(\mathrm{~S}_{1}+\mathrm{S}_{3}-2 \mathrm{~S}_{2}\right),
$$

while the scale zero S_{0} is given by the formula

$$
\mathrm{S}_{0}=\frac{1}{4}\left(\mathrm{~S}_{1}+\mathrm{S}_{3}+2 \mathrm{~S}_{2}\right)+\frac{1}{k} \frac{\mathrm{~T}_{1}+\mathrm{T}_{3}-2 \mathrm{~T}_{2}}{\mathrm{~T}_{1}+\mathrm{T}_{3}+2 \mathrm{~T}_{2}} \cot \phi
$$

Two determinations of ϕ and S_{0} are made by taking two sets of observations of S, V, and T in each position of the magnet, with slightly different vernier readings.

The above method of determining the scale value was not used before the beginning of 1911, but the formulæ could be applied to the observations taken in connection with the method formerly used (a description of the latter is given in the volumes for 1908 and earlier years). A table of corrections (calculated from these formulæ) appeared in the Introduction to the Magnetical Observations for 1909 (see p. xv.), giving the percentage error in the scale values adopted for the horizontal foree magnetographs in the years 1883-1909.

From experiments on 1912 January 1, it was found that the angle of torsion was $42^{\circ} \cdot 8^{\prime}$, and the scale zero was $51 \cdot 21$; from similar experiments on 1913 January 1,
the corresponding values found were $41^{\circ} \cdot 59^{\prime}$ and $53 \cdot 06$. The mean scale reading during the year 1912 was about 59. The adopted values of ϕ and θ for the reduction of the observations for 1912 are $41^{\circ} \cdot 59^{\prime}$ and $+51^{\prime} \cdot 5$. Thus the value of cot $\phi+\tan \theta$ is $1 \cdot 1262$.

Since the distance between the concave mirror carried by the magnet and the surface of the cylinder is 136.8 inches, the length on the cylinder which corresponds to a change of 0.01 of the whole horizontal force is $2 \times 0.01 \times 136.8 \div(\cot \phi+\tan \theta)=$ $2^{\text {in. }} 429$ during the year 1912 ; the cardboard scale used for measuring the curves is constructed with this as unit.

As the indications of horizontal force are in a slight degree affected by the small changes to which the Magnet Basement is subject, a thermometer, the bulb of which reaches considerably below the attached scale, is placed in a nearly upright position on the outer magnet box, with its bulb projecting well into the interior of the inmer box. Readings of this thermometer are usually taken at $9^{\mathrm{h}}, 10^{\mathrm{h}}, 11^{\mathrm{h}}, 12^{\mathrm{h}}, 13^{\mathrm{h}}, 14^{\mathrm{h}}, 15^{\mathrm{h}}, 16^{\mathrm{h}}$, and 21^{h}. An index correction of $-0^{\circ} \cdot 3$ has been applied to all the readings.

The temperature coefficient of the magnet was determined by artificially heating the Magnet Basement to different temperatures, and observing the change of position of the magnet produced thereby. Such experiments were made in the years 186s, 1885, and 1886 (see previous volumes for details). A discussion of the observations taken in 1885 and 1886 shows that the correction for reduction to temperature 32° (expressed in terms of the whole horizontal force) is $(+-32) \times 0 \cdot 0000936+(+-32)^{2} \times \cdot 000002074$, the temperature \pm being in degrees Fahrenheit. The decrease of horizontal force for an increase of 1° of temperature would thus be $\cdot 00021$ at $60^{\circ}, \cdot 00023$ at 65°, and $\cdot 00025$ at 70°.

The eye readings of the position of the magnet, in conjunction with the photographic record of the position at the same times, serve as a check on the constancy of the recording arrangements.

Vertical Force Variometer.-The magnet used in this instrument is $1 \frac{1}{2}$ feet long, and lozenge-shaped, being broad at the centre and pointed at the ends. The steel knife-edge, which is 8 inches long, and passes through an aperture in the magnet, rests on two agate planes. The magnet is placed unsymmetrically on the knife edge, being nearer to its southern end. 'The axis of vibration was originally in the magnetic meridian, but is now a few degrees distant, on account of the secular change of declination.

E xii Introduction to Greenwich Magnetical Observations, 1912.

Two steel screw stalks, carrying adjustable screw weights, are attached to the magnet, one being vertical in order to vary the sensitiveness, the other horizontal in order to adjust the balance of the magnet, which should rest in a nearly horizontal position. Formerly a copper damper encircled the magnet, but, as it was found to be unnecessary, it has not been used since 1902. The magnet and supporting frame are enclosed in a wooden box with suitable glass-covered apertures. The temperature within the box is indicated by a thermometer, the bulb of which projects well into the interior of the box.

The photographic arrangements are generally similar to those already described in connection with the declination and horizontal force variometers. The cylinder carrying the photographic sheet is in this case vertical, and also receives the record of the variations of barometric pressure. The time scale is the same as for the other magnetic registers.

The scale coefficient of the instrument is determined by the method of vibrations. When the magnet is approximately horizontal, and transverse to the magnetic meridian, the variation of the vertical force, in terms of the whole vertical force, which will produce a small angular motion θ (measured in radians) $=\operatorname{cotan} \operatorname{dip} \times\left(\frac{T^{1}}{T}\right)^{2} \times \theta$; T and T^{1} are the times of vibration of the magnet in the vertical and horizontal planes respectively.

Observations of T are made once a week by means of the telescope and scale provided for eye readings of the position of the magnet. The mean of 53 observations made during the year gives the value $18^{\mathrm{s}} 367$.

The time of vibration in the horizontal plane (T^{1}) is determined once every three years, as the observation requires the removal of the magnet from its box. The magnet, with all its attached parts, is suspended from a tripod, with its broad side horizontal. The arc of vibration is kept small. Observations on 1912 January 1 gave for the time of vibration in the horizontal plane $16^{8 .} 484$. This value has been adopted for the year 1912 .

Since the distance between the concave mirror of the magnet and the surface of the cylinder is 100.2 inches, the length on the cylinder, in inches, which corresponds to a change of 0.01 part of the whole vertical force $=2 \times 100.2 \times \tan \operatorname{dip} \times$ $\left(\frac{T}{T^{1}}\right)^{2} \times 0.01$. Taking $T=18^{8 .} 367, T^{\eta}=16^{\mathrm{s}} \cdot 484$, and $\operatorname{dip}=66^{\circ} 51^{\prime} 46^{\prime \prime}$, this
length is found to be 5.849 inches. The cardboard scale, which is used for measuring the curves for the year, is constructed with this as unit.

The eye readings, which are taken at convenient times within a few minutes of $9^{\mathrm{h}}, 12^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h}, afford a check on the recording arrangements, when compared with the photographic record of the position of the magnet at the same times. The wire employed for eye observations with the telescope was broken and replaced on October 28.

Readings of the temperature within the box are taken at $9^{\mathrm{h}}, 10^{\mathrm{h}}, 11^{\mathrm{h}}, 12^{\mathrm{h}}, 13^{\mathrm{h}}, 14^{\mathrm{h}}$, $15^{\mathrm{h}}, 16^{\mathrm{h}}$, and 21^{h}. Experiments made in 1885 and 1886 (details of which are given in the Introduction for 1886) showed that, through the range of temperature to which the magnet is normally exposed, the apparent increase of vertical force for 1° rise of temperature (Fahrenheit) is uniformly 0.000212 . No term depending on the square of the temperature is necessary in this case.

§ 5. Magnetic Reductions.

The results given in the Magnetic Section refer to the civil day, commencing at midnight.

Before the photographic records of magnetic declination, horizontal force, and vertical force are discussed, they are divided into two groups-one including all days on which the traces show no particular disturbance, and which, therefore, are suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces are so irregular that it appears impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are no days in the year 1912 which are classed as days of great disturbance. Days of lesser disturbance are March 8, April 5-6, August 5-6, September 16-17, October 14-15, December 6-7. When two days are mentioned, it is to be understood that the reference is usually to one set of photographic sheets extending from noon to noon, and including the last half and the first half respectively of two consecutive civil days.

Through each photographic trace, including those on days of lesser disturbance, a pencil line was drawn, representing the general form of the curve without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour; and from the tables of these measures, for

Exiv
 Introduction to Greenwich Magnetical Observations, 1912.

each calendar month, are obtained the mean monthly values for each hour of the day, and the mean daily value of the element for each day of the month. The daily mean is taken from the 24 ordinates 0^{h} to 23^{h}. Tables I. to IV. contain the results for declination, Tables V. to VIII. those for horizontal force, and Tables IX. to XII. those for vertical force. For each element the mean daily value and daily range are given for every day of the year (except January 1), together with the monthly and annual mean diurnal inequalities for all days and for quiet days (as selected by the International Committee). In the formation of diurnal inequalities it is unimportant whether a day omitted be a complete civil day, or the parts of two successive civil days making together a whole day, although in the latter case the results are not available for daily values. No days were omitted on account of great disturbance in the formation of these Tables.

By means of two stoves placed in the Basement, the temperature has been kept nearly constant throughout the year, the endeavour being to keep it as near to 67° as possible. The results in Tables V. to XII. are corrected for temperature, the corrections applied (which are mentioned in the description of each instrument) being founded on the daily and hourly values of temperature given in Tables XIII. to XVI.

In regard to the formation of the tables of temperature, the hourly readings of the Richard Thermograph were combined so as to give the mean daily values for each day of the month, and the mean monthly values for each hour of the day. To adapt these to represent the temperature within the horizontal and vertical force magnet boxes respectively, the monthly means of the thermograph-readings at $9^{h}, 10^{\mathrm{h}}$, $11^{\mathrm{h}}, 12^{\mathrm{h}}, 13^{\mathrm{h}}, 14^{\mathrm{h}}, 15^{\mathrm{h}}, 16^{\mathrm{h}}$, and 21^{h} were compared with the corresponding means of the eye readings of the thermometers whose bulbs are within the respective magnet boxes, giving corrections to the thermograph-readings at these hours, which were very accordant, and from which, by interpolation, corrections were obtained for the remaining hours. The nine daily observations gave also the means of reducing the daily thermograph values to the temperature of the interior of the respective magnet boxes.

The variations of declination are given in arc and those of horizontal and vertical force in C.G.S. measure.

The magnetic diurnal inequalities of declination, horizontal force, and vertical force, for each month and for the year, as given in Tables II., VI., and X., have been treated by the method of harmonic analysis, and the results are given in Tables XVII. and XVIII.

The values of α_{5} and b_{5} for the diurnal inequalities for the year were also calculated, but could not be conveniently included in Table XVII. 'They are as follows:-

1912.	a_{5}.	b_{5}.
Declination \ldots.	-0.07	-0.03
Horizontal Force $\ldots .$.	-0.1	-0.1
Vertical Force $\ldots . . .$.	+0.4	-0.1

In order to give some indication of the accuracy with which the results of observation are represented by the harmonic formula, the sums of squares of residuals remaining after the introduction of m and of each successive pair of terms of the expression on page E 12 , corresponding to the single terms of the expressions on page E 13, have been calculated for the mean diurnal inequalities for the year (columns 1, 2, and 3 of Table XII.). The respective sums of squares of residuals are as follows:-

SUMS OF SQUARES OF RESIDUALS OF DIURNAL INEQUALITIES.

	Declination.	Horizontal Force.	Vertical Force.
Sums of Squares of Observed Values (Table XII.)	$168{ }^{\prime}{ }^{14}$	$5992 \cdot 5$	$2330 \cdot 3$
Sums of Squares of Residuals after the introduction of $m \ldots \ldots$.	67.89	10043	$339^{\circ} 2$
$" \quad a_{1}$ and b_{1}	$27 \cdot 89$	$240 \cdot 5$	206•8
" \quad, a_{2} and b_{2}	$5 \cdot 25$	$57 \cdot 6$	32.1
$" \quad, \quad a_{3}$ and b_{3}	0.84	15.6	$3^{\circ} 0$
" $" \quad a_{4}$ and b_{4}	0.08	$0 \cdot 3$	$2 \cdot 5$
$" \quad "$. a_{5} and b_{5}	0.02	0.2	0.9

The unit in the case of horizontal and vertical force being 1γ (0.00001 C.G.S. unit), it thus appears that there would be no advantage in carrying the approximation (Table XVII.) beyond the determination of α_{4}, b_{4}.

The results of the observations for Absolute Measure of Horizontal Force contained in Tables XIX. and XX. require no special remark, the method of reduction and all necessary explanation having been given with the description of the instrument employed. The observed result in each month has been also given as reduced to the mean value for

Exvi Introduction to Greenwich Magnetical Observations, 1912.

the month, by application of the difference between the horizontal force ordinate at the time of observation and the mean value for the month, as obtained from the photographic register.

As regards Magnetic Dip, the result of each complete observation of dip with each of the needles in ordinary use, is given in Table XXI.; and in Table XXII., the concluded monthly and yearly values for each needle.

Table XXIII. contains an annual summary of the magnetic elements giving the mean monthly values, the monthly mean diurnal ranges, and sums of hourly deviations from mean.

In order to facilitate the comparison of the diurnal inequalities of magnetism at the different British and other magnetic observatories, an arrangement was made with the Sub-Committee of the Kew Committee of the Royal Society, by which five quiet days were selected at Greenwich in each month of every year for adoption at all these observatories for determination of the monthly diurnal inequalities of declination, horizontal force, and vertical force, thus providing for further diseussion results which should be strictly comparable. Beginning with 1911, the five days selected by the International Committee from a comparison of data from all contributing stations, have been adopted instead. The particular days selected are given on page E 18, and the results found for Greenwich are contained in Tables IV., VIII., and XII., which it is interesting to compare with the values found from the records of all days, as given in Tables II., VI., and X.

Reduced copies of the magnetograms for certain disturbed days (mentioned on p . E xiii) have been printed in each volume since 1882. The list of these days since the year 1889 has been selected in concert with M. Mascart, or his successor M. Angot, so that the two Observatories of Val Joyeux (formerly of the Parc Saint Maur) and Greenwich should publish the magnetic registers for the same days of disturbance with a view to the comparison of the results. It is now proposed to adopt as far as possible the list of days of greater disturbance selected by the International Committee as in the case of the quiet days.

The plates are followed by a brief description of all other significant magnetic motions (superposed on the ordinary diurnal movement) recorded throughout the year. These, in combination with the plates, give very complete information on magnetic disturbances during the year 1912, affording thereby, it is hoped, facilities for making comparison with solar phenomena.

In regard to the plates, it may be remarked that on each day three distinct registers are usually given, viz. : declination, horizontal force, and vertical force; all necessary information for proper understanding of the plates being added in the notes on page (E 16).

An additional plate (III.) exhibits the registers of declination, horizontal force and vertical force on four quiet days, which may be taken as types of the ordinary diurnal movement at four seasons of the year. These are given for the civil day as exhibiting more clearly the character of the diurnal movement.

The indications of horizontal and vertical force are given precisely as registered; they are therefore affected, slightly as compared with the amount of motion on disturbed days, by the small recorded changes of temperature of the magnets. The recorded hourly temperatures being inserted on the plates, reference to the temperaturecorrection of the magnets, given at pages Exi to Exiii, will show the effect produced. Briefly, an increase of 1° of temperature throws the horizontal force curve upward by about 4γ; an increase of 1° of temperature throws the vertical force curve downward by about 9γ.

The scale of the photographic records is given approximately by the following table :-

> 1 mm . on the Declination curve corresponds to $\quad 0^{\prime} 5$ of arc.
> or to 2.7γ
> 1 mm . on the Horizontal Force curve corresponds to 3.0γ
> 1 mm . on the Vertical Force curve corresponds to 2.9γ

The original photographs have been reduced for reproduction in the proportion of 20 to 11 .

The corresponding scale values are indicated by scales at the foot of each of the plates.

The subjoined table gives the values of Magnetic Elements determined at the Royal Observatory, Greenwich :-

Exviii Introduction to Greenwich Meteorological Observations, 1912.

Year.	$\begin{aligned} & \text { Declination } \\ & \text { West. } \end{aligned}$	$\begin{gathered} \text { Horizontal } \\ \text { Force, } \\ \text { C.G.S. Unit. } \end{gathered}$	Dip. \dagger	Year.	$\begin{aligned} & \text { Declination } \\ & \text { West. } \end{aligned}$	Horizontal Force, C.G.S. Unit.	Dip. \dagger
1841	$23^{\circ} .16{ }^{\prime}{ }^{\prime}$	\ldots		1876	19. 8.3	- 1797	$67^{\circ} 4^{\circ}$: 0
1842	23.14 .6	\ldots		1877	18.57 .2	-1799	$67.39{ }^{\circ}$
1843	23.11 .7	\ldots	69. 0.6	1878	$18.49{ }^{\circ}$	-.1801	$67.38 \cdot 2$
1844	23.153	\ldots	69. $0 \cdot 3$	1879	$18.40 \cdot 5$	-. 1803	67.37°
1845	22.56 .7	\ldots	$68.57 \cdot 5$	1880	18.32 .6	-. 1804	67.357
1846	22.49 .6	- 1731	$68.58 \cdot 1$	1881	$18.27{ }^{1}$	-. 1805	67.34 .7
1847	22.51 .3	-. 1736	$68.59{ }^{\circ}$	1882	$18.22{ }^{\prime}$	-. 1804	67.34 .2
1848	22.51 .8	0.1731	68.54 .7	1883	$18.15{ }^{\circ}$	-1810	67.317
1849	22.37 .8	-. 1733	68.51 . 3	1884	18. 7^{6}	$\bigcirc \cdot 1812$	67.29 .7
1850	22.23 .5	-. 1738	68.46 9	1885	18. 177	-.1816	67.28 .0
1851	22.18 \%	0.1744	$68.40 \cdot 4$	1886	17.54 .5	-.1816	$67.27 \cdot 1$
1852	22.179	-1.1745	$68.42 \cdot 7$	1887	17.49^{1}	-1.1818	$67.26 \cdot 6$
1853	22.10 1	-. 1748	68.44 .6	1888	$17.40 \cdot 4$	0.1820	$67.25 \cdot 6$
1854	22. 0.8	-. 1749	68.47 \%	1889	17.34*9	0.1821	$67.24 \cdot 3$
1855	21.48 .4	- 17756	$68.44 \cdot 6$	1890	17.28 .6	$0 \cdot 1823$	67.23°
1856	21.43 .5	$\bigcirc \cdot 1759$	$68.43 \cdot 5$	1891	17.23 .4	0.1825	$67.21{ }^{\circ} 5$
1857	$21.35{ }^{\circ} 4$	- $\cdot 1769$	$68.31 \cdot 1$	1892	17.174	-1. 1827	$67.20{ }^{\circ}$
1858	$21.30 \cdot 3$	- $\cdot 1762$	$68.28 \cdot 3$	1893	17.11 .4	-1829	$67.17{ }^{\circ} 9$
1859	21.23 .5	- \cdot^{1761}	68.26 .9	1894	17. $4^{6} 6$	0.1829	$67.17 \cdot 4$
1860	21.143	...	$68.30 \cdot 1$	1895	16.57 .4	-.1832	67.16.1*
1861	21. 5 \%	0.1773	68.24 .6	1896	16.517^{*}	-.1833*	67.15.1*
		- 1757	$68.15 \cdot 8$	1897	16.45**	-. 1836	67.13.5*
1862	20.52 .6	$\bigcirc \cdot 1761$	68.9.6	1898	$16.39 .2{ }^{*}$	-. 1838	$67.12 \cdot 1$
1863	$20.45{ }^{\circ} 9$	${ }^{\circ} \cdot 1763$	68. 7°	1899	$16.34{ }^{2}$	-1 184.2	$67.10 \cdot 5$
1864		-. 1765	68. 4^{-1}	1900	$16.29{ }^{\circ}$	-. 1844	$67.8 \cdot 8$
1865	20.33 .9	-. 1765	68. $2 \cdot 7$	1901	$16.26 \cdot 0$	-. 1848	$67.6 \cdot 4$
1866	20.28 .0	- $\cdot 1771$	68.13	1902	$16.22 \cdot 8$	-. 1850	67. $3 \cdot 8$
1867	$20.20 \cdot 5$	- $\cdot 1776$	67.57°	1903	16.19 .1	C. 1850	67. 1.2
1868	$20.13^{1} 1$	- $\cdot 1777$	67.56 .5	1904	$16.15{ }^{\circ}$	- 0.1852	$66.57 \cdot 6$
1859	20. 4^{1}	0.1780	67.54 .8	1905	16. $9 \cdot 9$	0.1852	$66.56 \cdot 3$
1870	$19.53{ }^{\circ}$	-. 1782	67.52 .5	1906	16. 3.6	-.1852	66.55 .6
1871	$19.41^{\circ} 9$	-0.1785	$67.50 \cdot 3$	1907	15.59 .8	-. 1853	$66.56 \cdot 2$
1872	$19.36 \cdot 8$	-. 1787	$67.47 \cdot 8$	1908	15.53 .5	-. 1853	$66.56 \cdot 3$
1873	19.33 .4	0.1791	$67.45 \cdot 8$	1909	15.47 .6	-. 1853	$66.54 \cdot 1$
1874	19.28 .9	-1795	$67.43 \cdot 6$	1910	$15.41{ }^{1} 2$	0.1853	$66.52 \cdot 8$
1875	19.21 .2	- $\cdot 1795$	$67.42 \cdot 4$	1911	15.33°	-1853	$66.52 \cdot 1$
				1912	15.243	-. 1853	66.51 .8

* Corrected for the effect of the iron in the new buildings (see p. E ii).
+ These values of the dip differ slightly in some instances from those given in previous volumes, on account of the correction described on p . E v.

In 1861 the new Unifilar Apparatus for absolute Horizontal Force and the Airy DipCircle were introduced, both sets of apparatus being used in that year. In 1864 the excavation of the Magnetic Basement caused the suspension of complete Declination Observations.

Slight interruptions in the traces on the plates are due to various causes. In the originals there are breaks at each hour for time scale, so slight, however, that in the copies the traces could usually be made continuous without fear of error: in a few cases, however, this could not be done. Further, to check the numeration of hours, the observer interrupts the register at definite times for about five minutes, usually at or near $9^{\mathrm{h}} 30^{\mathrm{m}}, 12^{\mathrm{h}} 30^{\mathrm{m}}$, and $20^{\mathrm{h}} 30^{\mathrm{m}}$ Greenwich civil time.

The original photographic records were first traced on thin paper, the separate records on each day being arranged one under another on the same sheet, and great attention being paid to accuracy as regards the scale of time. Each sheet containing the records for one or more days was then reduced by photo-lithography, in the proportion of 20 to 11 , to bring it to a convenient size for insertion in the printed volume.

§ 6. Meteorological Instruments.

Standard Barometer.-The standard barometer, mounted in 1840 on the southern wall of the western arm of the Upper Magnet Room, is Newman No. 64. Its tube is $0^{\text {in }} 565$ in diameter, and the depression of the mercury due to capillary action is $0^{\text {in }} 002$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{\text {in }} 05$, sub-divided by vernier to $0^{\text {in }} 002$.

The readings of this barometer, until 1866 August 20, are considered to be coincident with those of the Royal Society's flint-glass standard barometer. It then became necessary to remove the sliding rod for repair of its slow motion screw, which was completed on August 30. Before the removal of the rod the barometer had been compared with three other barometers, one of which, during repair of the rod, was used for the daily readings. After restoration of the rod, a comparison was again made with the same three barometers, from which it appeared that the readings of the standard, in its new state, required a correction of $-0^{\text {in. }} 006$, all three auxiliary barometers giving accordant results. This correction has been applied to every observation since 1866 August 30.

Exx Introduction to Greenwich Meteorological Observations, 1912.

An elaborate comparison of the standard barometers of the Greenwich and Kew Observatories, made in the spring of the year 1877 , under the direction of the Kew Committee, by Mr. Whipple, showed that the difference between the two barometers (after applying to the Greenwich barometer-readings the correction $-0^{\text {in. }} 006$)

The height of the barometer cistern above the mean level of the sea is 159 feet, being $5^{\text {ft. }} 2^{\text {in. }}$ above Mr. Lloyd's reference mark in Bradley's Transit room adjoining the present Transit-circle room. (Philosophical Transactions, 1831.)

The barometer is read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Each reading is corrected by application of the index-correction above mentioned, and reduced to the temperature 32° by means of Table II. of the "Report of the Committee of Physics" of the Royal Society. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

Photographic Barometer.-The barometric record is made on the same cylinder as is used for magnetic vertical force. A siphon barometer fixed to the northern wall of the Magnet Basement is employed, the bore of the upper and lower extremities of the tube being about $1 \cdot 1$ inch, and that of the intermediate portion $0 \cdot 3$ inch. A metallic plunger, floating on the mercury in the shorter arm of the siphon, is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of aluminium, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet. A base line is traced on the sheet, and the record is interrupted at each hour by the clock, and occasionally by the observer, in the same way as for the magnetic registers. The length of the time scale is also the same.

The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found $=4^{\text {in. }} 16$ on the paper. Ordinates measured for the times of observation of the standard barometer, combined with the corrected readings of the standard barometer, give apparent values of the base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, from which the hourly ordinates (see page Exxxi) are
measured as for the magnetic registers. As the diurnal change of temperature in the Basement is very small, no appreciable differential effect is produced on the photographic register by the expansion of the column of mercury.

Dry and Wet Bulb Thermometers.-The Standard dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. A vertical axis, fixed in the ground, carries the frame, which consists of a horizontal board as base, of a vertical board projecting upwards from it and connected with one edge of the horizontal board, and of two parallel inclined boards (separated about 3 inches) connected at the top with the vertical board and at the bottom with the other edge of the horizontal board: the outer inclined board is covered with zinc, and the air passes freely between all the boards. The dry and wet bulb thermometers are mounted near the centre of the vertical board, with their bulbs about 4 feet from the ground; the maximum and minimum thermometers for air temperature are placed towards one side of the vertical board, and those for evaporation temperature towards the other side, with their bulbs at about the same level as those of the dry and wet bulb thermometers. A small roof projecting from the frame protects the thermometers from rain. The frame is turned in azimuth several times during the day (whether cloudy or clear), so as to keep the inclined side always towards the sun. In 1878 September a circular joard, 3 feet in diameter, was fixed, below the frame, round the supporting post, at a height of 2 feet 6 inches above the ground, with the object of protecting the thermometers from radiation from the ground. In the summer of 1886 experiments were made on days of extreme heat, with the view of determining the effect of the circular board in this respect, an account of which will be found at the end of the Introduction to the volume for the year 1887. The effect of radiation with the circular board removed was found to be insensible.

On 1899 January 4 the thermometer stand was moved to the Magnetic Pavilion enclosure, where the thermometers are set up in an open position, about 40 feet southwest of the building.

The corrections to be applied to the thermometers in ordinary use are determined, usually once each year for the whole extent of scale actually employed, by observations at 32° in pounded ice and by comparison with the standard thermometer No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royai Society.

The dry bulb thermometer used throughout the year was Negretti and Zambra, No. 45354. The correction $-0^{\circ} \cdot 4$ has been applied to the readings of this

Exxii Introduction to Greenwich Magnetical Observations, 1912.

thermometer. The wet bulb thermometer used throughout the year was Negretti and Zambra, No. 94737 . The correction $-0^{\circ} \cdot 2$ has been applied to the readings of this thermometer.

The self-registering thermometers for temperature of air and evaporation are all by Negretti and Zambra. The maximum thermometers are on Negretti and Zambra's principle, the minimum thermometers are of Rutherford's construction. The readings of Negretti and Zambra, No. 83760, for maximum temperature of the air, required no correction; to those of Negretti and Zambra, No. 38338, for minimum temperature of the air, a correction of $+0^{\circ} \cdot 1$ has been applied; to those of Negretti and Zambra, No. 102104, for maximum temperature of evaporation, a correction of $+0^{\circ} \cdot 1$ has been applied; and to those of Negretti and Zambra, No. 98508, for minimum temperature of evaporation, a correction of $+0^{\circ} \cdot 1$ has been applied.

The dry and wet bulb thermometers are read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Readings of the maximum and minimum thermometers are taken at $9^{\mathrm{h}}, 15^{\mathrm{h}}$ and 21^{h} every day. Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.

In the year 1887, four thermometers-a dry-bulb and a wet-bulb, with maximum and minimum thermometers for air temperature-were mounted in a Stevenson screen, with double louvre-boarded sides, of the pattern adopted by the Royal Meteorological Society, which is fully described in the Quarterly Journal of the Society, vol. x. page 92. The screen is planted in the Magnet ground 20 feet east-north-east of the photographic thermometers, and its internal dimensions are, length 18 inches, width 11 inches, and height 15 inches, the bulbs of the thermometers placed in it being at a height of about 4 feet above the ground. The dry-bulb thermometer is Hicks No. 262495, to the readings of which a correction of $-0^{\circ} \cdot 1$ has been applied. The wet-bulb is Hicks No. 268525, and the maximum thermometer is Negretti and Zambra, No. 85059, neither of which required correction. To the readings of the minimum thermometer, Negretti and Zambra, No. 68873, a correction of $+0^{\circ} \cdot 1$ has been applied.

Experiments were made in the summer of the year 1887 on days of extreme heat, to determine whether, with the door of the screen open, the thermometers were in any way influenced by radiation from external objects, an account of which will be found at the end of the Introduction to the volume for 1887 . The effect of radiation with the door of the screen open was found to be insensible.

On 1900 March 31, an additional Stevenson screen, similar to the screen already mounted in the Magnet ground, was erected in the Magnetic Pavilion enclosure, 15 feet north-east of the open stand. The dry and wet-bulb thermometers mounted in this screen are Negretti and Zambra, Nos. 94713 and 94714, of which the former required no correction to its readings. To the readings of the maximum thermometer, Negretti and Zambra, No. 94859, a correction of $-0^{\circ} .4$ has been applied, and to those of the minimum thermometer and the wet-bulb thermometer, Negretti and Zambra, Nos. 85080 and 94714 , a correction of $+0^{\circ} 1$ has been applied.

The maximum thermometer, Negretti and Zambra, No. 94859, was found on September 5, with its valve displaced, rendering it ineffective, and was replaced by Negretti and Zambra, No. 136647, which required no correction.

Photographic Dry-Bulb and Wet-Bulb Thermometers.-The apparatus which has been in use since 1887 was designed by Sir W. H. M. Christie, and since 1899 has stood in its present position in the Magnet Ground. It is placed in a shed, 8 feet square, standing upon posts about 8 feet high, and open to the north. The roof slopes towards the south, and there are double protecting boards on the eastern, southern, and western sides; the apparatus is thus screened from the direct rays of the sun, without impeding the circulation of the air. The cylinder which receives the photographic register is $11 \frac{1}{2}$ inches long, and $14 \frac{1}{2}$ inches in circumference, and revolves once in 26 hours. The two traces fall on the same part of the cylinder, as regards time scale; a long air-bubble in the wet-bulb thermometer column gives the means of registering the indications of the wet bulb (as well as of such degrees and decades of its scale as fall within the bubble), just below the trace of the dry-bulb thermometer, without any interference of the two records, an arrangement which admits of the time scale being made equal to that of all the other registers. The stems of the thermometers are placed close together, each being covered by a vertical metal plate having a fine vertical slit, so that light passes through only at such parts of the bore of the tube as do not contain mercury. Two gas lamps, each at a distance of 21 inches, are placed at such an augle that the light from each, after passing through its corresponding slit and thermometer tube, falls on the photographic paper in one and the same vertical line. Degree lines etched upon the thermometer stems, and painted, interrupt the light sufficiently to produce a clear and sharp indication on the photographic sheet, the line at each tenth degree being thicker than the others, as well as those at $32^{\circ}, 52^{\circ}, 72^{\circ}, \&$ c. The length of scale is from 0° to 120° for each thermometer, the length of 1° being about 0.1 inch, and the air-bubble in the wet-bulb thermometer is about 12° in length, so that it will always include one of the ten-degree lines. The bulbs, which are 2 inches long and of about $\frac{1}{2}$ an inch in internal bore, are

Exxiv Introduction to Greenwich Metborulogical Observations, 1912.

separated horizontally by 5 inches, the tubes of the thermometers having a double bend above the bulbs, which are placed about 4 feet above the ground. The thermometers are carried by a vertical frame with independent vertical adjustment for each thermometer, so that the register in summer or winter can be brought to a convenient part of the photographic sheet. The revolving cylinder is driven by a pendulum clock contained within the brass case covering the whole apparatus, excepting the thermometer bulbs which project below. It makes one revolution in 26 hours, and the time scale is the same as that for all the other registers. As the cylinder revolves, the light passing through the portion of the thermometer tubes not occupied by mercury imprints on the paper a broad band of photographic trace, corresponding to the drybulb register, whose breadth in the vertical direction varies with the height of the mercury in the tube, and a narrower band below, corresponding to the wet bulb. When these are developed, the traces are seen to be crossed by thin white lines, the horizontal lines corresponding to degrees, and the vertical lines to hours, the lower boundary of each trace indicating the thermometric record corresponding to the upper surface of the thermometric column.

The driving clock is made to interrupt the light for a short time at each hour, producing on the sheet the hour lines above mentioned; the observer also occasionally interrupts the register for a short time for proper identification of the hourly breaks.

The bulbs of the thermometers were at first completely protected from radiation by vertical or inclined boards fixed to the thermometer stand, two on the south side, two on the north side, one at the east end, one at the west end, and one below, but with proper spaces for free circulation of air. Experiments made in the summer of the year 1886, an account of which is given at the end of the Introduction for 1887, showed that the north and south boards were unnecessary, and the two south boards and one north board were in consequence removed before commencing regular work with the instrument at the beginning of the year 1887. The south boards were replaced during 1908 as a precaution against indirect effects from the gravel path to the south of the shed.

For a description of the apparatus formerly employed, reference may be made to the Introduction for 1887 and previous years. A comparison of the results given by the old and new apparatus will be found at the end of the Introduction to the year 1887.

Radiation Thermometers.-These thermometers are placed in the Magnetic Pavilion enclosure, in an open position about 50 feet south-west of the building. The thermometer for solar radiation is a self-registering mercurial maximum thermometer on Negretti and Zambra's principle, with its bulb blackened, and the thermometer
enclosed in a glass sphere from which the air has been exhausted. The thermometer employed until July was Negretti and Zambra, No. 99989. This was broken on July 2, and replaced by Negretti and Zambra, No. 121588. The outer chamber of this latter was broken on July 31, and returned after repair on August 7; Negretti and ${ }^{`}$ Zambra, No. 157738 , having been temporarily substituted during the intervening week. The thermometer for radiation to the sky was a self-registering spirit minimum thermometer, Negretti and Zambra, No. 137640. The thermometers are laid on short grass and freely exposed to the sky ; they require no correction for index-error.

Earth Thermometers.-These thermometers were made by Adie, of Edinburgh, under the superintendence of Professor J. D. Forbes. They are placed about 20 feet south of the Magnet House.

The thermometers are four in number, placed in one hole in the ground, the diameter of which in its upper half is 1 foot and in its lower half about 6 inches, each thermometer being attached in its whole length to a slender piece of wood. The thermometer No. 1 was dropped into the hole to such a depth that the centre of its bulb was 24 French feet ($25 \cdot 6$ English feet) below the surface ; then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the centre of its bulb was 12 French feet below the surface; Nos. 3 and 4 till the centres of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes carrying the scales were left projecting above the surface; No. 1 by $27 \cdot 5$ inches, No. 2 by $28 \cdot 0$ inches, No. 3 by $30 \cdot 0$ inches, and No. 4 by $32 \cdot 0$ inches. Of these lengths, $8.5,10.0,11 \cdot 0$, and 14.5 inches respectively are in each case tube with narrow bore. The length of 1° on the scales is 1.9 inch, 1.1 inch, 0.9 inch, and 0.5 inch in each case respectively. The ranges of the scales are for No. $1,46^{\circ} \cdot 0$ to $55^{\circ} \cdot 5$; No. $2,43^{\circ} .0$ to $58^{\circ} \cdot 0$; No. $3,44^{\circ} \cdot 0$ to $62^{\circ} \cdot 0$; and for No. $4,36^{\circ} \cdot 9$ to $68^{\circ} \cdot 0$.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long, and 2 or 3 inches in diameter. The bore of the principal part of each tube, from the bulb to the graduated scale, is very small; in that part to which the scale is attached it is larger ; the fluid in the tubes is alcohol tinged red ; the scales are of opal glass.

The ranges of scale having in previous years been found insufficient, fluid has at times been removed from or added to the thermometers as necessary, corresponding alterations being made in the positions of the attached scales. Information in regard to these changes will be found in previous Introductions.

The parts of the tubes above the ground are protected by a small wooden hut fixed to the ground; the sides of the hut are perforated with numerous holes, and it Greenwich Mageetical and Merforologioal Observations, 1912.

Exxvi Introduction to Greenwich Meteorological Observations, 1912.

has a double roof; in the north face is a plate of glass, through which the readings are taken. Within the hut are two small thermometers-one, No. 5, with bulb 1 inch in the ground; another, No. 6, whose bulb is freely exposed in the centre of the hut.

These thermometers are read every Monday and No. 4 every day at noon. .The index-errors of Nos. 1, 2, 3, and 4 are unknown; No. 6 appears to read too high by $0^{\circ} 4$, but no corrections have been applied. The readings of No. 4 are given without correction in the daily results.

Osler's Anemometer. - This self-registering anemometer, devised by A. Follett Osler, for continuous registration of the direction and pressure of the wind and of the amount of rain, is fixed above the north-western turret of the ancient part of the obserratory. For the direction of the wind a large vane ($9^{\mathrm{ft}} 2^{\mathrm{in} .}$ in length) , from which a vertical shaft proceeds down to the registering table within the turret, gives motion, by a pinion fixed at its lower end, to a rack-work carrying a pencil. A collar on the vane shaft bears upon anti-friction rollers running in a cup of oil, rendering the vane very sensitive to changes of direction in light winds. The pencil marks a paper fixed to a board moved horizontally and uniformly by a clock, in a direction transverse to that of the motion of the pencil. The paper carries lines corresponding to the positions of N., E., S., and W. of the vane, with transversal hour lines. The vane is 25 feet above the roof of the Octagon Room, 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board. The vane, which had been in use since the year 1841, began in the autumn of 1891 to show signs of weakness; it was taken down in December 1891 and thoroughly repaired. It was satisfactory to find that the anti-friction bearings of the vane, on which the sensitiveness of its motion depends, were in excellent condition, after having been continuously in action for 25 years.

For the pressure of the wind the construction is as follows:-At a distance of 2 feet below the vane there is placed a circular pressure plate (with its plane vertical) having an area of $1 \frac{1}{3}$ square feet, or 192 square inches, which, moving with the vane in azimuth, and being thereby kept directed towards the wind, acts against a combination of springs in such way that, with a light wind, slender springs are first brought into action, but, as the wind increases, stiffer springs come into play. For a detailed account of the arrangement adopted, the reader is referred to the Introduction for the year 1866. [Until 1866 the pressure plate was a square plate, 1 foot square, for which in that year a circular plate, having an area of 2 square feet,
was substituted and employed until the spring of the year 1880, when the present circular plate, having an area of $1 \frac{1}{3}$ square feet, was introduced.] A short flexible snake chain, fixed to a cross bar in connexion with the pressure plate, and passing over a pulley in the upper part of the shaft, is attached to a brass chain (formerly a copper wire) running down the centre of the shaft to the registering table, just before reaching which the chain communicates with a short length of silk cord, which, led round a pulley, gives horizontal motion to the arm carrying the pressure pencil. The substitution, in the year 1882, of the flexible brass chain for the copper wire, has greatly increased the delicacy of movement of the pressure pencil, every small movement of the pressure plate being now registered. The scale for pressure, in lbs. on the square foot, is experimentally determined from time to time as appears necessary; the pressure pencil is brought to zero by a light spiral spring. During the year 1907 a new set of pressure springs was supplied by Messrs. Simms. Advantage was taken of this opportunity to endeavour to simplify the determination of mean pressures by arranging that the scale should change only once, low pressures being represented on twice as large a scale as high ones, and adjusting screws and clamps were also introduced by which the strength could be varied so that the springs could be adjusted to scale, instead of a new scale being determined from time to time.

Whilst the action of the pressure apparatus has been satisfactory for moderate winds, it is believed that the record of occasional very large pressures in years preceding 1882 was due principally to irregular action, in excessive gusts, of the connecting copper wire, but the brass chain being always in tension, the movements of the recording pencil have since been in complete sympathy with those of the pressure plate, and in this condition of the apparatus-that is, since the year 1882-few pressures greater than 30 lbs . have been recorded.

A self-registering rain gauge of peculiar construction forms part of the apparatus: this is described under the heading " Rain Gauges."

A new sheet of paper is applied to the instrument every day at noon. The scale of time is ordinarily the same as that of the magnetic registers, but by means of a special gearing applied to the clock by Mr. Kullberg in 1894 the table carrying the record can either be driven at the usual rate, or 24 times as fast, in order to give a largely increased time scale for the register of wind pressure during gales, the ordinary sheet thus giving a register for 1 hour instead of 24 .

Robinson's Anemometer.-This instrument, made by Mr. Browning, is constructed on the principle described by Dr. Robinson in the Transactions of the Royal Irish Academy, vol. xxii., for registration of the horizontal movement of the air,

Exxviii Introduction to Greenwich Meteorological Observations, 1912.

and is mounted above the small building on the roof of the Octagon Room. It was brought into use in 1866 October. The motion is given by the pressure of the wind on four hemispherical cups, each 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The foot of the axis is a hollow flat cone bearing upon a sharp cone, which rises up from the base of a cup of oil. An endless screw acts on a train of wheels furnished with indices for reading off the amount of motion of the air in miles, and a pinion on the axis of one of the wheels draws upwards a rack, to which is attached a rod passing down to the pencil which marks the paper placed on the vertical revolving cylinder in the chamber below. A motion of the pencil upwards through a space of 1 inch represents horizontal motion of the air through 100 miles. The revolving hemispherical cups are 21 feet above the roof of the Octagon Room, 56 feet above the adjacent ground, and 211 feet above the mean level of the sea.

The cylinder is driven by a clock in the usual way, and makes one revolution in 24 hours. A new sheet of paper is applied every day at noon. The scale of time is the same as that of the magnetic registers.

In preceding volumes the values of wind velocity V given in the tables are three times the actual velocity v of the cups. From some tests of the Browning instrument, made by Mr. W. H. Dines at Hersham in 1889, on his whirling machine, it appears that the relation between V and v is more correctly given by

$$
\mathrm{V}=4 \cdot 0+2 \cdot 0 v
$$

The instrument thus fails to record wind velocities less than 4 miles per hour ; and values of the wind velocity given by the formula $\mathrm{V}=3 v$ are too high when V exceeds 12. Since the two formulæ agree, however, for $\mathrm{V}=12$, the mean values of the wind velocity (which seldom differ much from 12) will be approximately correct in either case ; therefore, for the sake of continuity and simplicity, the formula $\mathrm{V}=3 v$ will continue to be used. In this volume, however, the greatest hourly measures (p. E 66) are given according to both formulæ, and the least hourly measures omitted.

The experiments by Mr. W. H. Dines, above referred to, are described in the Introduction to the volume for 1889.

Rain Gavges.--During the year 1912 eight rain gauges were employed, placed at different elevations above the ground, complete information in regard to which will be found at page (E 58) of the Meteorological Section.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure
of the wind are recorded. The receiving surface is a rectangular opening 10×20 inches (200 square inches in area). The collected water passes into a vessel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected. The water then discharges itself by means of the following modification of the siphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube a larger tube, closed at the top, is loosely placed. The accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full, the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe-the only outlet. This creates a partial vacuum in the globe sufficient to cause the longer leg of the siphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a corresponding trace to be made on the paper fixed to the moving board of the anemometer. The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record thus gives information on the rate of the fall of rain, but the record is liable to interruption when the staging is erected for experiments with the Osler Anemometer.

Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily at $9^{\text {h }}$ Greenwich civil time. This is also liable to interference, just as No. 1.

Gauges Nos. 3, 4, and 5 are 8 -inch circular gauges, placed respectively on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily at 9^{h} Greenwich civil time.

Gauge No. 6 is an 8 -inch circular gauge placed with the receiving surface 5 inches above the ground in the Magnetic Pavilion enclosure, about 10 feet north-west of the thermometer stand, and gauge No. 7, also an 8 -inch circular gauge, is similarly placed in the ground south-east of the Magnetic Observatory. No. 8 is a new gauge of the same diameter, but of the modified Snowdon pattern adopted by the Meteorological Office, having its receiving surface 1 foot above the ground. It was brought into use 1908 January 1, being fixed SW by ,W from No. 6 with a clear space of 6 feet between the rims. No. 6 is the Standard gauge, Nos. 7 and 8 are used as checks on the readings of No. 6. No. 6 is read daily, usually at $9^{\text {h }}, 15^{\text {h }}$, and $21^{\text {h }}$ Greenwich civil time, and Nos. 7 and 8 at $9^{\text {h }}$ only as a rule.

Exxx Introduction to Greenwich Meteorological Observations, 1912.

The height of the Standard gauge above mean sea-level was determined by Mr. H. A. H. Christie on 1908 February 26, and was found to be 5 feet 9 inches less than in its old position in the Observatory Grounds, before removal to the Pavilion Enclosure.

The gauges are also read at midnight on the last day of each calendar month.
Electrometer.-The electric potential of the atmosphere is measured by means of a Thomson self-recording quadrant electrometer, made by White, of Glasgow. It is situated in the Upper Magnet Room, in connection with Lord Kelvin's water-dropping apparatus, and with the usual arrangements for photographic registration. The time scale is the same as for the magnetic registers, the hourly break of trace being made by the driving-clock itself.

Sunshine Recorder.-The Campbell-Stokes instrument, which has been in use since 1887, records the duration of bright sunshine by the length of blackened trace produced by the concentration of the sun's rays on a card. A spherical glass globe brings the rays to a focus. The recording cards are supported by carriers no larger than is required for keeping them in proper position; one straight card serves for the equinoctial periods of the year, and another, curved, for the solstitial periods, the only difference between the summer and winter cards being that the summer cards are the longer: grooves are provided so that the cards are placed in position with great readiness. The daily record is transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums for each hour (reckoning from apparent midnight) through the month, are thus readily formed. The recorded durations are to be understood as indicating the amount of bright sunshine, no register being obtained when the sum shines faintly through fog or cloud, or when the sun is very near the horizon. Until 1896 February 5 the instrument was placed on a table upon the platform above the Magnetic Observatory, about 21 feet above the ground, and 176 feet above mean sea level. On account of the extension of the buildings in the south ground, it was found necessary on 1896 February 6 to remove the sunshine recorder from the roof of the Magnetic Observatory to a commanding position on the stage carrying the Robinson anemometer, on the roof of the Octagon Room, about 50 feet above the ground. A clear view of the sun is obtained in this position from sunrise to sunset, but some inconvenience is caused by the smoke from neighbouring chimneys.

It was pointed out by Mr. Marriott, Secretary of the Royal Meteorological Society, towards the end of 1896, that the record by the Campbell-Stokes instrument exhibited a notable falling off. This, though not very marked till 1896, had certainly begun in

1894, and it was found to be due to opacity in the glass globe, which appears to have deteriorated. On 1897 January 1 a globe of clearer glass, presented to the Royal Observatory in 1881 by the late Mr. Campbell, was substituted for the defective globe.

The deterioration of the old ball is fully discussed by Mr. Curtis in the Quarterly Journal of the Royal Meteorological Society, vol. xxiv.

§ 7. Meteorological Reductions.

The results given in the Meteorological Section refer to the civil day, commencing at midnight.

All results in regard to atmospheric pressure, temperature of the air and of evaporation with deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye observation of the ordinary maximum and minimum thermometers at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} (civil reckoning), reference being made, however, to the photographic register when necessary to obtain the values corresponding to the civil day from midnight to midnight. The hourly readings of the photographic traces for the clements mentioned are entered into a form having double argument, the horizontal argument ranging through the 24 hours of the civil day $\left(0^{\mathrm{h}}\right.$ to $\left.23^{\mathrm{h}}\right)$, and the vertical argument through the days of a calendar month. Then for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value. It should be mentioned that before measuring out the electrometer ordinates, a pencil line was first drawn through the trace to represent the general form of the curve, in the way described for the magnetic registers (page Exiii), excepting that no day has been omitted on account of unusual electrical disturbance, as it has been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. In measuring the electrometer ordinates a scale of inches is used, and the values given in the tables which follow are expressed in thousandths of an inch, positive and negative potential being denoted by positive and negative numbers respectively. The scale has not been determined in terms of any electrical unit.

To correct the photographic indications of barometer and dry and wet bulb thermometers for small instrumental error, the means of the photographic readings at 9^{h},

Exxxii Introduction to Greenwich Meteorological Observations, 1912.
12^{h} (noon), 15^{h}, and 21^{h} in each month are compared with the corresponding corrected mean readings of the standard barometer and standard dry and wet bulb thermometers, as given by eye observation. In the case of the standard thermometers the values deduced for midnight from comparison of the thermograph sheets with the eye-readings at night, and the minimum readings obtained at 9 a.m. are also regarded as eye-readings for the correction of the thermograph registers commencing 1912 January. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb thermometers exposed on the free stand. The barometer results are not reduced to sea level, neither are they corrected for the effect of gravity, by reduction to the latitude of 45°.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and of evaporation by use of Glaisher's Hygrometrical Tables. The table of factors for this purpose may be found in the Introductions for 1910 and previous years.

In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pages E 53 and E 54) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages E 52 and E 53).

The excess of the mean temperature of the air on each day above the average of 65 years, given in the "Daily Results of the Meteorological Observations," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the daily means deduced from the observations for the sixty-five years 1841-1905. In this series the mean daily temperature from 1841 to 1847 depends usually on 12 observations daily, in 1848 on 6 observations daily, and from 1849 to 1905 on 24 hourly readings from the photographic record. The smoothed numbers are given in Table VII., Reduction of the Greenwich Meteorological Observations, Part IV., and also in the Introduction for 1910.

The daily register of rain contained in column 16 is that recorded by the gauge No 6, whose receiving surface is 5 inches above the ground. This gauge is usually
read at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} Greenwich civil time. The continuous record of Osler's selfregistering gauge shows whether the amounts measured at 9^{h} are to be placed to the same, or to the preceding civil day ; and in cases in which rain fell both before and after . midnight, also gives the means of ascertaining the proper proportion of the 9^{h} amount which should be placed to each civil day. The number of days of rain given in the footnotes, and in the abstract tables, pages E 51 and E 58, is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded $0^{\text {in. }} 005$.

The indications of atmospheric electricity are derived from Thomson's Electrometer.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration. The "Mean of 24 Hourly Measures" was in former years the mean of 24 measures of pressure taken at each hour, but commencing with 1887 January 1, it is the mean of measures, each one of which is the average pressure during the hour of which the nominal hour is the middle point.

The mean amount of cloud given in the footnotes on the right-hand pages E 27 to E 49 , and in the abstract table, page E 51 , is the mean found from observations made usually at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), 15^{h}, and 21^{h} of each civil day.

For understanding the divisions of time under the headings, "Clouds and Weather" and "Electricity," the following remarks are necessary:-In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6^{h}, and those following it to the interval from 6^{h} to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity, the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).

The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10 .

Greenwich Magnetical and Mifeorological Observations, 1912.

Exxxiv Introduction to Greenwich Meteorological Observations, 1912.
a denotes aurora borealis
ci $\quad . . . \quad$ cirrus
ci-cu $\quad \ldots$ cirro-cumulus
ci-s ... cirro-stratus
cu $\quad .$. cumulus .
cu-s ... cumulo-stratus
d $\quad .$. dew
hy-d ... heavy dew
$\mathrm{f} \quad$... fog
slt-f \quad... slight fog
tk-f ... thick fog
fr $\quad .$. frost
ho-fr ... hoar frost
$\mathrm{g} \quad .$. gale.
hy-g ... heavy gale
glm $\quad \cdots$ gloom
gt-glm ... great gloom
h ... haze
slt-h ... slight haze
hl ... hail
1 ... lightning
li-cl ... light clouds
lu-co ... lunar corona
lu-ha ... luncer halo
$\mathrm{m} \quad$.. mist
slt-m ... slight mist
$\mathrm{n} \quad$... nimbus
p-cl $\quad . . \quad$ partially cloudy
prh ... parhelion
prs ... paraselene
r ... rain
c-r $\quad .$. continued rain
fr-r $\quad .$. frozen rain
$\mathrm{fq}-\mathrm{r} \quad \ldots$ frequent rain
hy-r ... heavy rain
c-hy-r $\quad .$. continued heavy rain
$\mathrm{m}-\mathrm{r} \quad \ldots$ misty rain
$\mathrm{fq}-\mathrm{m}-\mathrm{r} \quad . . \quad$ frequent misty rain
oc-m-r denotes occasional misty rain
oc-r \quad... occasional rain
sh-r $\quad .$. shower of rain
shs-r $\quad . .$. showers of rain
slt-r $\quad .$. slight rain
oc-slt-r ... occasional slight rain
th-r .. thin rain
fq-th-r $\quad .$. frequent thin rain
oc-th-r ... occasional thin rain
hy-sh ... heavy shower.
slt-sh ... slight shower.
fq-shs ... frequent showers
hy-shs ... heavy showers
fq-hy-shs ... frequent heavy showers
oc-hy-shs ... occasional heavy showers
li-shs ... light showers
oc-shs ... occasional showers
s ... stratus
sc ... scud
li-se ... light scud
sl ... sleet
sn $\quad .$. snow
oc-sn ... occasional snow
slt-sn \quad... slight snow
so-ha ... solar halo
sq $\quad .$. squall
sqs $\quad \ldots$ squalls
fq-sqs ... frequent squalls
hy-sqs ... heavy squalls
fq-hy-sqs... frequent heavy squalls
oc-sqs $\quad .$. occasional squalls
t $\quad .$. thunder
t-sm ... thunder storm
th-cl ... thin clouds
v ... variable
vv $\quad \ldots$ very variable
w \quad... wind
st-w ... strong wind

The following is the notation employed for Electricity:-

N	denotes negative	w denotes weak		
P	\ldots	positive	s	\ldots
strong				
m	\ldots	moderate.	v	\ldots
variable				

The duplication of the letter denotes intensity of the modification describedthus, ss is very strong; vv, very variable. 0 indicates zero potential, and a dash, " -," accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in $\S 6$.

In regard to the comparisons of the extremes and means, \&c. of meteorological elements with average values, contained in the footnotes, it may be mentioned that comparison is in all cases made with mean values determined from the observations for the sixty-five years 1841-1905.

The tables following the "Daily Results" require no lengthened explanation. They consist of tables giving the highest and lowest readings of the barometer through the year ; monthly abstracts of the principal metcorological elements; hourly values in each month of barometer-reading, of temperature of air, evaporation, and dewpoint, and of degree of humidity ; sunshine results; rain results; observatious of thermometers on the revolving stand, with mean differences from corresponding readings in a Stevenson screen in the Magnetic Pavilion Enclosure; changes of direction of the wind; hourly values in each month of the horizontal movement of the air derived from Robinson's Anemometer; results derived from the Thomson Electrometer ; and observations of parhelia, paraselenæ, and meteors.

In the tables of mean values of meteorological elements at each hour for the different months of the year, the mean values have, in previous years, been given for the hours $0^{\text {h }}$ to 23^{h} only. But since 1886 the mean for the 24th hour (the following midnight) has been added, thus indicating the amount of non-periodic variation. The monthly means have also been given since 1886 for the 24 hours, $1^{\text {h }}$ to $24^{\text {h }}$, as well as for the hours, $0^{\text {h }}$ (midnight) to $23^{\text {h }}$, which were given in former years.

It may be pointed out that the monthly means, 0^{h} to 23^{h}, for barometer and temperature of the air and of evaporation contained in these tables, pages E 52 and E 53, do not in some cases agree with the monthly means given in the daily results

Exxxvi Introduction to Greenwich Meteorological Observations, 1912.

pages E 26 to E 48 , and in the table on page E 51 , in consequence of occasional interruption of the photographic register, at which times daily values to complete the daily results could be supplied from the eye observations, as mentioned in the footnotes; but hourly values, for the diurnal inequality tables, could not be so supplied. In such cases, however, the means given with these tables are the proper means to be used in connexion with the numbers standing immediately above them, for formation of the actual diurnal inequality.

The table, " Abstract of the Changes of the Direction of the Wind," as derived from Osler's Anemometer, page E 59, exhibits every change of direction of the wind occurring throughout the year, whenever such change amounted to two nautical points or $22 \frac{1}{2}^{\circ}$. It is to be understood that the change from one direction to another during the interval between the times mentioned in each line of the table was generally gradual. All complete turnings of the vane which were evidently of accidental nature, and which in the year 1881 and in previous years had been included, are here omitted. Between any time given in the second column and that next following in the first column, no change of direction in general occurred varying from that given by so much as one point or $11 \frac{1}{4}^{\circ}$. From the numbers given in this table the monthly and yearly excess of motion, page E 65 , is formed. By direct motion it is to be understood that the change of direction occurred in the order N, E, S, W, N, \&c., and by retrograde motion that the change occurred in the order $\mathrm{N}, \mathrm{W}, \mathrm{S}, \mathrm{E}, \mathrm{N}$, \&c.

In regard to Electric Potential of the Atmosphere, in addition to giving the hourly values in each month, including all available days, the days in each month have been (since the year 1882) further divided into two groups, one containing all days on which the rainfall amounted to or exceeded $0^{\text {in. }} 020$, the other including only days on which no rainfall was recorded, the values of daily rainfall given in column 16 of the "Daily Results of the Meteorological Observations" being adopted in selecting the days. 'These additional tables are given on pages E 69 and E 70 respectively.

In regard to the observations of Luminous Meteors, it is simply necessary to say that, in general, only special meteor showers are watched for, such as those of April, August, and November. The observers of meteors in the year 1912 were Mr. Edney, Mr. Timbury, Mr. Divers, Mr. Brown, and Mr Showell. Their observations are distinguished by the initials E., T., D., F.B., and S. respectively.
F. W. DYSON.

Royal Observatory, Greenwich,

ROYAL OBSERVATORY, GREENWICH.

RESULTS

of

MAGNETICAL OBSERVATIONS

(EXCLUDING DAYs OF GREAT MAGNETIC DISTURBANCE),
1912.

Table I.-Mean Magnetic Declination West for each Civil Day. (Each result is the mean of 24 hourly ordinates from the photographic register.)

Table II.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West.
(The results in each case are diminished by the smallest hourly value.)

$\underset{\substack{\text { Hour } \\ \text { Greenwich } \\ \text { Civil Time. }}}{\text {. }}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	\bigcirc	$0 \cdot 2$	$0 \cdot 9$	$2^{\prime} \cdot 2$	$2 \cdot 3$	$3 \cdot 0$	$2 \cdot 9$	1-2	I ${ }^{\prime}$	1'3	0.5	$0 \cdot 5$	1•06
$\mathrm{I}^{\text {b }}$	$0 \cdot 3$	0.5	$1 \cdot 2$	24	$2 \cdot 3$	$3^{\circ} \mathrm{O}$	$3 \cdot 1$	$1 \cdot 2$	$1 \cdot 5$	1.4	1.0	$1 \cdot 1$	I 29
2	0.4	0.7	$1 \cdot 4$	2.4	$2 \cdot 3$	3.2	2.9	$1 \cdot 1$	1.4	$1 \cdot 6$	I.I	$1 \cdot 5$	$1 \cdot 38$
3	$0 \cdot 3$	0.4	1.4	2.4	$2 \cdot 1$	$3 \cdot 1$	2.5	$1 \cdot 2$	1.2	$1 \cdot 7$	1.3	$1 \cdot 7$	132
4	$0 \cdot 2$	0.4	1.6	$2 \cdot 2$	1.6	$2 \cdot 6$	$2 \cdot 1$	I.I	$1 \cdot 1$	$1 \cdot 7$	$1 \cdot 2$	$1 \cdot 9$	$1 \cdot 19$
5	$0 \cdot 0$	$0 \cdot 3$	174	2.1	$0 \cdot 9$	1.6	$0 \cdot 9$	$0 \cdot 7$	$1 \cdot 1$	$1 \cdot 5$	$1 \cdot 0$	1.6	$0 \cdot 80$
6	$0 \cdot 1$	0.4	$1 \cdot 2$	I. 6	$0 \cdot 3$	$0 \cdot 5$	0.2	0.4	0.7	$1 \cdot 3$	0.7	$1 \cdot 7$	0.47
7	0.2	0.5	0.9	$0 \cdot 7$	$0 \cdot 0$	$0 \cdot 0$	$\bigcirc \cdot 0$	$0 \cdot 0$	$0 \cdot 1$	0.7	0.6	$1 \cdot 5$	$0 \cdot 14$
8	0.5	0.7	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	0.0	0.6	14	0.00
9	$1 \cdot 3$	1.2	$0 \cdot 0$	$0 \cdot 3$	$1 \cdot 2$	I-I	0.8	$0 \cdot 9$	0.7	$0 \cdot 1$	$1 \cdot 1$	1.4	0.55
10	1.9	1.8	I•I	$2 \cdot 0$	3°	3.0	2.2	$2 \cdot 9$	$2 \cdot 6$	$1 \cdot 4$	2.0	2.0	1.87
11	$2 \cdot 5$	$3 \cdot 0$	$3^{\circ} 0$	$4 \cdot 5$	$5 \cdot 2$	$5 \cdot 2$	$4 \cdot 7$	$5 \cdot 2$	$5 \cdot 0$	$3 \cdot 7$	$3 \cdot 1$	3.0	3.72
Noon	2.9	$4^{\circ} \mathrm{O}$	$5 \cdot 1$	7.0	$7 \cdot 2$	$7 \cdot 1$	7.1	$7 \cdot 1$	$6 \cdot 8$	$6 \cdot 0$	$3 \cdot 8$	$3 \cdot 5$	5.34
$13^{\text {h }}$	$2 \cdot 7$	$4^{\cdot 1}$	$6 \cdot 3$	$8 \cdot 0$	$7 \cdot 7$	$8 \cdot 0$	$8 \cdot 3$	$7 \cdot 7$	$7 \cdot 2$	$6 \cdot 5$	$3 \cdot 8$	$3 \cdot 7$	$5 \cdot 88$
14	$1 \cdot 9$	3.4	$5 \cdot 9$	$7 \cdot 7$	$7 \cdot 2$	79	$8 \cdot 3$	7.0	$6 \cdot 2$	$5 \cdot 7$	$3 \cdot 2$	$3 \cdot 2$	$5 \cdot 34$
15	$1 \cdot 1$	$2 \cdot 3$	$5 \cdot 0$	$6 \cdot 5$	$6 \cdot 0$	$7 \cdot 0$	7.4	$5 \cdot 7$	$4 \cdot 8$	4.4	2.6	2.6	433
16	$1 \cdot 2$	1.6	3.6	$5 \cdot 2$	$4 \cdot 8$	$6 \cdot 1$	$6 \cdot 1$	$4 \cdot 1$	$3 \cdot 6$	$3 \cdot 2$	2.4	2.4	3.40
17	$1 \cdot 1$	1.7	$2 \cdot 5$	$4^{\circ} \mathrm{O}$	3.9	$5 \cdot 3$	$4 \cdot 8$	$2 \cdot 9$	27	$2 \cdot 3$	$1 \cdot 7$	$2 \cdot 2$	$2 \cdot 64$
18	$1 \cdot 0$	$1 \cdot 5$	1.9	3.2	3.5	4.7	$4{ }^{1}$	2.4	$2 \cdot 3$	$1 \cdot 9$	1.2	$1 \cdot 9$	2.18
19	0.7	$1 \cdot 1$	1.8	$2 \cdot 6$	$3 \cdot 1$	4.4	3.7	2.2	1.9	$1 \cdot 7$	0.8	$1 \cdot 4$	1.83
20	0.4	0.6	I 4	$2 \cdot 1$	$2 \cdot 7$	$3 \cdot 8$	3.4	2.0	$1 \cdot 0$	$1 \cdot 2$	0.4	$0 \cdot 9$	$1 \cdot 37$
21	$0 \cdot 0$	0.4	$1 \cdot 2$	$2 \cdot 1$	2.4	$3 \cdot 4$	$3 \cdot 1$	17	$0 \cdot 7$	$0 \cdot 7$	$0 \cdot 0$	0.4	1.05
22	$0 \cdot 0$	$0 \cdot 1$	I•I	$2 \cdot 2$	2.4	$3 \cdot 5$	2.9	$1 \cdot 4$	$0 \cdot 9$	0.7	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 98$
23	$0 \cdot 0$	$0 \cdot 0$	1×0	$2 \cdot 1$	$2 \cdot 2$	$3 \cdot 2$	$2 \cdot 8$	$1 \cdot 1$	10	$0 \cdot 9$	0.2	0.0	$0 \cdot 92$
24	0.1	0.2	$1 \cdot 0$	$2 \cdot 2$	2.2	3.0	2.8	1.2	1.2	$1 \cdot 3$	0.5	0.4	$1 \cdot 05$
$\int^{0} \mathrm{th}-23^{\text {h }}$	$0^{\prime} \cdot 86$	1'29	$2 \cdot 12$	$3^{\prime} \cdot 15$	$3^{\prime} \cdot 10$	$3^{\prime} \cdot 78$	$3^{\prime} \cdot 51$	2'55	$2^{\prime} \cdot 32$	$2^{\prime} \cdot 15$	$1^{\prime} \cdot 43$	1'73	$2^{\prime} \cdot 04$
	$0^{\prime} \cdot 87$	1'29	$2^{\prime} \cdot 13$	$3^{\prime} 15$	$3^{\prime} 10$	$3^{\prime} 78$	$3^{\prime} \cdot 5^{1}$	2'55	$2^{\prime} \cdot 32$	$2^{\prime} 15$	$1^{\prime} \cdot 43$	$1^{\prime} \cdot 72$	2'04

Table III.-Diurnal Range of Declination, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers.

1912.												
Day of Month	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }^{1}$	\ldots	$4 \cdot 8$	$5 \cdot \frac{1}{}$	9.9	$7 \cdot 7$	$8 \cdot 7$	II'I	99^{6}	$8 \cdot 4$	12.0	$5 \cdot 5$	$3 \cdot 3$
2	2.2	5.4	4.6	9.9 10.1	77	8.7	11.1	9.8	84	12.0	$5 \cdot 5$	33
3	$2 \cdot 3$	$4^{\circ} \mathrm{O}$	$5 \cdot 3$	10.4	8.5	10.2 8.0	8.9 10.8	9.5	9.1	6	5.1	$11 \cdot 5$
4	2.5 3	4.2	5.3	10.4 9.4	7.5 8.0	8.0 8.3	10.8 15.5	$6 \cdot 7$ 9.8	8.0 8.5	7.4 6.5	5.1	6.0 2.8
5	4.4	$2 \cdot 5$	7.5	18.7	11.6	$7 \cdot 1$	10.0	11.2	$8 \cdot 1$	8.4	4.6	2.2
6	$4 \cdot 6$	$2 \cdot 7$	7.7	16.6	$7 \cdot 3$	$7 \cdot 7$	$8 \cdot 2$	16.4	$7 \cdot 3$	9.8	$6 \cdot 4$	9.8
7	3.0	$4 \cdot 3$	$7 \cdot 5$	9.6	8.0	$6 \cdot 1$	8.1	$6 \cdot 5$	8.2	9.0	$6 \cdot 4$	10.0
8	$2 \cdot 6$	$6 \cdot 6$	$11^{\circ} \mathrm{O}$	$9{ }^{\circ}$	10.2	$9 \cdot 2$	$9 \cdot 4$	79	8.2	$7 \cdot 6$	3.9	4°
9	2.6	$4^{\cdot 1}$	$6 \cdot 2$	$8 \cdot 9$	7.4	$8 \cdot 6$	7•1	$7 \cdot 1$	10.5	$6 \cdot 8$	4°	$6 \cdot 5$
10	$3{ }^{\circ}$	$7{ }^{\circ}$	$8 \cdot 5$	$7 \cdot 8$	8\%	8.0	$6 \cdot 4$	9.2	71	$8 \cdot 2$	13.2	4°
11	$4{ }^{\circ}$	$5 \cdot 5$	$7 \cdot 0$	$6 \cdot 7$	$7 \cdot 3$	$7 \cdot 7$	$6 \cdot 8$	9.5	$6 \cdot 9$	14.7	$6 \cdot 5$	$4 \cdot 8$
12	$9 \cdot 7$	$3 \cdot 8$	$7 \cdot 4$	$8 \cdot 0$	11.1	$8 \cdot 5$	$7 \cdot 5$	$8 \cdot 9$	$9 \cdot 2$	8.9	$2 \cdot 6$	$4 \cdot 3$
13	$7 \cdot 4$	$6 \cdot 0$	$6 \cdot 2$	$6 \cdot 5$	10.7	$8 \cdot 6$	$8 \cdot 2$	10.0	$8 \cdot 8$	7*1	$3 \cdot 1$	7°
14	4.5	$3 \cdot 8$	7.4	10.1	$8 \cdot 2$	$9 \cdot 5$	12.5	12.1	$7 \cdot 8$	14.3	13%	4.4
15	3.7	$5 \cdot 0$	77	$7 \cdot 2$	$6 \cdot 3$	11.6	10.3	8.8	8.9	9.4	$5 \cdot 8$	2.4
16	$3 \cdot 1$	$5 \cdot 2$	$9 \cdot 6$	$9 \cdot 2$	$8 \cdot 9$	$9 \cdot 6$	8.5	10.6	$8 \cdot 0$	$6 \cdot 3$	$8 \cdot 0$	$2 \cdot 5$
17	4.4	$6 \cdot 8$	$6 \cdot 0$	79	6.4	100	9.8	11.8	20.4	$5 \cdot 2$	$4 \cdot 7$	3.0
18	$5 \cdot 4$	$4 \cdot 3$	$6 \cdot 0$	$9 \cdot 7$	$10 \cdot 2$	$9 \cdot 7$	8.2	$8 \cdot 7$	$8 \cdot 2$	$5 \cdot 7$	4*0	$2 \cdot 4$
19	$3 \cdot 1$	$4^{.1}$	$8 \cdot 9$	$8 \cdot 5$	$9 \cdot 6$	$7 \cdot 7$	10.5	11.2	$7 \cdot 1$	$6 \cdot 5$	$2 \cdot 7$	$2 \cdot 3$
20	$2 \cdot 9$	$5^{\circ} \mathrm{O}$	$8 \cdot 9$	$7 \cdot 9$	$8 \cdot 6$	$6 \cdot 0$	$10 \cdot 7$	$7 \cdot 3$	10.5	$5 \cdot 9$	4.2	$2 \cdot 5$
21	$2 \cdot 9$	4.4	$7 \cdot 3$	$8 \cdot 1$	$7 \cdot 4$	$7 \cdot 9$	8.4	7.4	$6 \cdot 9$	7.4	$2 \cdot 8$	2.7
22	$8 \cdot 9$	$4 \cdot 3$	12.1	9°	8.0	$9 \cdot 3$	74	$10 \cdot 3$	$9{ }^{\circ}$	$6 \cdot 2$	$7 \cdot 3$	$7 \cdot 5$
23	$3 \cdot 1$	$5 \cdot 9$	$5 \cdot 4$	$7 \cdot 4$	$7 \cdot 6$	$8 \cdot 4$	$10 \cdot 1$	$9^{\circ} 2$	$8 \cdot 0$	$6 \cdot 0$	3.5	97
24	$5^{\prime} \mathrm{I}$	$7 \cdot 9$	$5 \cdot 9$	$4 \cdot 6$	$6 \cdot 6$	$10 \cdot 7$	$9 \cdot 3$	$9^{\circ} \mathrm{O}$	17.6	$7 \cdot 3$	$3 \cdot 5$	- $5 \cdot 5$
25	$3 \cdot 1$	$6 \cdot 7$	$6 \cdot 3$	$6 \cdot 9$	$6 \cdot 2$	$9^{\circ} \mathrm{I}$	11.0	$7 \cdot 0$	$6 \cdot 3$	6.2	3.0	3.7
26	$2 \cdot 9$	$8 \cdot 9$	$7 \cdot 2$	$6 \cdot 0$	$6 \cdot 9$	$8 \cdot 5$	$10^{\circ} 2$	$8 \cdot 0$	$8 \cdot 6$	$5 \cdot 7$	$4 \cdot 8$	5.4
27	$2 \cdot 7$	$3 \cdot 6$	$8 \cdot 0$	$7 \cdot 3$	$8 \cdot 2$	10.0	$6 \cdot 2$	10.5	$9 \cdot 5$	$6 \cdot 3$	2.8	$4 \cdot 1$
28	$4 \cdot 6$	$3 \cdot 7$	$7 \cdot 5$	$9{ }^{\circ}$	$8 \cdot 3$	$8 \cdot 8$	$7 \cdot 2$	$9 \cdot 1$	$9 \cdot 2$	$5 \cdot 3$	$2 \cdot 8$	2.0
29	3.0	5°	10.3	$9 \cdot 7$	$9 \cdot 1$	$10 \cdot 1$	$7 \cdot 8$	$9 \cdot 1$	$8 \cdot 2$	5.5	$2 \cdot 6$	$3 \cdot 1$
30	49		$6 \cdot 7$	10.2	8.4	$7 \cdot 7$	$7 \cdot 8$	$8 \cdot 8$	$7 \cdot 0$	$5 \cdot 7$	$2 \cdot 8$	$4 \cdot 8$
31	3.0		$9 \cdot 9$		$8 \cdot 5$		$9 \cdot 6$	$8 \cdot 2$		$4 \cdot 5$		$2 \cdot 3$
Means	$4^{\prime} \cdot 0$	$5 \cdot 0$	$7^{\prime} \cdot 4$	$9^{\prime} \cdot 0$	$8^{\prime} \cdot 3$	$8 \cdot 7$	$9^{\prime} \cdot \mathrm{I}$	$9^{\prime} 3$	$9^{\prime} \cdot 0$	$7^{\prime} \cdot 5$	$5^{\prime} \cdot 0$	47

Table IV.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Days, in each Montif.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected by the International Committee for comparison with results at other Olservatories. The results in each case are diminished by the smallest hourly value. The days included are:-

	January 2, 15, 16, 26, 27. February 5, 6, 15,.20, 21. March 4, 17, 18, 19, 24.			$\begin{aligned} & \text { April i, } 1,11,21,28 . \\ & \text { May i, } 16,22,23,26 \text {. } \\ & \text { June 5, } 6,15,19,20 . \end{aligned}$						October 2, 5, 18, 19, 31. November 3, 12, 21, 29, 30. December 4, 5, 20, 21, 28.			
1912.													
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	$\bigcirc{ }^{\circ} \mathrm{I}$	$\bigcirc \cdot 6$	$2 \cdot 2$	$3 \cdot 3$	$2 \cdot 7$	$3 \cdot 7$	3.4	$2 \cdot 0$	$2 \cdot 7$	$1 \cdot 9$	$0 \cdot 4$	0.5	$1 \cdot 80$
$\mathrm{I}^{\text {b }}$	$0 \cdot 4$	$0 \cdot 5$	2.4	$3 \cdot 6$	$2 \cdot 9$	3.7	$3 \cdot 6$	2.5	3.1	$1 \cdot 9$	$0 \cdot 6$	$0 \cdot 7$	2.03
2	$\bigcirc \cdot 1$	$0 \cdot 4$	2.4	$3 \cdot 5$	$2 \cdot 6$	$3 \cdot 8$	3.5	$2 \cdot 3$	$2 \cdot 9$	19	$0 \cdot 7$	$\bigcirc \cdot 9$	1.95
3	$\bigcirc \cdot 3$	$0 \cdot 6$	$2 \cdot 2$	$3 \cdot 4$	2.2	$3 \cdot 7$	2.5	$2 \cdot 1$	29	$2 \cdot 1$	0.9	$\bigcirc \cdot 8$	1.85
4	$\bigcirc \cdot 2$	$\bigcirc \cdot 7$	$2 \cdot 3$	$2 \cdot 9$	1.6	$3 \cdot 1$	2.0	17	$2 \cdot 7$	2.2	$0 \cdot 9$	$0 \cdot 8$	1.63
5	$\bigcirc \cdot 1$	$0 \cdot 4$	$2 \cdot 1$	$2 \cdot 7$	0.6	$2 \cdot 5$	$\bigcirc \cdot 8$	$0 \cdot 8$	2.4	1.8	$0 \cdot 7$	$0 \cdot 4$	$1 \cdot 14$
6	\bigcirc	$0 \cdot 5$	2.0	2.2	$0 \cdot 0$	13	$0 \cdot 3$	$\bigcirc \cdot 3$	$1 \cdot 9$	$1 \cdot 5$	$0 \cdot 5$	$0 \cdot 4$	$0 \cdot 78$
7	\bigcirc	$0 \cdot 4$	$1 \cdot 4$	$\bigcirc \cdot 8$	$0 \cdot 0$	$\bigcirc \circ$	$0 \cdot 0$	\bigcirc	$0 \cdot 7$	$\bigcirc \cdot 9$	$0 \cdot 4$	$0 \cdot 2$	$0 \cdot 27$
8	$\bigcirc \cdot 3$	$0 \cdot 5$	0.4	$0 \cdot 0$	$0 \cdot 4$	$\bigcirc \circ$	\bigcirc	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	\bigcirc	$\bigcirc \cdot$	$0 \cdot 00$
9	10	$\bigcirc \cdot 9$	$0 \cdot 0$	$\bigcirc \cdot 3$	$1 \cdot 5$	$0 \cdot 5$	$0 \cdot 8$	$1 \cdot 0$	$0 \cdot 6$	$\bigcirc \cdot 1$	$\bigcirc \cdot 3$	$\bigcirc \cdot 1$	0.46
10	$1 \cdot 7$	17	$1 \bigcirc$	$2 \cdot 1$	3.0	2.4	2.5	3.2	$2 \cdot 3$	$1 \cdot 5$	$1 \cdot 1$	$0 \cdot 8$	$1 \cdot 81$
11	2.0	$2 \cdot 6$.	3.5	$4 \cdot 7$	$4 \cdot 6$	4.7	4.4	$5 \cdot 3$	$5 \cdot 1$	3.7	$2 \cdot 3$	1.6	3.58
Noon	2.4	3.4	$5 \cdot 8$	7.4	6.5	6.5	$6 \cdot 8$	7.6	$7 \cdot 7$	$5 \cdot 6$	2.9	2.0	$5 \cdot 25$
$.13{ }^{\text {h }}$	$2 \cdot 2$	$3 \cdot 5$	$6 \cdot 4$	8.3	$7 \cdot 6$	7.4	$7 \cdot 6$	8.7	8.9	$6 \cdot 1$	$2 \cdot 8$	$2 \cdot 1$	$5 \cdot 84$
14	13	2.7	5.9	7.8	$6 \cdot 8$	7.8	7.4	$7 \cdot 6$	$8 \cdot 2$	$5 \cdot 4$	$2 \cdot 1$	1.7	$5 \cdot 26$
15	$0 \cdot 6$	1.6	4.9	6.3	$5 \cdot 2$	$77^{\circ} \mathrm{O}$	$6 \cdot 4$	$5 \cdot 7$	6.8	$4 \cdot 1$	14	$1 \cdot 1$	4.13
16	$\bigcirc \cdot 9$	$\bigcirc \cdot 8$	3.4	5.0	3.9	$6 \cdot 0$	$5 \cdot 1$	3.3	$5 \cdot 4$	3.2	1.5	$1 \cdot 1$	$3 \cdot 17$
17	$0 \cdot 8$	1.1	$2 \cdot 5$	$4^{\circ} \mathrm{O}$	3.0	5.3	3.8	$2 \cdot 1$	4.3	2.9	$1 \cdot 3$	$1{ }^{\circ}$	2.55
18	0.4	$1 \times$	2.4	3.0	3.2	5.2	3.6	$2 \cdot 0$	3.9	$2 \cdot 8$	12	$0 \cdot 6$	2.31
19	$0 \cdot 5$	0.7	$2 \cdot 0$	3.2	$3 \cdot 3$	$4 \cdot 8$	3.6	2.5	3.6	2.8	$0 \cdot 9$	$0 \cdot 5$	2.24
20	$0 \cdot 3$	$0 \cdot 4$	2.1	$3 \cdot 1$	$3 \cdot 1$	4.6	3.6	2.7	3.2	$2 \cdot 5$	$0 \cdot 7$	$\bigcirc 3$	2.09
21	$0 \cdot 2$	$0 \cdot 4$	2.2 2.2	2.9 3.3	2.5 2.6	4.4	3.6	2.5	3.0	2.3	$0 \cdot 5$	$0 \cdot 4$	1.94
22	$\bigcirc \cdot 3$	$0 \cdot 1$	$2 \cdot 2$	3.3	2.6	4.6	3.2	2.4	2.5	2.4	$0 \cdot 4$	$0 \cdot 1$	1.88
23	$0 \cdot 4$	$0 \cdot 0$	2.2	3.5	2.5	4.1	3.2	$2 \cdot 3$	2.4	$2 \cdot 3$	$0 \cdot 4$	$0 \cdot 4$	1.85
24	$0 \cdot 5$	$0 \cdot 4$	$2 \cdot 3$	$3 \cdot 8$	2.2	4.2	3.1	$2 \cdot 2$	2.7	$2 \cdot 2$	0.5	$0 \cdot 7$	1.94
	${ }^{\prime \prime} .69$	$\mathrm{I}^{\prime} \cdot 05$	$2^{\prime} \cdot 66$	$3^{\prime} \cdot 64$	$3 \cdot 01$	$4^{\prime .05}$	$3^{\prime} \cdot 40$	2'94	$3^{\prime} \cdot 63$	$2^{\prime} \cdot 58$	1'.04	${ }^{\prime} \cdot 77$	2'33
	$0^{\prime} \cdot 70$	$1 \cdot 05$	$2^{7} 67$	$3^{\prime} \cdot 66$	2'99	$4^{\prime} \cdot 07$	$3^{\prime} \cdot 39$	$2^{\prime} \cdot 95$	$3^{\prime} \cdot 63$	2'59	I'04	$0 \cdot 78$	$2^{\prime} \cdot 33$

Table V.-Mean Horizontal Magnetic Force for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in C.G.S. units. The values are corrected for Temperature.)

1912.												
Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	I $8000 \gamma+$											
$\begin{gathered} \hline \mathrm{d} \\ \mathrm{I} \end{gathered}$												
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\stackrel{\square}{ } 529 \gamma$	518 511	565γ 567	537γ 535	508γ 519	514γ 515	522γ 524	520γ 521	565γ 561	536γ 535	531γ 519	493γ
3	534	507	567	532	525	510	534	516	554	518	517	495
4	536	510	564	544	525	502	529	530	548	515	523	514
5	532	512	559	543	524	503	523	529	529	512	534	511
6	536	527	550	533	525	511	526	515	527	510	544	515
7	539	525	544	538	533	534	530	526	523	518	549	506
8	534	524	535	532	546	533	528	532	533	521	548	520
9	540	535	528	523	551	531	528	534	531	527	553	530
10	538	530	525	522	555	526	535	533	518	527	526	532
11	531	524	531	522	551	518	537	527	512	519	509	533
12	526	524	533	521	547	525	544	525	516	518	500	532
13	524	524	541	522	526	527	541	522	519	516	503	528
14	529	525	552	534	519	523	550	529	523	523	490	540
15	529	520	546	517	522	516	541	529	527	511	500	540
16	528	531	530	52 I	517	518	539	530	539	512	518	534
17	530	532	538	527	515	528	537	536	541	519	523	521
18	519	536	539	527	524	541	526	540	519	514	514	520
19	532	538	533	540	526	546	525	526	514	527	515	516
20	540	533	529	544	530	534	529	532	516	532	514	526
21	542	529	535	547	534	532	532	528	512	518	517	525
22	537	544	523	548	539	536	532	525	512	513	52 I	519
23	533	543	528	544	542	536	538	524	517	511	531	516
24	536	537	532	538	534	526	540	534	493	516	530	521
25	536	534	546	538	520	531	536	537	494	514	529	520
26	531	527	549	544	519	531	536	535	494	511	538	518
27	526	533	545	545	516	536	531	527	499	530	524	520
28	514	540	545	537	526	540	527	525	507	536	504	547
29	507	541	533	533	533	542	534	528	520	545	511	541
30	511		527	531	537	541	532	534	532	540	496	532
31	520		532		541		530	520		535		525
Means	530	528	541	534	530	527	533	528	523	522	52 I	522

Table VI.-Monthly and Annual Mean Diurnal Inequalities of Horizontal Magnetic Force.
(The results are expressed in C.G.S. units and in each case diminished by the smullest hourly value.)

1912.													
$\begin{aligned} & \text { Hour. } \\ & \text { Grenwich } \\ & \text { Civil Time. } \end{aligned}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	3γ	5γ	20γ	30γ	24γ	28γ	27γ.	35γ	317	28γ	9γ	17	19.6γ
$\mathbf{I}^{\text {h }}$	3	5	20	28	23	26	26.	34	30	28	9	2	19.0
2	4	5	19	27	21	25	25	34	30	27	9	3	$18 \cdot 6$
3	4	4	18	28	20	23	24	33	28	26	11	4	18.1
4	6	5	18	27	18	22	23	31	28	27	13	6	$18 \cdot 2$
5	9	7	19	27	16	21	23	29	26	27	14	8	18.3
6	10	8	21	25	13	16	19	26	23	28	15	9	17.2
7	9	8	20	23	10	10	14	19	19	26	13	10	14.6
8	6	6	16	16	4	4	8	10	10	19	8	7	$9^{\circ} 0$
9	3	3	9	6	0	0	2	3	3	10	3	4	$3 \cdot 3$
10	\bigcirc	0	2	I	\bigcirc	\bigcirc	0	0	\bigcirc	2	0	1	$0 \cdot 0$
11	1	\bigcirc	\bigcirc	\bigcirc	3	2	1	4	1	\bigcirc	I	\bigcirc	0.6
Noon	5	5	4	3	6	3	4	12	7	3	1	1	$4^{\circ} \mathrm{O}$
$13^{\text {b }}$	6	9	9	7	9	7	8	20	16	9	3	4	$8 \cdot 4$
14	7	10	11	14	15	14	14	24	19	13	2	4	117
15	6	7	14	20	19	20	20	27	22	16	2	$2{ }^{\prime}$	$14^{1} 1$
16	3	4	14	24	21	24	24	29	23	19	2	3	15.3
17	3	3	13	26	24	28	27	31	24	2 I	6	5	$17^{1} 1$
18	4	4	14	28	27	32	30	33	25	24	9	6	$19^{\circ} 2$
19	4	6	18	30	28	33	30	35	26	26	9	5	20.3
20	3	6	18	31	29	31	30	36	29	26	8	4	20.4
21	3	5	18	30	27	30	29	36	30	27	8	4	20.1
22	2	5	19	29	26	29	28	36	28	26	9	5	19%
23	2	4	19	29	26	28	27	35	29	26	7	4	19.2
24	3	6	19	30	26	28	27	35	30	27	7	2	19.5
$\int 0^{h}-23^{\text {b }}$	44	$5 \cdot 2$	$14^{\circ} 7$	21.2	$17^{\circ} 0$	19*0	19.3	$25 \cdot 5$	$2 \mathrm{I}^{1} \mathrm{I}$	20.2	$7^{1} 1$	$4 * 3$	14.4
$\left\|1^{\text {b }}-24^{h}\right\|$	4.4	$5 \cdot 2$	14%	21.2	$17 \cdot 1$	19°	19.3	25.5	21.1	$20^{\circ} 1$	7°	$4 \cdot 3$	14.4

Table VII.—Diurnal Range of Horizontal Magnetic Force, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers.
(The results are corrected for Temperature and expressed in C.G.S. units.)
I912.

Table VIII.-Monthly and Annual Mean Diurnal Inequalities of Horizontal Magnetic Force from Hourly Ordinates, on Five Selected Days in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected by the International Committee for comparison with results at other Observatories. The results are corrected for Temperature and in each case diminished by the smallest hourly value. The days included are :-

	January 2, 15, 16, 26, 27. February 5, 6, 15, 20, 21. March 4, 17, 18, 19, 24.			April 1, 8, 11, 21, 28.May $1,16,22,23,26$.June 5, $6,15,19,20$.			July $10,11,12,15,24$. August 4, September $2,12,13,26$. Ser $16,27,28$.						
1912.													
$\underset{\substack{\text { Hour. } \\ \text { Givenwich Time. }}}{\substack{\text { Giver } \\ \text { Gin }}}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.				$3^{2} \gamma$	26γ	29γ		26γ	27γ	24γ	9γ	2γ	$18 \cdot 1 \gamma$
$\mathrm{I}^{\text {M }}$.	7γ	${ }_{6} \gamma$	16	32	26	25	23	26	27	24	7	3	177
2	8	5	17	30	24	23	24	26	27	24	8	4	17.5
	5	4	16	3 I	24	21	21	26	26	24	8	5	16.8
3	7	5	17	30	23	20	22	26	26	26	9	8	17.5
4	10	7	17	29	20	2 I	23	23	26	26	12	9	17.8
6	11	6	17	28	16	18	18	20	24	25	13	9	16.3
	9	5	16	26	16	12	11	15	19	23	11	9	13.5
8	9	3	12	2 I	8	6	6	7	12	I9	6	7	8.5
9	1	I	3	10	I	4	2	\bigcirc	5	10	2	5	2.9
10	0	\bigcirc	0	3	0	1	\bigcirc	1	\bigcirc	3	0	2	0.0
1 I	2	2	2	0	1	\bigcirc	1	6	1	0	1	-	0.5
Noon	4	7	8	3	5	3	7	12	7	0	1	3	$4 \cdot 2$
$13^{\text {h }}$	9	12	12	10		4	11	19	16	5	5	9	9.4
13 14	11	15	13	18	16	10	14	22	19	9	8	10	$13^{\circ} \mathrm{O}$
15	10	13	14	25	19	13	22	26	27	14	11	10	16.2
16	7	9	14	31	20	18	23	28	28	17	11	8	17.0
17	7	6	14	33	22	24	24	30	29	20	15	8	18.5
18	9	9	14	3 I	26	31	22	31	30	23	15	10	$20^{1} 1$
19	8	9	16	32	28	33	24	30	33	24	13	10	$20 \cdot 9$
20	7	10	17	34	28	31	26	32	34	23	11	11	21.2
21	8		17	33	27	27	24	31	35	23	10	10	20.4
22	6	8	17	31	24	27	22	33	32	22	10	9	193
23	4	7	16	31	24	25	20	32	32	21	9	8	18.3
24	4	8	18	30	22	25	21	31	34	21	8	7	$18 \cdot 3$
m $0^{0} 0^{\text {b }}-23^{\text {b }}$	$6 \cdot 8$	$6 \cdot 8$	13.4	24.3	18.1	17.8	$17^{\circ} 2$	22.0	$22 \cdot 6$	17.9	$8 \cdot 5$	$7 \cdot 0$	14.4
	$6 \cdot 6$	6.9	13.5	24.2	18*0	17.6	17.1	22.2	22.9	17.8	$8 \cdot 5$	$7 \cdot 2$	14.4

Table IX.-Mean Vertical Magnetic Force for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in C.G.S. units. The values are corrected for Temperature.)

1912.												
($\begin{gathered}\text { Day of } \\ \text { Mouth. }\end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	$43000 \gamma+$											
${ }^{\text {d }}$	\ldots	3417	406γ	372γ	336γ	355γ	345γ	3717	372γ	377γ	3517	330γ
2	391γ	339	414	366	338	355	350	375	375	375	338	330
3	$3{ }^{81}$	336	412	366	337	352	346	368	374	360	331	328
4	382	331	416	375	343	352	340	360	366	346	322	336
5	386	326	400	377	339	354	342	376	378	344	332	343
6	383	322	397	385	354	347	353	359	369	343	339	337
7	375	330	396	395	356	343	358	367	362	339	346	342
8	369	344	394	$4{ }^{10}$	358	339	362	364	359	334	353	349
9	361	348	397	389	366	341	362	365	363	335	360	356
10	363	364	391	378	366	346	360	365	351	334	363	351
11	366	364	399	376	372	346	365	360	346	336	356	358
12	373	367	394	367	377	353	367	359	346	343	344	353
13	374	376	386	364	388	358	374	354	352	343	334	351
14	375	374	390	369	387	361	379	347	343	356	344	354
15	373	367	397	366	382	355	385	347	346	345	332	356
16	375	365	387	372	385	350	393	344	353	345	339	358
17	363	365	384	367	378	352	400	350	351	352	337	352
18	363	376	384	367	372	347.	397	358	350	358	346	344
19	358	372	380	366	368	357	397	362	349	347	344	340
20	354	371	381	368	368	364	370	367	347	352	337	342
21	358	368	377	364	370	366	373	364	345	343	334	350
22	358	370	375	376	365	368	377	351	340	334	351	350
23	359	374	385	381	367	371	376	348	333	343	352	352
24	355	379	383	381	364	376	380	358	333	344	351	355
25	359	372	384	373	365	378	386	364	337	338	357	343
26	358	373	390	375	374	373	388	364	333	338	354	345
27	355	371	387	373	3^{62}	369	385	358	327	341	354	343
28	350	380	386	371	363	366	389	362	322	348	340	340
29	348	380	391	366	365	378	386	353	316	349	337	355
30	$3+4$		382	359	375	372	381	357	333	347	334	339
31	338		377		375		370	363		338		338
Means	365	360	$3{ }^{1}$	374	365	358	372	360	349	346	344	346

Table X.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force
(The results are expressed in C.G.S. units and in each case diminished by the smallest hourly value.)

$\begin{aligned} & \text { Hour } \\ & \text { Greenwich } \\ & \text { Civil Time. } \end{aligned}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midu.	4γ	5γ	15γ	20γ	22γ	16γ	13γ	13γ	12γ	6γ	4γ	3γ	10.7γ
$1^{\text {h }}$	2	3	14	18	21	14	12	11	11	4	3	3	$9 \cdot 3$
2	2	3	13	18	20	15	1 I	11	10	4	3	1	$8 \cdot 9$
3	2	4	13	19	21	15	12	10	10	4	3	I	$9 \cdot 1$
4	3	6	16	2 I	23	18	14	12	10	7	3	2	$10 \cdot 8$
5	3	6	16	21	26	20	16	13	12	8	4	3	11.9
6	4	6	16	21	26	20	15	13	13	9	5	4	$12 \cdot 3$
7	4	5	17	22	25	19	16	14	13	10	4	3	12.3
8	2	3	16	18	22	16	15	13	11	11	3	3	$10 \cdot 7$
9	2	3	13	13	16	13	13	10	9	9	2	1	$8 \cdot 3$
10	2	2	8	7	10	7	10	6	6	3	1	\bigcirc	$4 \cdot 8$
11	2	2	3	1	2	1	3	2	\bigcirc	c	\bigcirc	\bigcirc	0.9
Noon	2	0	0	\bigcirc	2	J	$0 \cdot 0$						
$13^{\text {b }}$	2	\bigcirc	1	1	3	4	3	2	1	2	4	2	$1 \cdot 7$
14	2	1	4	7	10	7	6	7	5	6	7	3	$5 \cdot 0$
15	\bigcirc	3	8	13	17	10	11	13	9	9	7	4	$8 \cdot 3$
16	\bigcirc	3	13	16	21	14	15	16	11	9	9	5	10.6
17	2	4	14	20	25	18	17	17	13	9	9	7	12.5
18	3	5	14	20	26	18	20	16	12	9	8	7	$12 \cdot 8$
19	2	6	15	20	26	19	19	16	13	10	7	7	12.9
20	1	5	14	20	25	19	17	16	13	7	7	6	$12 \cdot 1$
21	1	5	14	20	24	18	16	14	12	7	6	6	1 l 5
22	1	6	13	19	23	18	16	13	1 I	6	5	5	10.9
23	1	5	13	19	23	16	16	13	10	6	3	3	10.3
24	1	6	15	18	24	16	13	12	10	5	3	3	$10 \cdot 1$
$\stackrel{\infty}{\underset{\sim}{c}} \int^{0^{h}-23^{\text {b }}}$	200	$3 \cdot 8$	I 1.8	$15^{\circ} 6$	19°	$14^{\circ} \mathrm{O}$	12.8	113	$9 \cdot 5$	$6 \cdot 5$	45	$3 \cdot 3$	$9^{\prime \prime}$
$\stackrel{(1)}{ } 1^{\text {h }}-24^{\text {b }}$	$1 \cdot 9$	$3 \cdot 8$	11.8	I 5.5	19*1	$14^{\circ} 0$	12•8	11'3	9.4	6.4	4.5	$3 \cdot 3$	9.1

Table XI.-Diurnal Range of Vertical Magnetic Force, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers.
(The results are corrected for Temperature and expressed in C.G.S. units.)

1912.												
Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
2	${ }^{19} 8$	12	16	${ }_{28}^{26 \gamma}$	$\begin{aligned} & 31 \\ & 30 \end{aligned}$	22γ	29γ	$\begin{aligned} & 34 \gamma \\ & 29 \end{aligned}$	19γ	$\begin{aligned} & 32 \gamma \\ & 10 \end{aligned}$	23γ14	${ }_{2}^{7} \gamma$
2						25	21		23			
3		14	13	20	42	30	29	21	23	23	10	24
4	5	13	22	23	25	34	29	40	28	16	14	33
5	13	20	26	30	45		$\begin{aligned} & 37 \\ & 26 \end{aligned}$	20	1420	13	18	3026
6	18	12	20	4418	37	25		82		15	20	
7	10	16	194		31	29	23	30	1322	22	11	25
8	10	16		19		40	27	33		17	13	19
9	21	15	28	34	23	13	32	23	22	1916	19	17
10	9	15	34	18	33	33	33	29	11 9		31	18
11	19	22	1518	26	29	19	18	16	9 9	36	19	
12	25	17		3122	42	20	16	27	2922	1926	14	11 9
13	11	17	17		$\begin{aligned} & 37 \\ & 29 \end{aligned}$	40	22	23				20
14	8	12		22		21	18	24	22	31	77	15
15	10		$\begin{aligned} & 24 \\ & 20 \end{aligned}$	3319	22	21	28	18	26	31	20	11
16	16	716			$\begin{aligned} & 33 \\ & 32 \end{aligned}$	$\begin{aligned} & 24 \\ & 21 \end{aligned}$	24	25	16	19	10	9
17	6		3133	3236			25	22	46	24	11	13
18	7	10			2923	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	33	20	36	23	13	7
19	10	22	20	3928		33	27	27	22	20	13	10
20	10	22	23		$\begin{aligned} & 39 \\ & 26 \end{aligned}$	20	21	16	14	10	10	11
21	6	13	23	28		29	21	12	16	11	9	9
22	14	19	33	26	35	18	19	30	11	14	25	13
23	9	24	27	31	43	20	25	39	23	13	13	18
24	12	18	20	22	30	23	27	27	33	12	11	23
25	10	23	26	35	33	17	13	26	15	16	10	7
26	3	17	18	33	36	20	21	31	17	12	10	13
27	9	8	26	39	30	27	26	18	24	20	17	8
28	9	21	26	4 I	38	35	20	29	19	16	14	11
29	8	13	29	39	29	23	23	27	37	19	26	13
30	16		14	40	30	19	27	23	22	13	13	14
31	8		18		42		24	19		8		9
Means	11.3	$16 \cdot 1$	$23^{6} 6$	293	32.6	25.5	24^{6}	27.1	217	18.6	174	154
					an of th	elve mo	values	9γ.				

Table XII.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Days in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected by the International Committee for comparison with results at other Observatories. The results are corrected for Temperature and in each case diminished by the smallest hourly value. The days included are:-

| January 2, 15, 16, 26, 27. | April 1, 8, 11, 21, 28. | July | 10, 11, 12, 15, 24. | October 2, 5, 18, 19, 31. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| February 5, 6, 15, 20, 21. | May 1, 16, 22, 23, 26. | August $4,8,12,13,26$. | November 3, 12, 21, 29, 30. | |
| March $4,17,18,19,24$. | June 5, 6, 15, 19, 20. | September 2, 15, 16, 27, 28. | December 4, 5, 20, 21, 28. | |

$\begin{aligned} & \text { Grour } \\ & \text { Given } \\ & \text { Givill } \end{aligned}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	7γ	10γ	18γ	20γ	30γ	14γ	12γ	19γ	13γ	8γ	5γ	7γ	12.18
$\mathrm{I}^{\text {b }}$	7	9	18	20	30	13	13	20	12	6	5	6	11.8
2	7	9	16	20	30	14	13	19	12	6		7	11.6
3	9	11	19	20	31	16	13	20	14	6	2	6	12.4
4	8	1 I	17	23	33	19	15	21	12	7	3	7	13.2
5	8	12	17	24	35	22	18	22	14	8	3	8	14.4
6	9	11	17	23	34	23	16	23	16	10	4	8	14.7
7	8	11	20	25	31	24	18	23	17	11	5	6	$15^{\circ} 1$
8	5	8	19	22	29	20	17	24	14	10	4	7	13.4
9	6	7	17	14	22	13	16	18		9	3	3	10.0
10	4	3	7	9	10	7	12	13	6	3	3	2	$5 \cdot 1$
11	7	2	1	3	1	1	5	5	1	-	2	-	$0 \cdot 8$
Noon	3	-	-	-	-	1	\bigcirc	-	2	3	5	4	$0 \cdot 0$
$13^{\text {b }}$	3	-	3	1	4	-	3	3	\bigcirc	1	5	5	$0 \cdot 8$
14	3	1	5	5	11	2	1	9	I	5	7	6	$4{ }^{\circ}$
15	3		10	12	18	5	12	14	11	7	6	8	$7 \cdot 7$
16	2	4	16	14	23	9	15	18	13	6	5	7	9.5
17	2	8	16	18	25	13	20	22		7	6	10	$12 \cdot 1$
18	2	5	14	18	27	13	20	18	16	6	5	10	11.3
19	1	5	16	17	24	14	20	15	16	7	4	11	11.0
20	-	4	15	20	26	13	20	15	14	5	4	9	10.6
21	-	3	13	19	24	13	19	15	13	5	3	10	9.9
22	2	4	15	19	25	13	19	14	13	4	3	9	$10 \cdot 2$
23	2	3	16	20	26	13	21	15	14	3	1	8	10.3
24	2	6	16	20	26	14	20	16	12	6	\bigcirc	9	$10 \cdot 8$
䫀 $0^{\text {d }}-23^{\text {h }}$	45	$6 \cdot 1$	13.5	$16 \cdot 1$	22.9	12.3	143	16.0	114	$6 \cdot 0$	$4^{\circ} \mathrm{O}$	$6 \cdot 8$	97
	43	5%	13.5	16.1	$22 \cdot 7$	12.3	14.7	15%	11.4	59	$3 \cdot 8$	6.9	9.6

Table XIII.-Mean Temparature for each Civil Day within the box inclosing the Horizontal Force Magnet.

1912.												
$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Month. } \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	...	62.6	$67 \cdot 8$	$65^{\circ} 7$	$67^{\circ} 4$	$66^{\circ} 9$	$67^{\circ} \mathrm{I}$	67.4	$66^{\circ} 9$	$67^{\circ} \mathrm{I}$	$65^{\circ} 7$	$65^{\circ} \mathrm{2}$
2	66.3	62.9	67.0	64.9	67.2	$66 \cdot 9$	$66 \cdot 9$	$66 \cdot 8$	$67 \cdot 6$	66.4	65.2	67.0
3	$66 \cdot 4$	61.0	$66 \cdot 8$	$67 \cdot 1$	$67 \cdot 1$	$66 \cdot 1$	$66 \cdot 8$	$66 \cdot 8$	65.4	$65 \cdot 3$	65.5	$66 \cdot 1$
4	66.9	$60 \cdot 8$	$65 \cdot 4$	67.4	$66 \cdot 7$	67.4	$66 \cdot 9$	$67 \cdot 8$	$67 \cdot 3$	65.5	66.7	$67 \cdot 7$
5	$66 \cdot 8$	$58 \cdot 6$	65°	$67 \cdot 8$	$66 \cdot 4$	$66 \cdot 5$	$67 \cdot 1$	67°	67.2	65.2	$66 \cdot 9$	$65 \cdot 7$
6	$65 \cdot 6$	$60 \cdot 8$	66.0	$68 \cdot 2$	$67 \cdot 3$	$67 \cdot 3$	68.0	$67 \cdot 1$	$66 \cdot 5$	$65^{\circ} 6$	67.7	$67 \cdot 3$
7	$66 \cdot 0$	64.7	$66 \cdot 6$	$67 \cdot 5$	$66 \cdot 9$	$66 \cdot 9$	679	$67 \cdot 3$	$67{ }^{\circ}$	$66 \cdot 2$	$67 \cdot 3$	$66 \cdot 8$
8	$64 \cdot 6$	$66 \cdot 3$	$67 \cdot 3$	$66 \cdot 6$	$66 \cdot 9$	$66 \cdot 9$	$67 \cdot 8$	$67 \cdot 1$	$67 \cdot 7$	$66 \cdot 6$	$67 \cdot 6$	$67 \cdot 7$
9	$65 \cdot 9$	$67 \cdot 1$	$66 \cdot 9$	64.9	$67 \cdot 6$	$66 \cdot 3$	67.4	$67 \cdot 6$	$66 \cdot 2$	$66 \cdot 2$	$66 \cdot 6$	$67 \cdot 2$
10	$66 \cdot 2$	66.9	$66 \cdot 9$	$66 \cdot 2$	67.9	$66 \cdot 9$	68.4	$66 \cdot 7$	$65 \cdot 0$	66. 1	$65 \cdot 7$	$66 \cdot 9$
11	$66 \cdot 6$	$66 \cdot 2$	$66 \cdot 1$	$66 \cdot 3$	$67 \cdot 3$	$66 \cdot 8$	69.0	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 6$	65.2	$66 \cdot 5$
12	$66 \cdot 4$	$66 \cdot 3$	$66 \cdot 1$	$66 \cdot 3$	68.3	$67 \cdot 2$	69.7	$66 \cdot 7$	$68 \cdot 3$	$66 \cdot 9$	65.5	$67 \cdot 3$
13	$66 \cdot 2$	66.4	$67{ }^{\circ}$	$66 \cdot 6$	$66 \cdot 7$	$66 \cdot 7$	711	66°	67:3	$67 \cdot 4$	$65^{\circ} 4$	$66 \cdot 3$
14	$66 \cdot 7$	$66 \cdot 0$	67.7	67.5	$66 \cdot$	$66 \cdot 9$	71.1	$66 \cdot 4$	$67 \cdot 3$	$67 \cdot 8$	65.3	$66 \cdot 9$
15	67.0	$66 \cdot 1$	$66 \cdot 7$	$66 \cdot 2$	$67 \cdot 1$	$67 \cdot 1$	7199	$66 \cdot 4$	$68 \cdot 1$	$66 \cdot 3$	$66 \cdot 2$	$67 \cdot 5$
16	$66 \cdot 3$	67°	$66 \cdot 3$	65.3	$66 \cdot 6$	$66 \cdot 9$	$72 \cdot 1$	$66 \cdot 8$	$66 \cdot 8$	$66 \cdot 9$	$66 \cdot 5$	$67 \cdot 3$
17	$65 \cdot 3$	67.7	$67 \cdot 1$	$66 \cdot 6$	$66 \cdot 1$	$66 \cdot 6$	$72 \cdot 0$	$67 \cdot 3$	$66 \cdot 6$	$67 \cdot 7$	$67 \cdot 4$	$66 \cdot$
18	63.9	$67 \cdot 2$	$66 \cdot 7$	$67 \cdot 3$	$67 \cdot 4$	67.5	71.2	$67 \cdot 6$	$67 \cdot 5$	$66 \cdot 6$	$67 \cdot 0$	$66 \cdot 7$
19	$64 * 7$	$67 \cdot 8$	$66 \cdot 7$	$66 \cdot 5$	$67 \cdot 1$	$67 \cdot 9$	$68 \cdot 2$	67.4	67.5	$67 \cdot 5$	$65 \cdot 9$	$65^{\circ} 9$
20	$65^{\circ} 4$	$66 \cdot 4$	$66 \cdot 1$	$66 \cdot 3$	67.4	679	67.9	$67^{\circ} 2$	67.1	$66 \cdot 3$	$66 \cdot 4$	$67 \cdot 2$
21	$65^{\circ} 9$	$66 \cdot 2$	$66 \cdot 1$	67.9	$66 \cdot 6$	67.5	$68 \cdot 6$	$66 \cdot 2$	$66 \cdot 9$	65.9	$66 \cdot 9$	$66 \cdot 7$
22	$66 \cdot 2$	67.4	$66 \cdot 8$	$68 \cdot 2$	$66 \cdot 8$	67.9	$68 \cdot 5$	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 6$	$66 \cdot 9$	674
23	$65 \cdot 3$	$67 \cdot 2$	$66 \cdot 5$	67.2	$66 \cdot 7$	$68 \cdot 9$	$68 \cdot 6$	$67 \cdot 3$	$67 \cdot 1$	$66 \cdot 8$	$67 \cdot 0$	67.4
24	$66 \cdot 2$	$66 \cdot 3$	$67 \cdot 2$	$66 \cdot 4$	$66 \cdot 9$	$68 \cdot 5$	$69 \cdot 3$	$67 \cdot 5$	$67 \cdot 4$	$66 \cdot 5$	67.0	$67 \cdot 5$
25	$66 \cdot 7$	$66 \cdot 5$	$67 \cdot 7$	$66 \cdot 9$	$66 \cdot 5$	$67 \cdot 8$	$70 \cdot 2$	67.4	$66 \cdot 9$	$66 \cdot 2$	$66 \cdot 2$	$66 \cdot 9$
26	$66 \cdot 1$	$66 \cdot 6$	$67 \cdot 1$	$66 \cdot 8$	$66 \cdot 4$	$67 \cdot 5$	$69 \cdot 9$	$67 \cdot 3$	$66 \cdot 4$	$66 \cdot 1$	$66 \cdot 2$	$66 \cdot 9$
27	$64 \cdot 8$	$67 \cdot 5$	67.0	$66 \cdot$	$67 \cdot 2$	$67 \cdot 7$	$70 \cdot 2$	$66 \cdot 9$	$66 \cdot 2$	$67 \cdot 3$	$65 \cdot 6$	$66 \cdot 4$
28	$63 \cdot 6$	68.0	$67 \cdot 6$	$65 \cdot 7$	$67 \cdot 1$	679	$70 \cdot 3$	$66 \cdot 2$	$66 \cdot 2$	$67 \cdot 2$	$65 \cdot 2$	$66 \cdot 6$
29	$62 \cdot 6$	67.3	$66 \cdot 0$	$66 \cdot 3$	$66 \cdot 6$	$67^{\circ} 2$	$68 \cdot 9$	$67 \cdot 6$	$67 \cdot 0$	$66 \cdot 9$	67.1	$65 \cdot 5$
30	$62 \cdot 3$		$65^{\circ} 9$	$66 \cdot 7$	67.4	67°	67.9	67.5 66.8	67.4	$66 \cdot 4$	$66 \cdot 4$	$64 \cdot 6$
31	$63 \cdot 2$		$66 \cdot 0$		$67 \cdot 1$		$67 \cdot 4$	$66 \cdot 8$		$66 \cdot 3$		$66 \cdot 7$
Means	$65^{\circ} \cdot 54$	$65^{\circ} \cdot 58$	$66^{\circ} \cdot 65$	$66^{\circ} \cdot 64$	$66^{\circ} \cdot 99$	$67^{\circ} \cdot 25$	$68^{\circ} \cdot 98$	$67^{\circ} \cdot 02$	$66^{\circ} \cdot 93$	$66^{\circ} \cdot 53$	$66^{\circ} \cdot 34$	$66^{\circ} \cdot 70$

Table XIV.-Monthly and Annual Mean Temperature at each Hour of the Day within the box inclosing the Horizontal Force Magnet.

1912.													
$\begin{gathered} \text { Hour, } \\ \text { Greenwich } \\ \text { Civil Time. } \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	$\underset{\substack{\text { For the } \\ \text { Year. }}}{ }$
Midn.	$66^{\circ} 1$	$66^{\circ} \mathrm{I}$	$67^{\circ} \cdot 2$	$67^{\circ} \cdot 2$	$67^{\circ} 4$	$67^{\circ} 6$	$69^{\circ} \cdot 2$	67.3	$67^{\circ} \cdot 2$	$66^{\circ} 9$	$66^{\circ} 7$	$67^{\circ} \mathrm{I}$	$67^{\circ} 17$
$\mathrm{I}^{\text {h }}$	$65 \cdot 9$	$66 \cdot$	67.1	67°	67.2	$67 \cdot 5$	69°	67.2	$67 \cdot 1$	$66 \cdot 9$	$66 \cdot 6$	$66 \cdot 9$	6705
2	$65 \cdot 8$	$65 \cdot 8$	$66 \cdot 8$	$66 \cdot 8$	$67 \cdot 1$	67.4	69°	$67 \cdot 1$	67°	$66 \cdot 7$	$66 \cdot 5$	$66 \cdot 7$	$66 \cdot 89$
3	65.6	65.6	$66 \cdot 6$	$66 \cdot 6$	67.0	$67 \cdot 2$	69°	67°	$66 \cdot 9$	$66 \cdot 6$	$66 \cdot 3$	$66 \cdot 6$	66.75
4	$65 \cdot 4$	65.5	66.4	66.4	$66 \cdot 9$	$67 \cdot 1$	68.9	67°	$66 \cdot 8$	$66 \cdot 4$	$66 \cdot 2$	$66 \cdot 5$	$66 \cdot 63$
5	65.3	$65 \cdot 3$	$66 \cdot 2$	$66 \cdot 2$	$66 \cdot 7$	67.0	$68 \cdot 8$	66.9	$66 \cdot 7$	$66 \cdot 3$	$66 \cdot 1$	66.4	66.49
6	65.2	$65 \cdot 2$	$66 \cdot 1$	$66 \cdot 1$	$66 \cdot 6$	66.9	$68 \cdot 7$	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 2$	$66 \cdot 0$	$66 \cdot 3$	66.39
7	$65 \cdot 1$	$65 \cdot 1$	66.0	$66 \cdot$	$66 \cdot 5$	$66 \cdot 9$	68.7	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 1$	66°	$66 \cdot 3$	66.33
8	65.2	$65 \cdot 1$	$66 \cdot$	66.	$66 \cdot 5$	$66 \cdot 9$	$68 \cdot 7$	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 1$	$66 \cdot 0$	$66 \cdot 3$	66.34
9	$65 \cdot 1$	$65 \cdot 1$	66°	66°	$66 \cdot 5$	$66 \cdot 9$	$68 \cdot 7$	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 1$	$66 \cdot$	66.4	66.34
10	65.1	65°	$66 \cdot 1$	$66 \cdot$	66.5	$66 \cdot 9$	$68 \cdot 7$	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 1$	$66 \cdot 0$	66.4	66.34
11	65^{1}	65°	$66 \cdot 2$	$66 \cdot 0$	$66 \cdot 6$	66.9	$68 \cdot 7$	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 1$	$66 \cdot 1$	66.4	66.37
Noon	65.2	65°	$66 \cdot 3$	$66 \cdot 1$	66.7	$66 \cdot 9$	68.7	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 1$	$66 \cdot 1$	$66 \cdot 5$	$66 \cdot 42$
$13^{\text {b }}$	65.2	65.2	66.4	$66 \cdot 3$	$66 \cdot 8$	67°	$68 \cdot 8$	$66 \cdot 9$	$66 \cdot 8$	$66 \cdot 3$	$66 \cdot 2$	$66 \cdot 7$	$66 \cdot 55$
14	65.4	65.4	$66 \cdot 6$	$66 \cdot 5$	$67 \cdot 0$	$67 \cdot 2$	68.9	67°	$66 \cdot 9$	$66 \cdot 4$	$66 \cdot 3$	$66 \cdot 8$	$66 \cdot 70$
15	$65 \cdot 5$	65.5	$66 \cdot 8$	66.7	${ }^{67} 1$	$67 \cdot 3$	69°	67°	67°	$66 \cdot 6$	$66^{6} 4$	$66 \cdot 8$	$66 \cdot 8 \mathrm{I}$
16	$65 \cdot 6$	65.7	$66 \cdot 9$	$66 \cdot 9$	${ }^{67} \cdot 1$	67.4	$69^{\prime} 1$	$67 \cdot 1$	$67 \cdot 1$	$66 \cdot 7$	$66 \cdot 4$	$66 \cdot 9$	66.91
17	$65 \cdot 7$ 6.7	65.8	$67^{\circ} \cdot$	${ }^{67}{ }^{\circ} \mathrm{O}$	$67 \cdot 2$	$67 \cdot 5$	69.1	67.2	67.2	$66 \cdot 7$	$66 \cdot 5$	$66^{\circ} 9$	66.98
18	65.8 6.8	65.9 66.9	67.1	${ }^{67 \cdot 1}$	67.3	${ }^{67} 75$	69.2	67.2 67.3	$67 \cdot 2$ 67.2	$66 \cdot 8$	$66 \cdot 5$ 66.6	$66 \cdot 9$	67.04
19	65.8 6.9	$66^{\circ} \mathrm{O}$	$67 \cdot 1$	$67 \cdot 2$ $67 \cdot 3$	67.4 67.4	$67 \cdot 6$	69.2	67.3	67.2 67.2	66.9	$66 \cdot 6$	$66^{\circ} 9$	67.10
20	65.9	66°	$67 \cdot 2$	67.3	${ }^{6} 74$	${ }^{67} 6$	693	67.3	$67 \cdot 2$	$66 \cdot 9$	$66 \cdot 6$	67.0	$67 \cdot 14$
21	$65 \cdot 9$	$66 \cdot 1$	67.2	$67 \cdot 3$	$67 \cdot 5$	67%	693	$67 \cdot 3$	673	66.9	$66 \cdot 6$	67.0	$6 \cdot 17$
22	$65^{\circ} 9$	$66 \cdot 2$	$67 \cdot 2$	$67 \cdot 3$	67.4	67.6	693	$67 \cdot 3$	67.3	$66 \cdot 9$	$66 \cdot 7$	$67 \cdot 1$	$67 \cdot 18$
23	$66 \cdot 0$	$66 \cdot 2$	67.2	6-3	67.4	$67 \cdot 6$	69.3	67.3	67.3	66.9	$66 \cdot 7$	67.1	$67 \cdot 19$
24	66.	$66 \cdot 2$	67.1	$67 \cdot 3$	67%	$67 \cdot 6$	69.3	$67 \cdot 3$	67.3	66.9	$66 \cdot 7$	$67 \cdot 1$	$67 \cdot 18$

Table XV.-Mean Temperature for each Civil Day within the box inclosing the Vertical Force Magnet.
1912.

$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Month. } \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }_{\text {d }}^{\text {I }}$	\ldots	62%	$68^{\circ} \mathrm{O}$	$66^{\circ} 0$	$67^{\circ} \cdot 3$	$66 \cdot 9$	$67^{\circ} 1$	$66^{\circ} 7$	66°	$66^{\circ} \cdot$	$66 \cdot 7$	$66^{\circ} 3$
2	$66^{\prime} 2$	62.0	$66 \cdot 9$	$65 \cdot 6$	$67 \cdot 1$	66.9 66.9	671 66.8	$66 \cdot 7$ $66 \cdot 3$	66. ${ }^{\circ}$	$66 \cdot 6$	$66 \cdot 7$ 67.4	663 67
3	67°	60.0	$66 \cdot 5$	67.7	$66 \cdot 9$	$66 \cdot 4$	$66 \cdot 7$	$66 \cdot 8$	64.2	67.0	67.2	67.0
4	67.1	59.7	$65 \cdot 3$	$67 \cdot 3$	$66 \cdot 5$	$67 \cdot 5$	$66 \cdot 8$	$67 \cdot 5$	$66 \cdot 1$	67.7	$67 \cdot 8$	67.2
5	$66 \cdot 7$	58°	65.7	67.6	$67 \cdot 0$	$66 \cdot 5$	$67 \cdot 1$	$66 \cdot 0$	65.9	$66 \cdot 9$	$67 \cdot 2$	65.4
6	$65 \cdot 8$	59.9	$66 \cdot 5$	$67 \cdot 8$	$66 \cdot 9$	$67 \cdot 2$	$67 \cdot 8$	$66 \cdot 1$	65^{1}	$66 \cdot 5$	67.7	$66 \cdot 8$
7	$66 \cdot 6$	$63 \cdot 8$	67.2	$66 \cdot 5$	$66 \cdot 8$	$66 \cdot 8$	67.1	$67 \cdot 0$	65.6	$66 \cdot 6$	67.0	67.0
8	65.4	65.4	67.4	64.7	67.0	$66 \cdot 5$	$66 \cdot 7$	$66 \cdot 8$	$66 \cdot 4$	67.0	67.1	67.7
9	66.4	66.9	$66 \cdot 7$	$65 \cdot 3$	67.3	$66 \cdot 5$	$66 \cdot 4$	$67 \cdot 2$	$65^{\circ} \mathrm{O}$	$66 \cdot 5$	$66 \cdot 1$	66.4
10	$66 \cdot 9$	$66 \cdot 8$	$67 \cdot 5$	$66 \cdot 5$	677	$66 \cdot 7$	67.5	$66 \cdot 2$	64.9	$66 \cdot 6$	$66 \cdot 5$	$67 \cdot 2$
11	67.0	$66 \cdot 6$	$66 \cdot 2$	$66 \cdot 8$	67.2	$67 \cdot 2$	$68 \cdot 1$	66.9	$66 \cdot 5$	$67 \cdot 6$	$66 \cdot 5$	66.4
12	$66 \cdot 9$	$66 \cdot 4$	$66 \cdot 2$	67.1	67.7	$67 \cdot 1$	$69 \cdot 2$	$66 \cdot 8$	67.4	$67 \cdot 2$	$66 \cdot 8$	$66 \cdot 7$
13	$67 \cdot 1$	$66 \cdot 8$	$67 \cdot 7$	$67 \cdot 3$	$65^{\prime} 9$	$66 \cdot 5$	$70 \cdot 2$	$66 \cdot 0$	$66 \cdot 1$	$67 \cdot 6$	67.4	$66 \cdot 7$
14	67.4	$66 \cdot 2$	$68 \cdot 1$	$67 \cdot 6$	$65 \cdot 7$	$67 \cdot 1$	70.1	$66 \cdot 5$	$66 \cdot 7$	$66 \cdot 8$	67°	$66 \cdot 7$
15	$67 \cdot 4$	$66 \cdot 4$	$66 \cdot 8$	$67 \cdot 1$	67.5	67.2	$71 \cdot 0$	$66 \cdot 5$	$67 \cdot 2$	$67 \cdot 3$	$67 \cdot 8$	67.5
16	$66 \cdot 2$	$67 \cdot 4$	$66 \cdot 8$	$65 \cdot 8$	66.9	$66 \cdot 9$	$71 \cdot 2$	$66 \cdot 8$	66°	$67 \cdot 6$	$66 \cdot 9$	67.2
17	$65 \cdot 6$	$68 \cdot 2$	67.5	67.2	$66 \cdot 5$	$66 \cdot 4$	$70 \cdot 9$	$66 \cdot 3$	$66 \cdot 2$	67.5	$67 \cdot 9$	$66 \cdot$
18	$64 \cdot 2$	$67 \cdot 2$	$67 \cdot 1$	$67 \cdot 6$	$67 \cdot 6$	$67 \cdot 6$	69.9	$66 \cdot 6$	$67 \cdot 6$	$66 \cdot 3$	$67 \cdot 1$	$66 \cdot 8$
19	64.9	67.8	$67 \cdot 1$	$66 \cdot 9$	$67 \cdot 1$	$67 \cdot 2$	$67{ }^{1}$	$66 \cdot 2$	$67 \cdot 7$	$67 \cdot 4$	$66 \cdot 0$	$66 \cdot 8$
20	$66 \cdot 1$	$66 \cdot 8$	66.4	$65 \cdot 6$	67^{1}	. 67.1	$67 \cdot 8$	65.9	$66 \cdot 9$	65.7	$66 \cdot 6$	$67 \cdot 6$
21	$66 \cdot 5$	$66 \cdot 5$	$66 \cdot 5$	$68 \cdot 5$	$66 \cdot 2$	$66 \cdot 8$	$68 \cdot 0$	$65 \cdot 5$	$66 \cdot 6$	$66 \cdot 2$	$67 \cdot 9$	$66 \cdot 5$
22	66.4	$67 \cdot 3$	$67 \cdot 6$	67.9	$66 \cdot 5$	$67 \cdot 3$	67.5	67°	$66 \cdot 5$	67.7	$66 \cdot 8$	$66 \cdot 7$
23	$65 \cdot 7$	67.4	$66 \cdot 9$	$66 \cdot 9$	$66 \cdot 6$	$68 \cdot 0$	$67 \cdot 6$	67.4	$67 \cdot 2$	$67 \cdot 2$	$66 \cdot 6$	$67 \cdot 2$
24	$66 \cdot 3$	$66 \cdot 2$	$67 \cdot 6$	$66 \cdot 2$	$66 \cdot 9$	67.4	$68 \cdot 2$	$66 \cdot 5$	67.7	$66 \cdot 4$	$66 \cdot 7$	67.1
25	$66 \cdot 6$	$66 \cdot 9$	$67 \cdot 6$	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 7$	$69 \cdot 1$	$66 \cdot 2$	67.1	66.4	$65 \cdot 6$	$68 \cdot 0$
.26	$66 \cdot 0$	67°	$66 \cdot 9$	67.3	65.5	$67 \cdot 1$	$68 \cdot 9$	$66 \cdot 6$	$66 \cdot 6$	$66 \cdot 1$	$65 \cdot 8$	67.5
27	$64 \cdot 7$	68.0	$67 \cdot 1$	$66 \cdot 6$	66.7	67.5	$69 \cdot 3$	$67 \cdot 3$	$66 \cdot 4$	$66 \cdot 9$	$65 \cdot 6$	67.0
28	$63 \cdot 6$	$67 \cdot 9$	67.9	$66 \cdot 5$	$66 \cdot 5$	67.5	69.1	$66 \cdot 0$	$66 \cdot 5$	$66 \cdot 9$	$66 \cdot 5$	67.7
29	$62 \cdot 1$	67.0	$66 \cdot 3$	$67 \cdot 0$	65.9	$66 \cdot 3$	$67 \cdot 8$	67.4	$67 \cdot 4$	$66 \cdot 5$	$67 \cdot 6$	$65 \cdot 8$
30	$6 \mathrm{I} \cdot 6$		$66 \cdot 6$	$67 \cdot 8$	$66 \cdot 9$	$66 \cdot 3$	$66 \cdot 7$	$66 \cdot 5$	$66 \cdot 1$	$66 \cdot 5$	$66 \cdot 3$	$65 \cdot 9$
31	$62 \cdot 5$		$66 \cdot 5$		$66 \cdot 5$		$66 \cdot 8$	$65 \cdot 5$		$67 \cdot 1$		67.4
Means	$65^{\circ} 76$	$65^{\circ} 4^{8}$	$66^{\circ} \cdot 94$	$66^{\circ} \cdot 85$	$66^{\circ} \cdot 79$	$66^{\circ} \cdot 97$	$68^{\circ} \cdot 21$	$66^{\circ} \cdot 55$	$66^{\circ} \cdot 39$	$66^{\circ} \cdot 85$	$66^{\circ} \cdot 87$	$66^{\circ} \cdot 89$

Table XVI.-Monthly and Annual Mean Temperature at each Hour of the Day within the box inclosing the Vertical Force Magnet.

I9I2.

Hour, Greenwich Civil Time.	January.	February.	March.	April.	- May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	$66^{\circ} \cdot 3$	$66^{\circ} \mathrm{O}$	67.5	$67^{\circ} 4$	$67^{\circ} 2$	$67^{\circ} 3$	$68^{\circ} \cdot 5$	$66^{\circ} \cdot 8$	$66^{\circ} \cdot 6$	$67^{\circ} 3$	$67^{\circ} 3$	$67^{\circ} \cdot 2$	$67^{\circ} 12$
$\mathbf{1}^{\text {h }}$	$66 \cdot 2$	$65 \cdot 9$	$67 \cdot 3$	$67^{\circ} 2$	$67^{\circ} 0$	$67 \cdot 2$	68.4	$66 \cdot 7$	$66 \cdot 5$	$67 \cdot 2$	$67 \cdot 2$	$67 \cdot 1$	$66 \cdot 99$
2	$66 \cdot 0$	$65 \cdot 7$	$67 \cdot 1$	67°	$66 \cdot 9$	67.0	$68 \cdot 3$	$66 \cdot 6$	$66 \cdot 4$	$67^{\circ} 0$	$67{ }^{\circ}$	$66 \cdot 9$	$66 \cdot 83$
3	65.8	65.5	$66 \cdot 9$	$66 \cdot 8$	$66 \cdot 7$	$66 \cdot 9$	$68 \cdot 2$	$66 \cdot 5$	$66 \cdot 3$	$66 \cdot 9$	$66 \cdot 8$	$66 \cdot 8$	$66 \cdot 67$
4	$65 \cdot 6$	$65 \cdot 3$	$66 \cdot 6$	$66 \cdot 5$	$66 \cdot 6$	$66 \cdot 8$	$68 \cdot 1$	$66 \cdot 4$	$66 \cdot 2$	$66 \cdot 7$	$66 \cdot 7$	$66 \cdot 7$	$66 \cdot 52$
5	65.5	65.2	$66 \cdot 4$	$66 \cdot 4$	$66 \cdot 4$	$66 \cdot 6$	$68 \cdot 0$	$66 \cdot 3$	$66 \cdot 1$	$66 \cdot 5$	$66 \cdot 6$	$66 \cdot 5$	$66 \cdot 38$
6	65.3	65°	$66 \cdot 3$	$66 \cdot 2$	$66 \cdot 3$	$66 \cdot 5$	$67 \cdot 9$	$66 \cdot 3$	$66 \cdot 0$	$66 \cdot 4$	$66 \cdot 5$	66.4	66:26
7	$65 \cdot 3$	65°	$66 \cdot 2$	$66 \cdot 1$	$66 \cdot 2$	$66 \cdot 5$	$67 \cdot 8$	$66 \cdot 2$	$66 \cdot 0$	$66 \cdot 3$	$66 \cdot 5$	$66 \cdot 5$	$66 \cdot 22$
8	$65 \cdot 3$	65°	$66 \cdot 2$	$66 \cdot 1$	$66 \cdot 2$	$66 \cdot 4$	$67 \cdot 8$	$66 \cdot 2$	$66 \cdot 0$	$66 \cdot 2$	$66 \cdot 5$	$66 \cdot 5$	$66 \cdot 20$
9	65°	64.9	$66 \cdot 1$	$66 \cdot 0$	$66 \cdot 2$	$66 \cdot 4$	$67 \cdot 8$	$66 \cdot 2$	$66 \cdot 0$	$66 \cdot 2$	$66 \cdot 5$	$66 \cdot 5$	66.17
10	$65 \cdot 3$	64.9	$66 \cdot 3$	$66 \cdot 1$	$66 \cdot 2$	$66 \cdot 5$	$67 \cdot 8$	$66 \cdot 2$	$65^{\circ} 9$	$66 \cdot 3$	$66 \cdot 5$	$66 \cdot 6$	$66 \cdot 22$
11	$65 \cdot 3$	$64 \cdot 8$	$66 \cdot 4$	$66 \cdot 3$	$66 \cdot 4$	$66 \cdot 5$	67.9	$66 \cdot 2$	$66 \cdot 1$	$66 \cdot 4$	$66 \cdot 6$	$66 \cdot 7$	$66 \cdot 30$
Noon.	654	64.9	$66 \cdot 6$	$66 \cdot 4$	$66 \cdot 6$	$66 \cdot 7$	$68 \cdot 0$	$66 \cdot 3$	$66 \cdot 2$	$66 \cdot 5$	$66 \cdot 6$	$66 \cdot 8$	$66 \cdot 42$
$13{ }^{\text {b }}$	65.5	$65^{\circ} \mathrm{I}$	$66 \cdot 8$	$66 \cdot 7$	$66 \cdot 8$	$66 \cdot 8$	$68 \cdot \mathrm{I}$	$66 \cdot 5$	$66 \cdot 3$	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 9$	66.57
14	65.7	$65 \cdot 3$	67.0	$66 \cdot 9$	$66 \cdot 8$	67.0	$68 \cdot 2$	$66 \cdot 6$	$66 \cdot 4$	$66 \cdot 8$	$66 \cdot 8$	67°	$66 \cdot 71$
15	$65 \cdot 8$	65.5	$67 \cdot 2$	67°	$66 \cdot 9$	$67 \cdot 2$	$68 \cdot 3$	$66 \cdot 6$	$66 \cdot 6$	67.0	$67 \cdot 0$	$67 \cdot 1$	$66 \cdot 85$
16	65.9	$65 \cdot 6$	$67 \cdot 3$	$67 \cdot 2$	$67 \cdot 0$	$67 \cdot 3$	$68 \cdot 4$	$66 \cdot 7$	$66 \cdot 7$	67.1	67.0	$67 \cdot 1$	$66 \cdot 94$
17	$66 \cdot$	$65 \cdot 7$	67.4	$67 \cdot 3$	$67 \cdot 1$	$67 \cdot 3$	$68 \cdot 5$	$66 \cdot 8$	$66 \cdot 7$	$67 \cdot 2$	$67 \cdot 1$	$67 \cdot 1$	67.02
18	$66 \cdot 1$	$65 \cdot 9$	674	67.4	$67 \cdot 2$	67.4	$68 \cdot 5$	$66 \cdot 8$	$66 \cdot 8$	$67 \cdot 3$	$67 \cdot 1$	$67 \cdot 1$	67.08
19	$66 \cdot 1$	$65 \cdot 9$	67.5	67.4	$67 \cdot 2$	67.4	$68 \cdot 5$	$66 \cdot 8$	$66 \cdot 8$	673	$67 \cdot 1$	$67 \cdot 1$	67.09
20	$66 \cdot 1$	$66 \cdot$	67.5	67.5	$67 \cdot 3$	67.4	$68 \cdot 5$	$66 \cdot 8$	$66 \cdot 7$	67.3	67.1	$67 \cdot 1$	$67 \cdot 11$
21	$66 \cdot 2$	$66 \cdot 1$	67.5	67.5	$67 \cdot 3$	67.4	$68 \cdot 6$	$66 \cdot 9$	$66 \cdot 7$	67.3	$67 \cdot 2$	$67 \cdot 2$	$67 \cdot 16$
22	$66 \cdot 2$	$66 \cdot 1$	$67 \cdot 5$	67.5	67.3	67.4	$68 \cdot 5$	$66 \cdot 8$	$66 \cdot 7$	67.3	$67 \cdot 2$	$67 \cdot 2$	$67 \cdot 14$
23	$66 \cdot 2$	$66 \cdot 2$	$67 \cdot 5$	67.5	$67 \cdot 2$	$67 \cdot 4$	$68 \cdot 5$	$66 \cdot 8$ $66 \cdot 8$	$66 \cdot 7$	673	$67 \cdot 3$	$67 \cdot 3$	$67 \cdot 16$
24	$66 \cdot 2$	$66 \cdot 2$	$67 \cdot 4$	67.5	$67 \cdot 1$	$67 \cdot 3$	$68 \cdot 5$	$66 \cdot 8$	$66 \cdot 7$	673	$67 \cdot 3$	$67 \cdot 3$	$67 \cdot 13$

Table XVII.--Values of the Co-efficients in the Periodical Expression

$$
\mathrm{V}_{t}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+a_{3} \cos 3 t+b_{3} \sin 3 t+a_{4} \cos 4 t+b_{4} \sin 4 t
$$

(in which t is the time from Greenwich mean midnight converted into arc at the rate of 15° to each hour, and V_{t} the mean value of the magnetic element at the time t for each month and for the year, as given in Tables II., VI., and X., the values for Horizontal Force and Vertical Force being corrected for temperature).

The values of the co-efficients for Declination are given in minutes of arc: the unit for Horizontal Force and Vertical Force is 1γ (0.0000I C.G.S. unit).

Month, 1912.	m	α_{1}	b_{3}	α_{2}	b_{2}	a_{3}	b_{3}	a_{4}	b_{4}
	Declination West.								
January	0.86	- I.06	$-0^{\circ} 22$	+ 0_{4}^{6}	+ ${ }^{\prime} 10$	- $0 \cdot 28$	+ 0.24	+0.15	+ ${ }^{\circ} \mathrm{O} 101$
February.	$1 \cdot 29$	- 1.40	-0.45	+0.59	+0.38	- 0.39	+0.03	+0.23	+ 0.20
March.	${ }^{2} \cdot 12$	- 1.42	- 1.00	+0.72	+1.27	-0.57	-0.66	+0.21	+ 0.26
April.	3.15	- 1.59	-1.45	+1.12	+ I63	-0.66	-0.64	+0.33	+ 0.12
May.	3.10 3	- 1.67	- 170	+139	+1.10	-0.69	-0.17	+0.18	+0.11
June.	$3 \cdot 78$	- 1.28	- 217	+120	+1.36	-0.72	-0.15	+ 0.08	-0.01
July .	3.51	- I. 44	- 2.22	+1.36	+ 1.53	-0.55	-0.35	+ 0.06	+ 0.23
August	2.55	- 2.14	- 143	+135	+1.03	-0.82	- 033	+0.19	+0.13
September.	2.32 2	- 1.99	- 1.04	+128	+1.13 +1.28	-0.71	-0.24	+0.45	+0.09
October..	$2 \cdot 15$	- I 5 I	-0.78	+0.93	+1.28	-0.72	-0.46	+0.43	+0.25
November.	$1 \cdot 43$	- 1.24	- 0.20	$+0.56$	+0.70	-0.32	+0.08	+0.15	-0.01
December	$1 \cdot 73$	-1.14	- 0.03	$+0.12$	$+0.66$	-0.34	+0.10	+0.18	+ 0.12
For the Year..	2.04	- 1.49	- 1.06	$+0 \cdot 92$	$+1.02$	-0.57	-0.22	+ 0.22	+ 0.12
	Horizontal Force.								
January...	4.4	- 0.5	+ 14	- 177	+ 1.2	-0.2	- 199	+ 0.8	+ 1\%2
February.	5.2			- 0.6	+ 1.0	$\begin{array}{r}\text { a } \\ -\quad 0.1 \\ \hline\end{array}$	$-\quad 2.3$ $-\quad 2.6$	+ 0.3	+ 2.0
March.	14.7	+ 67	+ 0.5	- 3.1	+ III	+ 1.6	- $2 \cdot 6$	$0 \cdot 0$	+ + +
April.	21.2	+ 12.0	1 $-\quad 3.3$	- 5.8	$+\quad 2.3$ $+\quad .4$	1.3 $+\quad .4$	2.1	$+\quad 0.2$ $+\quad 0.5$	$+\quad 09$ $+\quad 0$.
May .	$17^{\circ} \mathrm{O}$	+ 9.6	- $7 \cdot 8$	- 2.5	+ 2.4	- 0.4	-1.0	+ 0.5	+ 0.4
June.	19°	+ 119	- 8.3	- 4^{17}	$+3.0$	- 0.2	- 0.4	+ 0.8	-0.3
July	19.3	+11.2	- 6.4	- 4.6	+ $3 \cdot 0$	+ 0.2	- 1.2	+ 0.6	+ 0.1
August.	25.5	+ 12.6	- 6.8	- 3.0	+ 5.2	- 0.9	- 3.1	+ 0.9	+ 1.2
September...	21.1	+113	- 3.8	- 2.8	+47 $+\quad 17$	+0.0	- 3.0	+ 0.4	+ 14
October.....	20.2	+ 10.8	- $0 \cdot 1$	- 54	$\begin{array}{r}\text { P } \\ +\quad 17 \\ \hline\end{array}$	$\begin{array}{r}\text { a } \\ +\quad 15 \\ \hline\end{array}$	$\begin{array}{r}\text { a } \\ -\quad 23 \\ \hline-1.1\end{array}$	+ 0.5	$+\quad 109$ $+\quad 0.7$
November.	$7 \cdot 1$	+4.2	+ 24 $+\quad 1$	$-\quad 3.2$ 2.7	$+\quad 03$ +0.2	$+\quad 0.6$ +0.1	- 1.1	+ + $+\quad 3$	+0.7 $+\quad 0.5$
December..	4.3	+ 0.5	+ 1.1	- 2.7	- 0.2	+ 0.1	- 1×4	$+0.5$	+ 0.5
For the Year.	144	+75	-2.6	-3.3	+ 2.1	$+0.2$	- 1.9	$+0.6$	$+1.0$

Vertical Force.

January	$2 \cdot 0$	+ 0.1	$+0.9$	- 0.3	$0 \cdot 0$	- 0.1	+ 0.1	+ 0.9	+ 0.2
February.	$3 \cdot 8$	+ 1.8	+ 0.1	- 15	--0.5	+0.0	- 0.4	+ 0.2	- 0.6
March ...	11.8	+ 4.5	+13 $+\quad 1$	- 44	- 1.0	+ 2.2	+ 03	- 04	$0 \cdot 1$
April	15.6	+ 7.2	+ 0.4	- $5 \cdot 9$	- 03	$+\quad 24$ $+\quad 2$	- 0.5	-0.5	$\bigcirc \cdot \bigcirc$
May	19°	+ $7 \cdot 6$	-0.5	- 7.5	- 0.6	a $+\quad 29$	- 0.7	- 0.5	- 0.1
June	$14^{\circ} \mathrm{O}$	+ 57	+ 0.2	- $5^{6} 6$	$\begin{array}{r} \\ -\quad 0.9 \\ \hline\end{array}$	+ 15	- 0.8	- 0.3	$\begin{array}{r}\text { a } \\ +\quad 0.1 \\ \hline\end{array}$
July	12.8	+ 40	1.2	- 5.0	- 16	+ 199	$\begin{array}{r}\text { a } \\ +\quad 0.2 \\ \hline\end{array}$	- 0.4 $-\quad 0.7$	- 0.6
August	113	+ 35	1.8	- 4.5	$0 \cdot 3$	+ 2.4	$-\quad 0.2$ $-\quad 0.1$	- 0.7	$\begin{array}{r}1 \\ -\quad 0.1 \\ \hline\end{array}$
September.	$9 \cdot 5$	+ 3.6	- 0.3	- 3.7	- 0.5	1.9 $+\quad 19$	$-\quad 0.1$ $-\quad 0.8$	$-\quad 04$ $-\quad 06$	+ 0.3 $+\quad 0.4$
October...	6.5	+ 0.5	- 0.4	[3.4 $-\quad 18$	- 0.5	1 $+\quad 19$ $+\quad 0.6$	- 0.8	$-\quad 0.6$ $-\quad 0.1$	$+\quad 0.4$ $+\quad 0.3$
November	4.5	+ 0.2	- 2.5	[18	$\begin{array}{r}\text { a } \\ +\quad 0.9 \\ \hline \quad 0.3\end{array}$	+ 0.6 $+\quad 0.3$	$-\quad 07$ $-\quad .5$	a $+\quad 0.1$	$+\quad 03$ $+\quad 0.2$
December.	$3 \cdot 3$	+ 0.8	- $2 \cdot 1$	- 17	- 0.3	$+0.3$	- 0.5	+ 0.4	+ 0.2
For the Year	9×1	$+33$	- 0.5	-3.8	-0.5	$+1.5$	-0.3	-0.2	$0{ }^{\circ}$

Table XVIII.-Values of the Co-efficients and Constant Angles in the Periodical Expressions

$$
\begin{aligned}
& \mathrm{V}_{t}=m+c_{1} \sin (t+a)+c_{2} \sin (2 t+\beta)+c_{3} \sin (3 t+\gamma)+c_{4} \sin (4 t+\delta) \\
& \mathrm{V}_{t}=m+c_{1} \sin \left(t^{\prime}+a^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+c_{3} \sin \left(3 t^{\prime}+\gamma^{\prime}\right)+c_{4} \sin \left(4 t^{\prime}+\delta^{\prime}\right)
\end{aligned}
$$

(in which t and t^{\prime} are the times from Greenwich mean midnight and apparent midnight respectively, converted into arc at the rate of 15° to each hour, and $\mathrm{V}_{t}, \mathrm{~V}_{t}$ the mean value of the magnetic element at the time t or t^{\prime} for each month and for the year, as given in Tables II., VI., and X., the values for Horizontal Force and Vertical Force being corrected for temperature).

The values of the co-efficients for Declination are given in minutes of arc: the unit for Horizontal Force and Vertical Force is i γ (0.00001 C.G.S. unit).

Month, 1912.	m	c_{1}	α	a^{\prime}	c_{2}	β	β^{\prime}	c_{3}	γ	γ^{\prime}	c_{4}	δ	δ^{\prime}
						De	Nation	WEST					
January	0.86	1.09	$258^{\circ} .16$	260. 33^{\prime}	$0 \cdot 49$	77. 59	82.33	\bigcirc	$310^{\circ} .24$	317.15°	$0 \cdot 15$	84. 36°	93.44°
February	$1 \cdot 29$	1.47	252. 5	255.34	$0 \cdot 71$	57. 2	64.1	0.39	273.47	284. 15	0.30	49. 36	63.33
March	$2 \cdot 12$	1.73	234.47	236. 57	$1 \cdot 46$	29.23	33.44	$0 \cdot 87$	220.23	226. 54	$\bigcirc \cdot 33$	38. 4^{2}	47.24
April.	$3 \cdot 15$	$2 \cdot 15$	227. 30	227. 33	$1 \cdot 97$	34.27	34. 33	$\bigcirc 92$	226. 2	226. 11	$0 \cdot 35$	70.50	71.2
May	$3 \cdot 10$	$2 \cdot 38$	224. 25	223.34	178	51.40	49. 57	$0 \cdot 71$	255.52	253.18	0.21	58.50	55.25
June.	3.78	2.52	210.32	210.37	I.8)	41. 30	4 I .41	$0 \cdot 73$	258. 19	258.35	$0 \cdot 08$	95.25	$95 \cdot 4^{6}$
July	3.51	$2 \cdot 65$	213.2	214.24	2.05	41. 31	44. 15	0.66	237.23	241.30	0.24	14. 11	I9.40
August.	2.55	2.57	236.15	237.13	170	52.44	54. 39	0.91	244. I I	247. 4	0.23	55.51	59.41
September	$2 \cdot 32$	2.24	242.26	241.12	1•71	48. 34	46. 5	$0 \cdot 75$	251. 38	247. 55	0.46	78. 17	73.20
October.	215	1.69	242.45	239. 15	$1 \cdot 59$	36. 7	29. 8	0.85	$237 \cdot 34$	227. 5	0.50	60. 31	$46 \cdot 32$
November	$1 \cdot 23$	I. 26	260. 51	257.10	0.90	38.29	31. 7	$0 \cdot 33$	284.2	272. 59	$0 \cdot 15$	92. 47	78. 3
December	I'73	I'14	268.29	267.26	$0 \cdot 67$	Io. I	$7 \cdot 56$	$0 \cdot 36$	286.22	283.14	0.21	56.30	52.19
For the Year.	2.04	1.83	234. 34	234. 34	1•37.	42. 19	42. 19	0.61	248. 57	248. 57	0.25	60.45	60.45

Horizontal Force.

Table XIX.-Determinations of the Absolutr Value of Horizontal Magnetic Force in the Year igiz.
Abstract of the Observations of Deflection of a Magnet for Absolute Measure of Horizontal Force made with the Gibson Instrument in the Magnetic Pavilion.

	$\begin{aligned} & \text { Distances } \\ & \text { of Centres } \\ & \text { of Magnets. } \end{aligned}$	$\begin{gathered} \text { Tempera- } \\ \substack{\text { turre } \\ \text { fahren. } \\ \text { heit. }} \end{gathered}$	Observed	$\begin{gathered} \text { Mean of the } \\ \text { Times of } \\ \text { Vibration of } \\ \text { Deflecting } \\ \text { Magnet. } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Yibrab. } \\ \text { tions. } \end{gathered}$	$\begin{aligned} & \text { Tempera- } \begin{array}{c} \text { ture } \\ \text { falren- } \\ \text { heit. } \end{array} \end{aligned}$		Greenwich Civil TTime, 1912.	Distances of Centres of Magnets.	$\begin{aligned} & \text { Tempera- } \\ & \text { fahre- } \\ & \text { tahren- } \\ & \text { heit. } \end{aligned}$	Observed ${ }_{\text {deflection. }}$	$\left\|\begin{array}{c} \text { Mean of the the } \\ \text { Timimes of } \\ \text { Vibation of } \\ \text { Deffecting } \\ \text { Magnet. } \end{array}\right\|$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { vibra. } \\ \text { tions. } \end{gathered}$	$\left\|\begin{array}{c} \text { Tempera- } \\ \text { tuhre } \\ \text { Fahren. } \\ \text { heit. } \end{array}\right\|$	告
	$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{I} \circ \\ & 1.3 \end{aligned}$	$39 \cdot 7$	$\begin{gathered} 0.11 \\ 9.35 .46 \\ 4.21 .24 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ 5 \cdot 809 \\ 5 \cdot 810 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{gathered} \circ \\ 40 \cdot 4 \\ 41 \cdot 6 \end{gathered}$	E		$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{I} \circ \\ & 1.0 \end{aligned}$	82.4	$\left\|\begin{array}{c} \circ \\ 9 . \\ 9 . \\ 4.10 \\ 4.19 .10 \end{array}\right\|$	$\begin{gathered} \mathrm{s} .82 \\ 5.832 \\ 5.834 \end{gathered}$	100	$\begin{aligned} & 81 \cdot \\ & 817 \\ & 83 \cdot 9 \end{aligned}$	B
Jan. 24. 15	$\begin{aligned} & 10 \\ & 1=3 \end{aligned}$	$49^{\circ} 9$	$\begin{gathered} 9.35 .25 \\ 4.21 .18 \end{gathered}$	$\begin{aligned} & 5.820 \\ & 5.818 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 50 \cdot \mathrm{I} \\ & 50 \cdot 7 \end{aligned}$	B	July 24.15	$\begin{aligned} & 1 \circ \\ & 1.0 \end{aligned}$	77×5	$\begin{aligned} & 9.3 \mathrm{I} 15 \\ & 4.19 .15 \end{aligned}$	$\begin{aligned} & 5.830 \\ & 5.832 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 77 \cdot 3 \\ & 80 \cdot 7 \end{aligned}$	B
Feb. 7.16	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	533	$\begin{aligned} & 9.34 .25 \\ & 4.20 .45 \end{aligned}$	$\begin{aligned} & 5.818 \\ & 5.820 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 54^{\prime} 1 \\ & 54^{\prime} \end{aligned}$	B	July 31.11	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	60°	$\begin{array}{\|} 9 \cdot 33 \cdot 33 \\ 4 \cdot 20.20 \\ \hline \end{array}$	$\begin{aligned} & 5.827 \\ & 5.823 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 59 \cdot 6 \\ 60 \cdot 6 \\ \hline \end{array}$	B
Feb. 14.15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	503	9.34 .45 4.21 .8	$\begin{aligned} & 5.819 \\ & 5.819 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{gathered} 50 \cdot 2 \\ 51 \cdot 2 \end{gathered}$	B	Aug. 7.15	$\begin{aligned} & 1 \circ \\ & 1 \circ 3 \end{aligned}$	$64 \cdot 8$	$\begin{array}{\|c} \hline 9.32 .4^{8} \\ 4.19 .59 \end{array}$	$\begin{aligned} & 5 \cdot 827 \\ & 5.827 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 66 \cdot 1 \\ & 66 \cdot 7 \end{aligned}$	E
Feb. 21.15	$\begin{aligned} & 10 \\ & 1.3 \end{aligned}$	50'3	$\begin{aligned} & 9 \cdot 34 \cdot 28 \\ & 4 \cdot 20.46 \end{aligned}$	$\begin{aligned} & 5.817 \\ & 5.821 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 51.1 \\ 52.4 \end{array}$	E	Aug. 14. 15	$\begin{aligned} & 1^{\circ} \\ & 1 \circ \end{aligned}$	61.5	$\begin{array}{\|cc\|} 9.33 . & 1 \\ 4.20 . & 8 \\ \hline \end{array}$	$\begin{aligned} & 5.824 \\ & 5.824 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 62 \cdot 3 \\ & 63 \cdot 1 \end{aligned}$	E
Feb. 28.15	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$60 \cdot 8$	$\left\|\begin{array}{l} 9 \cdot 33.51 \\ 4 \cdot 20.30 \end{array}\right\|$	$\begin{aligned} & 5.822 \\ & 5.823 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 61 \cdot 9 \\ & 63 \cdot 2 \end{aligned}$	E	Aug. 21. 15	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$60 \cdot 8$	$\begin{array}{\|} 9.33 .20 \\ 4.20 .10 \\ \hline \end{array}$	$\begin{aligned} & 5.825 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 60 \cdot 9 \\ 61.4 \\ \hline \end{array}$	E
Mar. 6.15	$\begin{aligned} & 1 \circ \circ \\ & 1 \cdot 3 \end{aligned}$	463	$\left\|\begin{array}{ll} 9.35 \cdot & 9 \\ 4.2 \text { I. II } \end{array}\right\|$	$\begin{aligned} & 5.812 \\ & 5.815 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 46 \cdot 6 \\ & 48 \cdot 5 \end{aligned}$	E	Aug. 28.15	$\begin{aligned} & 1 \circ 0 \\ & 1.3 \end{aligned}$	$62 \cdot 8$	$\begin{array}{\|} 9.32 .40 \\ 4.20 .15 \\ \hline \end{array}$	$\begin{aligned} & 5 \cdot 824 \\ & 5.824 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 62 \cdot 5 \\ & 63.9 \\ & \hline \end{aligned}$	B
Mar. 13.15	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	51°	$\begin{array}{\|l} 9 \cdot 34 \cdot 43 \\ 4.2 \mathrm{I} . \end{array}$	$\begin{aligned} & 5.819 \\ & 5.818 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 51 \cdot 1 \\ & 52 \cdot 2 \end{aligned}$	E	Sept. 3.15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$58 \cdot 6$	$\begin{aligned} & 9.33 .28 \\ & 4.20 .18 \end{aligned}$	$\begin{aligned} & 5 \cdot 824 \\ & 5 \cdot 824 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58 \cdot 3 \\ & 59.5 \end{aligned}$	B
Mar. 20. 15	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	47×8	$\begin{aligned} & 9.34 .18 \\ & 4.20 .45 \end{aligned}$	$\begin{aligned} & 5.810 \\ & 5.812 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 47 \cdot 5 \\ & 48 \cdot 5 \end{aligned}$	B	Sept. 10. 15	$\begin{aligned} & 10 \\ & 1.3 \end{aligned}$	53.6	$\begin{array}{\|l\|} 9.34 \cdot 35 \\ 4.20 .45 \end{array}$	$\begin{aligned} & 5.821 \\ & 5.820 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 53.4 \\ & 54.3 \end{aligned}$	B
Mar. 27. 15	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	60°	$\begin{aligned} & 9.33 .40 \\ & 4.20 .23 \end{aligned}$	$\begin{aligned} & 5.821 \\ & 5.823 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58.5 \\ & 609 \end{aligned}$	B	Sept. 18.16	$\begin{aligned} & 1 \circ \\ & i \cdot 3 \end{aligned}$	59.9	$\begin{aligned} & 9.33 .48 \\ & 4.20 .28 \end{aligned}$	$\begin{aligned} & 5 \cdot 827 \\ & 5.827 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 597 \\ & 607 \end{aligned}$	B
Apr. 3.15	$\begin{aligned} & \mathrm{I} \circ \\ & \mathrm{I} \cdot 3 \end{aligned}$	54.5	$\left\lvert\, \begin{aligned} & 9 \cdot 34 \cdot 28 \\ & 4 \cdot 20.48 \end{aligned}\right.$	$\begin{aligned} & 5.820 \\ & 5.820 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 53.5 \\ & 55.3 \end{aligned}$	B	Sept. 25.12	$\begin{aligned} & 1 \circ \\ & 1.0 \end{aligned}$	553	$\begin{array}{ccc} 9 \cdot & 34 \cdot & 38 \\ 4 \cdot 2 I . & 4 \\ \hline \end{array}$	$\begin{aligned} & 5.827 \\ & 5.827 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 55.4 \\ & 56.6 \\ & \hline \end{aligned}$	E
Apr. 10. 15	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	51.9	$\left\|\begin{array}{cc} 9.35 \cdot & 3 \\ 4.21 . & 3 \end{array}\right\|$	$\begin{aligned} & 5.819 \\ & 5.819 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 51 \cdot 3 \\ 52 \cdot 0 \end{array}$	B	Oct. 1.15	$\begin{aligned} & 10 \\ & 1.3 \end{aligned}$	$60 \cdot 0$	$\begin{aligned} & 9 \cdot 33 \cdot 53 \\ & 4 \cdot 20.38 \end{aligned}$	$\begin{array}{r} 5.829 \\ 5.829 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 60 \cdot 6 \\ & 61 \cdot 2 \end{aligned}$	E
Apr. 16.15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	553	$\begin{aligned} & 9 \cdot 34 \cdot 38 \\ & 4 \cdot 20.58 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \cdot 821 \\ & 5 \cdot 821 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 56 \cdot 2 \\ & 57 \cdot 4 \end{aligned}$	E	Oct. 9.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	52.2	$\begin{aligned} & 9.34 .25 \\ & 4.20 .58 \end{aligned}$	$\begin{array}{r} 5 \cdot 822 \\ 5.823 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 52 \cdot 1 \\ 54^{\cdot 1} \\ \hline \end{array}$	E
Apr. 24.15	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	63.8	$\begin{aligned} & 9.33 .41 \\ & 4.20 .26 \end{aligned}$	$\begin{aligned} & 5.824 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 65 \cdot 1 \\ & 66 \cdot 5 \end{aligned}$	E	Oct. 16.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	52.1	$\begin{aligned} & 9.34 \cdot 40 \\ & 4.2 \text { I. } \quad 5 \end{aligned}$	$\begin{aligned} & 5.827 \\ & 5.827 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 55.8 \\ 54 \circ \\ \hline \end{array}$	B
May 2.15	$\begin{aligned} & 1 \cdot \circ \\ & 1.3 \end{aligned}$	63.2	$\left\lvert\, \begin{aligned} & 9.32 .40 \\ & 4.20 .4 \end{aligned}\right.$	$\begin{aligned} & 5.821 \\ & 5.820 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \cdot 8 \\ & 65 \cdot 2 \end{aligned}$	E	Oct. 23.15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$4^{8.1}$	$\left\|\begin{array}{ll} 9.34 \cdot & 5 \\ 4.21 . & 0 \end{array}\right\|$	$\begin{aligned} & 5.820 \\ & 5.820 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 47.9 \\ & 49^{\prime} 1 \\ & \hline \end{aligned}$	B
May 8.15	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	653	$\left\|\begin{array}{l} 9.33 .14 \\ 4 \cdot 20.23 \end{array}\right\|$	$\begin{aligned} & 5 \cdot 827 \\ & 5 \cdot 826 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 66.9 \\ & 68 \% \end{aligned}$	E	Oct. 30.15	$\begin{aligned} & 1 \circ \\ & 103 \end{aligned}$	$55^{\prime} 6$	$\begin{aligned} & 9.33 .50 \\ & 4.20 .45 \end{aligned}$	$\begin{aligned} & 5.824 \\ & 5.824 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{gathered} 55.2 \\ 56.2 \\ \hline \end{gathered}$	B
May 14. 15	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	68.3	$\left\|\begin{array}{ll} 9.33 . & 1 \\ 4.20 .16 \end{array}\right\|$	$\begin{aligned} & 5.830 \\ & 5.831 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{ll} 70 \cdot 1 \\ 7 \mathrm{I} \cdot 1 \end{array}$	E	Nov. 7.11	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$49^{\circ} 9$	$\begin{array}{\|cc\|} \hline 9.35 . & 0 \\ 4.20 .50 \end{array}$	$\begin{aligned} & 5.824 \\ & 5.824 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 49 \cdot 5 \\ & 50.7 \end{aligned}$	B
May 21. 15	$\begin{aligned} & 1 \cdot 0 \\ & 1.3 \end{aligned}$	$65^{\circ} \mathrm{O}$	$\left\|\begin{array}{cc} 9.32 . & 5 \\ 4.20 . & 5 \end{array}\right\|$	$\begin{aligned} & 5.823 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 64 \cdot 3 \\ & 67 \cdot 5 \end{aligned}$	B	Nov. 13.15	$\begin{aligned} & 1.0 \\ & 1 \cdot 3 \end{aligned}$	47°	$\begin{array}{r} 9 \cdot 34.58 \\ 4.20 .55 \\ \hline \end{array}$	$\begin{aligned} & 5.821 \\ & 5.819 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 46 \cdot 3 \\ & 48 \cdot 1 \\ & \hline \end{aligned}$	B
$\overline{\text { May 29.16 }}$	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$66 \cdot 2$	$\begin{aligned} & \hline 9.32 .8 \\ & 4.19 .40 \end{aligned}$	$\begin{aligned} & 5 \cdot 822 \\ & 5.823 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 68 \cdot 5 \\ & 67.6 \end{aligned}$	B	Nov. 20.13	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$49^{\circ} 7$	$\begin{array}{r} 9.34 .21 \\ 4.20 .55 \\ \hline \end{array}$	$\begin{aligned} & 5.823 \\ & 5.821 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 503 \\ & 513 \\ & \hline \end{aligned}$	E
June 5.15	$\begin{aligned} & 10 \\ & 1.3 \end{aligned}$	62.7	$\begin{aligned} & 9.33 .50 \\ & 4.20 .28 \end{aligned}$	$\begin{aligned} & 5 \cdot 824 \\ & 5.824 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 61 \cdot 9 \\ & 63 \cdot 9 \end{aligned}$	B	Nov. 27.12	$\begin{aligned} & 1^{\circ} \circ \\ & 0^{3} \end{aligned}$	$46 \cdot 8$	$\begin{array}{r} 9.34 .44 \\ 4.20 .54 \\ \hline \end{array}$	$\begin{aligned} & 5.820 \\ & 5.821 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 47 \cdot 3 \\ & 48 \cdot 0 \end{aligned}$	E
June 12.15	$\begin{aligned} & \text { I• } \\ & \text { I } 3 \end{aligned}$	64.4	$\begin{aligned} & 9.32 .45 \\ & 4.20 .3 \end{aligned}$	$\begin{aligned} & 5.825 \\ & 5.823 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 64 \cdot 2 \\ & 64: 8 \end{aligned}$	B	Dec. 4.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	54.2	$\begin{aligned} & 9.33 .53 \\ & 4.20 .35 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.827 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 55 \cdot \mathrm{I} \\ & 56 \cdot \mathrm{I} \end{aligned}$	E
June 19.15	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$75 \cdot 8$	$\left\lvert\, \begin{aligned} & 9.31 .44 \\ & 4.19 .44 \end{aligned}\right.$	$\begin{aligned} & 5.832 \\ & 5.834 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 77 \cdot 6 \\ & 79 \cdot 7 \\ & \hline \end{aligned}$	E	Dec. 11.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	503	$\left\|\begin{array}{l} \text { 9. } 34 \cdot \mathrm{II} \\ 4.20 .48 \end{array}\right\|$	$\begin{aligned} & 5.824 \\ & 5.824 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 50 \cdot 6 \\ & 52 \circ \end{aligned}$	E
June 26.15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	67.2	$\begin{aligned} & 9.32 .45 \\ & 4.20 . \end{aligned}$	$\begin{aligned} & 5.827 \\ & 5.827 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 68 \cdot I \\ & 69 \cdot 3 \end{aligned}$	E	Dec. 18.12	$\begin{aligned} & 1 \circ 0 \\ & 1.3 \end{aligned}$	$48 \cdot 6$	$\left\|\begin{array}{cc} 9.34 \cdot & 0 \\ 4 . & 20.45 \end{array}\right\|$	$\begin{aligned} & 5.821 \\ & 5.819 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 48 \cdot 8 \\ & 49 \cdot 4 \\ & \hline \end{aligned}$	B
July 2.15	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	61°	$\left\|\begin{array}{l} 9.33 .14 \\ 4.20 .10 \end{array}\right\|$	$\begin{aligned} & 5.825 \\ & 5.823 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 6 I^{\prime 2} \\ & 62 \cdot 0 \end{aligned}$	E	Dec. 24. 12	$\begin{aligned} & 1 \circ \circ \\ & 1.3 \end{aligned}$	52.7	$\begin{aligned} & 9.34 .25 \\ & 4.20 .43 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \cdot 826 \\ & 5.826 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 52.5 \\ & 53.7 \\ & \hline \end{aligned}$	B
July 10. 15	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	773	$\left\|\begin{array}{ll} 9.32 . & 0 \\ 4.19 .40 \end{array}\right\|$	$\begin{aligned} & 5.834 \\ & 5.832 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 77^{\circ} \mathbf{I} \\ & 78^{\circ} \circ \end{aligned}$	B	Dec. 31. 12	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	52.4	$\left\|\begin{array}{ll} 9.34 \cdot & 3 \\ 4 \cdot 20.40 \end{array}\right\|$	$\begin{aligned} & 5.825 \\ & 5.826 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 51.9 \\ & 53.7 \end{aligned}$	B

The deflecting magnet is placed on the east side of the suspended magnet, with its marked pole alternately east and west, and on the west side with its marked pole also alternately east and west: the deflection given in the table above is the mean of four deflections observed in these positions of the magnets.
The initials B and E are those of Mr. Bryant and Mr. Edney respectively.
In the subsequent calculations every observation is reduced to the temperature 35° Fahrenheit.

Table XX.-Computation of the Values of Horizontal Force in Absolute Measure.
From Observations made with the Gibson Instrument in the Magnetic Pavilion.

Greenwich Civil Time, 1912.	In British Units.								In C. G. S. Units. Vaine of Horizontal Force.	
			Apparent				Value of m.	$\begin{aligned} & \text { Value of } \\ & \text { Horizontal } \\ & \text { Force } \\ & X . \end{aligned}$		
	Value of A_{1}.	Value of A_{2}.	Value of P.	Log. ${ }_{\text {m }}^{\text {m }}$	Vibration of Deflecting Hagnet.	Log. m. X .			$\underset{\text { observed. }}{\text { As }}$	Reduced to Mean of Month
$\begin{array}{crr} & 8^{d} & \text { h } \\ \text { Jan. } & 8 . & 13 \\ , & 24 . & 15 \end{array}$	$\begin{aligned} & 0.08340 \\ & 0.08350 \end{aligned}$	$\begin{aligned} & 0.08349 \\ & 0.08360 \end{aligned}$	-0.00259 -0.00310	$8 \cdot 92240$ 8.92293	$5: 8183$ $5: 8226$	0.13120 0.13061	$\begin{aligned} & 0.3364 \\ & 0.3363 \end{aligned}$	4.0216 4.0164	$\begin{array}{r} \cdot 18543 \\ \cdot 18519 \end{array}$	$\begin{aligned} & \cdot 18531 \\ & \cdot 18529 \end{aligned}$
Feb. 7. 16	0.08340	0.08348	0.00220	$8 \cdot 92234$	$5 \cdot 8208$	0.13091	0.3362	4.0205	-18538	-18535
, 14. 15	0.08341	0.08356	- 0.00440	$8 \cdot 92257$	5.8225	0.13063	0.3362	$4 \cdot 0182$	-18527	-18528
", 21. 15	0.08336	0.08344	-0.00231	$8 \cdot 92216$	$5 \cdot 8226$	- 113062	0.3360	4.0200	-18536	-18527
" 28. 15	0.08343	0.08351	0.00231	8.92250	$5 \cdot 8214$	0.13085	0.3363	4.0195	-18533	$\cdot 18523$
Mar. 6. 15	0.08341	0.08352	-0.00327	8.92248	5.8199	- 13099	0.3363	4.0203	-18537	-1853I
", 13. 15	0.08341	0.08353	- 0.00333	8.92250	$5 \cdot 8222$	- 13068	$0 \cdot 3362$	4.0187	-I8530	$\cdot 18531$
", 20.15	0.08331	0.08340	-0.00276	$8 \cdot 92190$	$5 \cdot 8174$	0.13138	0.3362	4.0248	-18558	-18571
" 27.15	0.08339	0.08346	-0.0019^{2}	8.92227	$5 \cdot 8226$	0.13068	0.3361	4.0198	'I8535	-18533
April 3. 15	0.08343	0.08351	-0.00237	$8 \cdot 92249$	5.8230	$0 \cdot 13058$	0.3362	40183	.18528 .18518	- 18533
", 10. 15	0.08347	0.08355	-0.00237	8.92273	5.8245	0.13034	0.3362	4.0161	$\cdot 18518$ $\cdot 18518$	$\cdot 18540$ $\cdot 18532$
", 16.15	0.08346	0.08357	-0.00327	$8 \cdot 92275$	$5 \cdot 8245$	0.13037	0.3362	4.0162	$\cdot 18518$.18521	18532
" 24. 15	0.08345	0.08353	-0.00237	$8 \cdot 92261$	$5 \cdot 8247$	0.13038	0.336 I	4*0168	.1852I	-18531
May 2. 15	0.08329	0.08340	-0.00321	8.92187	5.8212	0.13090	0.3360	4.0227	$\cdot 18548$.18523	.18543 .185
", 8.15	0.08340	0.08353	-0.00378	8.92250 8.9225	$5 \cdot 8249$	0.13036 0.12985	0.3361 0.3359	4.0173 4.0146	$\cdot 18523$ $\cdot 18511$	$\begin{aligned} & \cdot 18512 \\ & \cdot 18531 \end{aligned}$
" 14.15	0.08342	0.08354	-0.00372	8.92257 8.92208	5.8285 5.8241	0.12985 0.13048	0.3359 0.3360	4.0146 4.0198	$\cdot 18511$ $\cdot 18534$	$\begin{array}{r} 18531 \\ \cdot 18528 \end{array}$
$\prime \prime$ $\prime \prime$	0.08334 0.08326	0.08343 0.08332	-0.00271 -0.00180	8.92208 8.92156	5.8241 5.8214	0.13048 0.13089	0.3360 0.3359	4.0198 4.0241	+18534 $\cdot 18554$	$\begin{aligned} & \cdot 18528 \\ & \cdot 18535 \end{aligned}$
29. 16	-08326									
June 5. 15	0.08345	0.08352	-0.00203	8.92260	5.8253	0.13030	0.3361	4.0165	.18520 .18536	$\begin{array}{r} \cdot 18549 \\ \cdot 18528 \end{array}$
" 12.15	0.08332	0.08341	-0.00259	8.92197 8.92222	5.8243 5.8262	0.13045 0.13023	0.3359 0.3359	4.0201 4.0180	18536 $\cdot 18526$	$\begin{aligned} & \cdot 18528 \\ & \cdot 18511 \end{aligned}$
" 19. 15	0.08335 0.08336	0.08348 0.08344	-0.00400 -0.00231	8.92222 8.92215	5.8262 $5 \cdot 8260$	0.13023 0.13021	0.3359 0.3359	4.0180 4.0182	18556 $\cdot 18527$	18521
" 26. 15	0.08336	0008344	-0.00231	$8 \cdot 92215$	$5 \cdot 8260$	0.13021	$\bigcirc 3359$	4.0182	$\cdot 18527$	
July 2. 15	0.08334	0.08340	-0.00180	8.92200	$5 \cdot 8258$	0.13020	0.335^{8}	4.0188	-18530	-18539
," 10.15	0.08341	0.08348	-0.00226	8.92238	$5 \cdot 8267$	0.13016	0.3360	4.0169	$\cdot 18521$	-18523
", 17.15	0.08336	0.08344	-0.00226	$8 \cdot 92216$	$5 \cdot 8251$	$0 \cdot 13043$	0.3360	4.0192	$\cdot 18532$ $\cdot 1832$	-18525
," 24. 15	0.08330	0.08335	-0.00158	8.92177	$5 \cdot 8245$	0.13050	0.3358 0.3358	4.0213	$\cdot 18542$	
," 31. 11	0.08337	0.08344	-0.00203	8.92219	$5 \cdot 8275$	$0 \cdot 12995$	$0 \cdot 335$	40168)	18550
Aug. 7. I 5	0.08333	0.0834°	-0.00186	$8 \cdot 92196$	$5 \cdot 8264$	0.13014	0.3358	4.0187	-18530	-18525
", 14. 15	0.08332	0.0834°	-0.00226	$8 \cdot 92193$	$5 \cdot 8251$	0.13032	$\bigcirc 0.3358$	4.0197	-18534	-18529
" 21.15	0.08335	0.08340	-0.00135	$8 \cdot 92203$	$5 \cdot 8263$	0.13013	0.335^{8}	4.0184	$\cdot 18528$ $\cdot 18538$	$\cdot 18528$ $\cdot 18532$
" 28.15	0.08329	0.08346	-0.00491	$8 \cdot 92200$	$5 \cdot 8236$	0.13055	0.3360	4.0205	-18538	-18532
Sept. 3. I 5	0.08334	0.08341	-0.00203	$8 \cdot 92201$	$5 \cdot 8258$	0.13019	0.3358	$4 \cdot 0187$	-18530	-18502
", 10. 15	0.08343	0.08348	-0.00141	8.92244	5.8247	0.13033	0.3360	4.0174	$\cdot 18524$.18517	-18536
,", 18.15	0.08341	0.08348	-0.00214	8.92238 8.92283	$5 \cdot 8273$	$0 \cdot 12997$	$\bigcirc .3359$	4.0160	-18517	-18516
", 25. 12	0.08346	0.08360	-0.00423	$8 \cdot 92283$	$5 \cdot 8304$	0.12949	$\bigcirc \bigcirc 3359$	4.0117	$\therefore 18497$	-18537
Oct. 1. 15	0.08342	0.08354	-0.00344	$8 \cdot 92255$	5.8296	0.12963	0.3358	4.0137	$\cdot 18506$	-18503
$\begin{array}{ll} 12 & 9.12 \end{array}$	0.08339	0.08353	-0.00423	$8 \cdot 92244$	$5 \cdot 8265$	$0 \cdot 13004$	0.3359	4.0161	$\cdot 18517$.18507	-18519
", 16. 12	0.08342	0.08357	- 0.00429	$8 \cdot 92264$	5.8283	0.12977 0.13013	0.3359 0.358	4.0139 4.0183	18507 $\cdot 18528$	$\cdot 18535$ $\cdot 18540$
" 23. 15	0.08328	-0.08349	- 0.00633	$8 \cdot 92205$	$5 \cdot 8258$	0.13013	0.3358 0.3359	4.0183	$\cdot 18528$ $\cdot 18523$	-18540
", 30. 15	0.08335	0.08351	- 0.00468	8.92230	$5 \cdot 8257$	0.13018	$0 \cdot 3359$	4.0174	-18523	-18514
Nov. 7. 11	0.08344	0.08346	-0.00056	8.92240	5.8277	-. 12986		4.0154	-18514	$\cdot 18494$
, 13.15	0.08339	0.08344	-0.00152	$8 \cdot 92223$	$5 \cdot 8265$	0.13001	$0 \cdot 3358$	4.0169	$\cdot 18521$	-18536
" 20. 13	0.08334	0.08348	- 0.00400	$8 \cdot 92220$	5.8267	0.13001	\bigcirc	4.0170	-18522	-18535
", 27.12	0.08335	0.08344	- 0.00237	$8 \cdot 92212$	$5 \cdot 8265$	$0 \cdot 13001$	$0 \cdot 3358$	4.0174	-18524	'18519
			- 0.00299	$8 \cdot 92207$	5.8281	0.12982	$0 \cdot 3357$	4.0168	-18521	-18527
Dec. $4 \cdot$, 12 11. 12	$\begin{aligned} & 0.08334 \\ & 0.08333 \end{aligned}$	0.08345	- 0.00361	$8 \cdot 92208$	5.8273	$0 \cdot 12992$	0.3357	4.0172	$\cdot \cdot 18523$	-18513
$\begin{array}{lll} " ; & \text { II. } & 12 \\ " & 18 . & 12 \end{array}$	$\begin{aligned} & 0.08333 \\ & 0.08328 \end{aligned}$	0.08341	-0.00400	8.921 .85	$5 \cdot 8246$	0.13031	$\bigcirc 0.3358$	4.0200	$\cdot 18536$	-18528
$\begin{array}{ll} " & 10.12 \\ " & 24.12 \end{array}$	-0.08339	0.08346	-0.00186	8.92227 8.92208	5.8283 5.8286	-.12979	0.3358 0.3357	4.0157 4.0163	$\begin{array}{r} \cdot 18516 \\ \cdot 18518 \end{array}$	-18519
" 31.13	0.08334	0.08344	-0.00305	$8 \cdot 92208$	$5 \cdot 8286$	-12973	0.3357	40163	'18518	18.523
Means		-	-0.00283	...	\ldots	\ldots	\ldots	$4^{\circ} \mathrm{O} 81$	$\cdot 18527$	'18528

The value of X in British Units is referred to the Foot-Grain-Second Unit.

Table XXI．－Results of Observations of Magnetic Dip made in the Magnetic Pavilion in the Year igiz．

Greenwich Civil Time， IgI2．	隹 $\begin{gathered}3 \text {－inch } \\ \text { Needle．}\end{gathered}$	Magnetic Dip．	硅	Greenwich Civil Time， 1912.	－	Magnetic Dip．	第	Greenwich Civil Time， r912．	（ $\begin{aligned} & \text { 3－inch } \\ & \text { Needle．}\end{aligned}$	Magnetic Dip．	\％
Jan ${ }^{\text {d }}$ ，${ }^{\text {h }}$	D	$66^{\circ} 1^{\prime \prime}$		${ }^{1}{ }^{\text {n }}$		66°＇＇＂	E	${ }^{\text {d }}$ ¢ ${ }^{\text {h }}$	D	66．52，＂̈	B
	D_{1}	66．51．26	$\stackrel{\mathrm{E}}{\mathrm{E}}$	$\begin{array}{lll}\text { ay } & \text { 2．} & 12 \\ & \text { 3．} 12\end{array}$	D_{1}	66． $54 . \begin{array}{r}2 \\ \text { 66．}\end{array}$	E	$\begin{array}{lll}\text { Sept．} & \text { 3．} & 12 \\ & \text { 5．} & 13\end{array}$	D_{1}	66．52． 49.42	B
8． 13	D_{1}	66．49． 51	E	3． 12	D_{1}	66．54． 52	E	7． 13	D_{1}	66． 53.10	B
10． 12	D_{2}	66．48． 1	E	10． 12	D_{2}	66．52． 15	E	9． 12	D_{2}	66． 50.41	B
12． 12	D_{1}	66． 5 I .2	E	13． 12	D_{1}	66． 53.9	E	II． 13	D_{1}	66．52． 39	B
15． 12	D_{2}	66．47． 34	E	14． 12	D_{2}	66．51． 23	E	13． 13	D_{2}	66．50． 21	B
17． 11	D_{2}	66． $4^{8 .} 51$	B	17． 12	D_{2}	66．51． 15	B	17． 13	D_{2}	66． 49.52	B
18． 14	D_{2}	66． 51.25	B	20． 13	D_{1}	66． 53.50	B	19． 13	D_{1}	66．52． 49	B
26． 14	D_{1}	66．49． 24	B	22． 12	D_{2}	66．50． 6	B	20． 12	D_{2}	66．52． 45	E
27． 14	D_{1}	66．51． 56	B	24．I 3	D_{1}	66．52． 18	B	23． 12	D_{1}	66．51． 12	E
29． 12	D_{1}	66．53． 29	B	29． 13	D_{2}	66．49． 16	B	26． 12	D_{2}	66．50． 2	E
30． 13	D_{2}	66．49． 21	B	30．I 3	D_{1}	66．52． 15	B	30． 12	D_{1}	66．52． 4^{2}	E
Feb．2． 13	D_{1}	66．53．I	B	June 3． 13	D_{1}	66． 52.42	B	Oct．1． 12	D_{1}	66． 51.58	E
5．13	D_{2}	66．49． 25	B	5．13	L_{2}	66．50． 27	B	4． 12	D_{2}	66．50． 13	E
7． 13	D_{1}	66． 53.43	B	7． 13	I）${ }_{1}$	66．52．I	B	7． 12	D_{1}	66．55．12	E
9．Io	D_{2}	66．50． 4	B	10． 12	D_{2}	66．51． 8	B	IO． 12	D_{2}	66．50． 52	E
12． 13	D_{1}	66．52． 23	B	12． 13	D_{1}	66．51． 59	B	II． 12	D_{1}	66． 55.5	E
14． 13	D_{2}	66．50． 22	B	15． 13	D_{2}	66．49． 37	B	14． 12	D_{2}	66．53． 37	E
16． 12	D_{2}	66． 48.54	E	17． 12	D_{2}	66． 48.47	E	18． 12	D_{2}	66．54． 34	B
19． 12	D_{1}^{-}	66．54． 8	E	19． 12	D_{1}	66．54． 47	E	21． 12	D_{1}	66． 55.2	B
21． 12	D_{2}	66．51． 19	E	21． 11	D_{2}	66．51． 27	E	23． 12	D_{2}	66． 48.50	B
23． 12	D_{1}	66． 53.50	E	24． 12	D_{1}	66．54． 30	E	26． 12	D_{1}	66．54． 22	B
26． 12	D_{2}	66．51． 22	E	26． 12	D_{2}	66．50． 19	E	29． 15	D_{2}	66． 55.8	B
28． 12	D_{1}	66． 55.7	E	28． 12	D^{2}	66．51． 58	E	30． 13	D_{1}	66．56． 28	B
Mar．1． 12	D_{1}	66． 54.43	E	July 1． 12	D_{1}	66．52．○	E	Nov．2． 12	D_{1}	66． $54 \cdot 22$	B
4．I2	D_{2}	66． 48.31	E	3． 12	D_{2}	66． 53.0	E	4． 12	D_{2}	66． 47.9	B
6． 12	D_{1}	66． 54.58	E	5． 12	D_{1}	66． 52.42	E	6． 13	D_{1}	66． 51.57	B
11． 12	D_{2}	66． 46.25	E	8． 12	D_{2}	66． 50.41	E	8． 13	D_{2}	66． 53.0	B
13． 12	D_{1}	66． 55.22	E	IO．I3	D_{1}	66．54． 40	B	12．I3	D_{1}	66． 55.5	B
14． 12	D_{2}	66．50． 39	E	12． 13	D_{2}	66．51． 45	B	14． 13	D_{2}	66．52． 44	B
18． 15	D_{2}	66． 5 ०． 56	B	17．13	D_{2}	66． 48.27	B	－18． 12	D_{2}	66．50． 59	E
19． 13	D_{1}	66．53． 5 I	B	19．I 2	D_{1}	66． 53.17	B	20． 12	D_{1}	66．54． 47	E
22．13	D_{2}	66．51． 11	B	23． 12	D_{2}	66． 48.13	B	22． 11	D_{2}	66． 5 I ． 1	E
25． 12	D_{1}	66． 54.47	B	24． 12	D_{1}	66． 53.37	B	25． 12	D_{1}	66．54． 11	E
27． 13	D_{2}	66． 5 ०． 39	B	26． 12	D_{2}	66． 47.40	B	27．I2	D_{2}	66． 50.21	E
29． 12	D_{1}	66．52． 47	B	30． 13	D_{1}	66．52． 25	B	29． 12	D_{1}	66． 54.22	E
Apr．1． 12	D_{1}	66． 54.8	B	Aug．1． 12	D_{1}	66． 51.45	E	Dec．2． 12	D_{1}	66． 53.52	E
3． 13	D_{2}	66． 50.41	B	6． 12	D_{2}	66． 50.9	E	4． 111	D_{2}	66．49． 27	E
6． 12	D_{1}^{2}	66．52． 36	B	7． 12	D_{1}	66．53． 28	E	6． 12	D_{1}	66．53． 17	E
9． 13	I_{2}	66．49． 19	B	9． 12	D_{2}	66．49． 57	E	9． 12	D_{2}	66．52． 43	E
II．I 3	D_{1}	66． 52.50	B	12． 13	D_{1}	66．52． 9	E	11． 11	D_{1}	66． 54.9	E
13． 13	D_{2}	66．50． 53	B	14． 12	D_{2}	66． 50.10	E	12． 12	D_{2}	66．49． 36	E
16． 12	D_{2}	66．52． 19	E	16． 12	D_{2}	66．50． 14	E	17． 15	D_{2}	66．49． 43	B
18． 12	D_{1}	66．50． 15	E	19． 12	D_{1}	66． $54 \cdot 33$	E	19． 13	I_{1}	66． 52.53	B
22． 12	D_{2}	66．49． 22	E	21． 12	D_{2}	66．50． 13	E	21．I 3	D_{2}	66． 48.50	B
24． 12	D_{1}	66． 51.35	E	23． 12	D_{1}	66．52． 53	E	23． 13	D_{1}	66． 53.51	B
26． 12	D_{2}	66． 47.21	E	28． 13	D_{2}	66．50． 1	B	27． 12	D_{2}	66． 50.42	B
29． 12	D_{1}	66．52． 20	E	30． 13	D_{1}	66． 34.44	B	30． 12	D_{1}	66． 51.46	B

Table XXII.-Monthly and Annual Means of Magnetic Dip from Observations made in the Year igiz.

Monthly Means of Magnetic Dip.				
	${ }_{3-\text { inch }}^{\substack{\mathrm{D}_{1} \\ \text { Needle } \\ \text { cele }}}$	Number of Observations.		Number of Observations.
January	66° 5í. II'	6	$66^{\circ} .48{ }^{8}$. $4^{\prime \prime}$	6
February ..	66. 53.42	6	66. 50. 14	6
March...	66. 54. 25	6	66. 49.44	6
April .	66. 52. 17	6	66. 49. 59	6
May.	66. 53. 24	6	66. 50. 39	6
June..........	66. 53.0	6	66. 50. 17	6
July ..	66. 53. 7	6	66. 49. 5^{8}	6
August...	66. 53. 15	6	66. 50. 7	6
September	66. 52. 33	6	66. 50. 34	6
October	66. 54.41	6	66. 52. 12	6
November.	66. 54.7	6	66. 50.52	6
December ...	66. 53.18	6	66. 50. 10	6
Means..	66. 53.15	$\begin{aligned} & \text { Sunn } \\ & 72 \end{aligned}$	66. 50. 18	$\begin{aligned} & \text { sum } \\ & 72 \end{aligned}$
Annual Mean Dip				

The monthly means have been formed without reference to the hour at which the observation on each day was made.
In combining the monthly results, to form annual means, weights have been given proportional to the number of observations.

Table XXIII.-Annual Summary of the Magnetic Elements.

Month, 1912.	Mean Value of				Monthly Mean Dimmal Range of			Sum of Hourly Deviations from Mean of		
	Westerly Declination.	Horizontal Force C.G.S	Vertical Force C.G.S.	Dip.	Declination.	Horizontal Force	Vertical Force.	Deelination.	$\begin{aligned} & \text { Hurizontal } \\ & \text { Foree. } \end{aligned}$	Vertical Force.
January	$15 \cdot 27^{\circ} 4$	-18530	-43365	66. 49. 59	$2 \cdot 9$	10γ	4γ	$18^{\prime} \cdot 1$	47γ	19γ
February	15. 27.4	$\cdot 18528$	-43360	66. 51.58	4^{-1}	10	6	23.7	40	34
March.	15.26.9	$\cdot 18541$	-43391	66. 52. 4	$6 \cdot 3$	21	17	32.9	113	96
April....	15.26.1	-18534	'43374	66. 5I. 8	$8 \cdot 0$	31	22	$41 \cdot 5$	204	131
May	15.25:2	-18530	-43365	66. 52.2	$7 \cdot 7$	29	26	413	189	150
June.	1 5. 24.2	-18527	'43358	66. 51. 39	$8 \cdot 0$	33	20	$43^{\circ} 4$	231	114
July .	15. 23.9	-18533	43372	66.51. 32	$8 \cdot 3$	30	20	457	206	93
August...	15.22.7	$\cdot 18528$	43360	66. 51.41	77	36	17	44^{-8}	225	86
September	15.224	.18523	-43349	66. 51. 33	$7 \cdot 2$	31	13	$40 \cdot 5$	188	71
October.	15.22.3	-18522	-43346	66. 53. 27	$6 \cdot 5$	28	11	34°	178	57
November	15.22.2	-18521	-43344	66. 52. 30	$3 \cdot 8$	15	9	$22^{1} 1$	90	4^{8}
December .	15.21'1	$\cdot 18522$	'43346	66. 5 r. 44	3.7	10	7	18.1	4^{6}	42
The Year..	15. 24.3	-18528	43361	66. 51.46	$6 \cdot 18$	23.7	143	33.84	144.8	$78 \cdot 4$

Magnetograph Records on Disturbed and Normal Days in the Year igi2.

Explanation of the Plates.

The magnetic motions figured on the Plates are :-
(I.) Those for days of disturbance selected by the International Committee—March 8, April $5^{d} 8^{\text {h }}$ to $6^{d} 8^{\text {h }}$, August $5^{d} 20^{\mathrm{h}}$ to $6^{\mathrm{d}} 20^{\mathrm{h}}$, September $16^{\mathrm{d}} 8^{\mathrm{h}}$ to $17^{\mathrm{d}} 8^{\mathrm{h}}$, October $14^{\mathrm{d}} 6^{\mathrm{h}}$ to $15^{\mathrm{d}} 6^{\mathrm{h}}$, December $6^{\mathrm{d}} 20^{\mathrm{h}}$ to $7^{\mathrm{d}} 20^{\mathrm{h}}$.
(2.) Those for four quiet days-February 21, May 9, August 12, November 29-which are given as types of the ordinary diurnal movement at four seasons of the year.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from 0 to 24).
The magnetic declination, horizontal force, and vertical force are indicated by the letters D., H., and V. respectively; the declination (west) is expressed in minutes of are, the unit for horizontal and vertical force is 1γ (0.00001 C.G.S.), the corresponding scales being given on the sides of each diagram. Equal changes of amplitude in the several registers correspond nearly to equal changes of absolute magnetic force, 0.001 of a C.G.S. unit being represented by $0^{\text {in. }} 80$ $=20 \cdot 2$ in. force curve.

Downward motion indicates increase of declination and of horizontal and vertical force.
The temperatures (Fahrenheit) of the horizontal and vertical force magnets at each hour are given in small figures on the Diagrams.

Magnetic Disturbances recorded at the Royal Observvatory, Greenwich, 1912.

Magnetic Disturbances recorded at the Royal Observatory, Greenwich, 1912.

Plate III.

Types of Magnetic Diurnal Variations at Four Seasons of the Year Recorded at the Royal Observatory, Greenwich, 1912.

ROYAL OBSERVATORY, GREENWICH.

MAGNETIC DISTURBANCES.

1912.

Magnetic Disturbances in Declination, Horizontal Force, and Vertical Force, recorded at the Royal Observatory, Greenwich, in the Year igiz.

The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 20γ in Horizontal Force, or 12γ in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in Horizontal and Vertical Force are expressed in C. G. S. units. When any one of the three elements is not specifically mentioned, it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated.

The term "wave" is used to indicate a movement in one direction and return; "double wave" a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movements in the same direction; "fluctuations" a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase, and -a decrease of the magnetic element. In the case of fluctuations the sign \pm denotes positive and negative movements of generally equal extent.

Magnetic movements which do not admit of brief description in this way are exhibited on accompanying plates.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from \circ to ${ }^{24}$).
1912.

January $\quad \mathrm{I}^{\mathrm{d}} 10 \frac{1}{2}^{\mathrm{h}}$ to $14^{\frac{1}{2}}$ Loss of Dec., H.F. and V.F. Registers.
$4^{\mathrm{d}} 22 \frac{11^{\mathrm{h}}}{}$ to 24^{h} Irregular wave in Dec. $\left(+4^{\prime}\right)$.

$7^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$11^{\mathrm{d}} 20^{\mathrm{h}}$ to $2 \mathbf{1}^{\mathrm{h}}$ Sharp wave in Dec. $\left(+4^{\prime}\right)$: double wave in H.F. $(+13 \gamma$ to $-14 \gamma)$, the first portion sharp. $21 \frac{3}{4}^{\mathrm{h}}$ to $22 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in H.F. $(+20 \gamma)$.
$12^{\text {d }} 17 \frac{1^{\mathrm{h}}}{}$ to $18 \frac{3 \mathrm{~h}}{4}$ Irregular wave in .Dec. $\left(+4^{\prime}\right) . \quad 20 \frac{3 \mathrm{~h}}{4}$ to 22^{b} Irregular wave in H.F. $(+21 \gamma) . \quad 12^{\mathrm{d}} 222^{\frac{1 \mathrm{~h}}{}}$ to $13^{\mathrm{d}} 0 \frac{1}{2} \mathrm{~h}$ Irregular double wave in H.F. $(-15 \gamma$ to $+17 \gamma)$. $12^{\mathrm{d}} 23^{\mathrm{h}}$ to $13^{\mathrm{d}} \mathrm{O}_{4}^{\frac{1}{4} \mathrm{~h}}$ Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-4^{\prime}\right)$.
$13^{\mathrm{d}} \mathbf{1}^{\mathrm{h}}$ to $2_{\frac{11^{\mathrm{h}}}{4}}$ Wave in Dec. $\left(+4^{\mathrm{f}}\right)$. 3^{h} to $4^{\frac{1}{2}}{ }^{\mathrm{h}}$ Flat-crested wave in Dec. $\left(-3^{\prime}\right)$. $5^{\frac{1}{2}}$ to $7 \frac{1}{2}^{\mathrm{h}}$ Irregular double wave in H.F. $(+15 \gamma$ to $-21 \gamma)$. $12 \frac{1}{2}^{\text {h }}$ to $14 \frac{1}{2}^{\text {b }}$ Wave in H.F. (-35γ).
$14^{\mathrm{d}} 0^{\mathrm{h}}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Irregular flat-crested wave in Dec. $\left(+4^{\mathrm{h}}\right)$. 0^{h} to I^{h} Wave in H.F. $(+28 \gamma)$.
$19^{\mathrm{d}} 200^{\frac{3}{4}}$ to 22^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$20^{\text {d }} 20^{\text {h }}$ to $203_{4}^{3 \mathrm{~h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
 3^{h} by a decrease $\left(-4^{\prime}\right)$. $12 \frac{1 \mathrm{~h}}{4}$ to $14^{\frac{3}{4} \mathrm{~h}}$ Slow wave in Dec. $\left(+3^{\prime}\right)$. $2^{23 \mathrm{~h}}$ to $22 \frac{3 \mathrm{~h}}{4}$ Irregular doublecrested wave in Dec. $\left(-6^{\prime}\right)$: irregular double wave in H.F. $(-15 \gamma$ to $+15 \gamma)$.
$24^{\mathrm{d}} 1 \frac{1}{2}^{\mathrm{h}}$ to $\mathrm{I} 5^{\mathrm{h}}$ Slow flat-crested wave in Dec. $\left(+3^{\prime}\right)$.

Fehruary $2^{\text {d }} 21_{2}^{\frac{1}{2}}$ to $23^{\text {h }}$ Double-crested wave in Dec. $\left(-4^{\prime}\right)$.
$9^{\mathrm{d}} 1_{4}^{3 \mathrm{~h}}$ to 3^{h} Wave in Dec. $\left(+3^{\prime}\right)$, steep at commencement.

$12^{\mathrm{d}} 19^{\mathrm{h}}$ to 20^{h} Irregular wave in Dec. $\left(-6^{\prime}\right)$, steep at commencement. 19^{h} to 22^{h} Irregular double wave in H.F. $\left(+{ }_{15} \gamma\right.$ to -20γ).

I9I2.
February $13^{\mathrm{d}} 17^{\mathrm{h}}$ to $18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Sharp wave in Dec. $\left(-8^{\prime}\right)$: small wave in H.F. $\quad 20 \frac{1}{2}^{\mathrm{h}}$ to $21 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. (-3^{\prime}).
$16^{\mathrm{d}} 18 \frac{3 \mathrm{~h}}{4}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-20γ). 19^{h} to $20^{\frac{1 \mathrm{~h}}{4}}$ Wave in Dec. $\left(-5^{\prime}\right)$.
$17^{\mathrm{d}} 1^{\mathrm{h}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Sharp wave in Dec. $\left(+8^{\prime}\right)$. ${ }^{\frac{1}{4}}{ }^{\mathrm{h}}$ to $3 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+28 \gamma)$. $1^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Decrease in V.F. (-12γ). $16 \frac{1}{2}^{\mathrm{h}}$ to 24^{h} Loss of V.F. Register. 20^{h} to $2 \frac{1}{2}^{\mathrm{h}}$ Two successive waves in Dec. $\left(-8^{\prime}\right.$ and - $\left.3^{\prime}\right)$, the first steep : small sharp waves in H.F.
$18^{\mathrm{d}} 2^{\mathrm{h}}$ to $4^{\frac{1}{2} \mathrm{~h}}$ Irregular double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-3^{\prime}\right)$, the first portion double crested : slow wave in H.F. $(+20 \gamma)$.
$23^{\text {d }} 19^{\mathrm{h}}$ to $20 \frac{1}{2} \mathrm{~h}$ Wave in H.F. (-20γ).
$24^{\mathrm{d}} 0^{\mathrm{h}}$ to 2^{h} Wave in H.F. $(+22 \gamma)$. $\circ \frac{1_{2}^{h}}{}$ to $\mathrm{I}_{4}^{1 \mathrm{~h}}$ Wave in Dec. $(+3)$. 20^{h} to 2^{h}. Sharp wave in H.F. $(+40 \gamma) . \quad 20 \frac{1 \mathrm{~h}}{4}$ to $2 \mathrm{I} \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$25^{\mathrm{d}} \mathrm{O}_{4}^{\frac{3 \mathrm{~h}}{4}}$ to $2 \frac{1 \mathrm{~h}}{4}$ Rounded wave in H.F. $(+28 \gamma)$.
$26^{\mathrm{d}} 8 \frac{1 \frac{1}{4}^{\mathrm{h}}}{}$ to $8 \frac{1}{2} \mathrm{~h}$ Sharp increase in Dec. $\left(+5^{\prime}\right)$. $11 \frac{1}{2}^{\mathrm{h}}$ to $12 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. $\quad 21 \frac{3}{4}{ }^{\mathrm{h}}$ to $22 \frac{3}{4} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$28^{d} 18 \frac{3 \mathrm{~h}}{4}$ to $19 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$.

March $\quad 3^{\mathrm{d}} 203^{\frac{3}{4}}$ to $22 \frac{1^{h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$5^{\mathrm{d}} 17 \frac{1}{2}^{\mathrm{h}}$ to $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ Wave in Dec. $\left(-3^{\prime}\right)$. $19 \frac{1}{2}^{\mathrm{h}}$ to 20^{h} Sharp wave in H.F. (-20γ).
$6^{\mathrm{d}} 22 \frac{3 \mathrm{~h}}{4}$ to 24^{h} Wave in H.F. $\left(+25 \gamma\right.$) $6^{\mathrm{d}} 23^{\mathrm{h}}$ to $7^{\mathrm{d}} 3^{\mathrm{h}}$ Irregular double wave in Dec. $\left(-5^{\prime}\right.$ to $\left.+4^{\prime}\right)$, both portions double-crested.
$8^{d} o^{h}$ to $9^{d} o^{h}$. See Plate I.
$9^{d} \circ^{\frac{1}{4}}$ to 2^{h} Wave in Dec. $\left(+6^{\prime}\right)$. $\circ^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $\mathrm{I}^{\frac{3 \mathrm{~h}}{4}}$ Wave in H.F. $(+22 \gamma)$. $17^{\frac{3}{4}}{ }^{\mathrm{h}}$ to 19^{h} Wave in Dec. $\left(-3^{\prime}\right)$, steep at commencement. $22 \frac{3 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ to $23 \frac{1{ }^{\frac{1}{4}}}{}{ }^{\text {S }}$ Sharp wave in Dec. $\left(+4^{\prime}\right)$.
$10^{d} 19^{h}$ to $20 \frac{3}{4}{ }^{h}$ Double-crested wave in H.F. (-22γ).
$15^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to $16^{\mathrm{d}} 1^{\mathrm{h}}$ Wave in Dec. $\left(-7^{\prime}\right)$.
 wave in Dec. $\left(-I^{\prime}\right)$ followed by a decrease (-5) : two successive waves in H.F. $(+20 \gamma$ and $+30 \gamma)$, the first irregular : irregular decrease in V.F. (-32γ).
$26^{\mathrm{d}} 0^{\mathrm{h}}$ to $\mathrm{I}_{4}^{\frac{1 \mathrm{~h}}{4}}$ Wave in Dec. $\left(+4^{\prime}\right)$. 19^{h} to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 22 \frac{1}{2}$ to 24^{h} Flat-crested wave in H.F. $(+25 \gamma)$, steep at commencement. 23^{h} to 24^{h} Flat-crested wave in Dec. $\left(-3^{\prime}\right)$.
$28^{\mathrm{d}} 16 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $17 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (-20γ) : in Dec. small.
$29^{\text {d }} 14^{\frac{3 \mathrm{~h}}{4}}$ to $15 \frac{1 \mathrm{~h}}{4}$ Very sharp double wave in H.F. $(-18 \gamma$ to $+20 \gamma)$, the first portion sharply double-crested. 15^{h} to $15 \frac{1}{4} \mathrm{~h}$ Very sharp wave in Dec. $\left(+3^{\prime}\right)$. $15 \frac{1}{2} \mathrm{~h}$ to $17^{3 \frac{\mathrm{~h}}{4}}$ Irregular double-crested wave in H.F. (-45γ), the first movement very steep. $18^{\text {h }}$ to $18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in H.F. $(-\mathbf{2 2} \gamma)$.

April $\quad 2^{d} 23^{\frac{3}{4}}$ to $3^{d} I^{h}$ Wave in Dec. $\left(+7^{\prime}\right)$: in H.F. small.
$5^{\mathrm{d}} 3 \frac{1}{2}^{\mathrm{h}}$ to $4^{\frac{3}{4} \mathrm{~h}}$ Wave in Dec. $\left(+3^{\prime}\right) . \quad 5^{\mathrm{d}} 8^{\mathrm{h}}$ to $6^{d} 8^{\mathrm{h}}$. See Plate I.
$7^{\mathrm{d}} 0 \frac{3 \mathrm{~h}}{4}$ to 2^{h} Truncated wave in Dec. $\left(-3^{\prime}\right)$. $1_{9}{ }^{\frac{1}{4}}{ }^{\mathrm{h}}$ to 21^{h} Irregular double-crested wave in Dec. (-6^{\prime}): irregular double wave in H.F. $(-13 \gamma$ to $+27 \gamma)$.
$10^{\mathrm{d}} 8 \frac{1 \mathrm{~h}}{4}$ to $9 \frac{1}{4}^{\mathrm{h}}$ Decrease in H.F (-66γ).
$15^{\mathrm{d}} 2^{\frac{\mathrm{h}}{}{ }^{\mathrm{h}}}$ to $5^{\frac{1^{\mathrm{h}}}{}}$ Triple wave in Dec. $\left(+4^{\prime},-5^{\prime},+4^{\prime}\right)$: increase in H.F. $(+27 \gamma)$ followed by a wave (-28γ) : irregular decrease in V.F. (-24γ). 5^{h} to $5 \frac{1}{2}^{\mathrm{h}}$ Sharp double-crested wave in Dec. $\left(-3^{\prime}\right)$. 6^{h} to $7^{\frac{1}{2} \mathrm{~h}}$ Decrease in H.F. (-65γ). 7^{h} to $7 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
1912.

April $\quad 16^{d} 1_{4} \frac{3}{4}^{\mathrm{h}}$ to 3^{h} Rounded double wave in Dec. $\left(-2^{\prime}\right.$ to $\left.+3^{\prime}\right) \cdot 8^{\mathrm{h}}$ to $9 \frac{1 \mathrm{hb}}{4}$ Wave in H.F. (-35γ). $\quad 16^{\mathrm{h}}$ to $17 \frac{1}{2} \mathrm{~h}$ Truncated wave in Dec. $\left(-4^{\prime}\right)$. $16 \frac{3 \mathrm{~h}}{4}$ to 18^{h} Triple-crested wave in H.F. $(+35 \gamma) . \quad 19^{\mathrm{h}}$ to $19 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 19 \frac{1}{4}$ h to $20 \frac{1^{h}}{4}$ Wave in H.F. $(+2 \mathrm{I} \gamma)$.
$17^{\mathrm{d}} 3^{\mathrm{h}}$ to 5^{h} Wave in H.F. $(-3 \mathrm{I} \gamma)$, followed till $6 \frac{1}{2}^{\mathrm{h}}$ by a flat-crested wave (-20γ). $18 \frac{1}{2} \mathrm{~h}$ to 20^{h} Wave in Dec. $\left(-3^{\prime}\right) . \quad 21 \frac{3 \mathrm{~h}}{4}$ to $22 \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(+3^{\prime}\right) . \quad 22 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in H.F. $(+20 \gamma)$.
$19^{d} 21^{\mathrm{h}}$ to 23^{h} Irregular wave in H.F. $(+22 \gamma)$. $19^{\mathrm{d}} \mathbf{2 2}^{\frac{3}{4}}{ }^{\mathrm{h}}$ to $20^{\mathrm{d}} 0 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$2^{0^{d}} 1 \frac{3}{4}$ h to 4^{h} Wave in Dec. $\left(+6^{\prime}\right)$. $2^{\frac{1 \mathrm{~h}}{4}}$ to $3 \frac{1}{4}^{\frac{\mathrm{h}}{}}$ Decrease in V.F. (-13γ).
$2^{\mathrm{d}} 3^{\mathrm{h}}$ to $1 \frac{1}{2}^{\mathrm{h}}$ Loss of Dec. and H.F. Registers. $\quad 20^{\mathrm{h}}$ to $22 \frac{1}{4}$ Loss of Dec. and H.F. Registers.
$3^{\mathrm{d}} 0 \frac{3}{4}^{\mathrm{h}}$ to 3^{h} Slow wave in Dec. $\left(-4^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $22 \frac{1^{\mathrm{h}}}{}$ Double-crested wave in Dec. $\left(-4^{\prime}\right) . \quad 20 \frac{1}{2}^{\mathrm{h}}$ to $2 \mathrm{I} \frac{1}{4}^{\mathrm{h}}$ Double-crested wave in H.F. $(+20 \gamma)$.
$4^{\mathrm{d}} 2 \frac{1}{2} \frac{1 \mathrm{~h}}{}{ }^{\text {to }} 5^{\mathrm{d}} \circ \frac{1}{2}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$5^{\mathrm{d}} \mathrm{I}^{\frac{3 \mathrm{~h}}{}}$ to 3^{h} Irregular waves in Dec. $\left(+5^{\prime}\right)$ and H.F. $(+20 \gamma) .8 \frac{1}{4}^{\mathrm{h}}$ to $10 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in H.F. (-33γ). $\quad 11 \frac{1 \mathrm{~h}}{4}$ to $11 \frac{3 \mathrm{~h}}{4}$ Sharp decrease in H.F. (-45γ), followed immediately until $12 \frac{3 \mathrm{~h}}{4}$ by an increase
 $20 \frac{1}{2}$ h Wave in Dec. $\left(-6^{\prime}\right)$: double wave in H.F. $(-14 \gamma$ to $+23 \gamma$).
$6^{\mathrm{d}} 5^{\frac{1}{2} \mathrm{~h}}$ to 16^{h} Wave in H.F. (-24γ).
$7^{d} 19 \frac{1}{4}^{\mathrm{h}}$ to $20^{\frac{1}{2}}$ Wave in Dec. $\left(-5^{\prime}\right)$, steep at commencement. ${ }^{1} 9^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 20^{b} Wave in H.F. $(+25 \gamma)$.
$1 I^{\mathrm{d}} \mathbf{2 2}^{\mathrm{h}}$ to 24^{h} Irregular wave in H.F. $(+20 \gamma)$.
$12^{\mathrm{d}} 3 \frac{1 \mathrm{~h}}{4}$ to $4^{\frac{3}{4}}{ }^{\mathrm{h}}$ Irregular double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-5^{\prime}\right)$. $3 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $4 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular wave in H.F. $(+30 \gamma)$. $5 \frac{1}{2}{ }^{\mathrm{h}}$ to 7^{h} Wave in Dec. $\left(+6\right.$). $10 \frac{3 \mathrm{~h}}{4}$ to 12^{h} Double-crested wave in H.F. $(-25 \gamma) .21 \frac{1}{4}^{\mathrm{h}}$ to 23^{h} Wave in H.F. $(+32 \gamma) . \quad 2 \frac{1}{2}^{\mathrm{b}}$ to $23^{\frac{1}{2}}{ }^{\mathrm{b}}$ Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-5^{\prime}\right)$, the first portion very steep, the last triple-crested : small wave in V.F. $\quad 12^{d} 23^{\frac{1}{2}}$ to $13^{d} 3^{\text {b }}$ Irregular triple wave in Dec. ($-5^{\prime},+4^{\prime},-3^{\prime}$).
$13^{\mathrm{d}} 1^{\mathrm{h}}$ to 3^{h} Sharp wave in V.F. $(-26 \gamma) . \quad 5^{\mathrm{h}}$ to 7^{h} Wave in H.F. $(-20 \gamma) . \quad 7^{\mathrm{h}}$ to $8 \frac{3}{4} \mathrm{~h}$ Wave in Dec. (-5^{\prime}). $7 \frac{1}{4}^{\mathrm{h}}$ to $11 \frac{11^{\mathrm{h}}}{}$ Wave in H.F. (-50γ). $18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $20 \frac{1}{4}^{\mathrm{h}}$ Sharp double wave in H.F. $(-30 \gamma$ to $+50 \gamma$), the first portion double-crested. 19 $\frac{1}{2}^{\mathrm{h}}$ to $19 \frac{3 \mathrm{~h}^{\mathrm{h}}}{}$ Sharp wave in Dec. $\left(-3^{\prime}\right)$. 20^{h} to $21 \frac{3 \mathrm{~h}}{4}$ Flat-crested wave in Dec. $\left(-4^{\prime}\right)$, followed till $22 \frac{3 \mathrm{~h}}{4}$ by a wave $\left(-3^{\prime}\right) . \quad 2 \frac{1}{4}^{1 \mathrm{~h}}$ to 22^{h} Wave in H.F. $(+20 \gamma)$: decrease in V.F. (-15γ), followed till $24^{\frac{1}{2}}$ by a wave $(+12 \gamma)$. $13^{\mathrm{d}} 23^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $14^{\mathrm{d}} 1^{\mathrm{h}}$ Wave in Dec. $\left(+6^{\prime}\right)$.
$14^{\mathrm{d}} 5^{\mathrm{h}}$ to 7^{h} Wave in H.F. (-22γ). I $8 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\mathrm{f}}\right) . \quad 19 \frac{3}{4}^{\mathrm{h}}$ to $2^{\mathrm{h}}{ }^{\mathrm{h}}$ Wave in H.F. (-20γ). $19^{d} 19^{\frac{1}{2}}{ }^{\text {h }}$ to 21^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$20^{\mathrm{d}} \circ \frac{3 \mathrm{~h}}{4}$ to 3^{h} Slow wave in Dec. $\left(-4^{\prime}\right)$.
$29^{\mathrm{d}} 11 \frac{3 \mathrm{~h}}{4}$ to $12 \frac{1 \mathrm{~h}}{4}$ Double-crested wave in H.F (-20γ).
$30^{\mathrm{d}} 20^{\mathrm{h}}$ to $21 \frac{1 \mathrm{lb}}{4}$ Wave in Dec. $\left(-5^{\prime}\right)$, steep at commencement.

June $\quad 1^{\mathrm{d}} 6^{\mathrm{h}}$ to 9^{l} Irregular wave in Dec. $\left(-6^{\prime}\right)$, with sharp superposed fluctuations. $10 \frac{1}{2}{ }^{\mathrm{h}}$ to $10 \frac{3}{4}{ }^{\mathrm{h}}$ Sharp wave in H.F. $(+22 \gamma)$.
$2^{\mathrm{d}} 20^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$3^{\mathrm{d}} 5^{\frac{3 \mathrm{~h}}{4}}$ to 8^{h} Irregular truncated wave in Dec. $\left(+5^{\prime}\right)$.
$7^{\mathrm{d}} 23^{\mathrm{h}}$ to $8^{\mathrm{d}} 1 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-5^{\prime}\right) . \quad 7^{\mathrm{d}} 23^{\mathrm{h}}$ to $8^{\mathrm{d}} \circ \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (-26γ).
$8^{\mathrm{d}} 2 \frac{1}{4}^{\mathrm{h}}$ to $4^{\frac{1}{2}}{ }^{\mathrm{h}}$ Irregular wave in H.F. (-25γ). $2 \frac{3 \mathrm{~h}}{4}$ to $4^{\frac{3 \mathrm{~h}}{} \mathrm{~h}}$ Irregular triple-crested wave in Dec. $\left(+5^{\prime}\right)$. $6 \frac{1}{2}^{\mathrm{h}}$ to $7 \frac{1}{4}^{\mathrm{h}}$ Decrease in H.F. (-40γ). $\quad 12 \frac{1}{2}{ }^{\mathrm{h}}$ to 15^{h} Irregular double-crested wave in H.F. (-45γ). $19^{\text {h }}$ to 21^{h} Triple wave in H.F. $(+14 \gamma,-20 \gamma,+23 \gamma)$. $19 \frac{3}{4}^{h}$ to 20^{h} Sharp decrease in Dec. (-8^{\prime}), followed till $21 \frac{3}{4} \mathrm{~h}$ by slower irregular increase $\left(+6^{\prime}\right)$.
$9^{\text {d }}{ }^{1 \frac{3}{4}}{ }^{\mathrm{h}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. 1^{h} to $12 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-26γ). $13^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $14 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (-20γ). $15^{\frac{1}{4}}$ to $15^{\frac{1}{2}}$ Increase in H.F. $(+2 \mathrm{I} \gamma)$. 21^{h} to 22^{h} Flat-crested wave in Dec. $\left(-4^{\prime}\right)$: in H.F. small.
1912.

June
$1^{0^{d}} 1_{4}^{3 \mathrm{~h}}$ to $3^{\frac{1 \mathrm{~h}}{4}}$ Wave in Dec. $\left(+4^{\prime}\right)$. $15^{\frac{1}{2} \mathrm{~h}}$ to $16 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. (-20γ). $16 \frac{3 \mathrm{~h}}{4}$ to 19^{h} Two successive waves in H.F. $(+29 \gamma$ and $+33 \gamma)$. $\quad 17 \frac{3{ }^{3}}{4}$ to 19^{h} Wave in Dec. $\left(-6^{\prime}\right)$, steep at commencement.
$22^{\text {d }} 15^{3 \mathrm{~h}}$ to 17^{h} Wave in H.F. (-21γ), steep at commencement.
$23^{\mathrm{d}} 16 \frac{3 \mathrm{~h}}{4}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Sharp wave in H.F. (-20γ).
$27^{\mathrm{d}} 7 \frac{1}{2}^{\mathrm{h}}$ to $9 \frac{1}{2}^{\mathrm{h}}$ Wec. $\left(-4^{\prime}\right)$. $28^{\mathrm{d}}{ }^{12 \frac{1}{2}^{\mathrm{h}}}$ to $\mathrm{I}_{3} \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+20 \gamma)$.
$29^{\text {d }} 0^{\text {h }}$ to $1^{\text {h }}$ Sharp wave in Dec. $\left(-6^{\prime}\right)$: wave in H.F. $(+20 \gamma)$. $132^{\frac{1}{h}}$ to $5^{1 \frac{1}{4}}$ Wave in H.F. (-20γ).

July $\quad 3^{\mathrm{d}} 18 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Wave in H.F. (-20γ). ${ }^{22 \frac{1 \mathrm{hb}}{4}}$ to $\mathbf{2 2}^{\frac{3 \mathrm{hb}}{4}}$ Wave in H.F. $(+20 \gamma)$: in Dec. small. $3^{\text {d }}{ }^{22 \frac{3 \mathrm{~h}}{4}}$ to $4^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Irregular wave in H.F. $(+30 \gamma) . \quad 3^{\mathrm{d}} 23^{\mathrm{h}}$ to $4^{\mathrm{d}} 2^{\frac{3 \mathrm{~h}}{4}}$ Irregular double-crested wave in Dec. (-10^{\prime}). $4^{\mathrm{d}} 33^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ to 4^{h} Sharp wave in Dec. $\left(+3^{\prime}\right)$. $7 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $8 \frac{1 \mathrm{~h}}{4}$ Truncated wave in Dec. $\left(+3^{\prime}\right)$. ${ }^{13^{\mathrm{h}}}$ to $1^{3 \frac{3 \mathrm{~h}}{4}}$ Waves in Dec. $\left(+3^{\prime}\right)$ and H.F. $(+32 \gamma)$. $14 \frac{3 \mathrm{~h}}{4}$ to ${ }^{4} 5 \frac{1}{4}{ }^{\mathrm{h}}$ Wave in H.F. $(+20 \gamma)$. $17 \frac{3 \mathrm{~h}}{4}$ to $19 \frac{1 \mathrm{dh}}{2}$. Wave in H.F. $(+20 \gamma)$. $20 \frac{1}{2}^{\mathrm{h}}$ to $21^{\frac{1}{4}}$ Wave in H.F. (-20γ). $4^{\mathrm{d}} 23^{\mathrm{h}}$ to $5^{\mathrm{d}} \mathrm{O}^{3 \mathrm{~h}}$ Double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+5^{\prime}\right) . \quad 4^{\mathrm{d}} 23^{\mathrm{h}}$ to $5^{\mathrm{d}}{ }^{\frac{2}{4} \frac{3}{4}}$ Two successive waves in H.F. $(+20 \gamma$ and $+28 \gamma)$.
$5^{\mathrm{d}} 0^{\mathrm{h}}$ to 4^{h} Wave in V.F. (-22γ), steep at commencement. $3^{\frac{1}{4} \mathrm{~h}}$ to $14^{\frac{1}{2}}$ Wave in H.F. (-33γ). $19 \frac{1}{2}^{\mathrm{h}}$ to $23 \frac{33^{\mathrm{h}}}{}$ Three successive waves in Dec. $\left(-3^{\prime},-5^{\prime},-3^{\prime}\right)$, the second flat-crested.
$8^{\mathrm{d}} 0^{\mathrm{h}}$ to 2^{h} Wave in Dec. $\left(+4^{\prime}\right)$.
$14^{\mathrm{d}} 13^{\frac{3 \mathrm{~h}}{4}}$ to $14^{\frac{3 \mathrm{~h}}{4}}$ Wave in H.F. (-20γ).
$18^{\mathrm{d}} 1^{\mathrm{h}}$ to $2 \frac{1^{\mathrm{h}}}{}$ Wave in Dec. $\left(+4^{\prime}\right)$. $1_{\frac{11}{4}}$ to $2 \frac{12^{\mathrm{h}}}{}$ Wave in H.F. $(+20 \gamma)$.
$20^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $14^{\frac{1 \mathrm{~h}}{}}$ Wave in H.F. (-20γ).
$26^{\mathrm{d}} 15^{\frac{1 \mathrm{~h}}{4}}$ to $16 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. (-26γ).
${ }^{2} 7^{\mathrm{d}} 0_{2}^{1 \mathrm{~h}}$ to 4^{l} Double-crested wave in Dec. $\left(+6^{\prime}\right)$.
$28^{\mathrm{d}} 15^{\mathrm{h}}$ to ${ }^{1} 7^{\mathrm{h}}$ Loss of Dec. and H.F. Registers.
$31^{\mathrm{d}}{ }^{1} 3^{\frac{1 \mathrm{~h}}{}}$ to $15^{\frac{3 \mathrm{~h}}{4}}$ Irregular double-crested wave in H.F. (-32γ). ${ }^{17 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}} \text { to }{ }^{18} \frac{1}{2}^{\mathrm{h}} \text { Two successive waves in HF. }}$ $(+20 \gamma$ and $+20 \gamma)$. $19^{\frac{1}{4}}$ to 20^{h} Wave in H.F. (-20γ). $19^{\frac{17}{2}}$ to $20^{\frac{1}{2}}$ Wave in Dec. (-4^{\prime}). $21^{\frac{1}{2}}$ to $23 \frac{1}{2}^{\frac{\mathrm{h}}{}}$ Wave in Dec. $\left(-12^{\prime}\right) .22^{\mathrm{h}}$ to 23^{h} Double wave in H.F. $(-15 \gamma$ to $+18 \gamma)$.

August $\quad I^{\mathrm{d}} 3^{\frac{3}{4} \mathrm{~h}}$ to $52^{\frac{1 \mathrm{~h}}{}}$ Wave in H.F. (-37γ). 4^{h} to 6^{h} Wave in Dec. $\left(+5^{\prime}\right)$.
$5^{\mathrm{d}} 17^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Two successive irregular waves in H.F. $(-25 \gamma$ and $-23 \gamma) . \quad 5^{\mathrm{d}} 20^{\mathrm{h}}$ to $6^{\mathrm{d}} 20^{\mathrm{h}}$. See Plate I.
$10^{d} 19^{\frac{1 h}{h}}$ to $20 \frac{33^{h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$13^{d} 13_{4}^{3 \mathrm{~h}}$ to 16^{h} Loss of Dec., H.F., and V.F. Registers.
$15^{\text {d }} 2 \frac{1^{h}}{}{ }^{\text {b }}$ to $\frac{1}{2}^{\frac{h}{h}}$ Wave in Dec. $\left(+5^{\prime}\right)$: in H.F. small.

$17^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to $5^{\frac{1 \mathrm{~h}}{4}}$ Irregular triple-crested wave in Dec. $\left(-4^{\prime}\right)$.
$18^{\mathrm{d}} 19^{\mathrm{h}}$ to $19^{\frac{1 \mathrm{~h}}{4}}$. Sharp decrease in H.F. (-25γ), followed till $2 \mathrm{I}^{\mathrm{h}}$ by a very irregular wave $(+50 \gamma)$, steep at times. $19^{\text {h }}$ to $19 \frac{1}{4}^{\frac{1}{b}}$ Decrease in V.F. (-12γ). $2^{20^{h}}$ to 21^{h} Double-crested wave in Dec. $\left(-5^{\prime}\right)$, very steep at commencement. $18^{d} 22^{\frac{1}{4} h}$ to $19^{d} 2 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular double-crested wave in Dec.
 $19^{\mathrm{d}} 14^{\frac{3}{4}}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+28 \gamma)$.
$2 \mathrm{I}^{\mathrm{d}} \mathbf{2 1}_{4}^{3 \mathrm{~h}}$ to $22_{2}^{\frac{1 \mathrm{l}}{\mathrm{h}}}$ Wave in H.F. $(+20 \gamma)$.
1912.

August $\quad 2^{2}{ }^{\text {d }} 0 \frac{3 \mathrm{~h}}{4}$ to $2 \frac{1}{2}{ }^{\mathrm{h}}$ Irregular double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-7^{\prime}\right)$, the second portion double-crested. $2 \frac{1}{4}^{\mathrm{h}}$ to 3^{h} Decrease in H.F. (-28γ). 15^{b} to $15^{\frac{3}{4} \mathrm{~h}}$ Wave in H.F. (-35γ). $16 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1}{2}^{\mathrm{h}}$ Quadruple wave in H.F. $(-13 \gamma,+15 \gamma,-15 \gamma,+13 \gamma) 19^{h}$ to $2 I^{h}$ Irregular double wave in Dec. (-8^{\prime} to $\left.+3^{\prime}\right)$. $19^{\frac{1}{2} \mathrm{~h}}$ to $20 \frac{3}{4} \mathrm{~h}$ Double-crested wave in H.F. $(+43 \gamma)$. 22^{h} to 23^{h} Wave in Dec. $\left(-6^{\prime}\right) . \quad 22 \frac{1}{2} \mathrm{~h}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+25 \gamma)$.
$23^{\text {d }} 0 \frac{3}{4}{ }^{h}$ to $2 \frac{14}{4}$ Double-crested wave in H.F. $(+20 \gamma)$: in Dec. small. 14^{h} to $14^{\frac{3}{4} \mathrm{~h}}$ Wave in H.F. (-20γ). $2 \frac{1}{2}^{\mathrm{h}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Flat-crested wave in Dec. $\left(-3^{\prime}\right)$: wave in $\mathrm{HF}(+30 \gamma)$.
$27^{\mathrm{d}} 16^{\mathrm{h}}$ to $18 \frac{1}{2}^{\mathrm{h}}$ Irregular flat-crested wave in H.F. (-32γ), steep at commencement, followed till 20^{h} by a wave $(-36 \gamma) . \quad$ I $8 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $19 \frac{1_{2}^{h}}{}$ Rounded wave in Dec. $\left(-3^{\prime}\right)$.
$28^{\mathrm{d}} 15^{\frac{3}{4} \mathrm{~h}}$ to 17^{h} Irregular wave in H.F. $(-20 \gamma) . \quad 28^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $29^{\mathrm{d}} 00_{4}^{\frac{3 \mathrm{~h}}{4}}$ Double-crested wave in Dec $\left(+3^{\prime}\right):$ in H.F. small.
$30^{d} 21^{\mathrm{h}}$ to $23^{\frac{1}{4} \mathrm{~h}}$ Wave in H.F. $(+20 \gamma)$.
$31^{\mathrm{d}} 23 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $23 \frac{3}{4}^{\mathrm{h}}$ Sharp increase in H.F. $(+20 \gamma)$.

September $1^{d} 1^{h}$ to 3^{h} Wave in Dec. $\left(-4^{\prime}\right)$. $\quad \mathbf{1}_{4}^{\frac{3}{h}}$ to $2^{\frac{1}{4} h}$ Decrease in H.F. (-20γ).
$3^{\mathrm{d}} 21^{\frac{1}{4} \mathrm{~h}}$ Sudden increase in H.F. $(+37 \gamma)$, with slower partial return (-17γ), by $21 \frac{1}{2} \mathrm{~h} . \quad 23 \frac{1}{2}^{\mathrm{h}}$ to 24^{h} Wave in Dec. $\left(-3^{\prime}\right)$: in H.F. small.
$4^{\mathrm{d}} 2^{\frac{1 \mathrm{~h}}{}}$ to $3^{\frac{1}{2} \mathrm{~h}}$ Wave in Dec. $\left(+4^{\prime}\right) . \quad 2^{\frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}} \text { to }} 4^{\mathrm{h}}$ Wave in H.F. $(+20 \gamma)$.
$6^{\mathrm{d}} \circ \frac{3 \mathrm{~h}}{4}$ to $\frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right)$, steep at commencement.
$8^{\mathrm{d}} 23^{\frac{1}{4}}$ to $9^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Wave in H.F. $(+20 \gamma) . \quad 8^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $9^{\mathrm{d}} \mathrm{I}_{\frac{1}{2}}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$17^{d} 8^{h}$ to $18^{d} 8^{h}$. See Plate II.
$18^{d} 1 \frac{1}{2}^{\mathrm{h}}$ to 12^{h} Wave in H.F. $(-27 \gamma) . \quad 20^{\mathrm{h}}$ to 21^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$20^{d} \circ \frac{1_{2}}{}{ }^{\mathrm{h}}$ to 4^{h} Slow double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-3^{\prime}\right)$.
 steep at commencement.
$23^{\mathrm{d}} 17^{\mathrm{h}}$ to $18 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-28γ).
$24^{\mathrm{d}} 2 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $3 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-7^{\prime}\right)$, continued till $5 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ by an irregular increase $\left(+10^{\prime}\right)$. $3 \frac{1}{4}^{\frac{\mathrm{h}}{2}}$ to 4^{h} Decrease in V.F. (-17γ). 6^{h} to $6 \frac{3 \mathrm{~h}}{4}$ Decrease in H.F. (-44γ). $9 \frac{1}{4}^{\mathrm{h}}$ to $10 \frac{1^{\mathrm{h}}}{4}$ Irregular triple-crested wave in Dec. $\left(-6^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{4}$ Irregular wave in Dec. $\left(-\mathrm{II}^{\prime}\right) . \quad 20 \frac{1 \mathrm{~h}}{4}$ to $2 \mathrm{I}^{\frac{1}{4} \mathrm{~h}}$ Wave in H.F. $(+23 \gamma) .22 \frac{3 \mathrm{~h}}{4}$ to 23^{h} Very sharp wave in Dec. $\left(-7^{\prime}\right)$: very sharp increase in H.F. $(+95 \gamma)$, followed till $23 \frac{3 h}{4}$ by an
 in Dec. $\left(-6^{\prime}\right)$.
$26^{d} 19^{h}$ to $2 \frac{3}{4} \frac{h}{4}$ Irregular wave in Dec. $\left(-6^{\prime}\right)$. $19 \frac{1}{2}{ }^{h}$ to $20 \frac{1{ }^{h}}{}$ Wave in H.F. $(+27 \gamma)$.

October $\quad I^{d} 5 \frac{3}{4}$ h to $7 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. $(+20 \gamma)$.
$3^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $\mathrm{I}_{4} \frac{3 \mathrm{~h}}{}$ Wave in Dec. $\left(+4^{\prime}\right)$.
$1 I^{d} 2^{\frac{1}{4}}$ to $3 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$. $17 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-5^{\prime}\right)$. $17 \frac{1}{2}{ }^{\mathrm{h}}$ to $18 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. $(+25 \gamma)$. $19^{\text {h }}$ to $22 \frac{3 \mathrm{~h}}{4}$ Irregular wave in Dec. $\left(-10^{\prime}\right)$. $19^{\text {h }}$ to $2 I^{\frac{1}{2}}{ }^{\mathrm{h}}$ Irregular wave in H.F. ($+4^{6 \gamma}$). $11^{d} 23 \frac{11}{4}^{\frac{1}{2}}$ to $12^{d} 1 \frac{1 \mathrm{~h}}{}{ }^{4}$ Double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-3^{\prime}\right)$: small wave in H.F.
 $13^{\mathrm{d}} \circ_{4}^{\frac{1}{4}}$ Decrease in V.F. (-18γ).
$13^{d} I^{h}$ to $3 \frac{3}{4}{ }^{h}$ Wave in H.F. (-25γ). $\quad \frac{1}{2}^{h}$ to 4^{h} Flat-crested wave in Dec. $\left(+4^{\text {b }}\right)$.
$14^{\mathrm{d}} 6^{\mathrm{h}}$ to $15^{\mathrm{d}} 6^{\mathrm{h}}$. See Plate II.
1912.

October $\quad 15^{d} 16^{\mathrm{h}}$ to 17^{h} Wave in Dec. (-9^{\prime}), steep at commencement, followed till $\mathrm{I} 8 \frac{1}{2} \mathrm{~h}$ by an irregular double wave $\left(-4^{\prime}\right.$ to $\left.+3^{\prime}\right)$. 16^{h} to 17^{h} Double wave in H.F. $\left(-28 \gamma\right.$ to $+26 \gamma$), the first portion very steep. $\quad 18^{h}$ to 19^{h} Wave in H.F. (-20γ). 20^{h} to $20^{\frac{1}{4}}$ h Sharp decrease in Dec. $\left(-5^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $21^{\frac{1}{4}}$ Irregular wave in H.F. $(+33 \gamma)$.
$16^{d} 0^{h}$ to 3^{h} Double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+4^{\prime}\right)$. $\quad 16 \frac{3}{4} \mathrm{~h}$ to 18^{h} Waves in Dec. $\left(-9^{\prime}\right)$ and H.F. $(+30 \gamma)$. $17^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Wave in H.F. $(+20 \gamma)$. $\quad \mathrm{I}_{4}^{\frac{1 \mathrm{~h}}{\mathrm{~h}}}$ to $2^{\frac{1}{4}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$20^{\text {d }} 177^{\frac{1 \mathrm{~h}}{4}}$ Sharp increase in H.F. $(+20 \gamma)$: small sharp decrease in Dec.
$2^{8^{d}} 18^{h}$ to $19^{\text {h }}$ Wave in Dec. $\left(-4^{\prime}\right)$.

November $2^{d} 3 \frac{1}{2}^{\mathrm{h}}$ to $4 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right) . \quad 18 \frac{1 \mathrm{~h}}{4}$ to $20 \frac{3}{4} \mathrm{~h}$ Wave in H.F. (-20γ).
$5^{\mathrm{d}} 16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $19 \frac{1}{4} \mathrm{~h}$ Double-crested wave in H.F. (-24γ). $16 \frac{3}{4}{ }^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right) . \quad 23 \frac{1}{4}^{\mathrm{h}}$ to 24^{h} Wave in H.F. $(+20 \gamma)$.
$6^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}}$ to $22 \frac{1 \frac{1}{4}^{\mathrm{h}}}{}$ Wave in Dec. $\left(-3^{\prime}\right)$: in H.F. small.
$8^{d} 23 \frac{1^{h}}{}{ }^{\mathrm{h}}$ to $9^{d} 1^{\mathrm{h}}$ Wave in Dec. $\left(+6^{\prime}\right)$: in H.F. small.
$9^{\mathrm{d}} 22^{\frac{1}{4}} \mathrm{~h}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+26 \gamma)$.
$10^{\mathrm{d}} 7^{\mathrm{h}}$ to $8 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $\left(-2 \mathrm{I} \gamma\right.$). $\quad 122^{\frac{1}{2}}$ to $14^{\frac{3}{4} \mathrm{~h}}$ Wave in H.F. $(-38 \gamma) . \quad 18^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$, followed till $2 \mathrm{I} \frac{1}{2}$ by a double-crested wave $\left(-8^{\prime}\right)$. $\quad \mathrm{I} 8 \frac{3 \mathrm{~h}}{4}$ to $20^{\frac{1}{2}}$ Two successive waves in H.F. $(+25 \gamma$ and $+23 \gamma)$.
$11^{\mathrm{d}} 77^{\frac{1 \mathrm{~h}}{}}$ to 9^{h} Wave in H.F. (-20γ). 17^{h} to 18^{h} Sharp waves in Dec. $\left(-10^{\circ}\right)$ and H.F $(+35 \gamma)$. $19^{\frac{3}{4}}$ to $20 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. $(+20 \gamma)$.
$14^{\mathrm{d}} 1^{\mathrm{h}}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+7^{\prime}\right)$, with two sharp waves $\left(+7^{\prime}\right.$ and $\left.+4^{\prime}\right)$, superposed from 15^{h} to $15 \frac{3}{4}{ }^{\mathrm{h}}$. 12^{h} to 20^{h} Wave in V.F. $(+52 \gamma)$. $12 \frac{1}{2}^{\mathrm{h}}$ to $17 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (-64γ), with sharp duable wave $\left(+20 \gamma\right.$ to -30γ), superposed from $144^{\frac{3}{h}}$ to $15 \frac{1}{2}^{\mathrm{h}} .22^{\mathrm{h}}$ to 24^{h} Wave in Dec. $\left(-5^{\prime}\right)$.
$15^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to $3 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(+4^{\prime}\right)$.
$16^{\mathrm{d}} 3 \frac{1}{2}^{\mathrm{h}}$ to 5^{h} Wave in Dec. $\left(+3^{\prime}\right) . \quad 20^{\frac{1}{4} \mathrm{~h}}$ to 22^{h} Two successive waves in Dec. $\left(-5^{\prime}\right.$ and $\left.-3^{\prime}\right)$. $2^{\frac{1}{4}} \frac{1}{4}^{\text {h }}$ to $22 \frac{1}{2}$ Wave in H.F. $(+38 \gamma)$.
$17^{\mathrm{d}} 2 \mathrm{O}_{4}^{\frac{3 \mathrm{~h}}{}}$ to $21 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-5^{\prime}\right)$, steep at commencement.
$18^{\mathrm{d}} 20 \frac{3}{4}{ }^{\mathrm{h}}$ to $2 \mathrm{I} \frac{1}{2}^{\mathrm{h}}$ Sharp wave in H.F. $(+2 \mathrm{I} \gamma)$.
$20^{\mathrm{d}} 6^{\mathrm{h}}$ to $7 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$22^{\mathrm{d}} 133^{\frac{3}{4}}$ to 17^{h} Wave in Dec. $\left(+4^{\prime}\right)$. $14^{\frac{1}{4}}{ }^{\mathrm{h}}$ to 17^{h} Slow wave in H.F. (-20γ).
$23^{\mathrm{d}} 8 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to $9 \frac{3}{4} \mathrm{~h}$ Wave in H.F. (-20γ).
$26^{\mathrm{d}} 19^{\mathrm{h}}$ to $21 \frac{1}{4}^{\mathrm{h}}$ Irregular wave in I)ec. $\left(-11^{\prime}\right)$: double wave in H.F. $(+23 \gamma$ to $-19 \gamma)$.

December $2^{\mathrm{d}} 17 \frac{1}{4}^{\mathrm{h}}$ to $21 \frac{1}{2}^{\mathrm{h}}$ Loss of Dec. and H.F. Registers. Evidence of waves in Dec. and H.F., the ranves during the interval being (II^{\prime}) and (85γ) respectively. $22 \frac{1_{2}^{\mathrm{h}}}{}$ to 24^{h} Double-crested waves in Dec. (-6^{\prime}): wave in H.F. $(+25 \gamma)$.
$3^{\mathrm{d}} 20^{\mathrm{h}}$ to 22^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
6^{d} I $8 \frac{1}{4}^{\mathrm{h}}$ to $199^{\frac{1}{4}}$ Double crested wave in Dec. $\left(-3^{\prime}\right) .6^{\mathrm{d}} 20^{\mathrm{h}}$ to $7^{\mathrm{d}} 20^{\mathrm{h}}$. See Plate II.
$7^{\mathrm{d}} 203^{\mathrm{h}}$ to 24^{h} Truncated wave in Dec. $\left(-8^{\prime}\right) . \quad 20 \frac{3}{4} \mathrm{~h}$ to $22 \frac{1^{\mathrm{h}}}{}$ Flat-crested wave in H.F. $(+22 \gamma)$.
$9^{d} 18 \frac{1}{4}^{h}$ to $20 \frac{1}{2}{ }^{\text {h }}$ Double-crested wave in Dec. $\left(-5^{\prime}\right)$.
$10^{d} 19^{h}$ to 20^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$13^{\mathrm{d}} 20^{\mathrm{h}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in H.F. $(-20 \gamma) .20 \frac{3 \mathrm{~h}}{4}$ to $22 \frac{1 \mathrm{~h}}{4} \mathrm{~W}$ Wave in Dec. $\left(-;^{\prime}\right)$.
1912.
 Irregular triple-crested wave in Dec. $\left(-10^{\prime}\right)$. Triple wave in H.F. $(-31 \gamma,+4.2 \gamma,-20 \gamma)$.
$23^{d} 1 \frac{1}{4}^{h}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec $\left(-5^{\prime}\right)$. 14^{h} to $15^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$. 14^{h} to 16^{h} Wave in H.F. (-25γ). 17^{h} to $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ Double-crested wave in Dec. $\left(-6^{\prime}\right)$. ${ }^{20 \frac{1}{4} \mathrm{~h}}$ to $20 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$. $20 \frac{1}{4} \mathrm{~h}$ to $21 \frac{1 \mathrm{~h}}{4} \mathrm{~h}$ Sharp wave in H.F. $(+50 \gamma)$. $21 \frac{1}{4}^{\mathrm{h}}$ to 22^{h} Wave in Dec. $\left(-7^{\prime}\right)$. $21^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $2^{\frac{1}{4}}$ Ir Iregular double-crested wave in H.F. $(+55 \gamma) . \quad 22^{\mathrm{h}}$ to 24^{h} Wave in Dec. $\left(-5^{\prime}\right)$.
$24^{\mathrm{d}} 0^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $\mathrm{I}_{4}^{\frac{3 \mathrm{~h}}{}}$ Wave in Dec. $\left(+5^{\prime}\right)$. 19^{h} to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right) . \quad 24^{\mathrm{d}} 23^{\frac{1}{4}}{ }^{\mathrm{h}}$ to $25^{\mathrm{d}} 1^{\mathrm{h}}$ Wave in H.F. $(+40 \gamma)$.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

ar

METEOROLOGICAL OBSERVATIONS.

1912.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.

 Differences (Col
daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amount entered on January 2 x is derived from fog.

The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 761$, being oin 033 lower than the average for the 65 years, $1841-1905 \cdot$
Temperature of the Air.
The highest in the month was $51^{\circ} \cdot 3$ on January 6 ; the lowest in the month was $19^{\circ} \cdot \mathbf{I}$ on January 29 ; and the range was $\mathbf{3 2}^{\circ} \cdot \mathbf{2}$.
The mean of all the highest daily readings in the month was $44^{\circ} 9$, being $1^{\circ} .8$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $36^{\circ} \circ$, being $2^{\circ} 3$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $8^{\circ} \cdot 9$, being $0^{\circ} \cdot 5$ less than the average for the 65 years, 1841-1905.
The mean for the month was $40^{\circ} \cdot 2$, being $1^{\circ} \cdot 6$ higher than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $39^{\circ}{ }^{\circ}$, being $1^{\circ} .8$ higher than
The mean Temperature of the Dew Point for the month was $36^{\circ} 9$, being $⿷^{\circ} \cdot 6$ higher than
The mean Degree of Humidity for the month was $88^{\circ} 4$, being 0.4 greater than
The mean Elastic Force of Vapour for the month was oin•219, being oin•oı 3 greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2{ }^{\text {grs }} \cdot 6$, being ${ }^{\circ g r} \cdot 2$ greater than
The mean Weight of a Cubic Foot of Air for the month was 552 grains, being 2 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 8.3 .
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was o'ro7. The maximum daily amount of Sunshine was 6.8 hours on January 28 . The highest reading of the Solar Radiation Thermometer was $7 \mathbf{1}^{\circ}{ }^{\circ} 4$ on January $\mathbf{2 4}$; and the lowest reading of the Terrestrial Radiation Thermometer was $14^{\circ}{ }^{\circ} 5$ on January 29 . The Proportions of Wind referred to the cardinal points were N. 4, E. 8, S. 7, and W. 8. Four days were calm.
The Greatest Pressure of the Wind in the month was $13^{\circ} \circ \mathrm{lbs}$. on the square foot on January 17. The mean daily Horizontal Movement of the Air for the month was 269 miles; the greatest daily value was 585 miles on January 5 ; and the least daily value was 108 miles on January 28.
Rain (oin 005 or over) fell on 18 days in the month, amounting to $3^{\text {in }} \cdot 025$, as measured by gauge No. 6 partly sunk below the ground ; being $\boldsymbol{I}^{\text {in }} \cdot \mathbf{1 4 4}$ greater than the average fall for the 65 years, 1841-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records, The average temperature (Column 7) is deduced from the 65 years' observations, r84x-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. Degree of Humidice between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns iI and i2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column i6 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} 495$, being 0 in 307 lower than the average for the 65 years, $1841-1905$.
Temperature of the alr.
The highest in the month was $59^{\circ} 5$ on February 28; the lowest in the month was 19°, , on February 3; and the range was $40^{\circ} .4$.
The mean of all the highest daily readings in the month was $48^{\circ} \cdot 6$, being $3^{\circ} .4$ higher than the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was $38^{\circ} .6$, being $4^{\circ} 4$ higher than the average for the 65 years, $1841-1905$
The mean of the daily ranges was $10^{\circ} \cdot$, being $1^{\circ} \circ$ less than the average for the 65 years, $1841-1905$
The mean for the month was $43^{\circ} \cdot 3$, being $3^{\circ} \cdot 7$ higher than the average for the 65 years, 184×-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { IgI2. } \end{gathered}$			Wind as Dedoced from Self-Registering ankmometrrs.					Clouds and Weather.	
			Osler's.				$\left\lvert\, \begin{gathered} \text { Robin. } \\ \text { son's. } \end{gathered}\right.$		
			General Direction.		Pressureon theSquare Foot.				
			A.M.	P.M.				A.M.	P.M.
Feb. 1	hour	hours.		W : NNW: N	lbs. I 9 6	lbs.0.08	$\begin{array}{r} \text { miles. } \\ 248 \end{array}$		ro $:$ 1o $:$ p.-cl p.-cl, sn, w $:$ p.-cl $:$ 0, ho. fr I, cu $:$ $3, \mathrm{cu}$ $:$ 9, oc.-sn
	$0 \cdot 0$	9°							
	$2 \cdot 1$	$9^{\prime} 1$	WSW N: NNW	NE: NNE:N	$6 \cdot 3$2.6	0.33	336		
	I. 0	$9 \cdot 2$	$\mathrm{N}: \mathrm{WSW}$: W			$0 \cdot 12$	282		
	$0 \cdot 0$	$9{ }^{\circ}$	NE : ENE : E	E: ESE	$6 \cdot 6$	$0 \cdot 47$	392		
	$0 \cdot 7$	$9 \cdot 3$	ESE : SE	ESE : E : Calm	$5 \cdot 8$	0.43	353		
	$0 \cdot 1$	$9 \cdot 3$	SW : Calm : SE	SE : SSE	0.8	$0 \cdot 01$	151		
7	3.3	$9 * 4$	SSW $:$ SW $: ~ S ~$S $:$ SSE	$\begin{gathered} \text { S:SSE } \\ \mathrm{S}: \mathrm{SSW}: \text { SSE } \end{gathered}$	2.5	0.15	292	Io, m.-r : p.-cl,ho.-fr: 7, ci, ci.-s, cu.-s	9, ci.-s, ci.-cu, so.-ha: 10
8	$0 \cdot 2$	$9 \cdot 4$			$4 \cdot 8$	0.40	356	$10: 10: 10, \mathrm{n}, \mathrm{r}$	$10, \mathrm{n}, \mathrm{s}, \mathrm{sc}, \mathrm{r}, \mathrm{w}$: p.-cl, sh.-r : p.-cl
9	$0 \cdot 5$	$9 \cdot 5$	SSE : S	S : SSW	2.6	0.23	303	p.-cl : $10, \mathrm{r}:$: $9, \mathrm{cu} .-\mathrm{s}, \mathrm{s}, \mathrm{so} .-\mathrm{ha}$	$10, \mathrm{r}:$ ıo, r: p.cl
10	4.9	$9 \cdot 6$	$\begin{gathered} \text { SW :SSW } \\ \text { E }: \text { ESE :S } \\ \text { ESE }: \text { E }: \text { SW } \end{gathered}$	$\begin{gathered} \mathrm{S}: \text { ESE }: \mathrm{E} \\ \mathrm{~S}: \mathrm{SE}: \text { ESE } \\ \text { SW : SSW }: \mathrm{S} \end{gathered}$	2.9	0.20	288	$\begin{array}{cl} \text { p.-cl } & : \text { p.-cl,lu.-ha: } \\ \text { Io } & : \text { p.-cl } \\ \text { IO, slt.-r } & : \\ 9, \text { cu, cu.-s } \end{array}$	$\begin{array}{llll} 4, \mathrm{cu}, \mathrm{n}: & 9 & \text { p.-cl, m, d } \\ 6, \mathrm{cu}, \mathrm{cu} .-\mathrm{s}: & \mathrm{cu}, \mathrm{n}, \mathrm{li.-cl}: & \text { I } \end{array}$
11	$2 \cdot 9$	$9 \cdot 6$			$2 \cdot 5$	0.16	267		
12	$0 \cdot 3$	$9 \cdot 7$			$4^{\circ} \mathrm{O}$	0.37	348	p.-cl, r : ıo, fq.-r : 9, slt.-sh	ıo, fq.-shs : 9, fq.-r : 10 , slt.-r
13	$0 \cdot 0$	$9 \cdot 8$	S : SSW : SW	Calm : N	2.8	0.12	227	$\begin{array}{lll} 9 & : 10 & : 10, \text { slt.-r } \\ 9 & : 10 & : 10, \text { n, } \end{array}$	ı,fq.-r,gt.-glm: io, oc.-slt.-r : 10 $9, \mathrm{n}, \mathrm{s}: \mathrm{I} 0, \mathrm{n}, \mathrm{s}: 9$ 10, oc.-slt.-r \quad : 10 , oc.-slt.-r
14	$0 \cdot 1$	$9^{\bullet 8}$	N: NNE	NE	$1 \cdot 3$	$0 \cdot 10$	224		
15	0.3	$9 \cdot 9$	SE : SSE : S	SSW	2.2	0.10	223	9 C	
16	$0 \cdot 0$	$10 \cdot 0$	SW : SSW	SW : SSW : S	$0 \cdot 7$	$0 \cdot 04$	229	9, fq.-r : ı0, oc.-shs: $10, \mathrm{n}$, s	10 : 10
17	$4^{\circ} \mathrm{O}$	10.0	$\stackrel{\text { S }}{\text { S }}$	S : Calm : SW	0.8	$0 \cdot 01$	202	9 : p.-cl : 6, ci.-cu, ci.-s	5,ci.-s,so.-ha: th.-el : th.-cl
18	$1 \cdot 2$	10.1	SW : SSW : Calm	SE : SSE : S	$0 \cdot 3$	0.00	154	p.-cl : th.-cl : 8, th.-cl,so.-ha	9 : p.ecl, d : $10, \mathrm{~s}$
19	I.I	101	SSW : SW : S	S : SSW	$2 \cdot 8$	0.24	318	9 : 9. -cl : 9	10, n, oc.-r : 10 , oc.-r
20	0.0	10.2	SW : WSW : W		4°	0.51	480	$\begin{array}{cl} \text { Io, slt.-r } & : 10, \text { oc.-slt.-r: } 10, \text { n, oc.-slt.-r } \\ \text { p.-cl } & : \quad 0, \text { ho.-fr : } 10 \text {, oc.-slt.-r } \end{array}$	10, sc, n, w10, fq.-th.-rco, n, sa
21	$0 \cdot 0$	$10 \cdot 3$	WSW : SW :Variable	S : SSW	$0 \cdot 5$	$0 \cdot 01$	179		
22	$0 \cdot 0$	$10 \cdot 3$	S : SSW : SW	SSW : SW	3.6	0.27	339	$\begin{array}{l:l} 10 & : 10, \text { slt.-r : }: 10, \text { fq.-r } \\ 10 \text {, oc.-th.-r: } & \text { го,oc.-slt.-r,w: } 10 \text {, slt.-r } \end{array}$	10, r : 10 : 10 , oc.-slt.-r
23	0.0	$10 \cdot 4$	$\begin{gathered} \text { SW } \\ \text { NNE : NE : SW } \end{gathered}$	$\begin{gathered} \text { SW } \\ \text { SW : S } \end{gathered}$	$5 \cdot 3$	0.53	412		$10, \mathrm{n}, \mathrm{s}, \mathrm{sc}: 10$, fq.-r : $10, \mathrm{r}$ p.-cl, so.-ha: 10 : 9
24	I.8	10.5			$2 \cdot 2$	$0 \cdot 04$	169	10, r : $9: 9, \mathrm{cu}, \mathrm{n}$	
25	I•5	$10 \cdot 5$	$\begin{gathered} \text { S:SW } \\ \text { WSW:SW } \\ \text { SW:WSW :W } \end{gathered}$	SW:WSW	0.6	$0 \cdot 01$	196	9, slt.-sh : $10 \quad: \quad 9$, cu.-s, $\mathrm{n}, \mathrm{slt} . \mathrm{r}$	
26	0.8	10.6			4.5	$0 \cdot 33$	361	$1: 0 \quad: 9, \mathrm{~s}, \mathrm{w}$	
27	$5 \cdot 9$	10.6		WSW : SW	12.0	I 08	640	Io, w : 9, st.-w : 4, ci,ci.-s,cu,w	
28	2.9	10.7 10.8	SW : WSW SSW : SW	SW : SSW : S WSW : SW	$5 \cdot 3$	$0 \cdot 44$	436	$\begin{array}{cll} 10, \mathrm{w} & : 10 & : 9 \\ 8 & : 10, \mathrm{r} & : 10, \text { s, so.-ha } \end{array}$	
29	$2 \cdot 9$	$10 \cdot 8$			$4{ }^{2}$	$0 \cdot 45$	437		
Means	1•3	$9 * 9$...	\cdots	\cdots	0.25	305		
Number of Column for Reference.	19	20	21	22	23	24	25	26	27

The mean Temperature of Evaporation for the month was $41^{\circ} \cdot 5$, being $3^{\circ} \cdot 8$ higher than
The mean Temperature of the Dew Point for the month was $38^{\circ} \cdot 7$, being $3^{\circ} \cdot 3$ higher than
The mean Degree of Humidity for the month was 84°, being $\mathrm{r}^{\circ} 5$ less than
The mean Elastic Force of Vapour for the month was $o^{\text {in }} \cdot{ }^{2} 35$, being $o^{\text {in }} \cdot 028$ greater than
the average for the 65 years, $1841-1905$.
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grs} \cdot 8$, being $0^{\mathrm{gr}} \cdot 4$ greater than
The mean Weight of a Cubic Foot of Air for the month was 543 grains, being 10 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 8.3 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0^{\prime} \mathbf{I}_{34}$. The maximum daily amount of Sunshine was 5.9 hours on February 27 .
The highest reading of the Solar Radiation Thermometer was $93^{\circ} \circ$ on February 28 ; and the lowest reading of the Terrestrial Radiation Thermometer was $13^{\circ} \cdot 9$ on February 5 . The Proportions of Wind referred to the cardinal points were N. 3, E. 4, S. 13, and W. 8. One day was calm.
The Greatest Pressure of the Wind in the month was $12 \circ \mathrm{lbs}$. on the square foot on February 27. The mean daily Horizontal Movement of the Air for the month was 305 miles ; the greatest daily value was 640 miles on February 27; and the least daily value was 151 miles on February 6.
Rain (oin•005 or over) fell on 20 days in the month, amounting to $\boldsymbol{x}^{\text {in }} \cdot 721$, as measured by gauge No. 6 partly sunk below the ground; being oin $\cdot 24 \mathrm{I}$ greater than the average fall for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { t912. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Temperature．							Difference between the Air Temperature and Dew Point Temperature．				temperature．				Electricity．	
			Of the Air．					$\begin{array}{\|c} \text { Of } \\ \text { Evapo } \\ \text { ration } \end{array}$	$\begin{aligned} & \text { Of the } \\ & \text { Dew } \\ & \text { Point. } \end{aligned}$				Of Rad	ation．					
				$$	Daily Rauge	$\begin{gathered} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Goalue. } \end{gathered}$	$\begin{gathered} \text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ 65 \text { Years. } \end{gathered}$	$\begin{aligned} & \text { Mean } \begin{array}{c} \text { of } 24 \\ \text { ofourly } \\ \text { Halues } \end{array} \\ & \text { a } \end{aligned}$	De－ duced Mean Value．			$\begin{aligned} & \text { 苞 } \\ & \text { む } \\ & \hline \end{aligned}$		Highest in Sun Rays．	Lowest on the Grass．	$\begin{aligned} & \text { the } \\ & \text { Surface } \\ & \text { of the } \end{aligned}$ Soil.			
		in．	－	－	－	－	－	\bigcirc	－	\bigcirc	－	－			－	－	\bigcirc	in．	
Mar．I	Perigee	29.588	52.0	$46 \cdot 1$	$5 \cdot 9$	49°	$+8 \cdot 6$	47.2	$45^{\circ} 2$	$3 \cdot 8$	$6 \cdot 6$	$1{ }^{\circ} 0$	87	65.5	$39^{\circ} 6$	46．21	$0 \cdot 105$	$w^{\text {P }}$ ：wP，wN ：wP	
		29.450	$56 \cdot 3$	$46 \cdot 9$	$9 \cdot 4$	50.4	＋10．0	473	44°	6.4	9×9	0.6	79	$90 \cdot 0$	40°	$46 \cdot 32$	$0 \cdot 295$	wP ：wP ：vN，wP	
3	Full	29.283	53.6	41＇5	$12 \cdot 1$	$46 \cdot 3$	$+5 \cdot 8$	$43 \cdot 6$	$40 \cdot 5$	$5 \cdot 8$	$10 \cdot 3$	2.6	81	$92 \cdot 1$	$36 \cdot 0$	$46 \cdot 47$	0.058	$w \mathrm{P}: \mathrm{vP}$ ，ssN ：wP	
4	In Equator	29.294	51．1	$40 \cdot 4$	$10 \cdot 7$	44.6	$+3.9$	42.4	$39^{\circ} 8$	$4 \cdot 8$	$8 \cdot 3$	0.8	84	65.9	$35^{\circ} \mathrm{O}$	$46 \cdot 52$	$0 \cdot 495$	wP ：$v \mathrm{P}, \mathrm{vN}: \mathrm{wP}$	
5	．．．	29．086	$53^{\circ} \mathrm{I}$	$41^{1} 6$	11.5	$45^{\circ} 9$	＋ $5 \cdot 0$	43.2	$40^{\circ} \mathrm{I}$	$5 \cdot 8$	$12 \cdot 7$	2.4	81	$95 \cdot 6$	$38 \cdot 0$	$46 \cdot 31$	$0 \cdot 086$	$\mathrm{wP}, \mathrm{wN}: \mathrm{wP}: \mathrm{mP}, \mathrm{mN}$	
6		29.305	50.0	38.1	11.9	43.2	$+2.2$	$39^{\circ} 9$	$36 \cdot 0$	$7 \cdot 2$	14.3	$2 \cdot 1$	76	$9{ }^{1 \circ} \mathrm{O}$	31.5	$46 \cdot 19$	$0 \cdot 015$		
7	\ldots	29.706	52.1	$35 \cdot 6$	16.5	420	＋ 10	$38 \cdot 7$	$34 \cdot 6$	7×4	15.3	$2 \cdot 2$	76	94＊3	$29^{\circ} 7$	45＊99	$0 \cdot 016$	$m P: m P: \operatorname{ssN}, v P$	
8		29.602	$48 \cdot 9$	$34^{\circ} \mathrm{O}$	14.9	413	＋ 0.2	39.7	377	$3 \cdot 6$	$8 \cdot 0$	0.9	88	$75 \cdot 7$	28.0	$45 \cdot 69$	－119	$\mathrm{wP}: \mathrm{wP}, \mathrm{sN}: \mathrm{ssN}, \mathrm{mP}$	
9	．．．	29＇545	$54^{\circ} \mathrm{I}$	$39^{\circ} 2$	14.9	$45^{\circ} 6$	$+4.6$	$43 \cdot 3$	$40 \cdot 7$	$4 \cdot 9$	11．6	$\bigcirc \cdot 9$	83	102.0	31.2	$45^{\circ} 4^{2}$	0．000	wP	
10	Last Quarter	29.542	$53^{\circ} \mathrm{O}$	$39^{\circ} 6$	13.4	$45^{\circ} 5$	$+46$	43.6	$4{ }^{1 \cdot} 4$	$4 \cdot 1$	$9 \cdot 3$	I＇I	86	91．0	30＊9	$45^{\circ} 25$	$0 \cdot 000$	wP	
11	Greatest Dec．S．	${ }^{29} 9.812$	$49^{\circ} 7$	$35 \cdot 1$	14.6	$40 \cdot 8$	-0.2	$40 \cdot 2$	$39^{\circ} 5$	$1 \cdot 3$	4.4	$0 \cdot 0$	95	89.1	27.5	$45 \cdot 21$	$0 \cdot 000$	${ }_{w} \mathrm{P}$	
12		30＇106	$50^{\circ} 0$	$38^{\circ} 1$	119	$42 \cdot 1$	＋1．0	$4^{1 / 1}$	39.9	$2 \cdot 2$	$5 \cdot 6$	$0 \cdot 0$	92	$77 \cdot 1$	$36 \cdot 0$	$45^{\circ} 20$	$0 \cdot 000$	$\ldots: \mathrm{mP}$	
13	Apogee	29.953	$51 \cdot 8$	$42 \cdot 8$	$9^{\circ} 0$	$4^{8 \cdot 1}$	＋6．8	$47^{\circ} 2$	$46 \cdot 2$	${ }^{1} 9$	3.3	0.6	94	$62 \cdot 7$	$36 \cdot 5$	$45^{\circ} 20$	0.061	wP	
14		29.827	60.6	$48 \cdot 7$	119	51.4	＋9．9	$49 \cdot 7$	$48 \cdot 0$	3.4	$9 \cdot 6$	0.4	88	$98 \cdot 2$	$46 \cdot 0$	$45^{\circ} 40$	0.000	${ }_{w} \mathrm{P}$	
15	\ldots	$29^{\circ} 601$	52.1	$38 \cdot 2$	13.9	$46 \cdot 0$	$+43$	$43 \cdot 8$	$41 \cdot 3$	$4 \cdot 7$	9°	I． 5	85	74.1	$32 \cdot 8$	$45 \% 70$	$0 \cdot 123$	wP ：wP，vN ：mP	
16	\ldots	29.623	$52 \cdot 0$	33.5	18.5	419	$0 \cdot 0$	$39^{\prime 2}$	$35^{\circ} 9$	$6 \cdot 0$	13.2	1．5	80	1000	$29^{\circ} \mathrm{O}$	45.90	0.010	mP：mP：wP，sN	
17		29.225 28.754	$47 \cdot 7$	41.6	$6 \cdot 1$	$44^{\prime 8}$	＋ 2.8	$43 \cdot 8$	$42 \cdot 7$	$2 \cdot 1$	$4 \cdot 3$	$1 \cdot 1$	93	64.6	$38 \cdot 4$	$45 \cdot 89$	0.237	wwP, wwN:vN, wwP: vN, vP	
18	New	28.754	$47^{\circ} 2$	$36 \cdot 7$	10.5	$42 \cdot 3$	$+0.3$	$41 \cdot 2$	39.9	2.4	7%	0.9	91	73.7	$30 \cdot 3$	$45 \cdot 82$	$0 \cdot 110$	$\mathrm{wP}: \mathrm{wP}, \mathrm{vN}: \mathrm{wP}, \mathrm{wN}$	
19	In Equator	28.991	52.0	35：3	16.7	$41^{\circ} 0$	－0．9	$38 \cdot 7$	$35 \cdot 8$	$5 \cdot 2$	14.4	0.5	82	$\begin{array}{r}99 \\ \\ \hline 10\end{array}$	$30 \cdot 9$	$45 \cdot 72$	$0 \cdot 130$	$w P: v N, v P: v P, s N$	
20	．．．	29．258	49.4	$32 \cdot 8$	$16 \cdot 6$	39.3	－ 2.6	$36 \cdot 9$	33.8	$5 \cdot 5$	14.4	$0 \cdot 0$	81	107.7	27.9	$45 \cdot 56$	O－III	$m P: m P: v P, s s N$	
21	\cdots	28.951	$55^{\circ} \mathrm{I}$	31．3	$23 \cdot 8$	42.4	＋0．5	$40 \cdot 8$	38.9	$3 \cdot 5$	$9 \cdot 2$	$0 \cdot 0$	88	99°	27.4	$45^{\circ} 4^{1}$	$0 \cdot 195$	$\mathrm{vP}, \mathrm{vN}: \mathrm{vP}, \operatorname{ssN}: \ldots$	
22	\ldots	29.070	52.1	$43 \cdot 1$	$9^{\circ} \mathrm{O}$	$45 \cdot 8$	＋ 3.8	43.7	41.3	4．5	$8 \cdot 7$	2.0	85	85^{\prime} I	$38 \cdot 9$	$45 \cdot 18$	0．037	$\ldots: \mathrm{vP}, \mathrm{ssN}$	
23	\ldots	29.469	＋7＊9	$35 \cdot 7$	12.2	$42 \cdot 9$	＋ 0.7	$41^{\circ} 9$	$40 \cdot 7$	$2 \cdot 2$	5°	0.2	92	$78 \cdot 7$	28.5	$45 \cdot 16$	0.259	$\mathrm{mP}: \mathrm{wP}, \mathrm{vN}: \mathrm{wP}, \mathrm{mN}$	
24	\cdots	$29^{\circ}+7^{2}$	57.2	47°	10.2	513	$+8 \cdot 9$	$4^{8 \cdot 0}$	44.6	$6 \cdot 7$	14.2	0.2	78	101．2	$44^{\circ} \mathrm{O}$	$45 \cdot 21$	$0 \cdot 048$	wP	
	Greatest Dec． \mathbf{N} ．	29.895	61．9	$51 \cdot 1$	10.8	54°	＋113	523	50.6	3.4	7＊0	$2 \cdot 2$	88	88.0	$48 \cdot 0$	45.52	$0 \cdot 000$	wP	
26	Greatest Dec．N． First Quarter	30.043	61.8	49.2	12.6	$53^{\circ} \mathrm{O}$	＋100	$49^{1} 1$	$45^{\circ} 2$	$7 \cdot 8$	14.6	2.5	75	107.3	$43 \cdot 8$	45.98	$0 \cdot 000$	wP	
27		29.948	60.0	$4^{8 \cdot 1}$	I 1.9	52.0	$+87$	47.7	433	$8 \cdot 7$	$16 \cdot 2$	$2 \cdot 3$	73	113.9	43.3	$46 \cdot 50$	$0 \cdot 000$	$w \mathrm{P}: \mathrm{wP}: \mathrm{mP}$	
28	Perigee	29.891	59＇1	$45^{\circ} 9$	13.2	51.8	＋8． 1	$4^{8 \cdot 3}$	$44 \cdot 8$	$7{ }^{\circ}$	12＇I	$3 \cdot 6$	77	104．2	37°	$46 \cdot 90$	$0 \cdot 000$	wP ：wP ：mP	
29	．．．	30.028	54.9	$38 \cdot 2$	16.7	$46 \cdot 0$	＋199	41.1	$35 \cdot 5$	$10 \cdot 5$	17.5	3.9	68	$105^{\circ} 0$	29.8	$47 \cdot 22$	$0 \cdot 000$	$\mathrm{wP}^{\text {P }} \mathrm{mP}$ ：mP	
30	\cdots	29.864	557	$40 \cdot 9$	14.8	$46 \cdot 9$	$+2.4$	417	35.9	II．O	19.2	$3 \cdot 8$	67	103.0	34°	$47 \cdot 31$	0.003	$w \mathrm{P}, \mathrm{mN}: \mathrm{sP}: \mathrm{sP}$	
31	\ldots	29.477	51＇1	$38 \cdot 2$	129	43°	－199	41.2	39°	4°	94	$0 \cdot 9$	86	$72 \cdot 6$	$27^{\circ} 0$	47^{13}	$0 \cdot 044$	$m P: m P, ~ v N: w N, s P$	
Means	\cdots	29.537	53.3	$40 \cdot 5$	129	$45 \cdot 8$	＋399	43.4	$40 \cdot 7$	$5^{\prime} 1$	10.5	174	83.2	$89 \cdot 3$	347	$45^{\circ} y^{2}$	$\begin{array}{r} \text { Sum } \\ 2.557 \end{array}$	\cdots	
Number of Column for Reference．	1	2	3	4	5	6	7	8	9	10	I I	12	13	14	15	16	17	18	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column ro）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns in and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column i6 are taken daily at noon．
The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．
The mean reading of the Barometer for the month was $29^{i n} \cdot 537$ ，being $0^{\text {in }} \cdot 209$ lower than the average for the 65 years， 1841 1905．
Temperature of the Air．
The highest in the month was $61^{\circ} \cdot 9$ on March 25 ；the lowest in the month was $31^{\circ} \cdot 3$ on March 21；and the range was $30^{\circ} \cdot 6$ ．
The mean of all the highest daily readings in the month was $53^{\circ} 3$ ，being $3^{\circ} .5$ higher than the average for the 65 years， $184 \mathrm{I}-1905$ ．
－The mean of all the lowest daily readings in the month was $40^{\circ}{ }^{\circ} 5$ ，being $5^{\circ}{ }^{\circ} 4$ higher than the average for the 65 years， $1841-1905$ ．
The mean of the daily ranges was $12^{\circ}{ }^{\circ} 9$ ，being $1^{\circ} .8$ less than the average for the 65 years， $1841-1905$ ．
The mean for the mouth was $45^{\circ} \cdot 8$ ，being $3^{\circ} \cdot 9$ higher than the average for the 65 years，1841－1905．

The mean Temperature of Evaporation for the month was $43^{\circ} \cdot 4$, being $4^{\circ} \circ$ higher than
The mean Temperature of the Dew Point for the month was $40^{\circ} 7^{\circ}$, being $4^{\circ} \cdot 4$ higher than
The mean Degree of Humidity for the month was $83^{\circ} 2$, being 2.7 greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 254$, being oin.o40 greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2{ }^{\mathrm{grs}} \cdot{ }^{9}$, being ${ }^{\circ}{ }^{\mathrm{gr} \cdot} 4$ greater than
The mean Weight of a Cubic Foot of Air for the month was 542 grains, being 7 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 7.8 .
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was 0.250 . The maximum daily amount of Sunshine was 10.4 hours on March 29 .
The highest reading of the Solar Radiation Thermometer was $113^{\circ}{ }^{\circ} 9$ on March 27 ; and the lowest reading of the Terrestrial Radiation Thermometer was $27^{\circ} \cdot 0$ on March 31 .
The Proportions of Wind referred to the cardinal points were N. 2, E. 1, S. in, and W. 15. Two days were calin.
The Greatest Pressure of the Wind in the month was 20° lbs. on the square foot on March 4. The mean daily Horizontal Movement of the Air for the month was 384 miles; the greatest daily value was 684 miles on March 5 ; and the least daily value was 103 miles on March 1 ı.
Rain (oin.005 or over) fell on 20 days in the month, amounting to $2^{\text {in }} \cdot 557$, as measured by gauge No. 6 partly sunk below the ground; being $\mathrm{I}^{\text {in }} \cdot 037$ greater than the average fall for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1912. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Temperature.							Difference between the Air Temperature and Dew Point Temperature.				Temperature.				Electricity.		
			Of the Air.					of Evaporation. \qquad Mean of 24 Hourly Values.	Of the Dew Point. De- duced Mean Daily Value.				Of Radiation.	Of theEarthEtt. in.3it.belowtheSurfaceof theSoil.						
				宮	Daily	$\begin{aligned} & \text { Mean } \\ & \text { of } 24 \\ & \text { Hourly } \\ & \text { Values. } \end{aligned}$	Excess above Average of 65 Years.			哭		$\begin{aligned} & \dot{\ddot{W}} \\ & \stackrel{\leftrightarrow}{\leftrightarrows} \end{aligned}$			Highest in Sun's Rays.	Lowest on the Grass.				
$\begin{array}{ll} \text { Apr. } & 1 \\ 2 \\ & 3 \\ & \\ & 4 \\ & 5 \\ 6 \end{array}$	In Equator : Full ...	$\begin{gathered} \text { in. } \\ 29.595 \\ 30.130 \\ 30.258 \end{gathered}$	$\begin{aligned} & 49 \cdot 2 \\ & 55 \cdot 1 \\ & 58 \cdot 8 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 32.5 \\ & 35.6 \end{aligned}$	$\begin{aligned} & 12.2 \\ & 22.6 \\ & 23.2 \end{aligned}$	$\begin{aligned} & 4 I^{\circ} 7 \\ & 44^{\circ} 5 \\ & 47 \cdot 6 \end{aligned}$	$\left\|\begin{array}{l} -3 \cdot 6 \\ -1 \cdot 2 \\ +1.6 \end{array}\right\|$	$\begin{gathered} c \\ 38 \cdot 2 \\ 40 \cdot 1 \\ 43 \cdot 5 \end{gathered}$	$\begin{aligned} & 33^{\circ} 9 \\ & 35^{\circ} 0 \\ & 39^{\circ} \end{aligned}$	$\begin{aligned} & 7.8 \\ & 9.5 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 17 \circ 0 \\ & 16.6 \\ & 17.1 \end{aligned}$	$0 \cdot 0$		$\begin{aligned} & 75 \\ & 69 \end{aligned}$	103.4	27.0 47.04		in. 0.030 0.000	$\begin{gathered} \mathrm{wP}, \mathrm{wN}: \mathrm{sP}: \mathrm{sP} \\ \mathrm{sP}: \mathrm{sP}: \mathrm{vP}, \mathrm{sN} \\ \mathrm{mP}: \mathrm{vP}: \mathrm{vP} \end{gathered}$	
												2.8	$\begin{array}{r} 101.5 \\ 87.2 \end{array}$			47.04 $46 \cdot 80$ $46 \cdot 50$				
												$1 \cdot 4$		73	25.2		0.000 -000			
	Greatest Dec. S. Last Quarter	$\begin{aligned} & 30 \cdot 193 \\ & 29.981 \\ & 30 \cdot 002 \end{aligned}$	$\begin{aligned} & 59^{\circ} \mathrm{I} \\ & 6 \mathrm{I} \cdot 9 \\ & 67 \cdot 7 \end{aligned}$	$\begin{aligned} & 42 \cdot 2 \\ & 46 \cdot 2 \\ & 49 \cdot 1 \end{aligned}$	16.9	49°	+ 2.8	46•8	$\begin{aligned} & 44 \cdot 4 \\ & 46 \cdot 0 \end{aligned}$	4.6	10.9	$0 \cdot 7$	85	$116 \cdot 1$	$33^{\circ} 2$	$46 \cdot 40$	$0 \cdot 000$	${ }_{\mathrm{w}} \mathrm{P}$		
					15.7	52.6	+6.3	$49 \cdot 3$		6.6	11.0	$2 \cdot 7$	79	97.4	$40 \cdot 2$	46.51		${ }_{w} \mathrm{P}$		
					18.6	$56 \cdot 7$	+10.4	$53^{\circ} \mathrm{O}$	$49^{\circ} 6$	7'1	16.7	117	77	116.7	42.9	$46 \cdot 90$	00.000	wP		
7		$30 \cdot 044$ 29.567	64.2 $56 \cdot 1$	47.6 43.3	16.6	54.3 49	+8.0 $+\quad 3.3$	50.3	$46 \cdot 4$ 39	79 9.7	17.4	2.5 6.3	74	109.2 88.0	39.0 36.5	47.31	$0 \cdot 000$	$\begin{gathered} w \mathrm{P} \\ \mathrm{wP}:{ }_{\mathrm{wP}}^{\mathrm{mP}, \mathrm{mP}} \mathrm{wN}: \mathrm{sP}, \mathrm{wN}: \mathrm{vP} \end{gathered}$		
8		29.567 29.588	56.1	43.3	12.8	$49^{\circ} 4$	+ 3.3	$44^{\circ} 7$	39 17	$9 \cdot 7$	177	6.3 7.6	69	88.0	$36 \cdot 5$	$47 \cdot 81$	$0 \cdot 000$			
9		29.588	511	$36 \cdot 2$	14.9	$42 \cdot 6$	- 3.4	$37 \cdot 2$	30'7	1199	21.2	$7 \cdot 6$	64	107.1	29°	48.11	$0 \cdot 004$			
10	Apogee	29.535	$50 \cdot 7$	$39^{\circ} 2$	I 15	43.5	- 24	39°	33.7	$9 \cdot 8$	17.2	$3 \cdot 6$	68	$106 \cdot 3$	25.3	$4^{8.01}$	$0 \cdot 016$	$\begin{gathered} \mathrm{vP}, \mathrm{vN}: \mathrm{sP}: \mathrm{sP} \\ \mathrm{mP}: \mathrm{sP}: \mathrm{sP} \end{gathered}$		
11		29.804	53°	32.4	20.6	$40 \cdot 6$	$-5 \cdot 2$	36.7	31.8	$8 \cdot 8$	17.7	$2 \cdot 3$	71	106.2	19.9	$47 \cdot 83$	$0 \cdot 000$			
12	\ldots	30.213	$51^{\circ} \mathrm{O}$	$32 \cdot 5$	18.5	$40 \cdot 8$	- 5.I	$36 \cdot 1$	30.2	10.6	18*	$7 \cdot 4$	66	122.3	$20 \cdot 6$	47.71	$0 \cdot 000$			
13		30.268	$56 \cdot 2$	$38 \cdot 0$	18.2	$47^{\circ} \mathrm{I}$	+ 1.0	4 ${ }^{\circ} 9$	$36 \cdot 1$	11.0	16.4	$6 \cdot 8$	66	101*3	$28 \cdot 1$	$47 \cdot 23$	00000	$\mathrm{vP}: s \mathrm{P}: \mathrm{sP}$		
14	In Equator	$\begin{aligned} & 30.216 \\ & 30.175 \end{aligned}$	$\begin{aligned} & 59^{\circ} 0 \\ & 57^{\circ} 2 \end{aligned}$	$\begin{aligned} & 43 \cdot 5 \\ & 38 \cdot 7 \end{aligned}$	$\begin{aligned} & 15 \cdot 5 \\ & 18 \cdot 5 \end{aligned}$	$\begin{aligned} & 49^{\circ} 7 \\ & 45^{\circ} \end{aligned}$	$\begin{array}{r} +3.3 \\ -14 \end{array}$	$\begin{aligned} & 45 \cdot 9 \\ & 42 \cdot 7 \end{aligned}$	$\begin{aligned} & 41 \cdot 9 \\ & 39^{\circ} \cdot 6 \end{aligned}$	$7 \cdot 8$	1199	3.42.0	$\begin{aligned} & 75 \\ & 80 \end{aligned}$	$\begin{aligned} & 104.4 \\ & 117.9 \end{aligned}$	32.028.5	$\begin{aligned} & 47 \cdot 21 \\ & 47 \cdot 26 \end{aligned}$	0.000	$\mathrm{wP}: \mathrm{m}_{\mathrm{mP}} \mathrm{P}: \mathrm{mP}$		
15										$5 \cdot 8$	13.0									
16	New	30.08429.878	$56 \cdot 3$	34°	223	$45^{\circ} 7$	$\begin{array}{r}\text { - } 1.5 \\ +\quad 08 \\ \hline\end{array}$	$41 \cdot 1$	$35 \cdot 8$	9.99.4	20.418.5	0.7	69	124°	21.9	47.53 47	0.000	$\begin{gathered} m P: w P \\ m P: w P: m P \end{gathered}$		
17			59°	$4 \mathrm{I} \cdot 5$	17.5	$48 \cdot 4$		$43 \cdot 9$	39°			$1 \cdot 5$	70	113.9						
18		29753	$65 \cdot 5$	33.1	32.4	50.0	+ 2.0	$44^{\circ} 2$	$38 \cdot 0$	12.0	253	0.2	64	121.9	22.9	47.69	$0 \cdot 000$	$v \mathrm{P}, \mathrm{sN}: \mathrm{mP}: v \mathrm{P}$		
19	\ldots	29.841	69.9	$38 \cdot 6$	31.3	52.7	$+4.4$	$46 \cdot 0$	$39^{\circ} 3$	13.4	21*9	711	61		$\begin{aligned} & 27^{\circ} 1 \\ & 26^{\circ} 0 \end{aligned}$		0.000			
20		30.015	$69 \cdot 5$	$\begin{aligned} & 38 \cdot 1 \\ & 37 \cdot 2 \end{aligned}$	$\begin{aligned} & 31 \cdot 4 \\ & 34 \cdot 1 \end{aligned}$	$\begin{aligned} & 53^{\circ} \\ & 54^{\prime 2} \end{aligned}$	$\begin{aligned} & +5 \cdot 1 \\ & +5.5 \end{aligned}$	$\begin{aligned} & 47 \div 3 \\ & 47 \div 3 \end{aligned}$	$\begin{aligned} & 41 \cdot 1 \\ & 40^{\circ} 5 \end{aligned}$	$\begin{array}{ll} 1 & 2.5 \\ 1 & 3.7 \end{array}$	21.525.8	1.81.6	$\begin{aligned} & 63 \\ & 60 \end{aligned}$	$\begin{aligned} & 128 \cdot 1 \\ & 126 \cdot 2 \end{aligned}$		$47 \cdot 84$ $48 \cdot 10$		$\begin{aligned} & v P: w P: w P \\ & m P: w P: m P \end{aligned}$		
2 I	Greatest Dec. N. : Perigee	30130	71.3												25.5	$48 \cdot 50$	10.000			
22		30^187	$\begin{aligned} & 67 \cdot 1 \\ & 65 \cdot 8 \\ & 65 \cdot 9 \end{aligned}$	$\begin{aligned} & 42 \cdot 1 \\ & 44 \cdot 3 \\ & 43 \cdot 2 \end{aligned}$		54.7	+ 6.0	$\begin{aligned} & 48 \cdot 4 \\ & 46 \cdot 8 \\ & 46 \cdot 0 \end{aligned}$	$\begin{aligned} & 42 \cdot 3 \\ & 39 \cdot 6 \\ & 38 \cdot 4 \end{aligned}$	12.4	25.3	$2 \cdot 8$	63	126.5	28.0	$48 \cdot 85$	$0 \cdot 000$	$w \mathrm{P}: \underset{\mathrm{vP}}{\mathrm{mP}} \underset{\mathrm{~m}}{\mathrm{~m}}: \mathrm{mP}$		
23		$30 \cdot 193$ 30.108			$\begin{aligned} & 25 \cdot 0 \\ & 21.5 \\ & 22.7 \end{aligned}$		+ $5 \cdot 5$			145	$30^{\circ} 0$	3.8	58	129.2	31.1	$48 \cdot 72$	$0 \cdot 000$			
24	First Quarter					53.8	+ 5.2			15.4	$26 \cdot 7$	4'I	56	128.2	33.4	49.05	$0 \cdot 000$			
25	\ldots	30.030	63.5	39.3	$24^{\circ} 2$	$50 \cdot 2$	+ 1.6	$45^{\circ} 4$	$40^{\circ} 4$	$9 \cdot 8$	18.4	$2 \cdot 7$	69	124.8	$26 \cdot 0$	49.69	$0 \cdot 000$	vP : sP : mP		
26		29.822	$61 \cdot 5$	$40 \cdot 4$	$21 \cdot 1$	$47 \cdot 4$	- 1.2	$44^{\circ} 6$	415	$5 \cdot 9$	$14^{\circ} 1$	I•3	81	120.2	32°	$49 \cdot 8 \mathbf{I}$	0.000	$m P: m P: w P$		
27	\cdots	29.667	$60 \cdot 2$	41'5	18.7	$48 \cdot 1$	-0.6	45.4	42.4	57	$12 \cdot 3$	I'I	81	$120{ }^{\circ}$	35°	$49 \cdot 81$	$0 \cdot 000$.	mP : wP		
28	In Equator	29754	58.0	$39 \cdot 6$	18.4	473	- $1 \cdot 5$	4 ${ }^{\circ} 7$	35.5	11.8	$20^{\circ} 0$	2.5	64	123.2	33.5	50.01	$0 \cdot 000$	${ }^{\text {wP }}: \mathrm{mP}: \mathrm{vP}^{\text {c }}$		
29	...	29.900	53.2	$40^{\circ} 1$	$13^{\circ} 1$	$45 \cdot 1$	- 3.9	40.9	$36 \cdot 1$	$9^{\circ} \mathrm{O}$	14.1	$5 \cdot 0$	71	102.1	31.7	49.91	$0 \cdot 018$	$m \mathrm{~m}, \mathrm{wwN}: s \mathrm{P}, \mathrm{ssN}: s \mathrm{P}$		
30	\cdots	30.093	$56 \cdot 0$	$36 \cdot 1$	19.9	44.7	-4.4	$39 \cdot 6$	33.7	11.0	19.8	$1 \cdot 7$	65	128.5	22.9	49.99	$0 \cdot 000$	${ }_{s P}: s P: v P$		
Means	\cdots	29.967	$59^{\circ} 8$	$39^{\circ} 4$	20*3	$48 \cdot 5$	+ 172	$43^{\circ} 8$	$38 \cdot 7$	9.8	$18 \cdot 5$	$3 \cdot 0$	69.5	114.8	29.3	$48 \cdot 58$	$\begin{array}{r} \text { Sum } \\ 0.068 \end{array}$			
Number of Column for Reforence. Rererence.	1	2	3	4	5	6	7	8	9	10	I I	12	13	14	15	16	17	18		

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns II and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 967$, being $0^{\text {in }} \cdot 219$ higher than the average for the 65 years, $\mathbf{1 8 4 1 - 1 9 0 5 .}$
Temperature of the Air.
The highest in the month was $71^{\circ} \cdot 3$ on April 21 ; the lowest in the month was $32^{\circ} .4$ on April in ; and the range was $38^{\circ} 9$.
The mean of all the highest daily readings in the month was $59^{\circ} \cdot 8$, being $2^{\circ} \cdot 6$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $39^{\circ} 4$, being $0^{\circ} .4$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $20^{\circ} \cdot 3$, being $2^{\circ}{ }^{\circ}$ I greater than the average for the 65 years, $1841-1905$.
The mean for the month was $48^{\circ} 5$, being $1^{\circ} \cdot 2$ higher than the average the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $43^{\circ} \cdot 8$, being 0° I lower than
The mean I'emperature of the Dew Point for the month was $38^{\circ} \cdot 7$, being $\mathrm{I}^{\circ}{ }_{4}$ lower than
The mean Degree of Humidity for the month was $69^{\circ} 5$, being 6.3 less than
The mean Elastic Force of Vapour for the month was oin'235, being oin•O13 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grs} \cdot 7$, being ogr $\cdot{ }_{2}$ less than
The mean Weight of a Cubic Foot of Air for the month was 546 grains, being 3 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was $4^{\circ} 6$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0^{\circ} 54 \mathbf{1}$. The maximum daily amount of Sunshine was 12.9 hours on April 23 .
The highest reading of the Solar Radiation Thermometer was $141^{\circ} \circ$ on April 19^{\prime}; and the lowest reading of the Terrestrial Radiation Thermometer was $19^{\circ} 9$ on April 11 .
The Proportions of Wind referred to the cardinal points were N. 9, E. 8, S. 2, and W. 7. Four days were calm.
The Greatest Pressure of the Wind in the month was $13^{\circ} \circ \mathrm{lbs}$. on the square foot on April 8. The mean daily Horizontal Movement of the Air for the month was 307 miles; the greatest daily value was 703 miles on April 8 ; and the least daily value was 136 miles on April 20.
Rain (oin 005 or over) fell on 3 days in the month, amounting to $o^{\text {in }} \cdot 068$, as measured by gauge No. 6 partly sunk below the ground; being $\mathrm{I}^{\text {in }} 498$ less than the average fall for the 65 years, 1841-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the

 daily at noon.
The values given in Columns $3,4,5,14$, and x_{5} are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 796$, being $0^{\text {in }} \cdot 002$ higher than the average for the 65 years, $1841-1905$.

Temperature of the Air.

The highest in the month was $82^{\circ} \cdot 6$ on May 11 ; the lowest in the month was $36^{\circ} \cdot 1$ on May 26 ; and the range was $46^{\circ} \cdot 5$
The mean of all the highest daily readings in the month was $67^{\circ} \cdot 5$, being $3^{\circ} \cdot 6$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $46^{\circ} \cdot 5$, being $2^{\circ} .8$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $21^{\circ} \cdot 1$, being $0^{\circ} \cdot 9$ greater than the average for the 65 years, $1841-1905$.
The mean for the month was $55^{\circ} \%$, being $2^{\circ} \cdot 6$ higher than the average for the 65 years, 1841-1905.

The mean Temperature of Evaporation for the month was $5 \mathbf{1}^{\circ} \cdot \mathbf{2}$, being $\mathbf{2}^{\circ} \cdot \mathbf{2}$ higher than
The mean Temperature of the Dew Point for the month was $47^{\circ} \cdot$, being $2^{\circ} \cdot \circ$ higher than
The mean Degree of Humidity for the month was $73^{\circ} 2$, being $I^{\circ} \circ$ less than
The mean Elastic Force of Vapour for the month was oin $\cdot 323$, being oin•o24 greater than
the average for the 65 years, $1841-1905$.
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grs }} 7$, being ogr. 3 greater than
The mean Weight of a Cubic Foot of Air for the month was 535 grains, being 3 grains less than
The mean amount of Cloud for the month (a clear sky being represented by \circ, and an overcast sky by 10) was 7.3 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.396 . The maximum daily amount of Sunshine was 13.2 hours on May $\mathbf{1}_{3}$.
The highest reading of the Solar Radiation Thermometer was $152^{\circ} \circ$ on May 11 ; and the lowest reading of the Terrestrial Radiation Thermometer was $22^{\circ} \cdot 9$ on May $\mathbf{1}$.
The Proportions of Wind referred to the cardinal points were N. 5, E. 5, S. 6, and W. ri. Four days were calm.
The Greatest Pressure of the Wind in the month was 10.7 lbs. on the square foot on May 16. The mean daily Horizontal Movement of the Air for the month was 236 miles; the greatest daily value was 423 miles on May 16 ; and the least daily value was roo miles on May 29.
Rain (oin $\cdot 005$ or over) fell on 11 days in the month, amounting to 1 in $\cdot 288$, as measured by gauge No. 6 partly sunk below the ground; being oin 627 less than the average fall for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1912. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Temperature．							Difference between the Air Temperature and Dew PointTemperature． Temperature．				Temperature．				Electricity．	
			Of the Air．					$\left\|\begin{array}{c}\text { Of } \\ \text { Evapo－} \\ \text { ration．}\end{array}\right\|$	Of the Dew Point． De－ duced Mean Dain Value．				Of Radiation．	Of theEarth3ft． 2 in．belowtheSurfaceof theSoil．					
					Daily Rauge．	$\begin{gathered} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{gathered}$	Excess above Average of 65 Years．			$\begin{aligned} & \text { 㖅 } \end{aligned}$	高 䔍 䔍	$\begin{aligned} & \text { 范 } \\ & \text { ® } \end{aligned}$			Highest in Sun＇s Rays．	Lowest on the Grass．			
$\begin{array}{\|cc\|} \text { June } & 1 \\ & 2 \\ & 3 \\ & \\ & 4 \\ & 5 \\ & 6 \end{array}$	Greatest Dec．S．	$\begin{gathered} \text { in. } \\ 29.472 \\ 29.284 \\ 29.317 \end{gathered}$	$\begin{aligned} & 67^{\circ} 0 \\ & 65^{\circ} \\ & 68 \cdot 1 \end{aligned}$	$\begin{gathered} \circ \\ 45 \cdot 1 \\ 45 \cdot 2 \\ 41 \cdot 5 \end{gathered}$	$\begin{gathered} \circ \\ 21 \cdot 9 \\ 20 \cdot 4 \\ 26 \cdot 6 \end{gathered}$	$\begin{gathered} \circ \\ 56 \cdot 0 \\ 55 \cdot 7 \\ 52 \cdot 8 \end{gathered}$	$\left[\begin{array}{ll} - & 1.4 \\ - & 2.1 \\ - & 5.3 \end{array}\right.$	$\begin{aligned} & 52 \cdot 5 \\ & 52 \cdot 5 \\ & 49 \cdot 6 \end{aligned}$	$\begin{aligned} & 49 \cdot 2 \\ & 49 \cdot 5 \\ & 46 \cdot 4 \end{aligned}$	$\begin{gathered} \circ \\ 6 \cdot 8 \\ 6 \cdot 2 \\ 6 \cdot 4 \end{gathered}$	$\begin{array}{r} 13.0 \\ 15 \% \\ 15.9 \end{array}$	$\stackrel{\circ}{{ }_{1}^{\circ} \circ}$		78	101.8	31.9		in． 0.001 0.157 O०I 2	$\begin{gathered} m P: w P: v P, v N \\ w P, w N: w P \\ m P: w P, v N: m P \\ \\ w P, w N: v P, v N: m P \\ v P, s s N: w P: w P \\ \text { wP }: w P: s N, m P \end{gathered}$
												1×0	80	131°	33.4	$56 \cdot 12$			
												$0 \cdot 9$	80	I 34.4	$30 \cdot 9$	$56 \cdot 32$			
	Apogee	29.243	$65^{\cdot 1}$	$44^{\circ} 3$	$20 \cdot 8$	$52 \cdot 6$	－ 57	$48 \cdot 9$	$45^{\circ} 2$	$7 \% 4$	18.4	$1 \cdot 7$	76	$139^{\circ} 1$	$34^{\circ} \mathrm{O}$	56．20	0．084		
		29.334	$66 \cdot 1$	43.4	22.7	53.2	-5.2	49°	$44 \cdot 8$	8.4	17.9	$1 \cdot 3$	73	1400	$34^{\circ} \mathrm{O}$	$56 \cdot 13$	$0 \cdot 109$		
	\ldots	29.553	69.5	$4^{8 \cdot 1}$	21.4	$57 \cdot 1$	－ 1.2	52.5	$48 \cdot 3$	$8 \cdot 8$	194	$1 \cdot 5$	72	$14^{2} 1$	$38 \cdot 0$	56．09	$0 \cdot 000$		
7 ．．． 8 Last Quarter 9 In Equator		29.635	593	$44^{\circ} 6$	14.7	$52 \cdot 6$	$-5 \cdot 6$	51.6	50．6	$2 \cdot 0$	$6 \cdot 1$	$0 \cdot 4$	94	99＇1	$33^{\circ} \mathrm{I}$	$56 \cdot 13$	$0 \cdot 524$	wP ：wP，vN ：vP，vN	
		29.708	$66 \cdot 0$	$48 \cdot 8$	17.2	54.9	-3.2	53.1	51．3	$3 \cdot 6$	$9 \cdot 2$	0.8	87	122.0	38.0	56．19	$0 \cdot 105$	wP，wN ：wP，wwN ：wP	
		29.774	$67 \cdot 0$	$4^{8 \cdot 7}$	18.3	567	-13	53.5	$50 \cdot 5$	$6 \cdot 2$	11．6	0.2	80	122.8	37.9	5617	$0 \cdot 150$	wP ：vP，ssN ：wP	
110		29.639	$68 \cdot 5$	$46 \cdot 8$	21^{17}	$56 \cdot 9$	－1．2	515	$46 \cdot 5$	$10 \cdot 4$	19.6	24	68	14111	$37 \cdot 5$	56．31	$0 \cdot 014$	$\mathrm{wP}: \operatorname{ssN}, \mathrm{wP}: \mathrm{wP}$	
		29.540	71.0	44.5	$26 \cdot 5$	$58 \cdot 3$	＋0．1	53.0	$48 \cdot 3$	$10^{\circ} 0$	2I．7	$2 \cdot 3$	70	144.6	$36 \cdot 0$	$56 \cdot 50$	0.033	$w P: w P: v P, w N$	
		29.652	$66 \cdot 2$	$52 \cdot 7$	13.5	573	－I•I	$55^{\circ} 4$	53.7	$3 \cdot 6$	$9 \cdot 5$	1.4	88	122.4	48.0	$56 \cdot 69$	$0 \cdot 190$	wP，wwN：wP ：vN，wP	
1415	New ：Greatest Dec．N．	29.677	$70 \cdot 5$	$50^{\circ} \mathrm{O}$	20.5	$58 \cdot 5$	0.0	53.1	$48 \cdot 3$	10.2	20.2	0.6	69	$134^{*} 1$	41.8	57.00	$0 \cdot 000$	wP ：wP ：mP	
		29.697	70.1	$48 \cdot 5$	21.6	$58 \cdot 2$	－0．5	$52 \cdot 8$	$48 \cdot 0$	$10^{\circ} 2$	21．1	I＇9	69	130.7	$41 \cdot 3$	57113	$0 \cdot 000$	$m P: m P: w P$	
		29.701	67.9	51.9	16.0	$58 \cdot 7$	-0.1	52.6	$47^{\circ} 2$	11.5	20．7	I． 6	66	$137^{\circ} \mathrm{I}$	$45^{\circ} \mathrm{O}$	57.29	$0 \cdot 009$	$m \mathrm{P}: \mathrm{mP}$ ：wP	
16	Perigee	29.627	64.0	50\％1	139	553	－ 3.6	515	479	74	$16 \cdot 9$	0.6	76	125.5	$49^{\circ} 3$	57：39	0.629	wP，vN ：vP，ssN ：mP	
$\begin{aligned} & 17 \\ & 18 \end{aligned}$		29.841	$67^{\circ} \mathrm{O}$	$49^{1} 1$	179	$56 \cdot 4$	-2.6	53.0	$49 \cdot 8$	$6 \cdot 6$	$16 \cdot 0$	0.2	79	$118{ }^{\circ}$	$42 \cdot 2$	57.53	$0 \cdot 020$	wP	
		29．819	$76 \cdot 7$	53.6	$23 \cdot 1$	64^{2}	＋5．0	$59 \cdot 8$	$56 \cdot 2$	$8 \cdot 0$	17.4	$0 \cdot 8$	75	143.2	$45 \cdot 6$	57.60	$0 \cdot 000$	wwP ：wP ：wP	
$\begin{aligned} & 19 \\ & 20 \\ & 21 \end{aligned}$	First Quarter	29.719	84.3	497	$34^{\circ} 6$	65.9	$+6.4$	$60 \cdot 2$	$55 \cdot 6$	10.3	$20 \cdot 8$	1.0	70	144.9	$41 \cdot 3$	57．95	$0 \cdot 000$	wP ：wwP，sN ：wP	
		29.835	71.9	$52 \cdot 3$	19.6	59.8	－o． 1	54^{1} I	49°	$10 \cdot 8$	$25 \cdot 8$	3.4	68	135.5	$46 \cdot 8$	$58 \cdot 29$	$0 \cdot 000$	wP	
		29.882	$73^{\circ} \mathrm{O}$	$52 \cdot 1$	20.9	$60 \cdot 6$	$+0.3$	547	$49 \cdot 6$	II ${ }^{\circ}$	18．9	I－8	67	$139{ }^{\circ}$	$42 \cdot 2$	$58 \cdot 79$	$0 \cdot 000$	wP	
222324	In Equator	29.749	80.5	$48 \cdot 2$	$32 \cdot 3$	$66 \cdot 3$	＋ 57	59.2	53.4	12．9	24.3	1.6	64	142.0	$38 \cdot 2$	59.22	0.000	wP ${ }^{\sim} \mathrm{P}$	
		29.672	75.6	54.6	21.0	65.6	＋ 47	58.1	52.0	13.6	20．1	4.3	61	143.5	49°	59.40	$0 \cdot 000$		
	－${ }^{\text {a }}$	29.779	$7 \mathrm{I} \cdot 0$	52.4	$18 \cdot 6$	59.9	－ 13	$55 \cdot 8$	$52 \cdot 2$	$7 \cdot 7$	15.9	$2 \cdot 4$	76	142.1	45.9	$59^{\circ} 90$	$0 \cdot 101$	wP ：vP，ssN ：wP	
252627	$\begin{gathered} \cdots \\ \text { Greatest Dec. S. : } \\ \text { Full } \end{gathered}$	29.687	$63^{\circ} \mathrm{O}$	53.1	$9 \cdot 9$	5711	-43	54.6	52．3	4.8	$9^{\circ} \mathrm{I}$	1.2	84	101．3	$45 \cdot 3$	60.09	$0 \cdot 120$	$w \mathrm{P}: w \mathrm{P}, \mathrm{wN}: w \mathrm{P}$	
		29.736	715	53.3	18.2	61.1	－0．4	55.3	$50 \cdot 3$	10.8	19.3	1．6	68	$132 \cdot 0$	44.6	$60 \cdot 20$	－0．018	wP	
		29.927	$68 \cdot 2$	51.5	$16 \cdot 7$	$58 \cdot 6$	－300	54.0	$49^{\circ} 9$	$8 \cdot 7$	$15 \cdot 8$	$3 \cdot 6$	73	118．1	417	$60 \cdot 00$	$0 \cdot 000$	wP	
$\begin{aligned} & 28 \\ & 29 \\ & 30 \end{aligned}$		29.729	$73^{\circ} 0$	51．4	21．6	$60 \cdot 0$	－ 1.6	$55^{1} 1$	$50 \cdot 8$	$9 \cdot 2$	$20^{\circ} 0$	1.8	7 I	137.9	42.0	60.01	$0 \cdot 10$	$w P, s N: w P: w P$	
		29.635	$70^{\circ} 9$	50＇9	20.0	58.4	-3.2	54．7	514	$7{ }^{\circ}$	17.5	1.2	78	$133{ }^{\circ} 1$	$40 \cdot 0$	$60 \cdot 08$	$0 \cdot 046$	wP ：wP，mN ：wP，vN	
		29.657	$67 \cdot 3$	$51 \cdot 2$	$16 \cdot 1$	$57 \cdot 3$	-42	53.9	$50 \cdot 8$	$6 \cdot 5$	$14^{\circ} \mathrm{O}$	0.6	79	II 3.2	$43 \cdot 0$	60.09	$0 \cdot 14$	wP ：vP，vN ：vN，wP	
Means	\cdots	29.651	$69 \cdot 5$	$49^{\prime} 3$	$20 \cdot 3$	$58 \cdot 2$	-1.2	53.9	$50 \cdot 0$	$8 \cdot 2$	17.1	1.5	$74^{\circ} 6$	$130 \cdot 4$	$40 \cdot 6$	57.76	$2 \cdot 346$		
Number of Column for Referonce．	1	2	3	4	5	6	7	8	9	10	I I	12	13	14	15	16	17	18	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column 10）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns in and i2）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column 16 are taken daily at noon．
The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．
The mean reading of the Barometer for the month was $29^{\text {in }} 65 \mathrm{r}$ ，being oin $\cdot 164$ lower than the average for the 65 years， $1841-1905$ ．

Temperature of the Air．

The highest in the month was $84^{\circ} \cdot 3$ on June 19 ；the lowest in the month was $41^{\circ} .5$ on June 3 ；and the range was $42^{\circ} .8$ ．
The mean of all the highest daily readings in the month was $69^{\circ}{ }^{\circ} 5$ ，being $1^{\circ} \cdot 2$ lower than the average for the 65 years， $1841-1905$ ．
The mean of all the lowest daily readings in the month was $49^{\circ} 3$ ，being $0^{\circ} .6$ lower than the average for the 65 years， $1841-1905$ ．
The mean of the daily ranges was $20^{\circ} .3$ ，being $0^{\circ} .5$ less than the average for the 65 years， 1841 －1905．
The mean for the month was $58^{\circ} \cdot 2$ ，being $\mathrm{I}^{\circ} \cdot 2$ lower than the average for the 65 years， $1841-1905$ ．

The mean Temperature of Evaporation for the month was $53^{\circ} 9$, being $1^{\circ} \circ$ lower than
The mean Temperature of the Dew Point for the month was $50^{\circ} \circ$, being $0^{\circ} \cdot 9$ lower than
The mean Degree of Humidity for the month was $74^{\circ} 6$, being $1 \circ 0$ greater than
The mean Elastic Force of Vapour for the month was oin ${ }_{3}{ }^{61}$, being oin 012 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs} \cdot \mathrm{r}}$, being ogr $\cdot \mathrm{I}$ less than
The mean Weight of a Cubic Foot of Air for the month was 530 grains, being 1 grain less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 6%.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0^{\circ} 442$. The maximum daily amount of Sunshine was $15{ }^{\circ} 3$ hours on June $\mathbf{2 2}$.
The highest reading of the Solar Radiation Thermometer was $144^{\circ} 9$ on June 19 ; and the lowest reading of the Terrestrial Radiation Thermometer was 30°.9 on June 3 .
The Proportions of Wind referred to the cardinal points were N. 3, E. 2, S. 9, and W. 14. Two days were calm.
The Greatest Pressure of the Wind in the month was $11^{\circ} 7 \mathrm{lbs}$. on the square foot on June 16. The mean daily Horizontal Movement of the Air for the month was 290 miles; the greatest daily value was 525 miles on June 15 ; and the least daily value was 133 miles on June 7 .
Rain (oin $\cdot 005$ or over) fell on 19 days in the month, amounting to $2^{\text {in }} \cdot 346$, as measured by gauge No. 6 partly sunk below the ground; being oin 308 greater than the average fall for the 65 years, 1841-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Columu 7) is deduced from the 65 years' observations, $1841-1905$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column are deduced from the corre anding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 746$, being oin $\cdot 053$ lower than the average for the 65 years, $1841-1905$.

Temperature of the Alr.

The highest in the month was $90^{\circ} \circ$ on July 12 ; the lowest in the month was $48^{\circ}{ }^{\circ}$ on July 19 ; and the range was $41^{\circ} 9$.
The mean of all the highest daily readings in the month was $74^{\circ}{ }^{\circ} 9$, being $0^{\circ} \cdot 7$ higher thau the average for the 65 years, $1841-1905$
The mean of all the lowest daily readings in the month was $54^{\circ}{ }^{\circ}$, being $1^{\circ} \cdot 1$ higher than the average for the 65 years, $184^{1}-1905$.
The mean of the daily ranges was $20^{\circ} 4$, being $0^{\circ} \cdot 5$ less than the average for the 65 years, 1841-1905.
The mean for the month was $63^{\circ}{ }^{\circ}$, being $0^{\circ} .6$ higher than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $58^{\circ} \cdot 4$, being $0^{\circ} .5$ higher than
The mean Temperature of the Dew Point for the month was $54^{\circ} 4$, being $0^{\circ} .6$ higher than
The mean Degree of Humidity for the month was $73^{\circ} 5$, being 0.7 greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 424$, being oin 009 greater than
the average for the 65 years, 1841 -1905.
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs}} \cdot 7$, being ogr ${ }^{\mathrm{r}}$ greater than
The mean Weight of a Cubic Foot of Air for the month was 526 grains, being 1 grain less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 6.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 333$. The maximum daily amount of Sunshine was 13.4 hours on July 15 .
The highest reading of the Solar Radiation Thermometer was $151^{\circ} .6$ on July 27 ; and the lowest reading of the Terrestrial Radiation Thermometer was $3^{\circ}{ }^{\circ} \cdot \mathbf{2}$ on July 9 .
The Proportions of Wind referred to the cardinal points were N. 6, E. 7, S. 8, and W. 7. Three days were calm.
The Greatest Pressure of the Wind in the month was 8.0 lbs . on the square foot on July 29. The mean daily Horizontal Movement of the Air for the month was 238 miles ; the greatest daily value was 448 miles on July 29 ; and the least daily value was 105 miles on July $2 \mathbf{I}$.
 for the 65 years, 1841 -1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.

 daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 573$, being $0^{\text {in }} \cdot 210$ lower than the average for the 65 years, $1841-1905 \cdot$
Tempeliature of the Air.
The highest in the month was $73^{\circ} \circ$ on August 4 ; the lowest in the month was $42^{\circ} 1$ on August 28 ; and the range was $30^{\circ} \cdot 9$.
The mean of all the highest daily readings in the month was $66^{\circ} \cdot 7$, being 6°.o lower than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $50^{\circ} 1$, being $2^{\circ} \cdot 9$ lower than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $16^{\circ} \cdot 6$, heing $3^{\circ} \cdot 1$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $56^{\circ} \cdot 9$, being $4^{\circ} \cdot 8$ lower than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $53^{\circ}{ }^{\circ}$, being $4^{\circ} \cdot 1$ lower than
The mean Temperature of the Dew Point for the month was $50^{\circ} 4$, being $3^{\circ} 6$ lower than
The mean Degree of Humidity for the month was $79^{\circ} 1$, being 2.8 greater than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 366$, being $\mathrm{o}^{\text {in }} \cdot 052$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs}} \cdot 0$, being ogr 6 less than
The mean Weight of a Cubic Foot of Air for the month was 529 grains, being I grain greater than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by io) was 7.8 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.254 . The maximum daily amount of Sunshine was $9: 2$ hours on August I .
The highest reading of the Solar Radiation Thermometer was $13^{\circ} \circ$ on August 8 ; and the lowest reading of the Terrestrial Radiation Thermometer was $32^{\circ} \cdot 3$ on August 3 .
The Proportions of Wind referred to the cardinal points were N. 2, E. 2, S. 10, and W. 15. Two days were calm.
The Greatest Pressure of the Wind in the month was 8.3 lbs . on the square foot on August 5 and 6 . The mean daily Horizontal Movement of the Air for the month was 305 niles ; the greatest daily value was 449 miles on August I; and the least daily value was 159 miles on August 3 .
 for the 65 years, $1841-1905$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the The average temperature (Column 7) is deduced from the 65 years' observations, $1841-1905$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation in means of Glaishers and the Greatest and Least The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Cold Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and
The values given in Columns 3, 4,5,14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Burometer for the month was $29^{\text {in }} 976$, being $0^{\text {in }} \cdot{ }_{165}$ higher than the average for the 65 years, 1841-1905.
Temperature of the Air.
The highest in the month was $69^{\circ} 1$ on September 4; the lowest in the month was $37^{\circ} \cdot 2$ on September 27 ; and the range was $31^{\circ} \cdot 9$. The mean of all the highest daily readings in the month was $60^{\circ} \cdot 8$, being $6^{\circ} .5$ lower than the average for the 65 years, $1841-1905$. The mean of all the lowest daily readings in the month was $46^{\circ} \cdot 5$, being $2^{\circ} \cdot 6$ lower than the average for the 65 years, 1841-1905. The mean of the daily ranges was $14^{\circ}{ }^{\circ}$, being $3^{\circ} \cdot 9$ less than the average for the 65 years, $1841-1905$ The mean for the month was $53^{\circ} \cdot 1$, being $4^{\circ} \cdot 1$ lower than the average for the 65 years, 1841-1905.

The mean Temperature of Evaporation for the month was $49^{\circ} \cdot 8$, being $4^{\circ} 3^{\circ}$ lower than
The mean Temperature of the Dew Point for the month was $46^{\circ}{ }^{\circ}$, being $4^{\circ}{ }^{\circ}$ lower than
The mean Degree of Humidity for the month was 78.5 , being $I^{\circ} 7$ less than
The mean Elastic Force of Vapour for the month was oin ${ }^{3}$ 17, being oin $\cdot 060$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grs }} \cdot 6$, being ogr. 6 less than
The mean Weight of a Cubic Foot of Air for the month was 541 grains, being 8 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by 10) was 6.6 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.314 . The maximum daily amount of Sunshine was $10 \circ 0$ hours on September 21 and 22.
The highest reading of the Solar Radiation Thermometer was $124^{\circ} 9$ on September 4 ; and the lowest reading of the Terrestrial Radiation Thermometer was $24^{\circ} \cdot 3$ on September 27.
The Proportions of Wind referred to the cardinal points were N. 8, E. 9, S. 3, and W. 7. Three days were calm.
The Greatest Pressure of the Wind in the month was 7.5 lbs . on the square foot on September 28. The mean daily Horizontal Movement of the Air for the month was 284 miles ; the greatest daily value was 509 miles on September 5 ; and the least daily value was 90 miles on September 16 .
Rain (oin. 005 or over) fell on 6 days in the month, amounting to $\mathrm{I}^{\mathrm{in}} \cdot 987$, as measured by gauge No. 6 partly sunk below the ground; being oin $\cdot \mathbf{1 6 1}$ less than the 2verage fall for the 65 years, 1841 -1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column I 3) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least The mean difference between the Air and Dew Point Temperatures (Column 10) is the (the Dry-bulb and. Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns $3,4,5,14$, and 15 are derived from eye-readings of self-registering thermometers.
${ }^{*}$ Rainfall (Column 17). The amount entered on October 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 15 are derived from dew, frost or fog.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 746$, being $0^{\text {in }} \cdot 025$ higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $65^{\circ} \%$ on October 13 ; the lowest in the month was $29^{\circ} .4$ on October 6 ; and the range was $36^{\circ} .3$.
The mean of all the highest daily readings in the month was $57^{\circ} \cdot 1$, being $0^{\circ} \cdot 4$ lower than the average for the 65 years, $1841-1905$
The mean of all the lowest daily readings in the month was $39^{\circ} 3$, being $3^{\circ} 9$ lower than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $17^{\circ} \cdot 8^{\text {, being }} 3^{\circ} .5$ greater than the average for the 65 years, $1841-1905$.
The mean for the month was $47^{\circ} 4$, being $2^{\circ} .6$ lower than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $45^{\circ} \cdot 2$, being $2^{\circ} \cdot 7$ lower than
The mean Temperature of the Dew Point for the month was $42^{\circ} \cdot 8$, being $2^{\circ} \cdot 9$ lower than
The mean Degree of Humidity for the month was 84.5 , being 0.5 less than
The mean Elastic Force of Vapour for the month was oin $\cdot 275$, being oin ${ }_{\circ} 0_{2}$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grs }} \cdot 2$, being $\mathrm{ogr}_{3} \cdot{ }^{2}$ less than
The mean Weight of a Cubic Foot of Air for the month was 543 grains, being 3 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by ro) was 4.8 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0^{\circ} 373$. The maximum daily amount of Sunshine was $7 \cdot 7$ hours on October 3 .
The highest reading of the Solar Radiation Thermometer was $114^{\circ} \circ$ on October $\mathbf{1}$; and the lowest reading of the Terrestrial Radiation Thermometer was $19^{\circ} 8$ on October 6 .
The Proportions of Wind referred to the cardinal points were N. 4, E. 3, S. 6, and W. 9. Nine days were calm.
The Greatest Pressure of the Wind in the month was 16.5 lbs . on the square foot on October 29. The mean daily Horizontal Movement of the Air for the month was 252 miles; the greatest daily value was 589 miles on October 28 ; and the least daily value was 56 miles on October in.
Rain (oin.005 or over) fell on 15 days in the month, amounting to $2^{\text {in }} \cdot 130$, as measured by gauge No. 6 partly sunk below the ground; being oin $\cdot 652$ less than the average fall for the 65 years, 1841 -1905.

$\begin{aligned} & \text { MONTH } \\ & \text { and } \\ & \text { DAY, } \\ & \text { 1912. } \end{aligned}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$	$\underset{\text { METER }}{\text { Baro- }}$	Temperature.							Difference between the Air Temperature and Dew Point Temperature.				Temperature.				Electricity.	
			Of the Air.					$\left\lvert\, \begin{gathered} \text { Of } \\ \text { Evapo- } \\ \text { ration. } \end{gathered}\right.$	Of the Point. Point				Of Rad	iation.					
			芯	-	Daily Range		Excess above Average of 65 Years.	Mean Hourly Values.	Deduced Mean Daily Value.					$\begin{array}{\|c\|c\|} \hline \text { Highest } \\ \text { in Sun's } \\ \text { Rays. } \end{array}$	Lowest on the Grass.	$\begin{array}{\|c\|c} \text { the } \\ \text { Surface } \\ \text { of the } \\ \text { Soil. } \end{array}$			
		in.	-	-	-	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-			-	\bigcirc	-	in.	
Nov. 1		30.129	$44^{\circ} \mathrm{O}$	34.6	9.4	$38 \cdot 7$	-8.3	35.5	31'3	7×4	12.7	$4 \cdot 6$	75	$77 \cdot 1$	$26 \cdot 2$	5145	0.001*	wP : mP : mP	
	Last Quarter	$30 \cdot 169$	47°	$32 \cdot 1$	14.9	38.9	-79	36.0	$32 \cdot 1$	$6 \cdot 8$	13.6	2.5	78	67.0	$25^{\circ} 2$	$50 \cdot 90$	$0.003 *$	mP	
3	Perigee	30'149	42.4	29*1	13.3	$34^{\circ} 4$	-12.2	33.2	31.2	$3 \cdot 2$	$8 \cdot 2$	I'I	87	$46 \cdot 3$	21.9	50.27	$0 \cdot 003^{*}$	$m \mathrm{P}: \mathrm{vP}$: mP	
4		$30 \cdot 100$	5188	$28 \cdot 7$	$23^{\circ} 1$	$42 \cdot 6$	- 3.8	$40 \cdot 5$	$38 \cdot 0$	$4 \cdot 6$	$8 \cdot 2$	$1 \cdot 7$	84	69.1	$2 \mathrm{I}^{\prime} 9$	49.69	0.002	mP, wN : mP : wP	
5	In Equator	29.751	51.0	44.9	$6 \cdot 1$	47.7	+ 1.6	$46 \cdot 7$	$45 \cdot 6$	$2 \cdot 1$	$5 \cdot 8$	0.8	93	59.4	$38 \cdot 9$	49.20	$0 \cdot 176$	wP : wwN, wP : wP	
6	...	30.017	49.5	$47^{\prime} \mathrm{I}$	2.4	$48 \cdot 5$	+ 27	$48 \cdot 1$	47%	$0 \cdot 8$	$2 \cdot 3$	0.6	97	51°	45°	49'12	$0 \cdot 000$	wP	
7	- \cdots	30.181	$56 \cdot 5$	47.5	$9{ }^{\circ} 0$	51.1	+ 57	$49 \cdot 3$	47.4	$3 \cdot 7$	$8 \cdot 3$	$2 \cdot 3$	88	81.8	$43 \cdot 5$	49.23	$0 \cdot 000$	wP	
8		$30 \cdot 177$	$56 \cdot 2$	$50 \cdot 6$	$5 \cdot 6$	53.2	$+8.2$	51.8	$50 \cdot 4$	$2 \cdot 8$	4.9	$2{ }^{\circ}$	90	78.2	49°	$49 \cdot 47$	$0 \cdot 000$	wP	
9	New	29.996	$56 \cdot 0$	$46 \cdot 7$	$9 \cdot 3$	50.6	$+6.0$	$48 \cdot 8$	$46 \cdot 9$	3.7	$6 \cdot 9$	0.8	88	$77 \cdot 2$	$38 \cdot 2$	$49 \cdot 81$	$0 \cdot 003$	wP	
10	...	29.640	50.9	$44^{\circ} \mathrm{O}$	$6 \cdot 9$	47*9	+ 3.6	$45^{\circ} 2$	42.2	$5 \cdot 7$	$8 \cdot 8$	$1 \cdot 3$	82	72.5	$36 \cdot 1$	$50 \cdot 00$	$0 \cdot 050$	wwP : wP, wwN : wP, vN	
II	- ${ }^{\text {a }}$	29.209	$47 \cdot 3$	$38 \cdot 7$	$8 \cdot 6$	$42 \cdot 2$	- 1.8	$38 \cdot 5$	$34^{\circ} \mathrm{O}$	$8 \cdot 2$	$10 \cdot 1$	$6 \cdot 7$	74	62.2	32.4	50'10	$0 \cdot 003$	sP, wN : mP, mN : mP	
12	Greatest Dec. S.	29.276	$42 \cdot$ I	$36 \cdot 4$	$5 \cdot 7$	39.5	-4.2	$37 \cdot 1$	$34^{\circ} \mathrm{O}$	$5 \cdot 5$	$9 \cdot 3$	2.6	8 I	50.8	28.9	49.82	0.012	$\mathrm{mP}: \mathrm{mP}, \mathrm{wN}: \mathrm{vN}, \mathrm{mP}$	
13	...	29.422	$43^{\prime} 1$	$37^{\circ} \mathrm{I}$	$6 \cdot 0$	$40^{\circ} 0$	- 3.5	37.9	$35^{\circ} 2$	$4^{\cdot 8}$	$7 \cdot 6$	$2 \cdot 1$	83	$53 \circ$	31.2	4930	$0 \cdot 008$	$\mathrm{mP}: m \mathrm{~m}, \mathrm{wN}: \mathrm{mP}, \mathrm{vN}$	
14	...	29.722	$43 \cdot 6$	$41 \cdot 1$	$2 \cdot 5$	42.1	-1.2	$40^{\circ} 3$	$38 \cdot 1$	$4 \cdot 0$	$5 \cdot 7$	$2 \cdot 0$	86	$49^{\circ} 2$	$35^{\circ} \mathrm{O}$	$48 \cdot 91$	$0 \cdot 069$	$\mathrm{vN}, \mathrm{wP}: \mathrm{mP}: \mathrm{mP}$	
15	...	$29 * 943$	$47 \cdot 6$	$39^{\circ} 1$	$8 \cdot 5$	$43 \cdot 6$	$+0.5$	41.6	$39 \cdot 3$	$4 \cdot 3$	$7{ }^{\circ}$	I•I	85	55.6	$33^{\circ} 2$	$48 \cdot 62$	$0 \cdot 028$	mP	
16	Apogee : First Quarter	29.996	$49^{\circ} 6$	$45^{\circ} 0$	4.6	$47 \cdot 4$	$+46$	$46 \cdot 2$	44.9	$2 \cdot 5$	3.3	0.9	92	513	43.9	$48 \cdot 41$	0.002	wP	
17	-	29.969	$49^{\circ} 2$	41.4	$7 \cdot 8$	$46 \cdot 7$	$+4^{1} 1$	$45 \cdot 6$	44.4	$2 \cdot 3$	$6 \cdot 4$	0.4	92	51.6	32.4	$48 \cdot 43$	0.055	wP	
18	\ldots	29.915	47.9	$34^{\circ} 2$	13.7	4111	- $1 \cdot 3$	$40 \cdot 0$	$38 \cdot 6$	$2 \cdot 5$	$5 \cdot 8$	0.2	91	$60 \% 7$	$25^{\circ} \mathrm{I}$	$48 \cdot 45$	$0 \cdot 010$	$w \mathrm{P}$: mP, wN : mP	
19		29.931	$47^{\circ} \mathrm{O}$	$35^{\circ} \mathrm{O}$	12.0	42.0	-0.3	$40 \cdot 5$	$38 \cdot 7$	3.3	$7 \cdot 7$	$0 \cdot 0$	89	71.3	28.2	$48 \cdot 46$	$0 \cdot 004$	wP : mP : mP	
20	In Equator	29.910	$48 \cdot 1$	41'9	$6 \cdot 2$	$45 \cdot 6$	+ $3 \cdot 4$	42.6	$39^{\circ} 2$	$6 \cdot 4$	II ${ }^{2}$	$1 \cdot 3$	79	$55^{\circ} \mathrm{I}$	33.3	$48 \cdot 29$	0.001	$w \mathrm{P}: \mathrm{mP}$: mP	
2 I	...	30.018	$50 \cdot 7$	$44^{\circ} \mathrm{I}$	$6 \cdot 6$	47.4	$+5 \cdot 3$	45%	$43^{\circ} 8$	$3 \cdot 6$	$6 \cdot 3$	$0 \cdot 0$	89	54.1	$34^{\circ} \mathrm{I}$	48.1 I	$0 \cdot 049$	wP	
22	\ldots	30'175	$55^{\circ} 8$	$43^{\circ} 2$	12.6	$49^{\circ} 4$	+ 73	47.2	$44^{*} 8$	$4 \cdot 6$	$8 \cdot 9$	0.2	85	83.0	$35^{\circ} \mathrm{O}$	$48 \cdot 12$	$0 \cdot 000$	wP : wwP	
23		301127	52.0	47°	$5 \cdot 0$	49.5	+ 7.5	$47 \cdot 7$	45^{-8}	$3 \cdot 7$	$6 \cdot 9$	0.8	88	64°	43.9	$48 \cdot 22$	$0 \cdot 004$... : wP : wP	
24	Full	29.993	50.1	$42 \cdot 4$	77	$45 \cdot 8$	+ $3 \cdot 8$	$43 \cdot 6$	41.1	$4 \cdot 7$	97	0.4	84	65.5	34°	$48 \cdot 38$	0.185	wP, wwN : mP : mP	
25	\cdots	29.799	52.9	4171	II• δ	$47 \cdot 5$	$+5 \cdot 6$	$45^{\circ} \mathrm{O}$	$42 \cdot 3$	$5 \cdot 2$	11*4	I'I	83	64.0	$35^{\prime 2}$	$48 \cdot 51$	$0 \cdot 161$		
26	Greatest Dec. N.	29.338	52.0	$41 \cdot 3$	10.7	$47 \cdot 3$	+ 5.5	$46 \cdot 0$	$44^{\circ} 6$	$2 \cdot 7$	$5 \cdot 7$	$0 \cdot 2$	91	$53 \cdot 8$	$35^{\circ} 4$	$48 \cdot 46$	0.365	$\mathrm{wP}: \mathrm{wwP}: \mathrm{vN}, \mathrm{wP}$	
27		29.200	$44^{\circ} 6$	32.0	12.6	$38 \cdot 5$	-3.2	$36 \cdot 6$	34.0	45	$6 \cdot 8$	0.9	85	60.0	23.7	$48 \cdot 31$	$0.002 *$	$\mathrm{wP}: \mathrm{mP}: \mathrm{vP}$	
28	Perigee	29.540	$40 \cdot 2$	293	10.9	33.3	- 8.2	$32 \cdot 3$	$30 \cdot 4$	$2 \cdot 9$	$5{ }^{\circ}$	$0 \cdot 0$	89	$42 \cdot 6$	19×4	48-11	0.003*	vP : sP : vP, wN	
29	...	29*126	43.7	$32 \cdot 2$	$11 \cdot 5$	39.5	- $1 \cdot 7$	$38 \cdot 3$	$36 \cdot 7$	$2 \cdot 8$	$5 \cdot 2$	$0 \cdot 9$	90	$45 \cdot 8$	24.4	47.53	$0 \cdot 354$	vP, ssN : vN, mP : mP	
30	...	29.370	$36 \cdot 2$	30.0	$6 \cdot 2$	$32 \cdot 5$	$-8 \cdot 5$	$30^{\circ} 0$	$24 \cdot 8$	$7 \cdot 7$	16.5	3.9	72	519	190	$46 \cdot 96$	$0 \cdot 000$	$\mathrm{mP}: \mathrm{sP}: \mathrm{sP}$:	
Means	\cdots	29.810	$48 \cdot 3$	393	9°	$43 \cdot 8$	+0.3	419	$39^{\circ} 6$	$4 \cdot 2$	$7 ̊ 9$	1.4	857	$60 \cdot 8$	$32 \cdot 5$	$48 \cdot 95$	$\begin{gathered} \text { Sum } \\ \text { I } 553 \end{gathered}$	\ldots	
Number of Column for Reference.	1	2	3	4	5	6	7	8	9	10	11	12	I 3	14	15	16	17	18	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column $\mathbf{1} 6$ are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and $\mathbf{1}_{5}$ are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amount entered on November 1, 2, 3, 27 and 28 are derived from frost and fog.

The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 8 \mathrm{IO}$, being $0^{\text {in }} \cdot 05_{2}$ higher than the average for the 65 years, $\mathbf{1 8 4 1 - 1 9 0 5 .}$
Temperature of the Air.
The highest in the month was $56^{\circ}, 5$ on November 7 ; the lowest in the month was $28^{\circ} \cdot 7$ on November 4 ; and the range was $27^{\circ} \cdot 8$.
The mean of all the highest daily readings in the month was $48^{\circ} \cdot 3$, being $0^{\circ} \cdot 7$ lower than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $39^{\circ}{ }^{\circ} 3$, being $1^{\circ}{ }^{\circ} 4$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $9^{\circ} \circ$, being $2^{\circ} \cdot 1$ less than the average for the 65 years, 1841-1905.
The mean for the month was $43^{\circ} \cdot 8$, being $0^{\circ} \cdot 3$ higher than the average for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { I912. } \end{gathered}$			Wind as Deduced from Shlf-Registering Anemometers.					Clouds and Weather.	
			OSLER'S.				RobinSON's.		
			General Direction.		Pressureon theSquare Foot.				
			A.M.	P.M.	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{W}} \\ & \stackrel{\rightharpoonup}{*} \\ & \stackrel{y}{*} \\ & \stackrel{4}{5} \end{aligned}$			A.M.	P.M.
Nov. 118	hours.	hours.	N: NNE	N: NW:WSW NW: WNW:W Calm	lbs.1.9	1bs.0.14	$\begin{gathered} \text { miles. } \\ 250 \end{gathered}$		
		$9 \cdot 6$							
	4.4	9.6	$\begin{gathered} \text { W:WSW } \\ \text { W:WSW : Calm } \end{gathered}$		0.5	0.01	209		
	$0 \cdot 8$	9.5			$0 \cdot 0$	0.00	127		
	$0 \cdot 0$	9.4	Calm : WSW	WSW : SW W:N:NE Calm : S : SW	1.2	0.07	220		
	$0 \cdot 0$	9.4	SW		2.0	0.13	278		
	$0 \cdot 0$	$9 \cdot 3$	N : Calm		0.2	$0 \cdot 00$	116	10 , slt.f : $10 \quad: 10, \mathrm{glm}$	
	2.1	$9 \cdot 3$	SSW : SW	SW: WSW	$1 \cdot 5$	0.08	272	10 : 10, cu.-s, s	p..cl, ei. s, ¢, ci.cu, cu: 9 : 10
	$0 \cdot 3$	$9 \cdot 2$	WSW : W	W : WNW : WSW	2.0	$0 \cdot 20$	339		$9, \mathrm{cu}, \mathrm{s}, \mathrm{n}$ $: 10, \mathrm{~s}, \mathrm{n}$ $: 10$ 9 $: \mathrm{p} \cdot \mathrm{cl}$ $: \mathrm{p} . \mathrm{cl}$
	$0 \cdot 4$	$9 \cdot 2$	WSW : SW	SW : WSW	I. 6	$0 \cdot 10$	257		
10	$0 \cdot 3$	9'I	WSW : WNW : W	W : WSW : WNW	$10^{\circ} 0$	$0 \cdot 71$	483	9, m.-r : $9: 10, \mathrm{~s}$ p.-cl, slt.-sh, w : \quad,cu,s, n,oc.sslt.-r,st.-w I, w : p.cl, oc.silt.r: IO, slt.-sh, w	
11	I. 5	$9^{\prime 1}$	NW : W : WNW	NW: NNW	$14^{\circ} 2$	$1 \cdot 73$	739		6,cu,oc.slt.-r,st.w: p.-cl, w : h, th.-cl, w
12	0.0	9.0	NNW : WNW: N	N	8.2	$0 \cdot 95$	520		ro, s, n, li.-shs, w: ro, n, sc, fq.-r, w: 10, cu. -s , w
13	$0{ }^{\circ} 0$	$8 \cdot 9$	N	N: NNW	$6 \cdot 8$	- 68	425	9, w $\quad: 10, \mathrm{w} \quad: \mathrm{ro}, \mathrm{s}, \mathrm{n}, \mathrm{se}, \mathrm{sit.-r}$,	10, n , slt.-r : p.ecl, th. -ct, sit.m : p.-cl, slt.-r
14	$0 \cdot 0$	$8 \cdot 9$	N: NNW	NNW: N	$3 \cdot 7$	0.38	364	$\begin{gathered} \text { 10, slt.-r } \\ 9, \text { slt.-f } \end{gathered} \quad: \quad: 10: 10, \text { n, fq.-th.-r }$	10, oc.-th.-r : ro, n, sc, oc.-th.-r: 9, oc.-slt.-r 9,cu.-s,li.-shs: 10 , slt.-f : 10, m.-r, slt.-f
15	0.0	$8 \cdot 8$	NNW: W : SW	N : Calm	$0 \cdot 3$	$0 \cdot 00$	128		
16	0.0	$8 \cdot 8$	${ }^{\text {N }}$	NNE: Calm	$0 \cdot 3$	0.00	121		$\begin{array}{lllll} 10, \mathrm{glm} & : & 10 & : & 9, \text { slt.-m } \\ 10 & : & 10, \mathrm{~s}, \mathrm{slt} .-\mathrm{f} & : & \text { p.-cl, slt.-f } \\ 10, \text { slt.-r, slt.-f: } & 10, \mathrm{~s}, \mathrm{n} & : & \text { p.-cl, hy.-d } \end{array}$
17	$0 \cdot 0$	$8 \cdot 7$	Calm : W	WNW: WSW : W	0.2	0.00	156		
18	$0 \cdot 2$	$8 \cdot 7$	W : WSW	W : NNE : Calm	0.5	$0 \cdot 00$	150		
19	0.6	$8 \cdot 7$	WSW : W	W	2.1	$0 \cdot 13$	302	th.-cl, f $:$ p.-cl,slt.-f: 9, s, slt.-sh p.-cl $:$ 0 $:$ 9, slt.-sh $:$ li.-cl th.-cl $:$ ro, cu.s, s	$\begin{array}{lll} 10, \text { s,oc.-slt.-r: } & \text { 9, slt.-sh }: & \text { p.-cl, th.-cl } \\ 10, s, n, \text { slt.-sh }: & 10, \mathrm{~s}, \mathrm{n}, \mathrm{slt} .-\mathrm{sh}: & \text { p.cl, slt.-sh } \\ 10, \mathrm{~s}, \mathrm{n} & : & 10, \text { slt.-m,m.-r }: \\ \text { ro, slt.-m } \end{array}$
20	$0 \cdot 0$	$8 \cdot 6$	W	W	3.3	$0 \cdot 42$	466		
21	0.0	$8 \cdot 6$	NW: NNW : N	Calm : Variable	$0 \cdot 8$	0.04	182		
22	2.9	$8 \cdot 5$	N:W : WSW	W : WSW	$0 \cdot 3$	$0 \cdot 01$	192	p.-cl $:$ slt.-f $:$ 4, cu, cut.-s, slt.f IO, slt.-r $:$ p.el, slt.-sh: 9, cu.-s, m.-r 9,r,hy.-sh: p.-cl, r,sq : I, th.-cl	$8, \mathrm{cu} .-\mathrm{s}$ $: 10$ 10 $10, \mathrm{cu}, \mathrm{n}, \mathrm{s}$ $:$ 10, oc.-m.-r 2, cu.-s $:$ p. $\mathrm{cl}, \mathrm{th} . \mathrm{cl}:$
23	00°	$8 \cdot 5$	WSW : SW	WSW	19	0.14	309		
24	$5 \cdot 7$	$8 \cdot 4$	WSW : NW : WNW	NW:W:WSW	$5 \cdot 0$	0.25	390		
25	$00^{\circ} 0$	$8 \cdot 4$	SW : WSW	WSW : W	14.5	$0 \cdot 91$	540		ro, n, slt.-r, st.-w : ro, n,s,r,blu,w,lu.-ha : 10, s, lu.-ha ro, n, sc, fq. ft .-r,st.w: ro, r, hy. $\mathrm{sh}, \mathrm{hl}, \mathrm{st}$. .w : p.-cl, r, w 7, cu.-s, s : p.-cl, slt.-f : th.el, slt. ff, ho.fr
26	$0 \cdot 0$	$8 \cdot 3$	WSW : SW	WW : WSW	22.5	1.43	627		
27	1.6	$8 \cdot 3$	W : WSW	W : WNW : WSW	2.4	$0 \cdot 14$	307		
28	$0 \cdot 1$	$8 \cdot 2$	WSW	Calm : S	0.5	0.02	197	p.-cl $:$ o,slt.ff,ho.fr: $5, \mathrm{~s}$, slt.-f $10, \mathrm{r}$ $: 10, \mathrm{r}$ $: 10$, slt.-r, slt.-f p.-cl, ho.fr: 10 $: 10, \mathrm{~s}$	
29	$0 \cdot 0$	$8 \cdot 2$ $8 \cdot 1$	S : N NE	$\begin{gathered} \text { NNW:N } \\ \text { NE: N: NW } \end{gathered}$	$5 \cdot 3$ 4.1	0.40 0.40	350 350		
30	$0 \cdot 2$	$8 \cdot 1$	NE: NNE	NNE:N:NW	$4{ }^{1}$	0.40	350		
Means	$0 \cdot 9$	$8 \cdot 8$...	\cdots	\cdots	$0 \cdot 32$	312		
$\begin{array}{\|c} \text { Number of } \\ \text { Colume for } \\ \text { Reference. } \end{array}$	19	20	21	22	23	24	25	26	27

The mean Temperature of Evaporation for the month was $41^{\circ} 9$, being the same as
The mean Temperature of the Dew Point for the month was $39^{\circ} \cdot 6$, being $0^{\circ} \cdot 4$ lower than The mean Degree of Humidity for the month was 85%, being 1.6 less than
The mean Elastic Force of Vapour for the month was oin $\cdot 243$, being oin•004 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was 2grs•8, being the same as
The mean Weight of a Cubic Foot of Air for the month was 548 grains, being the same as
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by io) was 8.I.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.010 . The maximum daily amount of Sunshine was 5.7 hours on November 24 .
The highest reading of the Solar Radiation Thermometer was $83^{\circ} \circ$ on November 22 ; and the lowest reading of the Terrestrial Radiation Thermometer was $19^{\circ} \circ$ on November 30 . The Proportions of Wind referred to the cardinal points were N. 8, E. i, S. 4, and W. 13. Four days were calm.
The Greatest Pressure of the Wind in the month was $22^{\circ} 5 \mathrm{lbs}$. on the square foot on November 26. The mean daily Horizontal Movement of the Air for the month was 3 I2 miles; the greatest daily value was 739 miles on November 11; and the least daily value was 116 miles on November 6 .
Rain (oin $\cdot 005$ or over) fell on 13 days in the month, amounting to $\mathrm{I}^{\mathrm{in}} \cdot 553$, as measured by gauge No. 6 partly sunk below the ground; being oin $\cdot 667$ less than the average fall for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1912. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Temperature.							Difference between the Air Temperature and Dew Point Temperature.				Temperature.				Electricity.	
			Of the Air.					$\|$$\substack{\text { Of } \\ \text { Evapo- } \\ \text { ration. }}$ Mean of 24 Hourly Values.$\|$	Of theDewPoint. $\|$De- duced Mean Daily Value.				Of Radiation.	Of theEarthEft. in.3flowtheSurfaceof theSoil.					
					Daily Range		$\begin{array}{\|c\|} \hline \text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ 65 \text { Years. } \end{array}$			$\begin{aligned} & \text { 駡 } \\ & \text { H } \end{aligned}$					Highest in Sun's Rays	Lowest on the Grass			
Dec. I	Last Quarter In Equator	$\begin{gathered} \text { in. } \\ 29 \cdot 565 \\ 29 \cdot 688 \\ 30 \cdot 174 \end{gathered}$	$\begin{aligned} & 45 \cdot 1 \\ & 45 \cdot 8 \\ & 47 \cdot 7 \end{aligned}$	$\begin{aligned} & 26 \cdot 2 \\ & 38 \cdot 3 \\ & 32 \cdot 9 \end{aligned}$	$\begin{array}{r} 18.9 \\ 7.5 \\ 14.8 \end{array}$	$\begin{aligned} & 34 \cdot 1 \\ & 42 \cdot 3 \\ & 40 \cdot 8 \end{aligned}$	$\begin{array}{cc} \circ \\ - & 6 \cdot 8 \\ + & 1 \cdot 4 \\ - & 0.3 \end{array}$	$\begin{aligned} & 32 \cdot 6 \\ & 39 \cdot 8 \\ & 38 \cdot 6 \end{aligned}$	$\begin{aligned} & 30 \cdot 0 \\ & 36 \cdot 7 \\ & 35 \cdot 8 \end{aligned}$	$\begin{aligned} & 4^{\cdot I} \\ & 5 \cdot 6 \\ & 5 \cdot 0 \end{aligned}$	$\begin{gathered} \circ \\ 7.8 \\ 8 \cdot 0 \\ 7.5 \end{gathered}$	$\begin{gathered} 0 \\ 1.2 \\ 2.6 \\ 0.9 \end{gathered}$		$\begin{aligned} & 84 \\ & 82 \\ & 83 \end{aligned}$	$\begin{aligned} & 42 \cdot 0 \\ & 6 r \cdot 9 \\ & 55 \cdot 9 \end{aligned}$	$\begin{aligned} & 17 \cdot 9 \\ & 32.3 \\ & 28 \cdot 0 \end{aligned}$	$\begin{gathered} \circ \\ 46 \cdot 14 \\ 45 \cdot 83 \\ 45 \cdot 49 \end{gathered}$	in. $0 \cdot 178$ 0.003 0.025	$\begin{gathered} \mathrm{mP}: \mathrm{sP}: \mathrm{vP}, \mathrm{ssN} \\ \mathrm{wP}: \underset{\mathrm{mP}}{\mathrm{mP}}: \mathrm{mP} \\ \end{gathered}$
		30.109	$5^{2 \prime 1}$	$39^{\circ} 9$	12.2	47*7	$+6.4$	$46 \cdot 7$	$45^{\circ} 6$	$2 \cdot 1$	4.5	0.4	93	61.2	31.0	45.43	0.023	$\mathrm{wP}^{\text {P }}$: $\mathrm{wP}: \mathrm{mP}$	
		29.770	$45 \cdot 2$	34.2	11.0	38.6	- 29	37'1	$35^{\circ} \mathrm{I}$	$3 \cdot 5$	$7 \cdot 1$	I•5	88	54.0	$24^{\circ} 1$	45.59	0.001*	$\mathrm{P}: \mathrm{mP}: \mathrm{mP}$	
		29.686	51.2	39^{-8}	11.4	$47 \cdot 2$	$+57$	$45^{\circ} 9$	44.5	$2 \cdot 7$	$4 \cdot 3$	$0 \cdot 9$	91	56.0	$32 \cdot 2$	45.69	$0 \cdot 076$	P	
7		29.844	$50 \cdot 8$	$37 \cdot 2$	13.6	$45^{\circ} 6$	$+43$	$44^{\circ} 7$	43.7	$1 \cdot 9$	37	$0 \cdot 7$	93	54.1	$29^{\circ} 2$	45.71	$0 \cdot 003$	wP	
8	New	29.972	53°	$47 \cdot 2$	$5 \cdot 8$	$50 \cdot 2$	+ 9.2	$48 \cdot 4$	$46 \cdot 5$	$3 \cdot 7$	$5 \cdot 9$	I.6	88	64.6	$40 \cdot 2$	$45 \cdot 81$	$0 \cdot 002$	wP	
9	Greatest, Dec. S.	29.945	514	44.9	$6 \cdot 5$	$48 \cdot 5$	$+79$	47.0	453	$3 \cdot 2$	$5 \cdot 3$	$1 \cdot 3$	89	$59^{\circ} \mathrm{I}$	$36 \cdot 0$	46'12	$0 \cdot 020$	wP	
10		29.837	$50 \cdot 3$	$44^{\prime 2}$	6.1	$4^{8.0}$	$+76$	47.5	$47^{\circ} 0$	1×0	I'9	0.2	96	49.6	39°	$46 \cdot 49$	0.405	wP	
11		29.624	51.2	457	5.5	$48 \cdot 9$	+ 8.7	$47 \cdot 3$	$45^{\circ} 5$	$3 \cdot 4$	$6 \cdot 2$	0.4	89	$56 \cdot 8$	$41^{\circ} 9$	$46 \cdot 77$	$0 \cdot 034$	${ }_{\text {w }}$ P P -	
12	\ldots	29.567	51.0	$40 \cdot 2$	10.8	44°	$+3.9$	42.0	$39^{\circ} 4$	$4 \cdot 8$	$7{ }^{\circ} \mathrm{I}$	1.5	83	64.0	$33^{\circ} 1$	46*91	$0 \cdot 120$	$w \mathrm{P}: \mathrm{mP}, \mathrm{wN}: \mathrm{mP}$	
13		29.816	$53^{\circ} \mathrm{O}$	419	11'1	$48 \cdot 7$	$+8.2$	$46: 3$	43.7	$5{ }^{\circ}$	$8 \cdot 0$	2.4	83	55.3	$35^{\circ} 5$	47*02	$0 \cdot 003$	${ }_{\text {wP }}$	
14	Apogee	29.751	56.5	52:0	4.5	54.5	+13.8	$52 \cdot 3$	$50 \cdot 2$	$4 \cdot 3$	6.1	1.6	85	$56 \cdot 6$	$49^{\circ} \mathrm{I}$	47.42	$0 \cdot 036$	${ }_{\text {wwP }}$: wP	
15	Apoge	29.876	55°	477	$7 \cdot 3$	$51 \cdot 2$	$+104$	48.7	$4^{6 \cdot 1}$	$5 \cdot 1$	11-2	0.4	83	77.2	39.9	$47 \% 47$	0.221	wwP : wP : wP	
16	First Quarter	29748	$49^{\circ} 6$	$35^{\circ} 8$	13.8	429	+ 22	40%	$38 \cdot 1$	4.8	9×7	I 4	84	57.6	27.6	47.52	0.256	wP, wwN : mP : mP	
17	In Equator	29.692	$44^{\circ} 9$	34.4	10.5	39°	- 1.4	$36 \cdot 9$	$34^{\circ} 2$	$4 \cdot 8$	$7 \cdot 3$	2.4	83	63.3	27.6	47.59	$0 \cdot 000$		
18		29.459	$46 \cdot 3$	$36 \cdot 1$	$10 \cdot 2$	41.2	+ 1.2	$39 \cdot 5$	37.4	$3 \cdot 8$	5.4	$1 \cdot 9$	87	515	29.6	47*19	0×099	P, wN : mP, sN : sP	
19		29.668	50\%	$38 \cdot 5$	$11 \cdot 5$	$46 \cdot 5$	+ 70	$44^{\circ} \mathrm{O}$	$41^{\prime 2}$	$5 \cdot 3$	$8 \cdot 5$	$2 \cdot 7$	83	$66 \cdot 9$	32.5	$46 \cdot 86$	$0 \cdot 005$	wP	
20		29.786	53.2	41.2	12.0	47.9	+ 89	$46 \cdot 1$	$44^{\circ} \mathrm{I}$	$3 \cdot 8$	$6 \cdot 9$	$0 \cdot 9$	87	80.9	$29^{\circ} 9$	$46 \cdot 56$	$0 \cdot 000$	${ }_{\text {w }} \mathrm{P}$	
2 I	...	29.854	$49^{\circ} 1$	$40 \cdot 3$	$8 \cdot 8$	$45 \cdot 3$	+6.6	$43 \cdot 8$	$4^{2 \cdot 1}$	$3 \cdot 2$	4.9	$0 \cdot 9$	89	55.4	28.4	$46 \cdot 60$	$0 \cdot 000$	wP	
22		29.737	$50 \cdot 7$	$4{ }^{\prime} 1$	$9 \cdot 6$	$46 \cdot 3$	+ 79	443	$4^{2 .} 0$	4.3	$6 \cdot 4$	$1 \cdot 1$	86	71.0	30.4	$46 \cdot 69$	$0 \cdot 003$		
23		29.708	52.0	47.0	5.0	$48 \cdot 9$	+10.7	47.5	$46 \cdot 0$	$2 \cdot 9$	$5 \cdot 5$	1.0	90	75.5	42.0	$46 \cdot 79$	-1194	wP, wN : wP : wP, vN $\mathrm{wP}: \mathrm{wP}, \mathrm{wN}: \mathrm{wP}$	
24	Greatest Dec. N. Full	29.710	51.8	43.3	8.5	48 I	+ 9.9	$46 \cdot 1$	43.9	$4 \cdot 2$	$9 \cdot 2$	$1 \cdot 6$	86	$55 \cdot 5$	$36 \cdot 1$	$46 \cdot 81$	$0 \cdot 120$	wP : wP, wN : wP	
25		29.694	$53^{\circ} \mathrm{O}$	$4^{1 \times 1}$	11.9	$46 \cdot 9$	+ 8.5	45.3	435	3.4	$8 \cdot 0$	0.2	89	52.0	34'3	46.99	0.312	wP: wP, wN	
26	Perigee	29.286	$48 \cdot 9$	$39^{\circ} \mathrm{I}$	$9 \cdot 8$	$44^{\circ} 9$	+6.3	$42 \cdot 9$	$40 \cdot 6$	$4 \cdot 3$	$9 \cdot 5$	0.9	86	$60 \cdot 2$	$3{ }^{1} 0$	$47 \cdot 01$	$0 \cdot 440$	wP : vN, wP : wN, wP	
27	Pergee	29.504	$56 \cdot 1$	$38 \cdot 2$	17.9	$46 \cdot 2$	$+74$	$44 * 7$	43.0	$3 \cdot 2$	$8 \cdot 3$	$0 \cdot 4$	89	$60 \cdot 6$	30.6	$46 \cdot 82$	$0 \cdot 123$		
28		29.466	$56 \cdot 3$	$50 \cdot 6$	$5 \cdot 7$	$54^{\circ} \mathrm{I}$	+15.2	519	$49 * 7$	4.4	$6 \cdot 5$	1.6	85	$6 \mathrm{I} \cdot 6$	$46 \cdot 5$	$46 \cdot 81$	0.036	wwP : wP : wP, wwN	
29		29.624	51.2	$42 \cdot 1$	$9 \cdot 1$	$46 \cdot 4$	$+74$	43.9	41.0	$5 \cdot 4$	$8 \cdot 4$	$2 \cdot 7$	83	$67^{\circ} \mathrm{O}$	$36 \cdot 3$	47.02	-0.064	wwP, wN : wP :	
30	In Equator : Last Quarter	$30 \cdot 073$	$46 \cdot 9$	$40 \cdot 3$	$6 \cdot 6$	$42 \cdot 9$	+ 40	$40 \cdot 6$	37.9	$5 \cdot 0$	$7 \cdot 5$	$3 \cdot 1$	83	$66 \cdot 4$	$32^{\circ} \mathrm{O}$	$47 \cdot 28$	$0 \cdot 00$		
31	...	$29 ` 997$	$50 \cdot 2$	41°	$9^{\prime 2}$	$45^{\circ} 2$	$+6.5$	$42 \cdot 8$	$40 \cdot 0$	$5^{\prime 2}$	$9 \cdot 6$	3.3	82	68.1	$32 \cdot 8$	47.10	$0 \cdot 000$	wP : mP : mP	
Means	\ldots	29.749	$50 \cdot 6$	$40 \cdot 7$	9*9	$45^{\circ} 9$	+6.0	$44^{1} 1$	419	$4^{\circ} 0$	7×0	I•4	$86 \cdot 5$	$60 \cdot 7$	33.5	$46 \cdot 63$	2.802	\ldots	
Number of Column for Reference.	1.	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columas 6 and 9 , and the Greatest and Least Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column i6 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amount entered on December 5 is derived from frost.

The mean reading of the Barometer for the month was $29^{i n} \cdot 749$, being $0^{\text {in }} \cdot{ }_{0} 6$ lower than the average for the 65 years, 1841-1905.
Temperature of the Air.
The highest in the month was $56^{\circ} 5$ on December 14 ; the lowest in the month was $26^{\circ} \cdot 2$ on December 1 ; and the range was $30^{\circ} 3$.
The mean of all the highest daily readings in the month was $50^{\circ} \cdot 6$, being $6^{\circ} \cdot 4$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $40^{\circ}{ }_{7}$, being $5^{\circ} .7$ higher than the average for the 65 years, $\mathbf{1 8 4 1 - 1 9 0 5 .}$
The mean of the daily ranges was $9^{\circ} 9$, being $0^{\circ} \cdot 7$ greater than the average for the 65 years, 1841-1905.
The mean for the month was $45^{\circ} 9$, being $6^{\circ} .0$ higher than the average for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { rgra. } \end{gathered}$			Wind as Deduced from Self-Registering Anemometers.					Clouds and Weather.	
			Osler's.				$\begin{aligned} & \text { Robrr. } \\ & \text { sox's. } \end{aligned}$		
			General Direction.		$\begin{gathered} \text { Pressure } \\ \text { on the } \\ \text { Square Foot. } \end{gathered}$				
			A.M.	P. M.				A.M.	P.M.
Dec. 1	hours.	hours.	$\begin{gathered} \text { W : WSW } \\ \text { WSW :W } \\ \text { NNW :Calm :WSW } \end{gathered}$	$\begin{gathered} \text { SW : S : WSW } \\ \text { NW :W }: \text { NNW } \\ \text { WSW : SSW :SW } \end{gathered}$	lbs.	$\begin{gathered} \text { lbs. } \\ 0.25 \end{gathered}$	$\begin{array}{r} \text { miles. } \\ 344 \end{array}$	$\begin{aligned} & \text { I, ho.-fr : } \begin{array}{c} \text { I, ho.-fr : 8, ci.-cu, s } \\ \text { p.-cl, ho.-fr } \\ : \quad \text { I, cu, th.-cl } \end{array} \end{aligned}$	$\begin{aligned} & \text { 10,s,oc.-slt.-r: } 10, \text { c.-r, w }: \text { p.-cl } \\ & \text { I, th.-cl }: \\ & 10, \text { cu.-s, n } \end{aligned}$
	0.1	8•1							
	$4 \cdot 8$	$8 \cdot 1$			3.9	0.37	460		
	$0 \cdot 0$	$8 \cdot 1$			2.8	$0 \cdot 10$	232	$\mathbf{I O}$, slt.-f : $10, \mathbf{f} \quad: \quad$ 6, ci. cu, cu.-s, slt.-f	
	$0 \cdot 0$	$8 \cdot 1$	SW	SW : SSW : S	2.0	0.09	275	```ro, slt.-r : ro, slt.-sh: IO, s, n 1, ho.-fr : I, ho.-fr : 7, ci.-s, s IO, slt.-r : p.-el : 9,ci.s, s, n, fq..m.r```	$\begin{array}{rlll} \text { p.cll, ci.s. ci.cu.s.s } & \text { th.-cl } & : & \text { th.-cl, hy.d } \\ 9, s & : 10 & : & 9 \\ 10, f q .-m .-r & : & \text { p.-cl, slt.-r } & : \\ 0, d \end{array}$
	$0 \cdot 0$	$8 \cdot 0$	S : SE	SSE : S : SW	1.0	0.04	173		
	$0 \cdot 0$	$8 \cdot 0$	S : SW : SSW	SW: WSW	$3 \cdot 5$	0.23	316		
7	$0 \cdot 0$	$7{ }^{\circ} 9$	SW : SSW : S	SSW : SW	1.8	0.23	337	p.-cl IO 9$\quad:$$: 8, \mathrm{cu}, \mathrm{s}$, slt.-sh 9	
8	$0 \cdot 0$	7.9	SW : SSW	SW : SSW	I.8	$0 \cdot 14$	288		
9	$0 \cdot 0$	7.9	SW	SW	$3 \cdot 3$	0.23	327		
10	$0 \cdot 0$	7.9	SW: NE	Calm	I•9	O.II	197	$\begin{array}{rlll} 10, \mathrm{r} & : \mathrm{ro}, \mathrm{fq} .-\mathrm{r} & : \mathrm{ro}, \mathrm{n}, \mathrm{sc}, \mathrm{fq} .-\mathrm{r}, \mathrm{glm} \\ 10, \text { slt.-r, f: } & 9 . & : \mathrm{r}, \mathrm{~s}, \mathrm{n}, \mathrm{sc} \\ \text { p.-cl, r, w }: & \text { li.-cl } & \text { p.-cl, cu, n, r } \end{array}$	io, m, glm, r : io, m, f 10, s, n, se, w: $10,0 c .-$ slt.-r, w : 10 , oc.-r, w 7, n : p.-cl, n
II	$0 \cdot 0$	$7 \cdot 9$	WSW : SW	SW	$7{ }^{\circ}$	0.80	510		
12	I'I	79	WSW : W : SW	W : WNW : WSW	$7{ }^{\circ}$	$0 \cdot 33$	419		
13	$0 \cdot 0$	$7 \cdot 8$	WSW	WSW	14.5	154	686		
14	$0 \cdot 0$	$7 \cdot 8$	WSW	W : WSW	12.5	1.93	754		
15	0.8	$7 \cdot 8$	W: WNW	W : WSW	11.3	1.20	586		
16	2.6	$7 \cdot 8$	W: NW: WNW	WNW: W : WSW	$3 \cdot 3$	$0 \cdot 38$	410		2, cu $:$ I $:$ I, cu $:$ I ho.-fr p.-cl, sh.-r $:$ I, th.-cl $:$
17	$5 \cdot 0$	$7 \cdot 8$	W. WSW	W : WSW : SW	$4{ }^{\circ} 0$	0.47	452		
18	$0 \cdot 0$	$7 \cdot 8$	WSW : SW : NNW	W: WSW	$6 \cdot 8$	0.41	425		
19	$0 \cdot 3$	$7 \cdot 8$	WSW : SW	SW	$6 \cdot 0$	$0 \cdot 51$	454	$10 \quad: 10$, slt.-r $: 9, \mathrm{~s}, \mathrm{n}, \mathrm{slt} . \mathrm{sh}$	
20	1.6	$7 \cdot 8$	SSW : SW	SW : SSW	$3 \cdot 0$	$0 \cdot 31$	343	$9: 10: 9, c u, \mathrm{n}$	
21	$0 \cdot 0$	77	SW	SW : WSW	$1 \cdot 4$	0.09	237	$9: 9: 10$, cu.-s, s	
22	14	777	SW	SW	1.8	$0 \cdot 08$	277	Io : p.ecl : p.ecl, ci.-s, ci.cu, cu cus.	
23	$2 \cdot 9$	$7 \cdot 8$	SW	SW	$2 \cdot 9$	0.26	362	$\begin{array}{cll} \text { Io, slt.-r } & : \text { 10, slt.-r } & : 8, \text { cu.-s } \\ 1 & : \text { th.-cl } & : 10, \mathrm{~s}, \mathrm{n}, \mathrm{w} \end{array}$	
24	$0 \cdot 0$	$7 \cdot 8$	WSW : SW	SW : WSW	12.0	0.88	543		
25	$0 \cdot 0$	$7 \cdot 8$	WSW : SW : SSW	S : SW : W	6.4	$0 \cdot 52$	453	$\begin{array}{llll} \mathbf{I}, \mathrm{w} & : & \text { th.-cl,lu.ha: } & \text { 10, slt.-r } \\ \text { p.-cl } & : & 9, \mathrm{w} & \text { p.-cl, hy.-r, st.-w } \\ \text { p.-cl } & : 9 & : 10, \text { slt.-r } \end{array}$	$\begin{aligned} & \text { ıo,s,se,r,hy.-sh,w: p.-cl } \quad: \quad 2 \\ & \text { 10, n,sc,r,hy.-shs,st.-w: } \quad 9, \mathrm{w} \\ & \text { 10,s,n,oc.-st.-r: } 10, \text { fq.-r } \quad: \quad \text { ı,slt.-sh,st.-w } \end{aligned}$
26	0.2	$7 \cdot 8$	SW : S : SSE	SW : W : NW	14.5	I-20	591		
27	$0 \cdot 0$	$7 \cdot 8$	W : WSW : SW	SSW : SW : WSW	$9 \cdot 7$	$0 \cdot 33$	347		
28	0.0	$7 \cdot 8$	WSW	WSW : SW	9`5	I.06	558	$\begin{aligned} & 10, \text { st.-w }: ~ \\ & 10, \mathrm{w}: \\ & 10, \text { slt.-r,w }: \\ & 10, \text { shs.-r, w }: \\ & \hline 6, \mathrm{cu}, \mathrm{~s}, \mathrm{~s}, \mathrm{n}, \mathrm{w} \end{aligned}$	
29	$3 \cdot 6$	$7 \cdot 8$	SW : NW: W	WSW : W	$7 \cdot 4$	0.83	$54+$		
30	$5 \cdot 3$	$7 \cdot 8$	W : WSW	W : WSW : SW	4.0	$0 \cdot 38$	413		$\begin{array}{lllll} \text { I, w } & : & \text { o, w } & : & 0, \text { w } \\ \text { I, ci.-s,li.-cl: } & \text { I, cu.-s, h } & : & \text { p.-cl, hy.-d } \end{array}$
31	$0 \cdot 3$	$7 \cdot 8$	SW : WSW	SW : SSW	47	$0 \cdot 49$	427	$9: 9: 10$, cu.-s, 8	10, cu.s, n,w : p.-cl, cu, cu.-s: p.
Means	1.0	$7 \cdot 9$	\ldots	\ldots	\cdots	0.51	$4^{\text {I I }}$		
Number of Column for Reference	19	20	21	22	23	24	25	26	27

The mean Temperature of Evaporation for the month was 44°, being $5^{\circ} .6$ higher than
The mean Temperature of the Dew Point for the month was $41^{\circ} \cdot 9$, being $5^{\circ} \cdot 2$ higher than
The mean Degree of Humidity for the month was 86.5 , being 2.1 less than
The mean Elastic Force of Vapour for the month was $\mathrm{o}^{\text {in }} \cdot 266$, being $\mathrm{o}^{\text {in }} \cdot 048$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grs }}{ }^{\circ}$, being ${ }^{\circ}{ }^{\text {gr }} 4$ greater than
The mean Weight of a Cubic Foot of Air for the month was 545 grains, being 7 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 7.4 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.123 . The maximum daily amount of Sunshine was 5.3 hours on December 30 .
The highest reading of the Solar Radiation Thermometer was $80^{\circ} 9$ on December 20 ; and the lowest reading of the Terrestrial Radiation Thermometer was $\mathbf{1} 7^{\circ} \cdot 9$ on December $\mathbf{1}$.
The Proportions of Wind referred to the cardinal points were N. o, E. o, S. 12, and W. 18. One day was calm.
The Greatest Pressure of the Wind in the month was $1+5$ lbs. on the square foot on December 13 and 26. The mean daily Horizontal Movement of the Air for the month was 41 I miles; the greatest daily value was 754 miles on December 14 ; and the least daily value was 173 miles on December 5 .
Rain (oin $\cdot 005$ or over) fell on 20 days in the month, amounting to $2^{\text {in }} \cdot 802$, as measured by gauge No. 6 partly sunk below the ground; being oin 975 greater than the average fall for the 65 years, $184 \mathrm{I}-1905$.

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records.

maxima.		minima.		maxima.		minima.		maxima.		minima.	
Greenwich Civil Time, 19 I2.	Reading.	Greenwich Civil Time, 1912.	Reading.								
January		January		May		May		September		September	
d $\quad \mathrm{h}$ m	in	m	in.	d h m	in.	d $\mathrm{h} \quad \mathrm{m}$	in.	m	in.	d h m	in.
1. 21. 50	30.299	5. 12. 55	29.315			3. 18. 45	29.791			2. 5. 20	29.673
5. 20. 45	29.438	6. 17. 10	28.628	8. 22. 45	30.174	11. 13.30	29.595	3. 9. 35	30.016	4. 10. 0	29.775
8. 3. 30	29.825	9. 1. 0	29.230	12. 0. 5	29.663	12. 2. 55	29.571	5. 8. 20	29.859	6. 5. 5	29.746
12. 10. 40	30'105	16. 7.0	29.577	12. 16. 35	29.693	12. 17. 10	29.607	7. 21. 35	30.057	8. 23.40	29.893
17. 21.5	29.753	18. 15. 55	29.671	13. 10. 15	30.007	15. 21. 0	29.281	9. II. 30	30.024	II. II. 40	29.879
19. IO. 5	29.988	20. 13. 5	29.809	19. 8. 45	29.867	22. 17. 50	29.393	1 3. 9. 25	$30 \cdot 275$	15. 3. 55	$30 \cdot 004$
21. 10. 20	29.930	24. 3. 45	29.316	25.7.40	30.176	30. 15.40	29.583	19.9.10	$30 \cdot 279$		
30. 0. 5	30.128			31. 10. 0	$29 \cdot 662$						
								October		October	
February		February		June		June				I. I. 0	$28 \cdot 837$
		2. 13.5	29.111 28.913			2. 8. 10	29.252	4. 10. 25	30.453	9. 3. 30	30.032
4. 11. ${ }_{\text {7. }}$	29.439 29.210	5. 21. 45	28.913	3. 22. 5	29.385	4. 18. 10	29.170	10. 9. 45	30.138	II. 14. 35	30.048
$\begin{array}{rrr}\text { 7. 9. } & 40 \\ \text { 10. 11. }\end{array}$	29.210 29.261	$\begin{array}{rrrr}\text { 8. } & 13 . & 35 \\ \text { II. } & 6 . & 0\end{array}$	28.843	9. 1. 0	29.808	II. 16. 10	29.513	12. 9. 10	$30 \cdot 133$	14. 7. 15	29.974
$\begin{array}{rrrr}10 . & 11 . & 5 \\ 15 . & 2 . & 5\end{array}$	29.261 29.977	$\begin{array}{rrr}11 . & 6 . & \\ \text { 19. } 23 . & 10\end{array}$	29.064 29.168	12. 20. 50	29.715	13. 15.5	29.631	15.9. 15	$30 \cdot 215$	17.0 .10	29731
22. II. 10	29.832	19. 23.10 23. 23.25	29.681 29.621	15.13. 10	29.733	16. 5. 55	29.516	18.7.40	$30 \cdot 163$	21. 23. 50	29.066
24. 11. 10	29.780	25. 3. 50	29.647	17. 13.5	29.870	18. 3. 55	29.780	22. 21. 30	29.326	24. 3. 40	$29^{1} 141$
26.8. 4^{0}	29.831	27. 2. 55	29.741	18.22. 55	29.873	19. 17. 15	29.614	27. 9. 40	29.580	28. 8. 20	29.312
27. 21.0	30.023	29. 4. 25	29.624	20. 22. 40	29.925	23. 3. 5	29.561	28. 14. 40	29.399	29.4.40	29.179
29. 21. 35	29.800	29. 4. 25	2962	$\begin{array}{rrr}22 . & 22 . & 25 \\ 27 . & 7 . & 50\end{array}$	29.836	25. 19. 0	29.563 29.592	29. 18. 5	29.445	3 I .0 .40	29115
- 31				27. 7. 5°	29'968	29. 15. 10	29.592				
March		March						November		November	
		March		July		July		I. 20. 50	30.235	5. 12. 20	29.634
		$\begin{array}{lrr}\text { 1. } & \text { 23. } & 10 \\ \text { 3. } & 0.45\end{array}$	29.392 29.200	5. 0. 20	30.095	7. 2. 40	29.687	7. 10. 25	$30 \cdot 222$	II. 14. 50	$29^{1} 132$
2. 4.4 .515	29.572 29.512	$\begin{array}{ll}\text { 3. } & \text { 5. } 45 \\ \text { 5. } & 30\end{array}$	29.200 28.919	9. 7. 4°	29.956	10. 13. 45	29.758	16. 10. 4°	30.015	18. 13.15	29.886
7. 23.0	29.809 29	8. 16. 30	28.919 29.453	II. II. 10	29.854	12. 18. 0	29.653	19. 8. 0	29.976	19. 16. 45	29.888
9. 12. 5	29.576	10. 5. 45	29.498	15.22. 30	29.966	19. 16. 30	29.642	22. 10. 30	$30 \cdot 204$	24. 4. 45	29.886
12. 11. 50	30. 149	15.15. 5	29.539	22. 8. 50	29.791	25. $4 \cdot 55$	29.658	24. 17. 50	30.040	26. 18. 30	29.030
16. 9. 20	29.683	18. 17. 45	28.600	26. 8. 10	29.769 29.668	28. 2. 30	293335	28. 10. 50	29.646	29. 10. 30	28.966
20. 21. 35	29.339	21. 23. 25	28.743		29						
23.6. 10	29.565	24. 1. 50	29.209					December		December	
26. 9. 15	30.096	28. 4. 50	29.860	August		ugus		I. IO. IO	29.666	I. 19. 55	$29^{\circ} 412$
29. 10. 0	30.079					I. 1. 15	29.230	3. II. I5	30.242	6. I. 45	29.601.
				3. 7. 40	29.790	4. 16. 5	29.352	8. I9. 40	30.044.	12. 0.5	29.322
April		April		5. 10. 50	29.605	6. 13.5	29.171	13. 9. 20	29.879	14. 5. 30	29.666
				9. 21.15	29.696	10. 12. 20	29.610	I5. II. 15	30.030	16. 4. 15	29.692
		I. 0.40	29.222	11. 21. 0	29.927	14. 15. 5	29.488	16. 10. 4°	29.786	18. 10. 50	29.327
3. 10. 5	30.289	5. 8. 10	29.946	16. 20. 35	29.862	20.4. 0	29.356	21. 0. 15	29.897	24. 14. 45	29.581
7. 9. 20	$30 \cdot 115$	8. 16. 45	29.346	21. 12. 55	29.854	22. 1. 45	29.718	25. 4. 0	29.815	25.15.10	29.473
9. 17. 0	29.654	10.4. 25	29.398	22. 19. 55	29.942	24. 16. 0	29.394	25. 23. 30	29.725	26. 16. 35	28.895
13. 0.15	30.295	18. 17. 40	29.713	25.9.10	29.522	26. 16. 20	29.075	27. 10. 10	29.588	28. 0. 10	29.393
$\begin{array}{rrr}\text { 23. } & 7 . & 30 \\ \text { 30. } & 10 . & 5\end{array}$	30.224 30.124	27. 16. 45	29.620	28. IO. 15	29.711	29. 10. 50	29.320	28. 19. 20	29.513	29. 4. 55	29.412
30. 10. 5	30.124			31. 12. 40	29.953			30. 21. 20	30'157		

The readings in the above table are accurate, but the times are oceasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading withont sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period.
The time is expressed in civil reckoning, commencing at midnight and counting from 0^{h} to 24^{h}.
The height of the barometer cistern above mean sea level is 159 feet : no correction has been applied to the readings to reduce to sea level.

Highest and Lowest Readings of the Barometer in each Month for the Year 19 I 2.

	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	in.											
Highest.	30.299	30.023	$30^{\circ} 149$	30.295	30176	29.968	30.095	29.953	30.279	30.453	30.235	30.242
Lowest Range.	28.628 1.671	28.843 1.180	28.600 1.549	29.222	29.281	29.170	29.255	29.075	28.844	28.837	28.966	28.895
	1.671	1'180	1•549	1.073	$0 \cdot 895$	0.798	0.840	0.878	1.435	1.616	1.269	I•347

The highest reading in the year was $3^{\circ{ }^{\text {in }} .453 \text { on Octolier } 4 .}$
The range of reading in the year was $I^{\text {in }} 853$.

Monthly Results of Meteorological Elements for the Year 1912.

[^0]| $\begin{aligned} & \text { Hour, } \\ & \begin{array}{c} \text { Heanwich } \\ \text { Civil Time. } \end{array} \end{aligned}$ | 1912. | | | | | | | | | | | | ¢ $\begin{gathered}\text { Yearly } \\ \text { Means. }\end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | January. | February. | March. | April. | May. | June. | July. | August. | September. | October. | November. | December. | |
| Midnight | | $29^{\circ} ; 500$ | | $22^{\circ} 966$ | $\operatorname{in}_{29: 816}$ | 29.658 | 29.759 | 29.572 | 29.995 | 29.724 | in. | | in. ${ }^{\text {a }}$ |
| $\mathbf{1}^{\text {i }}$ | 29.771 | 29.495 | 29.544 | 29.962 | 29.812 | 29.656 | 29.755 | 29.566 | 29.992 | 29.723 | 29.822 | 29.746 | 29.737 |
| 2 | 29.772 | 29.494 | 29.539 | 29.958 | 29.808 | 29.650 | 29.751 | 29.562 | 29.988 | 29.717 | 29.818 | 29.747 | 29.734 |
| 3 | $2{ }^{2} 769$ | 29.488 | 29.536 | 29.954 | 29.804 | 29.643 | 29.747 | 29.559 | 29.982 | 29.716 | 29.813 | 29.747 | 29.730 |
| 4 | 29761 | 29.484 | 29.535 | 29.953 | 29.798 | 29.643 | 29.747 | 29.557 | 29.976 | ${ }^{2} 9.720$ | 29.807 | 29.745 | 29.727 |
| 5 | 29.757 | 29.485 | 29×539 | 29.956 | 29.802 | 29.644 | 29.749 | 29.558 | 29.973 | ${ }^{29} 9724$ | 29.804 | 29.745 | 29.728 |
| 6 | 29755 | 29.483 | 29.543 | 29.964 | 29.804 | 29.650 | 29.752 | 29.563 | 29.976 | 29.728 | 29.804 | 29.749 | ${ }^{29} 731$ |
| 7 | 29.759 | 29.487 | 29.547 | 29.971 | 29.804 | 29.653 | 29755 | 29.569 | 29.979 | 29.739 | 29.806 | 29.753 | 29.735 |
| 8 | ${ }^{29} 766$ | 29.493 | 29.552 | 29.974 | 29.805 | 29.655 | 29.757 | 29.573 | 29.984 | ${ }^{29} 9752$ | 29.814 29 | 29.759 | 29.740 |
| | 29.773 | 29.499 | 29.555 | 29.978 | 29.805 | 29.654 | ${ }^{29} 7756$ | 29.577 | 29.986 | 29.760 | 29.818 29 | 29.765 | 29.744 |
| 10 | 29.775 | 29.504 | 29.556 | 29.979 | 29.803 | 29.654 | 29.753 | 29.576 | 29.986 | 29.764 | 29.820 | 29.772 | 29.745 |
| 11 | 29.772 2976 | 29.507 | 29.555 | ${ }^{29} 979$ | 29.800 | 29.653 | 29.752 | 29.575 | 29.982 | 29.764 | 29.818 | ${ }^{29} 767$ | ${ }^{29} 7743$ |
| Noon | 29.761 | 29.505 | 29.548 | 29.971 | 29.795 | 29.651 | ${ }^{29} 9749$ | 29.571 | 29.980 | 29.758 | 29.807 | 29.755 | ${ }^{29} 7388$ |
| $13^{\text {h }}$ | 29750 | 29.498 | 29.539 | 29.966 | 29.791 | 29.649 | 29.746 | 29.569 | 29.975 | 29.753 | 29.800 | 29.743 | 29.732 |
| 14 | 29.747 | 29.490 | 29.529 | 29.960 | 29.788 | 29.647 | 29.742 | 29.569 | 29.971 | 29.751 | 29.796 | ${ }^{29} 736$ | 29.727 |
| 15 | 29.748 | 29490 | 29.521 | 29.954 | 29.782 | 29.644 | 29.737 | 29.569 | 29.966 | 29.751 | 29.796 | 29.731 | ${ }^{29} 727$ |
| 16 | 29751 | 29.489 | 29.517 | 29.951 | 29.777 | 29.643 | 29731 | 29.568 | 29.963 | 29.750 | 29.797 | 29.735 | 29.723 |
| 17 | 29.755 | 29.490 | 29.518 | 29.951 | 29.775 | 29.641 | 29.726 | 29.569 | 29.962 | 29.754 | 29.802 | 29.739 | ${ }^{29} 7724$ |
| 18 | 29.756 | 29.496 | 29.523 | 29.958 | 29.777 | 29.644 | 29.728 | 29.572 | 29.964 | 29.759 | 29.806 | 29.742 | ${ }^{29} 727$ |
| 19 | 29759 | 29.501 | 29.528 | 29.966 | 29.780 | 29.647 | 29.732 | 29.580 | 29.969 | 29.762 | 29.809 | 29.746 | 29.732 |
| 20 | 29.760 | 29.501 | 29.530 | 29.980 | 29.788 | 29.651 | 29739 | 29.589 | 29.970 | 29.763 | 29.810 | 29.748 | 29.736 |
| 21 | 29.762 | 29.503 | 29.532 | 29.987 | 29.797 | 29.662 | 29.749 | 29.595 | 29.969 | 29.762 | 29.813 | 29.754 | 29.740 |
| 22 | ${ }^{2} 29.758$ | 29.503 | 29.533 | 29.992 | 29.799 | 29.662 | 29.751 | 29.596 | 29.966 | 29760 | 29.813 | 29756 | 29.741 |
| 23 | ${ }^{29} 9761$ | 29.501 | 29.532 | 29.993 | 29.801 | 29.661 | 29.750 | 29.596 | 29.962 | 29.758 | 29.813 | 29759 | 29.741 |
| 24 | 29.758 | 29.501 | 29.530 | 29.995 | 29.801 | 29.660 | 29.747 | 29.593 | 29.960 | 29.758 | 29.813 | 29758 | $29^{\prime} 740$ |
| | ${ }^{29} 761$ | 29.495 | 29.537 | ${ }^{29.967}$ | 29796 | 29.651 | 29.746 | 29.573 | 29.976 | 29.746 | 29.810 | 29.749 | 29.734 |
| $\stackrel{E}{4} \quad 1^{\text {h }} .24^{\mathrm{h}}$. | 29.761 | 29.495 | 29.537 | 29.969 | 29796 | 29.651 | 29.746 | 29.574 | 29*974 | 29748 | 29.809 | 29.750 | 29.734 |
| $\left.\begin{array}{c}\text { Number or Days } \\ \text { employed. }\end{array}\right\}$ | 31 | 29 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | ... |

Monthly Mean Temperature of the Air at every Hour of the Day, as deduced from the Photographic Records.

$\begin{aligned} & \text { Hour, } \\ & \text { Greenwich } \\ & \text { Civil Time. } \end{aligned}$	1912.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{\text { a }}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$40^{\circ} \mathrm{O}$	$\stackrel{\circ}{1} 9$	$43^{\circ} \cdot 8$	$43^{\circ} \cdot 6$	$50^{\circ} \cdot 2$	$52 \cdot 9$	$57^{\circ} \cdot 8$	$53^{\circ} \cdot 6$	$50^{\circ} \mathrm{I}$	$44^{\circ} 9$	$42^{\circ} 9$	$45^{\circ} \cdot 5$	$47^{\circ} 3$
$\mathrm{I}^{\text {h }}$	$39^{\circ} 7$	$41^{1} 6$	43.5	$42 \cdot 9$	49.6	$52 \cdot 1$	57.2	53.2	$49^{\circ} 5$	$44^{\circ} 2$	$42 \cdot 5$	45°	$46 \cdot 8$
2	$39^{\circ} 4$	$41 \cdot 3$	$43 \cdot 1$	$42 \cdot 3$	49°	51.5	$56 \cdot 5$	52.7	$49 \cdot 1$	$43 \cdot 6$	$42 \cdot 2$	$44^{\prime} 9$	$46 \cdot 3$
3	39^{1}	$41^{\circ} \mathrm{O}$	$42 \cdot 6$	41.6	$48 \cdot 4$	51.0	55.9	52.1	$48 \cdot 5$	$43^{\circ} \mathrm{O}$	$41^{\circ} 9$	44^{7}	$45 \cdot 8$
4	39°	$40 \cdot 7$	$42 \cdot 3$	$41^{\circ} \mathrm{O}$	$48 \cdot 1$	$50 \cdot 8$	55.5	51.4	$48 \cdot 1$	$42 \cdot 5$	$41 \cdot 6$	44.5	$45 \cdot 5$
5	$38 \cdot 9$	4×3	$42 \cdot 0$	$40 \cdot 5$	$48 \cdot 1$	514	55.6	51.2	$48 \cdot 0$	41.8	414	44.4	$45 \cdot 3$
6	$38 \cdot 6$	403	$42 \cdot 2$	$40 \cdot 9$	49.4	53.1	57.1	519	$48 \cdot 4$	$41 \cdot 1$	413	443	45.7
7	38.4	$40 \cdot 3$	$4^{2} \cdot 8$	$42 \cdot 9$	$52 \cdot 0$	55.2	59.3	53.5	$49 \cdot 6$	41.6	41.6	44^{2}	$46 \cdot 8$
8	$38 \cdot 6$	4 I -	44.5	$46 \cdot 2$	55°	58.0	62.4	56.1	$52 \cdot 0$	43.3	$4{ }^{2} \cdot 2$	$44 \cdot 5$	$48 \cdot 7$
9	38.9	$42 \cdot 3$	$46 \cdot 2$	$49^{\circ} 9$	$58 \cdot 2$	$60 \cdot 7$	65.7	58.5	54.7	$46 \cdot 0$	$43 \cdot 3$	$45^{1} 1$	$50 \cdot 8$
10	$39^{\circ} 7$	$43 \cdot 6$	47.6	$52 \cdot 3$	$60 \cdot 0$	$62 \cdot 1$	67.8	$60 \cdot 4$	$56 \cdot 3$	$48 \cdot 5$	44.4	$46 \cdot 1$	52.4
11	$40 \cdot 7$	$45^{\circ} 2$	$48 \cdot 8$	54.5	61.6	${ }_{6} 3 \cdot 8$	69.1	61.4	57.5	51.5	$45 \cdot 4$	$46 \cdot 8$	53.9
Noon	$41 \cdot 7$	$46 \cdot 2$	49.7	55.5	62.8	64.5	$70 \cdot 1$	62.2	58.4	54°	$46 \cdot 4$	$47 \cdot 4$	54.9
$13^{\text {h }}$	$42 \cdot 2$	$46 \cdot 6$	$50 \cdot 2$	569	63.0	64.7	$70 \cdot 8$	62.8	$58 \cdot 6$	$55^{\circ} \mathrm{I}$	$46 \cdot 8$	47.9	55.5
14	42.4	$46 \cdot 8$	50.4	$57 \cdot 2$	63.3	65.6	710	$62 \cdot 8$	58.9	55.5	$46 \cdot 8$	$47 \cdot 8$	55.7
15	423	$4 \cdot 6$	50.3	57.3	$63 \cdot 2$	$65 \cdot 8$	$70 \cdot 2$	62.4	58.5	54.7	$46 \cdot 4$	$47 \cdot 7$	55.5
16	$42^{\circ} \mathrm{O}$	$4^{6 \cdot 2}$	$49 \cdot 6$	56.2	62.3	64.4	69.9	613	57.5	53.3	$46 \cdot$	$47^{\circ} \mathrm{O}$	54.6
17	$41 \cdot 4$	45.3	48.5	54.6	61.0	63.3	69.3	$60 \cdot 1$	$56 \cdot 2$	51.4	$45 \cdot 2$	$46 \cdot 5$	53.6
18	41.1	$44 \cdot 6$	4.74	$52 \cdot 7$	59.3	$62 \cdot 1$	67%	58.9	54.8	497	$44^{\circ} 8$	$46 \cdot 4$	52.5
19	$40 \cdot 8$	$43 \cdot 9$	$46 \cdot 0$	$50 \cdot 3$	57.3	$60^{\circ} 2$	$65 \cdot 5$	57.3	$53 \cdot 6$	$48 \cdot 2$	44.4	$46 \cdot 3$	51.2
20	$40 \cdot 5$	43.5	$45 \cdot 3$	48.4	55.5	$58 \cdot 1$	63.3	$56 \cdot 1$	$52 \cdot 8$	$47 \cdot 2$	$44^{\text {I }}$	463	$50 \cdot 1$
21	40.1	$43 \cdot 4$	$44 \cdot 7$	$46 \cdot 8$	53.9	$56 \cdot 3$	$6 \mathrm{~F} \cdot 6$	55.3	52.1	$46 \cdot 4$	$43 \cdot 7$	$46 \cdot 3$	$49^{\circ} 2$
22	$39^{\circ} 9$	$43 \cdot 2$	$44^{\prime 2}$	45.5	52.6	54.9	$60 \cdot 2$	54.7	51.6	$45 \cdot 6$	$43 \cdot 3$	$46 \cdot 1$	$48 \cdot 5$
23	397	$42 \cdot 9$	43.9	44%	514	53.8	59.1	54°	50.8	$44^{\cdot 8}$	$42 \cdot 8$	$46 \cdot$	$47 \cdot 8$
24	39.5	$42 \cdot 4$	$43 \cdot 6$	43.7	$50 \cdot 5$	52.9	$58 \cdot 0$	53.5	$50 \cdot 2$	$44^{\circ} 4$	$42 \cdot 6$	$45 \cdot 8$	$47 \cdot 3$
$\stackrel{\infty}{\infty} 1^{\text {b }} \cdot-23^{\mathrm{h}}$.	$40 \cdot 2$	$43 \cdot 3$	45^{8}	48.5	$55 \cdot 6$	$58 \cdot 2$	63.3	$56 \cdot 8$	$53^{1} 1$	47.4	$43 \cdot 8$	$45^{\circ} 9$	$50 \cdot 2$
$=1 \mathrm{I}^{\mathrm{h} .-24^{\mathrm{h}} \text {. }}$	$40 \cdot 2$	433	$45 \cdot 8$	$48 \cdot 5$	557	58.2	63.3	$56 \cdot 8$	$53^{\circ} 2$	47×4	$43 \cdot 8$	$45^{\circ} 9$	$50 \cdot 2$
	31	29	31	30	31	30	31	31	30	31	30	31	...

Monthly Mean Degree of Humidity（Saturation＝100）at every Hour of the Day，as deduced by Glaisher＇s Tables from the corresponding Air and Evaporation Temperatures．

$\begin{aligned} & \text { Hour, } \\ & \text { Greenwich } \\ & \text { Civil Time. } \end{aligned}$	1912.												$\underset{\substack{\text { Yearly } \\ \text { Meaus．}}}{\text { a }}$
	January．	February．	Marcli．	April．	May．	June．	July．	August．	September．	October．	November．	December．	
Midnight	92	91	87	82	86	90	88	89	88	92	87	88	88
$\mathbf{I}^{\text {b }}$	92	91	88	84	88	90	89	88	89	93	88	88	89
2	92	91	88	84	89	91	90	89	88	94	89	90	90
3	93.	90	89	85	91	91	90	88	89	94	89	89	90
4	92	90	89	85	92	92	91	90	89	94	90	89	90
5	91	93	89	87	93	91	91	92	89	94	91	88	91
6	92	93	89	86	91	87	88	91	89	94	91	86	90
7	94	94	89	84	84	84	85	89	89	94	90	88	89
8	93	90	87	79	77	76	77	83	84	92	90	89	85
9	93	87	83	72	70	71	70	77	77	90	88	89	81
10	90	85	78	66	66	68	64	71	73	85	85	86	76
11	90	82	76	58	63	63	62	69	69	79	83	85	73
Noon	88	80	75	56	58	61	60	67	66	72	81	83	71
$13^{\text {b }}$	86	80	74	53	59	60	58	66	66	68	80	82	69
14	86	79	74	53	58	57	56	65	64	67	81	83	69
15	86	80	75	53	56	57	59	66	65	69	82	84	69
16	86	81	75	55	58	60	59	69	68	72	83	85	71
17	89	84	78	57	60	63	59	72	71	77	84	87	73
18	88	85	81	62	65	66	63	75	75	83	86	87	76
19	90	86	85	67	69	71	68	80	79	87	84	87	79
20	90	88	86	71	74	76	75	83	82	90	84	88	82
21	92	88	87	75.	77	81	79	85	84	92	86	87	84
22	91	89	87	78	82	85	83	87	85	93	86	88	86
23	92	89	87	80	85	89	87	88	88	93	89	89	88
24	92	90	87	82	87	90	88	88	88	91	87	88	88
$\int^{0^{\mathrm{b}} \cdot-23^{\mathrm{b}} \text { ．}}$	90	87	83	71	75	76	75	80	79	86	86	87	81
（ $1^{\text {b }} .-24^{\text {b }}$ ．	90	87	83	71	75	76	75	80	79	86	86	87	8 I

Total Amount of Sunshine registered in each Hour of the Day in each Month，as derived from the Records of the Campbell－Stokes Self－Registering Instrument for the Year igiz．

Month， 19г2．	Registered Duration of Sunshine in the Hour ending																			
	云	\％	$\dot{4}$	$\dot{\text { ¢ }}$	\％	¢	$\dot{\square}$	妾	5	$\stackrel{i}{*}$	$\stackrel{3}{6}$	\％	$\dot{5}$	㐫．	ふ்	\％				
January	h \cdots	h \cdots	h	¢	h 0 0.1	$\stackrel{\mathrm{h}}{1.9}$	$\begin{gathered} \mathrm{h} \\ 4 \cdot 5 \end{gathered}$	$\begin{gathered} \mathrm{h} \\ 5^{\circ} 7 \end{gathered}$	$\begin{aligned} & \mathrm{h} \\ & 5^{\circ} \mathrm{O} \end{aligned}$	$\begin{gathered} \mathrm{h} \\ 4^{\prime} 9 \end{gathered}$	$\begin{aligned} & \mathrm{h} \\ & 3 \cdot 7 \end{aligned}$	$\underset{1}{\mathrm{~h}} \cdot 8$	h	h .	h .	h \cdots	${ }_{27}{ }^{\text {h }}$ ． 6	$\stackrel{h}{h^{8} \cdot 2}$	$0 \cdot 107$	18
February．．．．．．	\ldots	\ldots	\cdots	0.2	2.8	44	$5 \cdot 5$	$6 \cdot 2$	$5 \cdot 4$	6.4	3.9	3.3	0.4	\ldots	\cdots	\ldots	38.5	286.9	0.134	26
March．．	\cdots	\ldots	17	57	6.9	$8 \cdot 9$	11＇1	11.1	11.3	12.2	10.0	8.0	$4 \cdot 6$	$0 \cdot 3$	\ldots	\ldots	91.8	$366 \cdot 8$	0.250	37
April	\ldots	3.5	14＊1	15.5	17.3	177	19.8	$20 \cdot 6$	$21 \cdot 1$	21.4	19.9	17.9	18.1	13.4	3.8	\ldots	224.1	414.3	$0 \cdot 541$	48
May ．．．．．．．．．．．	1.3	8.4	1111	14.3	15%	173	17.2	17.1	$15^{\circ} 2$	14.4	144	12.8	11.8	119	$7 \cdot 2$	$1 \cdot 1$	190.8	$482 \cdot 1$	$0 \cdot 396$	57
June．．．	$4 \cdot 8$	11.2	$15^{\prime} 1$	14.8	15°	159	16.4	15%	14.8	$14 * 5$	17.2	16.2	13.5	15.5	14.5	$4 \cdot 6$	218.8	$494 \cdot 5$	$0 \cdot 442$	62
July ．．．．．．．．．	$0 \cdot 1$	3.3	7.2	12.4	14.3	153	13.6	13.9	137	$15{ }^{\prime} 5$	12 I	13.6	14.6	10.8	5.2	\ldots	165.6	$497 \cdot 3$	$0 \cdot 333$	60
August ．	\ldots	$0 \cdot 4$	4.5	12.4	14.6	14.8	12.7	11.8	9.5	9.2	$9 \cdot 4$	$6 \cdot 3$	5.8	$2 \cdot 7$	$0 \cdot 2$	．．．	114.3	$449 \cdot 8$	$0 \cdot 254$	52
September．．	．．．	．．．	1.6	77	117	11.5	124	13.6	139	13.2	13.7	11.5	$7 \cdot 6$	$0 \cdot 4$	\ldots	\ldots	118.8	$378 \cdot 1$	0.314	41
October	\ldots	\ldots	．．．	2.2	8.2	14＊1	$16 \cdot 0$	19.7	17.0	18.0	14.5	10.8	$2 \cdot 3$	．．．	．．．	\cdots	122.8	329.6	0.373	30
November	\ldots	\ldots	．．．	．．．	I＇I	3.7	4.5	$4 \cdot 1$	44	4.9	3.1	$\bigcirc \cdot 9$	\ldots	\ldots	\ldots	\ldots	26.7	265.3	$0 \cdot 010$	20
December．．．	\cdots	\ldots	\cdots	\cdots	\ldots	I 9	37	$6 \cdot 4$	7×1	$6 \cdot 7$	$4^{\circ} \mathrm{O}$	0.2	\ldots	．．	\ldots	\ldots	30.0	$243 \cdot 8$	0.123	16
For the Year	6.2	$26 \cdot 8$	553	85.2	1073	126.8	137.4	145.6	138.4	1413	1259	103.3	$78 \cdot 7$	55°	30．9	57	1369.8	$4466 \cdot 7$	$0 \cdot 307$	．．．
The hours are reckoned from apparent midnight．																				

$\begin{gathered} \text { Days } \\ \text { of the } \\ \text { Month. } \end{gathered}$	Dry-Bulb Thermometers, 4 ft . above the Ground						Wet-Bulb Thermometer, 4 ft . above the Ground.				$\begin{gathered} \text { Days } \\ \text { of the } \\ \text { Month. } \end{gathered}$	Dry-Bulb 'I'hermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.			
	$\xrightarrow[\substack{\text { Maxi. } \\ \text { mum. }}]{ }$	$\begin{gathered} \text { Mini. } \\ \text { mum. } \end{gathered}$	$9^{\text {b }}$	Noon.	$\mathrm{I}^{\text {b }}$	$2 \mathrm{I}^{\text {h }}$	$9^{\text {b }}$		$15^{\text {h }}$	$2 \mathrm{r}^{\text {h }}$		xi-	Mini-	$\mathrm{g}^{\text {h }}$	Noon.	${ }^{15}{ }^{\text {b }}$	$21^{\text {h }}$	$9^{\text {b }}$	Noon.	${ }^{15}$	$21^{\text {b }}$
January.											March.										
${ }_{\text {d }}^{\text {d }}$	49	45.2	45	47.6				47°	$48 \cdot 8$	O	${ }_{\text {d }}^{\text {d }}$	$52^{\circ} \mathrm{O}$	$46^{\circ} \mathrm{I}$	48°	$49 \cdot 5$	51.2	$50^{\circ} 6$	$46 \cdot 8$	$47^{\circ} 7$	$48^{\circ} \cdot 7$	$48^{8 \cdot 2}$
2	477	$40 \cdot 9$	$42^{\circ} 2$	$46 \cdot 9$	46.7	$46 \cdot 2$	41.5	45°	44.7	44°		$56 \cdot 3$	$46 \cdot 9$	51.0	53.0	$55 \cdot 6$	50.7	$47 \cdot 8$	493	$49 \cdot 9$	$48 \cdot$
3	49.6	$45^{\circ} \mathrm{I}$	$47 \cdot 3$	$48 \cdot 6$	49^{-2}	48.4	$45^{\circ} \mathrm{I}$	46.4	$46 \cdot 9$	47^{2}	3	53.6	42.4	$48 \cdot 6$	48.7	49.1	$42 \cdot 9$	44.5	45°	45°	41.4
4	$50 \cdot 0$	47^{1}	$47 \cdot 7$	$48 \cdot 4$	48.6	$49 \cdot 9$	$46 \cdot 2$	$47 \cdot 4$	$48 \cdot 3$	$49 \cdot 1$	4	51.1 53.1	40.4	$45^{\circ} 2$	$45^{\circ} 6$	$47 \cdot 6$ $50 \cdot 4$	$46 \cdot 4$	$43 \cdot 1$ 44°	44.9 44.1	$46 \cdot 5$ $46 \cdot 2$	42.9 40.8
5	50.4	$38 \cdot \circ$	44.7	$44 \cdot 7$	$42 \cdot 8$	38.1	44.1	$41^{\circ} \mathrm{O}$	38.9	$36 \cdot 1$	5	53.1	$4{ }^{4} 16$	$47^{\circ} \mathrm{O}$	$50 \cdot 7$ 46.2	$50 \cdot 4$ 49	$42 \cdot 9$ $42 \cdot 3$	$44 \cdot 2$ 39.7	44.1 $42 \cdot 5$	$46 \cdot 2$ 41.8	$40 \cdot 8$ 39.0
6	51.3	$37^{\circ} \mathrm{I}$	38.8	42.4	45°	$50 \cdot 7$	$38 \cdot 3$ 37.2	417 39	45^{\prime} 38 38.3	$47 \cdot 9$ $33 \cdot 2$	6	$50 \cdot 0$ $52 \cdot 1$	$38 \cdot 1$ 356	41.8 41.5	$46 \cdot 2$ 49.6	49 48 48	42.3 39.9	$39 \cdot 7$ 38.8	42.5 42.	41.8 418	39° 37°
7	51°	35°	38.9	$41^{\circ} 9$	$40 \cdot 0$ 38.5	35.4 38.7	37.2 20.8	39.4 33.3	$38 \cdot 3$ $36 \cdot 2$	$33 \cdot 2$ $38 \cdot 1$	8	52.1 48.9	35° 34	41.5 $44^{\circ} \mathrm{O}$	49° 47°	$48 \cdot 0$ 43	39.9 42.9	$38 \cdot 8$ 415	$42 \cdot$ 43.5	$41 \cdot 8$ $42 \cdot 5$	$37^{\circ} \mathrm{O}$ $4^{\circ} \mathrm{I}$
8	39.0 51.0	29.1 38.3	$30 \cdot 2$ 46.6	34.6 48.8	$38 \cdot 5$ 50	$38 \cdot 7$ 43.8	$29 \cdot 8$ 44.8	33.3 46.8	$36 \cdot 2$ $46 \cdot 3$	$38 \cdot 1$ 41.9	8	$48 \cdot 9$ 54	34° 39°	$44^{\circ} \mathrm{O}$ 48	47% 50.6	$43 \cdot 6$ 52.0	42.9 43.2	41.5 46.1 4	43.5 46.9	42.5 46.5	$42 \cdot 1$ $42 \cdot 3$ 4
10	51	$35^{\prime} \mathrm{I}$	$36 \cdot 1$	48.0	$46 \cdot 8$	$44^{\circ} 2$	36.0	$46 \cdot 2$	$45^{\circ} \mathrm{I}$	$43 \cdot 4$	10	53°	$41^{1} 1$	$45 \cdot 4$	51.6	50.8	$43 \cdot 6$	44^{2}	$47 \cdot 3$	47.7	$42 \cdot 8$
11	$4{ }^{6} 7$	37.9	$42 \cdot 3$	$45 \cdot 5$	$43 \cdot 8$	$4^{2 \cdot 2}$	$40 \cdot 9$	$42 \cdot 8$	$42 \cdot 7$	$4{ }^{1} 9$	11	$49^{\prime} 7$	$35^{\circ} \mathrm{I}$	$40 \cdot 6$	44.3	$47 \cdot 7$	$39^{\circ} 7$	$40 \cdot 4$	$43 \cdot 3$	$45 \cdot 3$	397
12	47°	$38 \cdot 5$	$40 \cdot 6$	43.4	44.6	42.0	$40 \cdot 6$	$42 \cdot 8$	42.7	41.8	12	50.0	$38 \cdot 1$	38.7	42	49°	42 51 1.3	$38 \cdot 7$ $46 \cdot 8$	$41 \cdot 1$ 48.6	50°	-
13	47.2	$39^{\prime} \mathrm{I}$	43.2	$45 \cdot 8$	$46 \cdot 5$	$43 \cdot 5$	$43 \cdot 0$	$45 \cdot 4$	$45^{\circ} 2$	$42 \cdot 9$	13	51.8	$4{ }^{2 \cdot}$	47.7	50	$51 \cdot 5$		$46 \cdot 8$	48.6	-	. 4
14	$45^{\circ} 6$	$43^{1} 1$	$43 \cdot 8$	44'I	$44 \cdot 4$	44. 1	$4{ }^{1} 7$	41.9	42.4	43°	14	$60 \cdot 6$	48.9	49.6	$52 \cdot 6$	57.6	$49^{\circ} \mathrm{O}$	$48 \cdot 5$	$50 \cdot 8$	53.0	$48 \cdot 1$
15	44.9	$42 \cdot 6$	$43^{\circ} \mathrm{O}$	43.9	$43 \cdot 4$	$43 \cdot 8$	$42 \cdot 2$	$43 \cdot 3$	42.9	$43 \cdot 4$	15	52.1	397	$49^{\circ} 6$	$45 \cdot 6$	$45 \cdot 6$	397	$46 \cdot 9$ 38.4	$4{ }^{4}{ }^{\circ} \mathrm{7}$	43.9 42	$37 \cdot 3$ $42 \cdot 7$
16	44^{1}	$41^{\circ} \mathrm{O}$	$41^{\circ} 8$	$42 \cdot 9$	$43 \cdot 6$	$4{ }^{1} 5$	41'1	$42 \cdot 1$	$42 \cdot 1$	$4 \cdot 1$ 1	16	52.0	33.5	41.1	47.9 $46 \cdot 5$	$47^{6} 6$	43.4 43.7	38.4 43.4	$4^{42}{ }^{\circ} \mathrm{O}$	$42 \cdot 3$ 45	$42 \cdot 7$ $43 \cdot 1$ 1
17	$4{ }^{1} 6$	31.4	$35 \cdot 6$	34.7	32.4	$3{ }^{1} 7$	34.9	33.4	32.0	315	17 18	47% 47	43.0 36.7	44.9 43.8	$46 \cdot 5$ 43	$46 \cdot 0$ 44	$43 \cdot 7$ 42 2	$4{ }_{4} 4.4$	$4{ }^{1} 16$	45°	43.1 42.
18	$42 \cdot 9$	317	$32 \cdot 6$	33.2	$36 \cdot 1$	38.4	32.1	$32 \cdot 8$	$35 \cdot 8$ 41.2	37.4 $40 \cdot 8$	18	47.2 52.0	$36 \cdot 7$ 35.3	$43 \cdot 8$ 39.7	$43 \cdot 3$ 45	44.7 46.6	42 $35^{\circ} 7$	48.5	41.8	$4{ }^{4} 4$	42.
19	$42 \cdot 0$	33°	$34^{6} 6$	$40 \cdot 6$	$41 \cdot 6$ 46.6	$40^{\circ} 9$	34.3 42.0	$39 \cdot 8$ 43.6	412 $44^{\circ} 5$	$40 \cdot 8$ $42 \cdot 7$	18 20	52.0 49.4	35.3 33.9	39.7 42.6	45	44	37.9	38.8	$40 \cdot 3$	40	$35 \cdot 3$ $36 \cdot 1$
20	48.4 45.0	$40 \cdot 9$ $40 \cdot 2$	$42 \cdot 3$ $43 \cdot 1$	44.9 42	$46 \cdot 6$ 41.9	$42 \cdot 9$ $40 \cdot 5$	$42 \cdot$ $42 \cdot$ 1	$43 \cdot 6$ $42 \cdot 5$	44.5 4.8	$42 \cdot 7$ $40 \cdot 0$	20	49.4 $55^{\circ} \mathrm{I}$	33.9 31.3	$42 \cdot 6$ 44.3	46. 5	44.4 49	44.6	$43 \cdot 8$	49.9	$46 \cdot 4$	$43 \cdot 6$
21	$45 \cdot 0$ $41 \cdot 1$	$40 \cdot 2$ $35 \cdot 6$	43.1 37.6	427 39	$41^{\circ} 9$ $39 \cdot 0$	$40 \cdot 5$ 38.6	$42 \cdot 8$ 37	$42 \cdot 5$ 39.4	41.8 38 8	$40 \cdot 0$ 38.3	21	$55 \cdot 1$ 52.1	$31 \cdot 3$ $43 \cdot 1$	443 44 4	548	$\stackrel{49}{ }{ }^{1} 1$	44.9	43.2	$45^{\circ} 4$	$46 \cdot 7$	$43 \cdot 3$
23	41	${ }^{3} 8.1$	$41 \cdot 1$	419	$41^{1} 6$	414	$40 \cdot 8$	417	41.4	$40 \cdot 8$	23	47.9	$35^{\circ} 7$	423	$44 \cdot 7$	44.7	$44^{\circ} 8$	$40 \cdot 1$	$43^{\circ} 9$	$44^{1} 1$	$44^{\circ} 4$
24	$48 \cdot 0$	37.4	38	$45 \cdot 8$	45.6	$44^{\circ} \mathrm{O}$	38.0	44.1	42.9	$43 \cdot 8$	24	57.2	$44^{1} 1$	51.2	54.5	$55^{\circ} 8$	$51 \cdot 1$ 51.6	47.5	$49^{\circ} \mathrm{I}$	49°	49.5
25	44.9	$38 \cdot 1$	38.6	38.5	38.6	$38 \cdot 3$	38.6	38.0	${ }^{38 \cdot 1}$	$38 \cdot 1$	25	61.9	$50 \cdot 7$	54.8	59°	55.9	$51 \cdot 6$ 50.6	53° 47 $7^{\circ} \mathrm{I}$	$55^{\circ} 5$	54.0 52.7	$50 \cdot 1$ 48.8
26	$40^{\prime 2}$	$34 * 9$	38.2	$39 \cdot 6$	$39^{\circ} 6$	34.9	$36 \cdot 8$	37.2	37.5	33.5	26	61.8 $60 \cdot 0$	$49 \cdot 2$ $48 \cdot 1$	52.5 50.6	56	59.5 48.5	50.6	47.1 46.9	49.4 49.2	52.7 50.5	$45 \cdot 8$
27	38	29.9	$34 \cdot 6$	37.6	$35 \cdot 1$	$29^{\circ} 9$	31.5	33.9	31.5	28.9 2.8	27	$60 \cdot 0$ 59 9^{\prime}	$48 \cdot 1$ 47 4	50.6	56.6	$48 \cdot 5$ 57	$4{ }^{4 \cdot 8}$	46.9 50.6		50.5 53.8	$45 \cdot 8$
28	37	$23^{\circ} \mathrm{O}$	$26 \cdot 3$	$35^{\circ} \mathrm{2}$	$36 \cdot 5$	27.2	25.7	$3{ }^{1 \cdot 6}$	315 3.6	$25 \cdot 8$ 26.0	28	59.1 54.9	$47 \cdot 1$ 38.2	53 $46 \cdot 1$ 6	$5{ }^{56} 1$	57.7	$4{ }^{4}{ }^{\circ} 7$	50 41.8	${ }^{52} 44^{*} 6$	53. 43.9	43.5 39
29	$36 \cdot 0$	19.1	24.3	32.8	$35 \cdot 3$	28.2	23.8 28.6	29.8 27.8	31.6 31.8	$26 \cdot 0$ $33 \cdot 1$	29 30	54.9 56.7	38.2 41.1	$46 \cdot 1$ 47	51.7 52.8	$55^{\circ} \mathrm{C}$	44.5	418 42	44.8	43.9 44°	$39^{\circ} 9$ $4 I^{2}$
30	$38 \cdot 0$	24.4 31.1	31.2 33.4	29.9 36.7	37.2 38.6	$35 \cdot 7$ $32 \cdot 1$	28.6 31.8	27.8 34	$31 \cdot 8$ 34.3	33° 29	30	$55 \cdot 7$ 51.1	$41 \cdot 1$ 38.2	47.9 45	$52 \cdot 8$	52.0 45.6	44.5 38.6	42.8 43	$44 \cdot 8$ $46 \cdot 1$	44. 44	41.2 $38 \cdot 5$
Means		$36 \cdot 2$	38.9	417	$42 \cdot 3$	$40 \cdot 1$	380,	$40^{\circ} 1$	$40 \cdot 4$	39.1	Mean	53.3	$40 \cdot 6$	$46 \cdot 2$	497	$50 \cdot 3$	$44 \cdot 7$	+3.8	45	$46 \cdot 4$	42%
February.											APRIL.										
$\stackrel{\text { d }}{1}$		28.4	33°	$36^{\circ} \cdot 6$	35%	347	$32^{\circ} \mathrm{O}$	$32 \cdot 6$	32.9	313	${ }_{\text {d }}$	49.2	$37^{\circ} \mathrm{O}$	$40^{\circ} 6$	$44^{\circ} \mathrm{O}$	47×7	$40^{\circ} 5$	$37^{\circ} 6$	$40^{\circ} \mathrm{I}$	$40 \cdot 1$	$35^{\circ} \cdot 8$
1	3	23.7	24.5	28.2	28.4	24.3	22.4	$26 \cdot 0$	27.7	22.8	2	$55^{4} \mathrm{I}$	32.5	43.4	$49^{\circ} 6$	53.5	$48 \cdot 6$	39^{-1}	$4{ }^{2 \cdot 1}$	45.3	$46 \cdot 6$
3	32.0	$19^{\prime} 1$	21.1	29.3	31.7	27.4	19.8	25.9	28.0	$25 \cdot 8$	3	58.8	$35^{6} 6$	$48 \cdot 3$	54.5	57.6	$45 \cdot 2$	44	. 6	48.8	$42 \cdot 9$
4	27.4	$24^{\circ} \mathrm{O}$	25.9	26.3	$26 \cdot 9$	24°	$25 \cdot 1$	25.4	$25^{\circ} 9$	23.0	4	$59^{\circ} \mathrm{I}$	42.2	471.	$50 \cdot 8$	58.1 58.2	49 52	$49 \cdot 7$		52.7 53	$47 \cdot 8$
5	$32 \cdot 0$	$20 \cdot 2$	23.9	$26 \cdot 8$	$29^{\circ} 6$	31^{16}	22.1	24.8	27.9	31.5	5	61.9 67.7	$4{ }^{6 \cdot 2}$	51.6	57.4 62.3	$58 \cdot 2$ $66 \cdot 5$	52.9 54.6	49.7 54.6	53.0	53.8 57	511 51 1
6	$45 \cdot 6$	313	$36 \cdot 5$	419	$43^{2} 2$	$42 \cdot 6$	$36 \cdot 0$	$41^{\circ} \mathrm{C}$	42.4	41.9	6	67.7	$49^{\prime} 1$	58.3	3	66.5	54.6	54.6	-9	57.8	513
7	50.5	$38 \cdot 3$	$40 \cdot 8$	$48 \cdot 3$	47.7	43.2	$39 \cdot 5$	$43^{\circ} 6$	43.5	41.8	8	64.2	$47 \cdot 6$	53.7	$58 \cdot 3$	$1 \cdot 5$. 6	49.7	8	54.9	50.1
8	$50^{\circ} 1$	$43^{\prime} \mathrm{I}$	$45^{\circ} 9$	$47 \cdot 1$	48.8	$48 \cdot 8$	43.9	$45^{\circ} 9$	47.8	$46 \cdot 7$	8	$56 \cdot 1$	$46 \cdot 3$	$49^{\circ} 6$	51.3	51.5	46.6	36.8	$46 \cdot 5$	48.0	40.2
9	53°	$45 \cdot 6$	47.6	$52 \cdot 6$	$51^{1} 6$	$47 \cdot 9$	$46 \cdot 9$	$50 \cdot 2$	$48 \cdot 8$	$46 \cdot 6$	9	$51 \cdot 1$	$36 \cdot 2$	$42 \cdot 6$	$46 \cdot 9$	48.6	$40 \cdot 8$	$36 \cdot 8$	$37 \cdot 6$	$40 \cdot 5$	$36 \cdot 3$
10	52.0	39^{6}	44^{6}	$49 \cdot 6$	51.1	$39 \cdot 7$	$42 \cdot 9$	$46 \cdot 5$	$46 \cdot 6$	39.7	10	$50 \cdot 7$	$39^{\circ} 9$	44°	$46 \cdot 7$	47.8	413	$39^{\prime 2}$	$39^{\circ} 4$	$40 \cdot 1$	37.9 32.5
11	54°	39.1	$46 \cdot 1$	$50 \cdot 6$	49.6	$43 \cdot 5$	$44 \cdot 8$	$46 \cdot 6$	$46 \cdot 3$	41.8	11	53.0	32.4	44.9	$50 \cdot 3$	$50 \cdot 6$	34.9	$41 \cdot 1$ 37 1	$41^{1} 8$	42.1 40.6	32.5 35.8
12	$50 \cdot 0$	$40 \cdot 9$	43.5	$47 \cdot 6$	$48 \cdot 8$	$46 \cdot 6$	$43 \cdot 1$	45°	$46 \cdot 2$	44.5	12	$51^{\circ} \mathrm{O}$	32.5	$42 \cdot 7$	493	47.6	39 50	$37 \cdot 8$ $43 \cdot 3$	41.9	$40 \cdot 6$ 46.8	$35^{\circ} 8$
13	47°	$4^{2} 0$	$43^{8} 8$	$43 \cdot 6$	$42 \cdot 3$	44.3	41.7	$42 \cdot 5$	$42^{\circ} \mathrm{O}$	$43 \cdot 1$	13	$56 \cdot 2$	38.0	47.6	513	55.3 54.6	$50 \cdot 6$ 49.6	$43 \cdot 3$ 45	$44 \cdot 7$ 48.9		44.9 45.8
14	44.3	$41^{\circ} 5$	$42 \cdot 6$	$4{ }^{2 \cdot 6}$	42.7	42.6	$4{ }^{1.6}$	4.5 4 18	$4{ }^{1} 6$	40.4	14	59.0 57.2	44.3 38	49.1 44.7	54.9 50.6	54.6 5.2	49.6 43	$45^{\circ} 9$ 42	$48 \cdot 9$ $46 \cdot 2$	488	45.8 41.2
15	$48 \cdot 6$	38.1	$39^{\circ} 8$	$46 \cdot 2$	45.6	$44 \cdot 8$ 48	$38 \cdot 7$ 47	$42 \cdot 8$ 48.8	42 49 49	43.5 47.8	15	57.2 56.3	$38 \cdot 7$ 34.0	44 48 4	50.6	55.2	43.2	46	45°	44.8	412 40.9
16	52.1 58.0	$44 \cdot 1$ $42 \cdot$	47.4 46.6	$50 \cdot 3$ 56.6	$51 \circ$ 56.2	$48 \cdot 8$ 48.5	$47 \cdot 0$ 43.8	$48 \cdot 8$ $49 \cdot 8$	$49 \cdot 5$ 49 1	$47 \cdot 8$ 45 1	16	$56 \cdot 3$ 59	$34^{\circ} \mathrm{O}$ $41^{2} 2$	48. 5	55.6	55.3 574	43.2	$46 \cdot 4$	44°	46	$44^{\circ} \mathrm{O}$
17	$58 \cdot 0$ 54.1	$42 \cdot$ $42 \cdot 1$	$46 \cdot 6$ 47	56.6	$56 \cdot 2$ 51.6	48.5 459	43.4	498	$49 \cdot 1$ 48 1	$4{ }^{4} \cdot 1$	18	65.5	$3{ }^{4 \cdot 1}$	50.6	60.5	$64 \cdot 1$	51.1	$48 \cdot 8$	$47 \cdot 9$	493	455
19	$54^{\circ} \mathrm{O}$	45.5	$50 \cdot 9$	51.0	494	$46 \cdot 9$	$48 \cdot 0$	$48 \cdot 5$	$47 \cdot 8$	44.9	19	69.9	38.6	61.6 60.	$62 \cdot 8$	61.5	$48 \cdot 4$	50.9 52	51.7	51.2	44.6
20	$48 \cdot 0$	423	43.5	$46 \cdot 5$	$46 \cdot 9$	43.6	42.3	$44^{\circ} 6$	44°	41°	20	69.5	$38 \cdot 1$		66	67.4 69.0	$50 \cdot 8$ 48.6	52.7 50.8	54.1	54.1	46.4 45.8
21	49°	32.1	$39^{6} 6$	$46 \cdot 4$	$47 \cdot 6$	45.8 52	37.8	44.7	$46 \cdot 0$ 51.2	453 51.7	1	$71 \cdot 3$ 67.1	$37 \cdot 2$ $42 \cdot 1$	59.6	$68 \cdot 5$ 65	69 64.7	$48 \cdot 6$ 54.5	50.8	54.8	51.3	$4{ }^{4} 9$
22	53.2 5.3	45.1 50.4	5	51.9 53.6	$52 \cdot 1$ 53.9	52.8 50.8	49.8 50.2	50.9 51	$51 \cdot 2$ 51.8	$51 \cdot 7$ $49 \cdot 8$	23	67.1 658	$42 \cdot 1$ 44	58.3	63.6	63.6	50.4	51.8	52.0	$46 \cdot 8$	$44 \cdot 5$
23 24	55.3 52.7	50.4 42.1	517 44 4	$53 \cdot 6$ 49.6	53.9 50.3	$50 \cdot 8$ $46 \cdot 0$	50.2 42.5	517	51.8 45.4	$4{ }^{49} 9$	23 24	659	44.2 43	$55 \cdot 6$	65.5	63.7	52.2	498	51.7	497	45°
24 25	52.7 54.3	42.1 43.6	44.4	4.8	50.9	44^{-6}	48.4	$47 \times$	46.7	$43^{\circ} 8$	25	63.5	39.3	51.6	58.5	61.4	$46 \cdot 3$	47.8	$50 \cdot 8$	51.4	45°
26	51.3	$35^{\circ} 2$	43.6	$50 \cdot 1$	$49 \cdot 6$	$50 \cdot 6$	41.3	$45 \cdot 6$	47.6	49°	26	$61 \cdot 5$ 60.2	40.4 42.6	$44 \cdot 7$ 47	$55 \cdot 8$ 53.5	59.5 58.6	44.7 $45^{\circ} 2$	$42 \cdot 8$ 44.8	50.1 48.7	52.9 52.0	$44^{\circ} \mathrm{O}$ $43 \cdot 3$
27	$57 \cdot 6$	$49^{\circ} \mathrm{I}$	507	54°	56.9	49.6	$45 \cdot 8$	$46 \cdot 5$ 51	49.0 52.8	$46 \cdot 8$ 49	27 28	60% 580	$42 \cdot 6$ 39		53.5 55	58	45° 45°	$44 \cdot 8$ $42 \cdot 6$	$48 \cdot 7$ 46.4	$52 \cdot$ 45.5	$43 \cdot 3$ 397
28 29		48.9 46.3	$51 \cdot 0$ 49	55° 52.5	$56 \cdot 8$ 54.6	$51 \cdot 4$ $47 \cdot 4$	$48 \cdot 7$ $47 \cdot 2$	51.4 48.9	$52 \cdot 8$ 48.8	$49 \cdot 7$ 45	28 29	58.0 53.2	$39 \cdot 6$ $40 \cdot 1$	$48 \cdot 1$ $46 \cdot 1$	$55 \cdot 7$ 49	55.3 48.7 5	$45^{\circ} 9$ 43	$42 \cdot 6$ 43	$46 \cdot 4$ 42.8	$45 \cdot 5$ 42.8	397 39
29	56.8	$46 \cdot 3$	49	525	54.	474	472	48			30	$56 \cdot 0$	$36 \cdot 1$	$4^{8.6}$	51.8	53.5	40.1	41	42	$43 \cdot 8$	37.
Means	$48 \cdot 8$	38.7	$42 \cdot 3$	$46 \cdot 2$	$46 \cdot 6$	43.4	$40 \cdot 6$	433	$43 \cdot 7$	$41^{\circ} 9$	Means	59.8	$39 \cdot 6$	49.9	55.5	57.3	$46 \cdot 8$	$45 \cdot 6$	$47 \cdot 4$	48.2	43^{1}

Readings of Thermometers on the Ordinary Stand in the Magnetic Pavilion Enclosure-continued.
(The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at $2 \mathbf{I}^{\mathrm{h}}$.)

	Dry-Bulb Thermometers,44 ft above the Ground.						Wet-Eub Thermometer,$4 \mathrm{ft.above} \mathrm{the} \mathrm{Ground}$.				$\begin{gathered} \text { Days } \\ \text { of the } \\ \text { Mouth. } \end{gathered}$	(Dry.Bulb Thermometers,						Wet-Bulb Thermometer, 4 ft . above the Ground.			
	$\xrightarrow{\text { Max }}$ mum	$\underset{\text { mini. }}{\substack{\text { Mini. }}}$	$9^{\text {h }}$	Noon.	${ }^{15}{ }^{\text {b }}$	$2 \mathrm{I}^{\mathrm{h}}$	$9^{\text {b }}$	Noon.	${ }^{15}{ }^{\text {b }}$	${ }_{21}{ }^{\text {b }}$			$\xrightarrow{\text { Mini. }}$ mum.	$9^{\text {a }}$	Noon.	${ }^{15}{ }^{\text {b }}$	$2 \mathrm{r}^{\text {b }}$	$9^{\text {b }}$	Noon.	${ }^{15}$	$2^{1{ }^{\text {b }}}$
May.											JULY.										
${ }_{\text {d }}$	66	38.3	52.7	$58 \cdot 2$	$63^{6} 6$	53.6	$46 \cdot 8$	49°	$50 \cdot 8$	$4^{8.2}$	$\stackrel{\text { d }}{1}$	70'2	51	58.6		580	$56 \cdot 8$	$55^{\circ} 4$	$55^{\circ} 8$	$55^{\circ} 4$	2.8
2	$70 \cdot 7$	49.0	57^{2}	63.8	$67 \cdot 8$	58.2	52.4	$55^{\circ} 8$	$57 \cdot 2$	51.9	2	$63^{\circ} \mathrm{O}$	52.6	56.6	59.6	$56 \cdot 8$	$54 \cdot \mathrm{I}$	$53^{\circ} 9$	53.3	53.9	53.0
3	65.8	$46 \cdot 1$	54.5	59.7	61.5	55.3	51°	55°	$54 \cdot 1$	52.4	3	$62 \cdot 1$	52.2	$58 \cdot 8$	59.4	$60 \cdot 2$	56.2	$55^{\circ} 5$	55.9	$55^{\circ} 9$	54.8
4	55.8	46.1	48.6	48.5	48.6	$46 \cdot 6$	473	47.5	47.8	$45 \cdot 9$	4	68.1	53.3	4	$59 \cdot 8$ 6.6	63.6 66.8	58.1 60.8	$55^{\circ} \mathrm{C}$	$56 \cdot 8$ $60 \cdot 0$	57.3 61.0	55.5
5	$61 \cdot 1$	$45 \cdot 8$	$52 \cdot 6$	$56 \cdot 6$	59.6	49.7	49.9	52.8	54.0	$48 \cdot 6$	5	70°	53	$6{ }^{1.6}$	65^{6}	$66 \cdot 8$	$60 \cdot 8$ 60.3	58.1	$60 \cdot 0$ 63.5	61.0 59	${ }_{56} 5 \cdot 8$
5	67.3	$46 \cdot 1$	58	$60 \cdot 9$	63.6	$52 \cdot 8$	54.4	$55^{\prime 2}$	55^{6}	49.7	6	74	55	$67^{\circ} \mathrm{O}$	72	71°	60	$61^{\circ} 9$	63.5	. 4	. 7
7	$65 \cdot 2$	519	56	$62 \cdot 5$	58.7	57.8	54.7	59.3	57	$56 \cdot 8$	7	75	57	61.6 6.8	65	71.3	59.3	58	I	. 7	. 8
8	73.6	$57 \cdot 1$	59.9	$70 \cdot 6$	68.6	$6_{1} \cdot 7$	$57 \times$	62.7	61.6	$60 \cdot 0$	8	72	54.0	6.6	67.9	71.5	58.7	56.	59.8	$60 \cdot 8$	
9	76.0	54.	65%	$70 \cdot 1$	71.7	63.5	59.9	61.8	61.6	$0 \cdot 7$	9	75.4	49.6	64.6	$69^{7} 7$	715	$62 \cdot 6$	564	59.8	59.8	58.9
10	$70 \cdot 1$	53.9	$63 \cdot 6$	$67 \cdot 7$	62.9	53.9	55^{\prime}	56.6	54^{\prime}	49^{\prime}	\bigcirc	$81^{\circ} \mathrm{O}$	57.4	71.6	$76 \cdot 7$	75^{6}	64.3	$65^{\circ} 4$	$66 \cdot 7$	$65 \cdot 8$	$60 \cdot 5$
11	82.6	$50 \cdot 3$	$70 \cdot 3$	77.8	$76 \cdot 6$	61.7	$62 \cdot 5$	64.5	60°	57.3	1 I	$78 \cdot 9$	59^{1}	67.8	73.4	$73 \cdot 6$	63.4	623	64.8	64.1	${ }_{6}{ }^{6} 3$
12	72.0	52.1	64.6	$67 \cdot 6$	67.0	52.6	$58 \cdot 8$	59.8	$59 \cdot 7$	$50 \cdot 0$	12	$90 \cdot 0$	$53 \cdot 4$	$80 \cdot 5$	87.5 82	87.3 70	73^{1}	69.5	71.6	$70 \cdot 6$	$\cdot{ }^{\circ}$
13	62.5	47*1	$55^{\circ} 7$	$59^{\circ} 7$	612	50.6	50.9	$52 \cdot 8$	53.7	$46 \cdot 3$	13	84.9	$63 \cdot 1$	75.2	$82 \cdot 8$	79^{8}	$70 \cdot 3$	$67 \cdot 8$	70°	8	$65 \cdot 8$
14	713	44°	$62 \cdot 6$	$68 \cdot 1$	$66 \cdot 6$	56.6	$52 \cdot 6$	54.2	$55 \cdot 8$	49.9	14	$88 \cdot 1$	$60^{\circ} 4$	$66 \cdot 6$	$78 \cdot 6$	86.5 8.6	$73 \cdot 3$	63.4	69.9	74.7	65.0
15	68.2	53°	$61 \cdot 2$	$65^{\circ} 2$	65.2	55.5	$56 \cdot 8$	$60 \cdot 4$	$58 \cdot 1$	53.1	15	87.1 86.8	59.1	78.9	85.5	85.6 8.8	$70 \cdot 3$	$69 \cdot 7$ 68.1	68.2	$67^{\circ} 2$	64.6 62.8
16	58	$44^{1} \mathrm{I}$	$50 \cdot 5$	55.5	$5{ }^{1} 6$	$44^{6} 6$	45.7	$46 \cdot 8$	44.3	$4{ }^{1.8} 8$	16	86.8	59.5	$77^{\circ} \mathrm{O}$ 68.	84.4 76.8	83.8 82.0	70	$68 \cdot 1$ 6.5	${ }^{\circ} 9$	4	-8
17	61.6	43.	52.7	56.4	58.4	53.6	$45 \cdot 8$	$48 \cdot 7$	$49 \cdot 8$	$48 \cdot 8$	17	$8{ }^{8 \cdot 2}$	59.4	. 4	$76 \cdot 8$	82°	$63 \cdot 6$	62.5 58.8	$66^{\circ} 9$		-2
18	67°	$46 \cdot 6$	57.6	60%	61.0	-	52.6	$52 \cdot 6$	$53 \cdot \mathrm{I}$	51°	18	73°	55.1	. 8	67.3	70	$55^{\circ} 6$	${ }_{51}^{58 \cdot 8}$	59.9 50	$60 \cdot 8$ 50.8	-6
19	$70 \cdot 1$	$45 \cdot 1$	58.6	65°	64.8	52.2	$54^{\circ} 7$	$56 \cdot 3$	$56 \cdot 7$	49°	19	57.9 67.8	48.1	56.1	56.4 6.8	$52 \cdot 8$ 63.8	$53^{\circ} 9$	51.1	50.5	$56 \cdot 8$	
20	72	45	60	$69^{\circ} 6$	$66 \cdot 1$	52.9	$55^{\circ} 4$	$\cdot 8$	56.3	$46 \cdot 6$	20	67.8 76.8	5111	56.7			57.6	$50 \cdot 5$	60.2	${ }_{61} 1$	56.3
21	$67 \cdot 4$	45	59.5	62	617	54.9	$52^{\circ} \mathrm{O}$	54	55.3	52.7	21 22	76.8 69.7	51. 49.2		70.6 67.9	7230	58.4	$57 \cdot 1$	61°	$60 \cdot 7$	56.4
22	67.3	$50 \cdot 0$	58	66	65.2	53.6	$56 \cdot 0$	$58 \cdot 1$	$56 \cdot 4$	51.7	23	69.7 71.9	49.2 59	64.6 65.6	67.9 70.7	63.9 68.6	58.4 63.4 6	67.5	64.8	$65 \cdot 3$	
23	60.4	$48 \cdot 1$	$54^{\circ} 9$	55.4	53.5	48.6	$51 \cdot 3$	51.7	50'1	$4{ }^{6 \cdot} 4$	23 24 2	71.9 81.6	55.7 56.7	65.6 69.1	70 74. 1		63.4 64.3	63.2	64.6	64.7	
24	57.6	$45^{\circ} \mathrm{2}$	$48 \cdot 8$	514	543	48.6	47°	$46 \cdot 8$	48.3	44.2 44.3	24 25		567 57	69.1 70.7	74.0 75	78.2 72.9	64.3 61.3	63.2 63.2	64.6 64.9	$6{ }^{6} \cdot$	59.4
25	$62^{\circ} \mathrm{I}$	$38 \cdot 6$	56.3	$56 \cdot 4$	61.4	47.4	$50 \cdot 0$ 48.2	48.3	$50 \cdot 8$ 51.3	44.3 44.7	25	$80 \cdot 9$ 79.2	57.2 51.9	$70 \cdot 7$ 68.6	$75^{\circ} 9$ 73	78.9 74.5	$61 \cdot$ 64.9	63 617	64.9 62.2	$62 \cdot$ 61	-
26	$66 \cdot 7$	$36 \cdot 1$	$58 \cdot 6$	63.3	59^{6}	$46 \cdot 2$	$48 \cdot 2$ $52 \cdot 1$	51.8	$51 \cdot 3$ 54.2	$44 \cdot 7$ $50 \cdot 2$	26 27	79.2 79.0	51.9 58.6	${ }^{68.6}$	73.7 69.6	74.5 74	64.9 63.9	63.8	64.8	$65 \cdot 2$	58.4
27 28	71.1	41.1	57.9	$65^{\circ} 5$	68.8 64.4	54.6 58.4	$52 \cdot 1$ 53.8	54.5 55	54.2 53	$50 \cdot 2$ $50 \cdot 9$	27 28	$79^{\circ}{ }^{\circ}$	$58 \cdot 6$ 57.8	71.6 64.9	69.6 69.5	74.0	63.9 57	57.6			59.8
28 29	7199	45.4	63.2 6.6	66.5	64.4 68.1	58.4	53.8 53.3	55°	$53 \cdot 7$ 5.8	$50 \cdot 9$ 54	28 29	72.0 64.0	57.8 54.5	64.9 61.4	69.5 59	$61 \circ$ 59	55^{5}	57.6 574	57.3	$56 \cdot 0$	54.8 53.7
29 30	$72 \cdot$ 77.0	$45^{\circ} 6$ 47	$60 \cdot 6$ 65.6	$66 \cdot 6$ 71 1	$68 \cdot 1$ 73.5	57.7 57.6	53.3 57.8	54.3 59.2	$55 \cdot 8$ 59 59	54.4 51.7	29 30	64.0 70.9	54.5 52.6	61.4 62.0	59.6 68.7	59 674	55 ${ }^{\circ}$		57.3	56.0	537 51.2
31	68.1	${ }_{51} 12$	56	58.8	63.7	54°	54.9	55°	$57 \cdot 6$	52.6	31	63.9	49^{2}	$58 \cdot 9$	58.6	56.9	$60 \cdot 5$	543	56.8	56.4	$57 \cdot 1$
Mean	67	$46 \cdot 9$		62.8	$63 \cdot 2$	3.9	53.0	54.9	54.7	50.4	Mea	74	54.	65	70	O.		$60 \cdot 1$	617	61	8.0
June.											August.										
${ }_{1}^{\text {d }}$	$67^{\circ} \mathrm{O}$	$45^{\circ} 1$	$60 \cdot 5$	$62 \cdot 7$	64.5		56.0	$56 \cdot 3$	57.8	53.9	1	$68^{\circ} \cdot 9$	51.4	$59^{\circ} 6$	64.7	$65 \cdot 7$	57°	53.9	55^{3}	549	$52 \cdot 1$
2	$65^{\circ} 6$	50.8	$56 \cdot 6$	58.3	64.6	50.8	$55 \cdot 3$	54-1	$56 \cdot 8$	47.8	2	$69 \cdot 3$	$46 \cdot 2$	$56 \cdot 9$	$63 \cdot 6$	56.7	53.1	$52 \cdot 1$	54.2	52.7	49.4
3	$68 \cdot 1$	415	59.6	$64 \cdot 6$	$56 \cdot 3$	52.7	53.6	$55^{\circ} 9$	$52 \cdot 3$	$48 \cdot 8$	3	68.3	42.2	$6_{1} \cdot 6$	63.4	64.6	57.6	54.4	55.6	55.1	54.8
4	65.1	$44 \cdot 3$	57.6	62.1	$56 \cdot 3$	477	$52 \cdot 3$	$52 \cdot 6$	$48 \cdot 8$	$4^{6 \cdot}$	4	73.	$55^{\circ} 9$	614	$67 \cdot 8$	65°	$56 \cdot 8$			$60^{\prime} 7$	8
5	$66 \cdot 1$	434	50.9	62.8	63.6	52.6	48.8	53.2	54.8	50°	5	$66 \cdot 6$	51.9	$60 \cdot 6$	$57 \cdot 6$	$62 \cdot 1$	$56 \cdot 6$	53.8	$55^{\circ} \mathrm{P}$	$55 \cdot 8$	53.2
6	69.5	$48 \cdot 1$	62.6	65.8	$64 \cdot 8$	55^{1}	4	55	$57 \cdot 6$	4	6	$62 \cdot 7$	54°	61	57.5	$61 \cdot 1$	54.3	55.5	53.8	$55^{\circ} 8$	$5{ }^{2} 4$
7	593	$44 \cdot 6$	544	$57 \cdot 7$	55°	54.6	53.0	56.0	$54 \cdot 2$	53.9	7	70.1	52.	59.6	65°		55.1		57.7	54.2	53.9
8	66°	$51 \cdot 3$	54.3	54.6	62.7	52.4	530	53.2	57^{11}			71.8	52.	59.6			55.7	5	$58 \cdot 6$	59.3	$55^{\circ} 4$
9	67.0	48.7	6	54^{-2}	62.0	55°	56.5	53.8	$56 \cdot 4$	51.	9	67.5	51.1	58.8	63.5	$64^{\prime} 1$	55		56.2 6.6		2.2
10	68.5	$49^{\circ} 9$	57.6	$66 \cdot 2$	$64 \cdot 6$	51.7	53.0	55.3	55°	48	1	65.6	$47^{\circ} 6$	55.6	63.5	54.2	52.5	54.	56.6	53.6	$52^{\circ} \cdot$
11	71.0	44.5	$62 \cdot 1$	$69 \cdot 1$	$68 \cdot 5$	59.4	56.0	57.9	$57 \cdot 2$	$56 \cdot 3$	11	66.9	47.4	$59^{\circ} 1$	$62 \cdot 2$	$63 \cdot 1$	52.8	54.4	54.1	$54^{\circ} 4$	50^{1}
12	$66 \cdot 2$	54.2	57.6	63.5	59.3	$56 \cdot 3$	$55 \cdot 3$	58.8	57.1	55°	12	62.0	$45^{\circ} 1$	$55^{\circ} 8$	58.6	57.1	55^{6}	51	52.8	$5^{1 \cdot 9} 9$	51.6
13	$70 \cdot 5$	$50 \cdot 0$	62.0	64.3	68.6	56.6	$55 \cdot 8$	$56 \cdot 6$	567	50.8	13	62.9	47°	54.9	58.6	59.6	53.7	$50^{\circ} 2$	51.8	52.8	50.2
14	$70 \cdot 1$	48.5	$60 \cdot 6$	63.6	$65^{\circ} 9$	58.6	$54 \cdot 5$	54°	553	$54 \cdot 8$	14	$64^{\prime 2}$	$44^{1} 1$	56.7	$60^{\circ} 9$	59^{6}	$52 \cdot 2$	51.9 5	52.9	52.7	$49 \cdot 8$
15	67.9	51.9	61.2	65°	$65 \cdot 5$	$56 \cdot 5$	$52 \cdot 8$	53.9	54.1	53.6	15	$62 \cdot 7$	$50 \cdot 7$	$55^{\circ} 8$	$58 \cdot 1$	$60 \cdot 2$	56.8	$52 \cdot 8$	54.9	$56 \cdot 2$ 57.6	54.1 56.8 1
16	64°	$50 \cdot 1$	$55 \cdot 6$	58.6	59.9	54°	$52 \cdot 1$	49.9	52.0	52.5	16	70.1	49^{-8}	$61 \cdot 4$	64.5	65^{1}	58.3	55.7	$57^{\circ} \mathrm{O}$	57.6	57.8
17	67°	$49^{\text {- }}$	59°	$63 \cdot 6$	$61 \cdot 7$	56.6	$53 \cdot 8$	55.3	55.4	$56 \cdot 0$	17	$67 \cdot 8$	57°	61'5	$65^{\circ} 6$	65^{-8}	61	58.5	$60 \cdot 7$	$60 \cdot 1$	57.4
18	$76 \cdot 7$	56.2	$65^{\circ} 1$	69.3	$75 \cdot 6$	59.6	59.7	61.4	65^{8}	57.7	18	$70 \cdot 0$	54.8	$60 \cdot 7$	64.7	64.9 679	$54 \cdot 8$ 53	56	57.9	59.1	52.9 52.0
19	84.3	497	75.4	743	$80 \cdot 6$	63.6	65.5	$66 \cdot 1$	68	58.1	19	$68 \cdot 1$	$52 \cdot 5$	$59^{\circ} 2$	$65^{\circ} 6$	67.4	53.3	56.7	58.9 57	58.2	.
20	71.9	$52 \cdot 3$	$60 \cdot 4$	$64^{*} 1$	$68 \cdot 1$	58.6	54.4	$56 \cdot 9$	54.4	53°	20	68.1	52.1	$60 \cdot 7$ 56.8	63.9 59	59.0 $56 \cdot 2$	$53 \cdot 6$ 54.9	$56 \cdot 7$ 51.1	$57 \cdot 8$ $52 \cdot 5$	53.2 53.9	. 2
21	73°	52.1	$63^{\circ} \mathrm{O}$	68.5	$70 \cdot 2$	58.4	55°	58.6	$60 \cdot 2$	53.9	21	62°	47'1	56.8	59.8	56.2 63.6	54.9	51.1 50.9	52.5 510	53.9	- 5
22	$80 \cdot 5$	48:2	$70^{\circ} 9$	78.6	79.4	67.3	62.7	65.8	65.5	61.7	22	64.4 6.6	493	55.9 56.9	59 60.9	63.6 64.3	54.6 60.5		51.0 59	53 617	16
23	$75^{6} 6$	59.5	64.3	${ }^{72} 3$	$72 \cdot 6$	$59^{\circ} 6$	58.0	59.9	$60 \cdot 8$	7	23	65.6 64.1	503 56.6	$56 \cdot 9$ 59	$60 \cdot 7$ 58.7	64.3 61.6	$60 \cdot 5$ 57	56.5 58.6	59.7 578	$69^{\circ} 9$	$59^{\circ} 7$
24	71.0	52.4	65.5	67.4	$69 \cdot 1$	57.9	$57 \cdot 6$	607 5	59.5	$55^{\circ} 4$	24 25	64.1 68.0	56.6	59 61.6	$58 \cdot 7$ 63.2	616 654	$57 \cdot 8$ 54.5	58.6	57.8 57	59.9	57.7
25	$63^{\circ} \mathrm{O}$	53.1	59.4	58.7	$58 \cdot 7$	$55 \cdot 6$	$54^{\circ} 8$	54.8	56.9	53°	25 26	68.0 $61^{\circ} \mathrm{O}$	$54^{5}{ }^{\circ} \mathrm{O}$	61.5 54	63.2 54.9	654 59	54.5	57.7 54.1	57.6	54.7	53.6
26	71.5	53.3	$63 \cdot 8$	68.4	$67 \cdot 1$	$60 \cdot 1$	$57 \cdot 1$	59°	57°	54.4	26	$61^{\circ} \mathrm{O}$ 62.2	51.0	54.6	54.9	593	$52 \cdot 8$	54	52.5	52.8	$40^{\circ} 2$
27	$68 \cdot 2$ $73 \cdot 0$	51.5 51.4	$59 \cdot 6$ $60 \cdot 2$	$66 \cdot 5$ $65 \cdot 8$	63.5 71.8	$56 \cdot 3$ $56 \cdot 2$	55.2 56.5	57.9	$56 \cdot 0$ 61.1	54.7	27	62.2 66.3	49.4 $42 \cdot 1$	54.9 55.2	59.6 63.3	$60 \cdot 5$ $62 \cdot 1$	$52 \cdot 8$ $56 \cdot 5$	51.6	54.1	54.9	55°
29	73.0 70.9	51.4 50.9	$60 \cdot 2$ 58.9	65° 6 1.8	71.8 69.0	$56 \cdot 2$ 54.1	$56 \cdot 5$ 57	$58 \cdot 5$ 57.8	$61 \cdot 1$ 59.6	52.7 52.9	28 29	$66 \cdot 3$ $70 \cdot 1$	42.1 55.1	55 59	63.3 64.5	68.3		51.1 59 59	54. 61.4 6.6	$59^{\circ 9}$	55. 53.3 51.8
30	$67 \cdot 3$	$51 \cdot 2$	$62 \cdot 2$	$63 \cdot 1$	63.7	54°	56.8	$56 \cdot 1$	56.8	53°	30	$\begin{aligned} & 70 \cdot 0 \\ & 66 \cdot 1 \end{aligned}$	$\begin{aligned} & 54.1 \\ & 49.0 \end{aligned}$	$\begin{aligned} & 61.4 \\ & 57.6 \end{aligned}$	67.6 59.6	$67 \cdot 3$ 64	$56 \cdot 8$ $54 \cdot 5$	57.8 51.7	61.6 51.9	$60 \cdot 4$ 54.8	51.8 51.6
											31	66.1	49°	57.6	59.6	647	54.5	517	51.9	54.8	51.6
Means	69.5	$49^{\circ} 9$	$60 \cdot 7$	$64^{\circ} 5$	$65 \cdot 8$	56.3	55.6	56.9	573	53.3	Means	$66 \cdot 7$	$50 \cdot 4$	58.5	62.2	62.4	55.3	54.7	$56 \cdot 1$	56	53°

Readings of Thern (The readings Dry-Bulb Thermometers, 4 ft . above the Ground.							tr								$\mathrm{N} \mathrm{E}$						
							Wet-Bulb Thermometer, 4 ft . above the Ground.				Days of the Month.	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.			
Month.	Maximum.	Mini- mum. mam.	$9^{\text {b }}$	Noon.	${ }^{15}{ }^{\text {b }}$	$21^{\text {b }}$	$9^{\text {b }}$	Noon.					Mini-	$9^{\text {l }}$	oon.	$15^{\text {h }}$	$2 \mathbf{r}^{\text {h }}$		Noo	${ }_{15}{ }^{\text {h }}$	${ }_{21}{ }^{\text {h }}$
SEptember.											November.										
${ }_{\text {I }}$	64	$51^{\circ} 1$	$54^{\circ} 1$	$63 \cdot 3$	$62 \cdot 9$	$55^{\circ} \cdot 6$	53.6	$58^{\circ} 7$	$55^{\circ} 8$	$53^{\circ} 7$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{I} \end{aligned}$	$44^{\circ} \mathrm{O}$	$34^{\circ} \cdot 6$		$43 \cdot 1$	$42 \cdot 6$	$36 \cdot 8$	34.7	$38 \cdot 8$	37.8	$33^{\circ} 7$
2	61.2	51.1	54.0	$58 \cdot \mathrm{I}$	$58 \cdot 8$	52.4	52.9	$50 \cdot 2$	$50 \cdot 7$	49.6	2	$47^{\circ} \mathrm{O}$	32.1	36.8	44.8	$44^{\cdot 1}$	$40 \cdot 9$	34.8	39.6	39°	$3{ }^{\circ}{ }^{\text {' }}$
3	62.	$42 \cdot 2$	55	59.5	58.9	$55 \cdot 8$	51.7	53.2	52.9	53.7	3	42.4	29.1	$34^{\circ} 6$	$36 \cdot 8$	41•I	32.6	33.4	$35^{\circ} 6$	$38 \cdot 2$	32.1
4	69.	$55 \cdot 2$	62.7	68.5	64.8	55%	$60 \cdot 1$	59.3	$55 \cdot 8$	$52 \cdot 1$		51.8	$28 \cdot 7$	$43^{\prime 2}$	49°	51.5	$46 \cdot 7$	41.4	$45 \cdot 9$	$47 \cdot 3$	$44 \cdot 8$
5	$60 \cdot 9$	47°	54.6	$59 \cdot 6$	58.4	$52 \cdot 1$	$48 \cdot 9$	51.6	$50 \cdot 8$	$48 \cdot 0$	5	51.0	44.9	$47^{1} 1$	$50 \cdot 2$	$50 \cdot 1$	47.9	$46 \cdot 8$	$49^{\circ} 9$	49.7	$46 \cdot 9$
6	$60 \cdot 0$	$45 \cdot 3$	54.6	$56 \cdot 4$	$57 \cdot 6$	53.3	$49 \cdot 8$	$5 \mathrm{I} \cdot 6$	514	$49^{\circ} 2$	6	$49 \cdot 5$	$47^{\circ} 1$	$48 \cdot 9$	$48 \cdot 6$	49°	$47 \cdot 6$	$48 \cdot 8$	$48 \cdot 3$	$48 \cdot 8$	$46 \cdot 3$
7	$62 \cdot 0$	$44^{\circ} 2$	55.4	$59^{\circ} 8$	58.5	$56 \cdot 6$	$49 \cdot 7$	52.5	52.0	$52 \cdot 8$	7	$56 \cdot 5$	$47^{1} 1$	$49 \cdot 7$	53.8	$55^{\circ} 6$	53.0	$48 \cdot 2$	50.9	51.0	51.2
8	67°	$53 \cdot 1$	$6 \mathrm{I} \cdot 8$	65.1	$65 \cdot 8$	$59^{\circ} 8$	57.7	59.7	$59^{\circ} 9$	$57^{\circ} \mathrm{O}$	8	$56 \cdot 2$	52.2	53.6	54.5	54.6	52.5	$52 \cdot 2$	52.6	$52 \cdot 7$	5 I 3
9	$60 \cdot 1$	$46 \cdot 2$	$50 \cdot 3$	$53 \cdot 6$	54.6	$46 \cdot 7$	$45^{\circ} 4$	$47 \cdot 5$	$46 \cdot 2$	$42 \cdot 3$	9	$56 \cdot 0$	$46 \cdot 7$	51.0	$55 \cdot 6$	53.4	$46 \cdot 9$	$49 \cdot 6$	519	$50 \cdot 2$	$45 \cdot 3$
10	54.7	$44^{\circ} \mathrm{O}$	50.0	52.4	$53 \cdot 8$	$47 \cdot 5$	$46 \cdot 7$	$48 \cdot 7$	49.5	$4^{6 \cdot 0}$	10	$50 \cdot 9$	$44^{\circ} \mathrm{O}$	$45^{\circ} 0$	49.5	$4^{8 \cdot 7}$	$49^{\circ} 6$	42.4	45.4	$45^{\circ} 8$	47.3
11	517	$44^{\circ} 1$	$47 \cdot 5$	$50 \cdot 6$	$49^{\circ} 8$	$50 \cdot 3$	$43 \cdot 1$	$45 \cdot 8$	$46 \cdot 6$	$49 \cdot 1$	11	$50 \cdot 0$	$40 \cdot 1$	$42 \cdot 6$	$42 \cdot 8$	$42 \cdot 7$	$40 \cdot 9$	$39^{\circ} 3$	39.1	39.1	36.4
12	63.0	497	$56 \cdot 1$	59.2	$60 \cdot 6$	52.1	53.2	54.7	53.2	$49^{\circ} 8$	12	$42 \cdot 1$	36.4	39.9	41.4	$39^{\circ} 8$	$40 \cdot 6$	37. 1	38.2	$38 \cdot 1$	$37 \cdot 8$
13	59°	$43^{\circ} 2$	54.1	$55 \cdot 5$	$58 \cdot 3$	47*	51.4	51.2	53.2	$46 \cdot 5$	13	$43 \cdot 1$	$37 \cdot 1$	$39^{\cdot 8}$	$42 \cdot 1$	$4^{2} \cdot$	$39 \cdot 8$	37•5	$40 \cdot 0$	$40 \cdot 4$	38%
14	63°	$43 \cdot 2$	$55 \cdot 6$	61.0	$60 \cdot 9$	57.7	52.9	56.3	$57^{\circ} \mathrm{I}$	$55 \cdot 8$	14	$43 \cdot 6$	$39^{\circ} \mathrm{I}$	42.4	$42 \cdot 0$	$43 \cdot 3$	$42 \cdot 5$	$40 \cdot 4$	$40 \cdot 1$	41.0	$40 \cdot 2$
15	63.0	$54 \cdot 2$	57.3	59.2	$60 \cdot 6$	54.9	54°	54.7	55.4	54.2	15	$47 \cdot 6$	$39^{\circ} \mathrm{I}$	$40 \cdot 4$	$46 \cdot 4$	$47^{\circ} 2$	$46 \cdot 0$	39°	$42 \cdot 8$	+37	$44^{\circ} 7$
16	$63 \cdot 1$	53.1	$58 \cdot 4$	$57 \cdot 6$	62.4	$55 \cdot 2$	56.0	$56 \cdot 0$	$58 \cdot 0$	54.6	16	$49 \cdot 6$	$45^{\circ} \mathrm{O}$	$47 \cdot 7$	$48 \cdot 6$	49.4	$47^{\circ} 6$	$46 \cdot 7$	$47 \cdot 2$	471	$46 \cdot 5$
17	$58 \cdot 9$	51.7	$56 \cdot 4$	56.8	57.4	53.5	54.7	53.8	54.3	51.8	17	$49 \cdot 2$	$45^{\circ} \mathrm{O}$	$46 \cdot 4$	$48 \cdot 3$	$49^{\circ} 2$	45°	$45 \cdot 9$	47.0	471	$43 \cdot 6$
18	$62 \cdot 1$	42.4	$52 \cdot 7$	59.6	$59^{\circ} \mathrm{O}$	50.6	$50 \cdot 8$	54.7	$52 \cdot 8$	$4^{8 \cdot} 3$	18	47.9	$34^{\circ} 2$	$38 \cdot 1$	$47 \cdot 3$	$45 \cdot 6$	41.7	37.9	43.9	43.7	$41^{\circ} \mathrm{O}$
19	$55^{\circ} 9$	$48 \cdot 2$	$52 \cdot 8$	53.9	53.6	51.6	49.5	$49^{\circ} 4$	493	$47 \cdot 9$	19	$47^{\circ} \circ$	35°	$39 \cdot 7$	45.6	$46 \cdot 3$	$46 \cdot 6$	39.2	$42 \cdot 8$	44.9	$42 \cdot 7$
20	61.7	$48 \cdot 5$	53.7	59.2	$58 \cdot 6$	$48 \cdot 8$	50.9	50.9	$49^{\circ} 6$	$46 \cdot 0$	20	$48 \cdot 1$	$4{ }^{1} 9$	44.5	$48 \cdot 0$	47•7	$4^{6 \cdot 7}$	$40 \cdot 8$	42.7	$43 \cdot 8$	$45 \cdot 8$
21	59°	$41 \cdot 1$	54.7	$57 \cdot 6$	57. 5	47•5	50.0	49'3	$49^{\circ} 2$	$46 \cdot 0$	21	$50 \cdot 0$	$44^{\circ} \mathrm{I}$	47.6	$49^{\circ} 5$	$49 \cdot 5$	49°	44.9	$46 \cdot 0$	$46 \cdot 8$	$4^{8 \cdot 8}$
22	$60 \% 7$	41.4	54.6	58.2	59.2	$49 \cdot 3$	47.4	$49^{\circ} 6$	51.1	$48 \cdot 2$	22	$55 \cdot 8$	43.2	$45 \cdot 7$	53.9	53.0	$49^{\circ} 6$	$45 \cdot 6$	50.4	$48 \cdot 6$	$47 \cdot 4$
23	$64^{\circ} \mathrm{O}$	$44^{\cdot 6}$	$56 \cdot 0$	61.6	$60 \cdot 7$	$50 \cdot 0$	53.9	54.0	54.6	$49^{\circ} 1$	23	$52 \cdot 0$	47°	$49 \cdot 6$	$51 \cdot 2$	$5 \mathrm{I} \cdot 3$	$49^{\circ} 2$	$47 \cdot 2$	$48 \cdot 1$	49°	47.7
24	$60 \cdot 4$	43.3	$55 \cdot 2$	$58 \cdot 5$	57.4	$48 \cdot 8$	$52 \cdot 8$	$52 \cdot 8$	50.5	44.9	24	$50 \cdot 1$	42.4	$43 \cdot 5$	$46 \cdot 6$	$46 \cdot 8$	$43 \cdot 6$	41.6	$42 \cdot 8$	42.4	41.6
25	$56 \cdot 8$	$46 \cdot 3$	52.7	54.7	54.5	49.6	$46 \cdot 9$	$47 \cdot 3$	$47^{\prime} 3$	$44^{\cdot 8}$	25	52.9	42.9	$50 \cdot 6$	52.5	$50 \cdot 9$	$43 \cdot 0$	$46 \cdot 8$	47.1	47.6	+2.1 4.8
26	$58 \cdot 6$	$42 \cdot 5$	51.7	$56 \cdot 1$	$55 \cdot 6$	$46 \cdot 6$	$46 \cdot 1$	$46 \cdot 8$	477	43.1	26	$52 \cdot 0$	$41 \cdot 1$	51.8	52.0	$50 \cdot 0$	$46 \cdot 2$	50.0	49.4	$48 \cdot 5$	$4{ }^{4.8}$
27	$60 \cdot 6$	37.2	$52 \cdot 8$	59.6	56.0	$50 \cdot 8$	$46 \cdot 8$	50.5	49.3	$47^{\circ} \mathrm{I}$	27	$46 \cdot 2$	$34^{\circ} 1$	$37 \cdot 3$	$41^{\circ} \mathrm{O}$	$39^{\circ} 8$	34.3	$35 \cdot 7$	37.9	37°	$33 \cdot 5$
28	$56 \cdot 6$	$46 \cdot 8$	53.1	54.2	$55 \cdot 7$	53.3	$48 \cdot 8$	$48 \cdot 3$	49.9	51.2	28	39.6	$29^{\circ} 3$	30.9	$30 \cdot 4$	$34^{\circ} 6$	$38 \cdot 9$	30.8	29.9	33.7	36.4 32.8
29	$63 \cdot 2$	51	$56 \cdot 5$	$62 \cdot 6$	59.5	54.3	54.6	54.8	53.8	$52 \cdot 8$	29	43.7	34.7	$40 \cdot 7$	$42 \cdot 2$	$37^{\circ} 2$	34.7	39.9	$40 \cdot 8$	36.0	32.8 28.
30	63.9	52	$55^{\circ} 2$	59.5	62.4	54.4	544	$58 \cdot 5$	59.6	54^{1}	30	$36 \cdot 2$	$30 \cdot 1$	$33 \cdot 2$	$35 \cdot 6$	34.3	31.6	3199	31.8	31.2	287
Mean	60	46	54	58.4	58.5	52.1	51.2	52	523	$49 \cdot 7$	Means	$48 \cdot 4$	39.6	43.3	46.4	$46 \cdot 4$	437	4177	$43 \cdot 6$	437	+19
October.											December.										
$\begin{aligned} & \hline \mathrm{d} \\ & \mathrm{I} \end{aligned}$	$63^{\circ} 9$	$47^{\circ} \circ$	$51{ }^{\circ} 6$	$60^{\circ} 2$	59.6	$52 \cdot 8$	$49^{\circ} 7$	$54 \stackrel{\circ}{8}$	$54 \stackrel{\circ}{3}$	$52 \stackrel{\circ}{3}$	${ }_{\text {I }}$	$45^{\circ} \mathrm{O}$	$26^{\circ} \cdot 2$	30.6	$35 \div 3$	$36 \cdot 8$	$44^{\circ} 5$	$29^{\circ} \mathrm{I}$	$32^{\circ} 2$	33%	$43^{\circ} \mathrm{O}$
2	$53^{\circ} \mathrm{O}$	$42 \cdot 3$	47%	49.1	51.6	$42 \cdot 8$	$45 \cdot 6$	$45^{\circ} 8$	$45 \cdot 5$	$40^{\circ} 1$	2	$45 \cdot 8$	$38 \cdot 3$	39.6	$44^{\circ} 6$	44.6	$43 \cdot 7$	37.9	$41 \cdot 1$	41.2	$41 \cdot 1$
3	51.9	$36 \cdot 1$	$42 \cdot 7$	$47 \cdot 6$	49.6	$41 \cdot 1$	$39 \cdot 8$	42.0	$43 \cdot 8$	39°	3	$46 \cdot 3$	32.9	32.9	41.4	$43^{\circ} 0$	$46 \cdot 3$	$32 \cdot 8$	$38 \cdot 1$	$40 \cdot 0$	$44^{\circ} 8$
4	$53 \cdot 1$	33.5	$42 \cdot 5$	$5 \mathrm{I} \cdot 8$	51.8	37.7	$40 \cdot 2$	44.6	44.9	$37 \cdot 3$	4	$52 \cdot 1$	$41 \cdot 3$	49.5	$50 \cdot 8$	$50 \cdot 1$	$42 \cdot 1$	$48 \cdot 9$	$49 \cdot 3$	$47 \cdot 7$	41.7
5	56.1	29.9	41.6	53.6	54.9	39.1	$40 \cdot 4$	$46 \cdot 2$	$47 \cdot 2$	$38 \cdot \mathrm{I}$	5	43.7	$34^{\circ} 2$	$36 \cdot 5$	$39^{\circ} 8$	$38 \cdot 2$	$43 \cdot 5$	$35^{\circ} \cdot 2$	$37 \cdot 1$	$36 \cdot 4$	$4{ }^{1.6}$
6	$55^{\circ} 2$	29.4	37.5	52.5	52.2	$36 \cdot 6$	$37 \cdot 5$	$45 \cdot 4$	$44 \cdot 8$	$36 \cdot 0$	6	51.2	$43 \cdot 1$	$49 \cdot 3$	50.5	$49^{\circ} 2$	$43 \cdot 7$	$48 \cdot 1$	$48 \cdot 9$	$48 \cdot 0$	$42 \cdot 8$
7	59.8	33.1	$45^{\circ} 9$	57.8	58.6	$42 \cdot 1$	$43 \cdot 6$	51.5	$50 \cdot 8$	$41 \cdot 8$	7	$50 \cdot 8$	$37^{\circ} 2$	$45 \cdot 8$	$47 \cdot 7$	50.1	$49^{\circ} 9$	45°	$46 \cdot 8$	$48 \cdot 6$	$48 \cdot 7$
8	$58 \cdot 0$	$34^{1} 1$	$40 \cdot 0$	$53 \cdot 8$	$56 \cdot 7$	$46 \cdot 1$	$40 \cdot 0$	$50 \cdot 3$	517	$45 \cdot 8$	8	53.0	$48 \cdot 1$	50.2	$51 \cdot 2$	50.9	$49^{\circ} 2$	$49^{\circ} 2$	49.4	$48 \cdot 1$	47.2
9	$60 \cdot 9$	$39^{\circ} 2$	$46 \cdot 4$	58.2	59.4	$46 \cdot 8$	$46 \cdot 0$	$5 \mathrm{I} \cdot 4$	$50 \cdot 3$	$46 \cdot 1$	9	51.4	44.9	$48 \cdot 3$	50.5	$50 \cdot 3$	$50 \cdot 0$	47.4	$48 \cdot 7$	47.6	$4^{8 \cdot 2}$
10	$63 \cdot 0$	37.1	$46 \cdot 3$	$60^{\circ} 9$	$59 \cdot 8$	44.6	$46 \cdot 3$	$52 \cdot 8$	$52 \cdot 8$	44.1	10	50.3	$44^{\cdot 2}$	$49^{\circ} 9$	$47 \cdot 6$	$47 \cdot 6$	$45^{\circ} 4$	$49^{\circ} 6$	$47 \cdot 0$	$47 \cdot 4$	$45 \cdot 1$
11	$60 \cdot 5$	$36 \cdot 1$	39*8	51.4	52.9	$39^{\circ} 2$	$39 \cdot 8$	$50 \cdot 3$	493	39^{-1}	1	51.2	$45^{\circ} \mathrm{O}$	$46 \cdot 7$	50.7	$49^{\circ} 8$	$49^{\circ} 8$	$45 \cdot 1$	$47 \cdot 8$	479	$48 \cdot 6$
12	$60 \cdot 1$	$36 \cdot 1$	39.9	52.8 58	$58 \cdot 5$	$42 \cdot 6$	39.9	$49^{\circ} 9$	52.0	$42 \cdot 3$	12	5 I 0	$40^{\circ} 2$	$42 \cdot 3$	$4^{6 \cdot 1}$	$45^{\circ} 6$	41.0	$40 \cdot 8$	43.4	$4{ }^{1 \cdot 8}$	38.4
13	65.7	$36 \cdot 9$	$47 \cdot 3$	$58 \cdot 8$	64.6	$53^{\circ} \mathrm{O}$	47.3	55.9	57.9	$51 \cdot 8$	13	52.0	$40 \cdot 3$	$49^{\circ} 6$	$50 \cdot 9$	514	$5 \mathrm{I} \cdot 8$	47.0	$47 .+$	$47 \cdot 8$	$50 \cdot 0$
14	$60 \cdot 4$	51.7	57.3	58.2	$60^{\circ} 0$	52.7	$54 \cdot 8$	$56 \cdot 9$	$58 \cdot 1$	50.5	14	$56 \cdot 5$	$51 \cdot 1$	547	$54 \cdot 6$	$56 \cdot 5$	$53 \cdot 8$	52.1	$52 \cdot 8$	53.3	52.5
15	579	34.3	$38 \cdot 7$	53.6	55.5	$43 \cdot 6$	$38 \cdot 7$	$49 \cdot 3$	$50 \cdot 8$	$43 \cdot 3$	15	$55^{\circ} \mathrm{O}$	47.7	$49 \cdot 3$	51-1	50.6	51.7	$46 \cdot 3$	47.0	47.0	;1•0
16	$59^{\circ} \mathrm{O}$	$36 \cdot 2$	$48 \cdot 6$	57.6	$56 \cdot 8$	53.3	$46 \cdot 8$	50.9	52.9	$52 \cdot 6$	16	52.0	36.8	$43 \cdot 8$	$42 \cdot 7$	$42 \cdot 7$	$36 \cdot 8$	419	$38 \cdot 9$	$38 \cdot 7$	$35 \cdot 3$
17	57.5	$44^{.1}$	$49 \cdot 7$	54.2	55.5	44.6	$47 \cdot 0$	$48 \cdot 8$	$48 \cdot 8$	$43 \cdot 3$	17	43.3	34.4	$37 \cdot 6$	$41 \cdot 2$	42.4	42.4	$36 \cdot 0$	$38 \cdot 5$	$39^{\circ} 4$	$39^{\circ} 8$
18	$59^{\circ} \mathrm{I}$	$36^{\circ} \mathrm{I}$	$46 \cdot 2$	57.2	57.8	$52 \cdot 7$	44.5	$50 \cdot 8$	51.8	$51 \cdot 0$	18	$46 \cdot 3$	$36 \cdot 1$	44.5	$37 \cdot 1$	$38 \cdot 6$	$36 \cdot 2$	$42 \cdot 6$	$36 \cdot 5$	37.5	34.7
19	$57^{\circ} 2$	$47^{\cdot 1}$	$50 \cdot 9$	53.9	$55 \cdot 8$	47.2	47.7	47.9	47.6	44.8	19	50.0	$36 \cdot 1$	$46 \cdot 8$	49°	$48 \cdot 8$	$49^{\circ} 6$	$44^{\circ} 8$	$46 \cdot 8$	$46 \cdot 7$	$46 \cdot 1$
20	$59^{\circ} \mathrm{O}$	$44^{1} 1$	51.5	$56 \cdot 8$	$55^{\circ} 3$	$52 \cdot 8$	$48 \cdot 8$	517	$50^{\circ} 9$	$49^{\circ} 9$	20	53.2	41.2	$4^{8 \cdot 8}$	5111	$50 \cdot 6$	$42 \cdot 1$	$47^{\circ} \mathrm{O}$	48.4	48.0	417
21	53.1	$39^{\circ} \mathrm{I}$	45°	47.6	$47^{\circ} \mathrm{O}$	$42 \cdot 8$	42.9	$43^{\circ} \mathrm{O}$	431	41.0	21	$49^{\circ} \mathrm{I}$	$40 \cdot 3$	44.6	47.6	$47 \cdot 8$	$45^{\circ} 9$	$43 \cdot 8$	$46 \cdot 0$	$45^{\circ} 9$	$44^{\circ} \mathrm{O}$
22	49.3	$39^{1} 1$	44°	47.8	$46 \cdot 8$	$45 \cdot 5$	$43 \cdot 1$	45.6	44.3	$43^{\circ} 8$	22	$50 \cdot 7$	41.1	$43 \cdot 8$	$48 \cdot 6$	$48 \cdot 8$	$47 \cdot 9$	429	$46 \cdot 0$	$45^{\circ} 9$	$45^{\circ} 9$
23	$53^{\circ} \mathrm{O}$	$36 \cdot 4$	$38 \cdot 9$	51.6	$50 \cdot 3$	$44^{\circ} 6$	38.9	$47 \cdot 3$	$46 \cdot 7$	44.5	23	52.0	$47^{\circ} 0$	$48 \cdot 8$	51.6	$49^{\circ} 9$	$48 \cdot 4$	$47{ }^{\circ} 9$	$49^{\circ} 2$	47.8	$47 \cdot 7$
24	519	$40 \cdot 0$	$44 \cdot 7$ $36 \cdot 3$	49.6 49.6	$50 \cdot 8$	$40 \cdot 8$ 39.7	43.5 36.2	47.0 45.7	$46 \cdot 8$	$40 \cdot 5$ $30 \cdot 6$	24	51.8	43.3	$45 \cdot 6$	$51 \cdot 3$	50.5	$48 \cdot 5$ $46 \cdot 5$	44.2 46.4	$49^{\circ} 3$ 45	49.6 52.0	$+4 \cdot 0$ +4.8
25	51.5	34.4	$36 \cdot 3$	$49 \cdot 6$	51.4	39.7	36.2 38.8	$45 \cdot 7$	$46 \cdot 2$	$39^{\circ} 6$	25	53.0	$45^{\circ} \mathrm{I}$	$47 \cdot 6$	45.7	52.9	$46 \cdot 5$	$46 \cdot 4$	$45^{\circ} \mathrm{I}$	52.0	$+4 \cdot 8$
26	573	33.0	39.0	$48 \cdot 8$	$50 \cdot 3$	57.3	38.8	47.8	$49 \cdot 8$	55.9	26	48.9	$39^{\circ} 1$	45.9	$46 \cdot 7$	$46 \cdot 7$	$47 \cdot 7$	$45 \cdot 0$	44.3	$45^{\circ} 3$	$43^{\cdot 1}$
27	$60 \cdot 3$	$56 \cdot 3$	57.6	58.7	$58 \cdot 5$	57.6	54.8	55.6	55.5	54.3	27	$55^{\circ} \mathrm{O}$	$38 \cdot 2$	39.6	$4^{6 \cdot 7}$	$48 \cdot 3$	54.8	$38 \cdot 6$	44.9	$47 \cdot 6$	53.4
28	59.9	52.3	55.9	59.4	$56 \cdot 8$	55.8	55.3	56.6	54.8	$55^{\circ} \circ$	28	$56 \cdot 3$	51.7	54.5	55°	54.6	51.8	51.7	52.1	51.3	51•1
29	59.7	52.0	$55 \cdot 6$	$58 \cdot 6$	57.5	52.4	50.7	52.7	51.7	50.2	29	52.2	$42 \cdot 1$	$42 \cdot 8$	$46 \cdot 4$	$46 \cdot 2$	43.9	11° 0	$42 \cdot 8$	$42 \cdot 7$	+1•3
30	$55^{\circ} \mathrm{O}$	$4^{8.0}$	50.2	50.9	53.3	$48 \cdot 0$	48.7	47.8	47.6	$46 \cdot 5$	30	$46 \cdot 9$	$40 \cdot 3$	$41 \cdot 2$	$45^{\circ} 8$	$46 \cdot 2$	$41^{\circ} 9$	39.6	42.5	$42 \cdot 8$	40.4
31	$52 \cdot 8$	$42 \cdot 0$	$47 \cdot 3$	520	$47^{\circ} 6$	$42 \cdot 0$	$45 \cdot 8$	$4^{8 \cdot 1}$	$45^{\circ} \mathrm{O}$	39.5	31	$50 \cdot 2$	40'3	$47^{\prime 2}$	49°	$47 \cdot 7$	44°	$43 \cdot 5$	44^{8}	45°	$42 \cdot 2$
Means	573	$39^{\circ} 9$	$46 \cdot 0$	$54^{\circ} \mathrm{O}$	54.7	$46 \cdot 4$	44.6	$49 \cdot 5$	49.6	$45^{\circ} 2$	Means	;0.5	$40 \cdot 9$	$45^{\circ} 1$	$47 * 4$	477	$46 \cdot 3$	$43 \cdot 6$	$4+9$	$45 \cdot 3$	+43

Excess of Mean Monthly Readings of Thermometers placed in a Stevenson's Screen above those of the corresponding Thermometers on the adjacent Ordinary Stand in the Magnetic Pavilion Enclosure in the Year igiz.
(The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at $2 I^{\mathrm{h}}$.)

MONTH,	Dry Bulb Thermometers, 4 ft . above the Ground.						Wet Bulb Thermometer, 4 ft . above the Ground.			
	Maximum.	Minimum.	$9^{\text {h }}$	Noon.	${ }_{15}{ }^{\text {b }}$	$21^{\text {h }}$	$9^{\text {b }}$	Noon.	$15^{\text {h }}$	${ }_{21}{ }^{\text {h }}$
	-	+ ${ }^{\circ}$	\bigcirc	-	${ }^{\circ}$	${ }^{\circ}$	${ }^{\circ}$	\bigcirc	\bigcirc	${ }^{\circ}$
January	$0 \cdot 2$	$+0.4$	$0 \cdot 0$	$\bigcirc \circ$	+ $0 \cdot 1$	$+0.2$	+ $0 \cdot 1$	$\bigcirc \cdot 0$	+0.2	+0.3
February	- 0.5	+ 0.5	-0.1	$0 \cdot 1$	$\bigcirc \cdot 0$	+ 0.2	+ 0 I	-0.2	$0 \cdot 0$	+0.2
March	1.0	+ 0.4	-0.2	- 0.4	-0.3	+ $0 \cdot 3$	$\bigcirc \circ$	-0.3	-0.1	+0.3
A pril.	1.4	+ 0.7	-0.4	- 0.3	-0.4	+ 0.4	- 0.4	$0 \cdot 0$	0.0	$+0.6$
May..	2.5	+0.5	-0.4	- 0.6	- 0.6	+ 0.4	-0.3	-0.4	- 0.2	+ 0.4
June.	- 23	+ 0.6	- 0.4	-0.6	- 0.9	+ 0.4	-0.2	-0.2	-0.3	+0.3
July.	2.0	+ 0.6	-0.5	-0.7	- 0.6	+ 0.3	-0.3	-0.3	-0.4	+0.3
August.	- 1.8	+0.7	-0.4	-0.6	- 0.6	+ 0.2	-0.2	- 0.4	-0.4	+0.2
September	I•I	+ 07	-0.4	-0.4	$\bigcirc \cdot 1$	+ 0.2	-0.3	-0.2	+ 0.1	+0.3
October.	- 0.5	+ 0.6	$0 \cdot 0$	+ 0.2	$+0.2$	+ 0.4	- $0 \cdot 1$	$0 \cdot 0$	+ 0.1	+ 0.2
November.	-0.4	+ 0.5	+ 0.1	$0 \cdot 0$	+ 0.1	+0.3	+ 0.1	+ 0.1	+ 0.1	+ $0 \cdot 3$
December	-0.1	+ 0.6	+ 0.2	$\bigcirc \cdot 0$	+ 0.2	+ 0.3	+ 0.1	$\bigcirc \circ$	$0 \cdot 0$	+ 0.2
Means	- 1•1	$+0.6$	- 0.2	- 0.3	- 0.2	+ 0.3	- 011	- 0.2	- $0 \cdot 1$	$+0.3$

Amount of Rain Collected in each Month of the Year i912.

MONTH, 1912.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Rainy } \\ \text { Days } \\ \text { (o in } \circ 005 \\ \text { or over). } \end{gathered}$	Monthly Amount of Rain collected in each Gauge.							
		Selfregistering Gauge of Osler's Anemometer.\qquad No. i.	Second Gauge at Osler's Anemometer.	$\begin{gathered} \text { On the roof } \\ \text { of the } \\ \text { Octagon Room. } \end{gathered}$	On the roof of the Magnetic Observatory	On the roof of the Photographic Thermometer Shed.	Gauges partly sunk in the ground.		
							In Magnetic Pavilion Enclosure.	In Observatory Grounds.	In Magnetic Pavilion Enclosure.
			No. 2.	No. 3.	No. 4.	No. 5.	No. 6.	No. 7.	No. 8.
		in.							
January	18	$2 \cdot 166$	$2 \cdot 216$	$2 \cdot 386$	$2 \cdot 662$	$2 \cdot 894$	3.025	$2 \cdot 865$	3.041
February	20	- 941	- '949	1. 264	$1 \cdot 420$	1.691	I 721	1.650	1717
March.	20	1900	I 243	1.828	$2 \cdot 129$	$2 \cdot 488$	$2 \cdot 557$	$2 \cdot 483$	$2 \cdot 546$
April	3	0.007	0.005	0.055	0.064	0.071	- .068	0.065	0.074
May	11	- 777	- 777	1.006	$1 \cdot 118$	$1 \cdot 196$	I 288	1-197	1.263
June..	19	I 494	1.425	1 975	2.256	$2 \cdot 407$	$2 \cdot 346$	$2 \cdot 384$	2.337
July..	13	- 777	0.669	$1{ }^{114}$	1224	1.285	1.240	1.284	$1 \cdot 211$
August.	21	$2 \cdot 839$	$2 \cdot 725$	$3 \cdot 687$	$4^{\circ} 003$	$4 \cdot 200$	$4^{1} 14^{2}$	$4^{\cdot 181}$	4'136
September	6	I 503	1.565	$1 \cdot 623$	1.906	1.913	1.987	1.909	1.906
Octaber	15	$1 \cdot 202$	I-155	$1 \cdot 718$	1.870	2.081	$2 \cdot 130$	$2 \cdot 069$	2.115
November	13	0.765	0.663	1.050	I 252	$1 \cdot 444$	1. 553	1 444	1.520
December	20	I 368	I 207	I 987	2.147	$2 \cdot 602$	$2 \cdot 302$	$2 \cdot 639$	2758
Sums .	179	15•239	14.599	19 693	$22 \cdot 051$	$24 \cdot 272$	$24 \cdot 859$	$24 \cdot 170$	$24 \cdot 624$
Height of $\quad\left\{\begin{array}{c}\text { above the } \\ \text { ground }\end{array}\right.$	\}	$\begin{gathered} \text { ft. im. } \\ 50.8 \end{gathered}$	$\begin{aligned} & \text { ft. in. } \\ & 50.8 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 38.4 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 21.6 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & \text { 10. } \end{aligned}$	$\begin{aligned} & \text { f. in. } \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { It. in. } \\ & \text { I. } \end{aligned}$
Surface $\quad\left\{\begin{array}{c}\text { above mean } \\ \text { sea level }\end{array}\right\}$	\} ...	205.6	205.6	$\begin{gathered} \text { ft. in. } \\ \text { 193. } 2 \end{gathered}$	$\begin{array}{r} \text { ft. in. } \\ \text { in6. } \end{array}$	$\begin{aligned} & \text { ft. } \mathrm{in.} \\ & 164.10 \end{aligned}$	$\begin{gathered} \text { f. in. } \\ 149.6 \end{gathered}$	$\begin{array}{r} \text { ft. in. } \\ 155 \cdot 3 \end{array}$	$\begin{aligned} & \text { ft. in. } \\ & \text { I } 50.1 \end{aligned}$

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer in the Year igir.
(It is to be understood that the direction of the wind was nearly constant in the intervals between the times given in the second column and those next following in the first column.)

Directions are given to I 6 points of the Compass, $\mathrm{o}=\mathrm{N}, \mathrm{I}=$ NNE $\mathrm{I} 5=$ NNW.
Note.-The time is expressed in civil reckoning, commencing at midnight and counting from 0^{h} to 24^{h}.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind--concluded.

Greenwich Civil Time.		Change of Direction.	Amount of Motion.		Greenwich Civil Time.		Change of Direction.	$\begin{aligned} & \text { Amount of } \\ & \text { Motion. } \end{aligned}$		Greenwich Civil Time.		Change of Direction.	$\begin{aligned} & \text { Amount of } \\ & \text { Motion. } \end{aligned}$		Greenwich Civil Time.		Change of Direction.	Amount of Motion.	
From	To		Direct.	Retro-	From	To		Direct.	Retrograde	From	To		Direct.	Retro grade.	From	To		Direct.	Retrograde
Dec.	cont.				Dec.	cont.				Dec.	cont.				Dec	cont.			
d h	d				d h	d h				${ }^{\text {d }} \mathrm{h}$	d				d	d h			
3. $7 \frac{3}{4}$	3. 8	$0-12$		4	9. 3	9. 4	10-9		1	16. $5 \frac{1}{2}$	16. 6	$14-13$		1	25.21	25.22	12-11		1
3. $10 \frac{1}{2}$	3. $11 \frac{1}{2}$	12-11		1	9. $6 \frac{3}{4}$	9. $7 \frac{1}{2}$	9-10	1		16. 15	16. 163	$13-11$		2	25. $23 \frac{3}{4}$	26. 0	II-10		1
3. $13 \frac{3}{4}$	3. $14 \frac{3}{4}$	11-9		2	10. $8 \frac{3}{4}$	10. $10 \frac{1}{2}$	10-2	8		$16.22 \frac{1}{2}$	$16.23 \frac{1}{2}$	$11-12$	I		26. $3 \frac{3}{4}$	26. $4 \frac{1}{2}$	10-8		2
3. $16 \frac{3}{4}$	3.17	9-10	1		10. $13 \frac{3}{4}$	10. 15	2-10		8	17. $3 \frac{1}{2}$	17.4	12-11		1	26. 9	26. $9 \frac{1}{2}$	8-10	2	
4. 19	4. 22	10-8		2	10. $16 \frac{3}{4}$	10. 17	10-4	10		18. I	18. $3 \frac{1}{2}$	$1 \mathrm{I}-10$		1	26. $15 \frac{1}{2}$	26. 19	10-14	4	
5. $1 \frac{1}{4}$	5. 4	8-6		2	IO. $18 \frac{1}{4}$	$10.18 \frac{1}{2}$	4-8	4		$18.10 \frac{3}{4}$	18. 11	10-15	5		26. 20	$26.20 \frac{1}{2}$	14-12		2
5. 11	5. $11 \frac{1}{2}$	6-7	1		10.21	$10.21 \frac{1}{4}$	8-7		1	18. $12 \frac{3}{4}$	18.13	$15-12$		3	27. 3	27. $3 \frac{3}{4}$	12-11		1
5. $14 \frac{1}{2}$	5.15	7-8	I		11. $0 \frac{1}{2}$	11. $2 \frac{1}{2}$	7-11	4		18. $19 \frac{1}{2}$	18. $20 \frac{1}{2}$	12-11		I	27. $7 \frac{1}{2}$	27. $8 \frac{1}{4}$	11-10		1
5. 16	5. $16 \frac{1}{2}$	8-7		1	11. $6 \frac{1}{2}$	II. 8	$11-10$		1	19. 3	19. $5 \frac{1}{2}$	$1 \mathrm{I}-10$		1	27. $10 \frac{1}{2}$	27. $11 \frac{1}{2}$	10-9		1
5. $19 \frac{1}{2}$	$5.21{ }^{\frac{1}{4}}$	$7-10$	3		12. 0	12. $0 \frac{1}{4}$	10-12	2		19.23	20. $0 \frac{1}{2}$	10-9		I	27.16	27. $16 \frac{1}{2}$	9-10	I	
$5.23 \frac{1}{2}$	6.0	$10-8$		2	12. $1 \frac{1}{4}$	12. $1 \frac{1}{2}$	12-11		1	20. $8 \frac{1}{2}$	20. $9 \frac{1}{2}$	9-10	I		27.20	27.203	10-11	1	
6. $2 \frac{3}{4}$	6. 3	8-10	2		12. $3 \frac{1}{4}$	12. $3 \frac{3}{4}$	11-12	1		20. $14 \frac{1}{2}$	20. 15	10-9		1	28.17 ${ }^{\frac{1}{2}}$	28. $18 \frac{1}{2}$	11-10		1
6. 5	6. 6	10-9		1	12. $5 \frac{1}{4}$	12. $6 \frac{3}{4}$	12-10		2	20. $22 \frac{3}{4}$	20.23	9-10	1		29. 5	29. $6 \frac{1}{2}$	10-15	5	
6. $9 \frac{1}{2}$	6. 11	9-10	I		12. $11 \frac{1}{2}$	12.121 ${ }^{1}$	10-12	2		21.21	21.22	10-11	1		29. $7 \frac{1}{2}$	29.10	15-12		3
6. $18 \frac{1}{2}$	6. 19	10-11	1		12. $13 \frac{3}{4}$	12. 14	12-13	1		22. 0	22. $\circ \frac{1}{4}$	11-10		1	29.12	29.14	12-11		1
6. $21 \frac{1}{2}$	6.22	11-10		1	12. $15 \frac{3}{4}$	12.16	$13-12$		1	24. $1 \frac{1}{4}$	24.2	10-11	1		29.20	29.22	$11-12$	I	
7. 1	7. $2 \frac{1}{2}$	10-9		1	12. $18 \frac{1}{4}$	I2. $18 \frac{3}{4}$	12 -II		1	24. $3 \frac{1}{2}$	24. $4 \frac{1}{4}$	11-10		1	30. 3	30. $3 \frac{1}{2}$	12-11		1
7. $6 \frac{1}{2}$	7. $7 \frac{1}{4}$	9-8		1	14. $11 \frac{3}{4}$	14.12	$11-12$	I		24. $5 \frac{1}{2}$	24. 6	10-11	I		30. $5 \frac{1}{2}$	30. 7	II-I2	I	
7. 9	7. $9 \frac{1}{2}$	8-9	1		14.17	$14.18 \frac{1}{2}$	$12-11$		1	24. 7	24. 8	11-10		1	30.15	30. 17	$12-10$		2
7. $13 \frac{1}{2}$	7.13 ${ }^{\frac{1}{4}}$	9-10	I		14. 23	15. I	11 -12	1		24. $15 \frac{1}{4}$	24. $15 \frac{1}{2}$	10-11	1		31. $5^{\frac{1}{2}}$	31.64	10-11	1	
7. $15 \frac{1}{2}$	7.161	10-9		1	15. $3 \frac{1}{2}$	15. 5	$12-13$	1		25. $5 \frac{1}{4}$	25.714	I 1--9		2	$3 \mathrm{I} .11 \frac{1}{2}$	31. 12	11-10		1
7.23	8. I	9-10	1		15.7	15.8	$13-12$			25.10 ${ }^{\frac{1}{2}}$	25. 11	9-8		1	31.194	31.21	10-9		1
8. 7	8. 9	10-9		1	15.13	15.14	12-11			$25.13 \frac{1}{2}$	25.13 ${ }^{\frac{3}{4}}$	8-10	2						
8. 11	8 11 $\frac{1}{2}$	9-10	I			15.18	II-13	2		$25.14 \frac{3}{4}$	25.15 ${ }^{\frac{1}{4}}$	10-12	2						
8. $20 \frac{1}{2}$	821	10-9		1	$15.18 \frac{1}{2}$	$15.19 \frac{1}{2}$	${ }^{13} 3-12$		1	25.17	25.173	12-11		1			Sums	98	87
8.23	8. $23 \frac{3}{4}$	9-10	I		16. $4 \frac{1}{4}$	16. $4 \frac{1}{2}$	12-14	2		25.191	25.20	I I -12	1						

Excess of Motion in each Month.

The whole excess of direct motion for the year was $350=7875^{\circ}$.

Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from the Records of Robinson's Anemometer.

Hour ending	1912.												$\begin{gathered} \text { Mean for } \\ \text { the } \\ \text { Year. } \end{gathered}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
${ }^{\text {h }}$	Miles. 117	$\begin{gathered} \text { Miles. } \\ \text { I I } 9 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 14^{\circ} \cdot \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Miles. } \\ \text { IO०.9 } \end{gathered}$	$\begin{array}{r} \text { Miles. } \\ 7.6 \end{array}$	$\begin{array}{r} \text { Miles. } \\ 9 \cdot 8 \end{array}$	$\begin{gathered} \text { Miles. } \\ 8.6 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 1 \mp 7 \end{gathered}$	$\begin{array}{r} \text { Miles. } \\ 9.5 \end{array}$	Miles. 97	$\begin{gathered} \text { Miles. } \\ 12 \cdot 1 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ \text { I8•3 } \end{gathered}$	$\begin{gathered} \text { Miles. } \\ \mathrm{II} \ddagger \end{gathered}$
2	11.3	12.6	15.5	10%	77	9'5	$8 \cdot 1$	12.2	$10^{\circ} 0$	$9 \cdot 6$	11.8	17.6	114
3	10.8	13.2	154	$10 \cdot 0$	$7 \cdot 0$	$8 \cdot 6$	8.2	12.1	9.5	$9 * 9$	12.4	17.5	11.2
4	$10 \cdot 9$	12.0	153	$10 \cdot 3$	77	9×2	$8 \cdot 1$	115	$9 \cdot 8$	9.2	12.3	$17^{1} 1$	11'1
5	11.2	123	$15^{\circ} 0$	10.6	73	$9{ }^{\circ}$	$8 \cdot 1$	111	$9 \cdot 8$	9•1	$12 \cdot 6$	$16 \cdot 1$	11°
6	10.8	12.4	143	$11^{\circ} 0$	$7 \cdot 6$	$9 \cdot 1$	$7 \cdot 8$	113	$9 \cdot 5$	9°	12.5	15.8	10.9
7	$9 \cdot 8$	12.0	14°	$10 \cdot 6$	$8 \cdot 0$	$10 \cdot 5$	$8 \cdot 0$	11.2	9.9	93	12.2	15.6	$10 \cdot 9$
8	10.1	117	15°	115	$8 \cdot 7$	11.6	8.5	12.5	10.4	$10 \cdot 0$	13°	153	11.5
9	9.8	11.6	16.7	127	9.6	12.5	$9^{\text {¹ }}$	13.1	12.0	$9 \cdot 5$	12.5	15.5	12.0
10	$9 \cdot 8$	12.0	$17 \cdot 6$	127	$10^{\circ} 4$	13.2	$10 \cdot 2$	13.8	13.3	10.1	12.3	16.3	12.6
11	$10^{\prime} 3$	13.2	18.7	13.8	1111	13.8	$10 \cdot 9$	14.8	$14 \cdot 8$	11'2	13.2	16.7	13.5
Noon.	11.1	13.9	$19^{\circ} 5$	14.7	10.8	14.3	1144	14.4	15%	12.0	13.4	17^{11}	$14^{\circ} \mathrm{O}$
$13^{\text {b }}$	12.6	14°	19°	15.6	11.5	15.1	12.0	$15^{\circ} \mathrm{O}$	14.5	12.5	13.9	17.3	14.4
14	12.5	14^{6}	19.3	$16 \cdot 6$	13.1	15.8	13.1	$16 \cdot 2$	$14^{\prime 7}$	12.7	15°	17.7	15^{1}
15	12.1	14.7	18.3	16.4	13.1	$16 \cdot 2$	12.3	15.3	15.2	12.3	14.5	17.5	14.8
16	12.0	139	17%	$16 \cdot 1$	13.2	16.4	12.3	14.9	15°	12.5	$14^{\circ} 1$	17.5	$14^{6} 6$
17	11.6	137	$16 \cdot 0$	$15^{\circ} 6$	13.3	15°	1199	13.6	14.5	110	13.8	$16 \cdot 6$	13.9
18	11.8	13.2	15.0	15.2	124	15.2	$12^{\circ} \mathrm{O}$	129	12.9	10.6	134	17.2	13.5
19	11.6	12.0	14.3	134	10.8	13.5	113	123	117	10.4	$14^{\circ} \mathrm{O}$	17°	12.7
20	11.6	115	14.3	12.5	$10 \cdot 0$	11.6	10.4	1111	$10 \cdot 3$	10.4	13.8	18.2	12.1
21	11.5	12.2	$14^{*} 8$	11.8	9.5	10'9	$9 \cdot 6$	113	10.4	10.6	12.9	18.2	12.0
22	11^{6}	123	15°	11.8	$9{ }^{\circ}$	10.3	9.2	11.0	10.4	10.5	1199	18.0	11.8
23	115	119	15.2	11\%2	8.4	$9 \cdot 8$	8.4	11.0	$10 \cdot 4$	99	12.3	18.6	11.6
Midnight.	113	12°	14.2	$\mathrm{II}^{\circ} \mathrm{I}$	$7 \times$	$9 \cdot 6$	8.6	11/1	$10^{\circ} 5$	$10 \cdot 2$	123	18.3	114
Means	11.2	127	$16 \cdot 0$	12.8	$9 \cdot 8$	12.1	$9^{\circ} 9$	12.7	11.8	$10 \cdot 5$	$13^{\circ} \mathrm{O}$	17^{11}	12.5
$\underset{\text { Hourly }}{\text { Greatest }} \quad \int^{(\mathbf{1})}$	37	35	41	43	29	29	29	28	30	39	43	40	...
Measures. (2)	29	27	31	33	23	23	23	23	24	30	33	31	...

(1.) Deduced from the motion of the cups by the formula $\mathrm{V}=3 v$;
(2.) , ", " ", " \quad, \quad,
where v is the hourly motion of the cups in miles. See Introduction.

Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day.
(Each result is the mean of Twenty-four Hourly Ordinates from the Photographic Register. The scale employed is arbitrary : the sign + indicates positive potential.)

Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }_{\text {d }}$	$+471$	+1433	+ 203	+1063	+ 948	+ 368	+ 489	$+482$	+ 258	+ 314	+ 752	+ 838
2	+ 605	+1384	+ 192	+1100	+ 813	+ 277	+ 468	+670	+ 371	+ 507	+ 941	+ 847
3	+ 559	+1609	+ 353	+ 699	$+815$	$+540$	+ 293	+ 414	$+376$	$+802$	$+885$	+ 914
4	+ 339	...	+ 215	+ 524	+ 13	+ 493	+ 347	+ 254	+ 228	+807	+ 649	+ 520
5	+ 581	\ldots	$+303$	+ 417	$+240$	+ 358	+ 237	$+335$	+ 529	$+646$	+ 299	+ 662
6	+ 219	+ 792	+ 735	+ 447	+ 510	$+450$	+ 212	$+163$	+604	$+632$	+ 241	$+338$
7	$+531$	$+573$	$+866$	$+470$	+ 319	+ 281	+ 172	$+230$	\ldots	$+732$	$+324$	$+358$
8	+ 413	+ 250	+ 325	+ 496	$+330$	+ 387	+ 219	+ 413	+ 247	+ 524	+ 254	+ 244
9	$+531$	+215	$+446$	+1021	$+332$	+ 196	+ 348	+ 483	+603	+ 465	+ 291	+ 329
10	+ 597	+ 288	$+370$	+1095	+ 242	+ 341	+211	+ 646	+ 757	+ 358	+ 190	+ 375
11	+ 395	+ 295	+489	+1210	+ 328	+ 397	+ 22 I	+ 522	+ 725	+ 525	$+637$	$+358$
12	+ 702	+ 84	\ldots	+ 985	+ 267	+ 348	+ 193	$+440$	+ 313	+ 659	+ 694	+ 53 I
13	+ 453	+ 424	+ 327	+1148	+ 351	+ 497	+ 240	+ 684	$+343$	+ 415	+ 742	+ 385
14	+ 403	+613	+ 276	+ 765	$+330$	+569	+ 157	\ldots	+ 262	+211	$+540$	+ 165
15	+ 387	$+477$	+ 319	+ 693	+ 379	+ 499	+ 220	$+341$	+234	+ 387	+ 812	+ 293
16	+ 225	+ 366	+ 595	+621	+ 780	+ 333	+ 291	$+301$	+151	$+381$	$+390$	+ 667
17	-270	+ 495	- 224	+ 591	+ 935	+ 422	$+372$	+ 186	+215	+ 401	$+353$	$+782$
18	- 174	+ 492	+ 142	+1001	+601	+ 208	$+480$	+ 139	+ 245	+ 375	+ 590	+ 684
19	+ 415	+ 277	+ 492	+ 661	+ 407	+ 257	+ 780	+ 172	+ 402	+ 427	+ 568	$+54^{2}$
20	+ 539	+ 560	$+630$	+ 537	+ 446	+ 407	$+642$	+224	$+344$	+252	+628	+ 414
21	+ 517	+ 771	...	$+503$	+ 516	+ 385	+ 280	$+356$	$+332$	+ 341	$+330$	$+474$
22	+ 586	+282	\ldots	+ 464	$+314$	+ 264	$+35^{8}$	+ 505	+ 305	+ 451	...	+ 427
23	+ 156	+ 145	$+280$	+ 724	+ 589	+ 242	+ 228	+ 175	+ 290	$+542$...	+ 293
24	+ 181	+ 410	$+334$	+ 779	+833	+ 283	+ 258	+ 85	$+4^{61}$	+ 434	$+516$	+ 352
25	+ 561	+ 423	+ 237	+ 849	+ 669	+ 305	+ 257	+ 115	$+405$	+ 519	$+359$	+ 299
26	+ 799	+ 435	$+33^{8}$	+ 592	$+410$	+ 507	$+345$	+ 76	+ 352	\ldots	+282	$+220$
27	+ 947	+ 464	$+542$	+ 494	+487	$+336$	+ 265	$+333$	+ 449	\cdots	$+718$	+ 416
28	+1213	$+340$	+ 524	$+663$	\ldots	+ 315	+255	+ 245	+ 292	\ldots	$+833$	+ 179
29	+1541	$+355$	$+872$	+1227	\ldots	$+372$	+ 281	+ 119	+ 12 I	...	+ 200	$+358$
30	+1574		+ 889	+1124	$+462$	+ 378	+ 404	+ 201	+ 2	+175	+1337	$+637$
31	+1398		+614		+ 295		$+460$	+ 359		+ 335		+ 581
Means	+ 561	$+528$	$+417$	$+765$	$+4^{81}$	$+367$	$+322$	$+322$	$+352$	$+467$	$+548$	$+467$

Monthly Mean Electrical Potential of the Atmosphere, from Thomson’s Electrometer, at every Hour of the Day.

(The results depend on the Photographic Register, using all days of complete record. The seale employed is arbitary: the sign + indicates positive potential.)

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day.

(The results depend on the Photographic Register, using all days on which the rainfall amounted to or exceeded $0^{\text {in. }} \mathrm{O} 2 \mathrm{o}$. The scale employed is arbitrary : the sign + indicates positive potential.)

$\begin{gathered} \text { Hour, } \\ \begin{array}{c} \text { Greenwich } \\ \text { Civil Time. } \end{array} \end{gathered}$	1912.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{ }$
	January.	February.	March.	April.	May.	une.	July.	Augnst.	September.	October.	November.	December.	
Midnight	+ 286	+ 380	+ 417	+1290	+ 281	$+425$	+ 369	+ 249	+ 253	+ 144	+ 348	$+402$	+ 404
$1^{\text {h }}$	+ 288	+ 346	$+382$	+ 940	$+167$	$+348$	$+363$	+229	+ 227	+ 176	+304	+ 357	+ 344
2	+ 255	+317	+ 335	+ 920	+ 187	+ 327	+ 328	+ 206	$+212$	+ 205	+ 284	+ 314	+ 324
3	+ 153	+ 280	+ 308	+ 740	+ 206	+ 352	+ 286	+ 186	+ 222	+ 219	+ 199	+287	+ 287
4	+ 91	+ 279	+ 261	$+330$	+ 181	+ 314	+282	+ 195	+ 228	+ 253	+ 100	+ 269	+ 232
5	+ 183	+ 281	+ 259	+ 170	+ 206	+ 288	$+332$	$+201$	+ 228	$+271$	+ 96	+ 308	+ 235
6	+ 197	$+300$	+315	+ 430	+ 281	+ 173	+ 398	+ 252	$+232$	+ 291	+ 210	$+332$	+ 284
7	+ 206	+ 272	+ 367	+ 790	+ 394	+ 105	+ 437	+ 318	+ 207	+ 319	+ 270	$+363$	+ 337
8	+ 209	+ 327	+ 349	+ 930	$+4^{11}$	+ 295	+ 457	$+314$	$+212$	$+366$	+ 253	+ 395	+ 377
9	+247	$+4^{21}$	+ 297	+1000	$+44^{\circ}$	+ 407	$+488$	$+33^{8}$	$+305$	+ 417	+ 369	$+438$	$+431$
10	+ 261	+ 504	+ 302	+1200	+ 459	+ 444	$+469$	+ 334	+ 378	$+463$	+ 477	+ 531	+ 485
11	+ 224	+ 437	+ 293	+1220	$+427$	$+352$	$+405$	+ 284	$+368$	$+424$	+ 52 I	+ 513	+ 456
Noon	+ 465	+ 355	+ 149	+1100	+ 357	$+316$	+ 415	+ 286	$+377$	$+360$	+ 459	+ 454	$+424$
$13^{\text {b }}$	+ 5^{21}	+ 278	+113	+1000	+ 319	+218	$+359$	+313	+387	$+378$	+ 493	$+467$	$+404$
14	+ 4^{82}	+ 308	+ 57	+1080	+ 290	+ 245	+ 329	$+368$	+ 407	+ 397	+ 463	+ 481	$+409$
15	+ 429	+ 354	+ 81	+1160	+ 374	+ 375	+ 359	+ 292	+ 377	+ 415	+ 44^{8}	+ 468	$+428$
16	+ 466	+ 325	+ 159	+1390	+ 377	+ 333	$+340$	$+270$	$+310$	$+457$	+ 426	+ 494	$+446$
17	+ 414	+ 282	+ 183	+1340	$+383$	+ 377	$+366$	+ 321	+ 387	+ 524	+ 392	$+508$	$+456$
18	+ 300	+ 318	+ 382	+1410	+ 400	+ 386	+ 377	+ 288	+ 440	+ 528	+ 517	+ 462	+ $4^{8} 4$
19	+213	+ 370	+ 452	+1410	+ 390	+ 400	$+369$	$+352$	+ 402	+ 472	+ 516	+ 464	$+4^{84}$
20	+ 261	+ 405	+ 532	+1360	+ 417	+ 432	$+365$	+ 391	+ 318	$+4^{2 I}$	+ 486	+ 491	+ 490
21	+300	+ 397	+ 447	+1530	+. 396	+ 429	$+384$	$+330$	+ 275	+ 393	+ 548	$+481$	$+493$
22	+ 329	+ 341	$+377$	+1500	+ 401	+ 433	+ 432	+ 311	198	+ 263	+ 575	+ 512	+ 473
23	$+366$	+ 322	+ 390	+1280	$+367$	+ 446	$+373$	+ 284	+ 125	+ 228	$+562$	$+477$	$+435$
24	+ 339	+ 308	$+412$	+1200	+ 324	+411	$+33^{\circ}$	+ 244	+ 82	+ 268	+ 514	+ 413	$+404$
$0^{\text {b }} .-23^{\text {l }}$.	+ 298	$+342$	$+300$	+1063	$+338$	$+343$	$+378$	+ 288	+ 295	+ 349	+ 388	+ 428	$+401$
$\sum{ }_{1}{ }^{\text {h }} .-24^{\text {b }}$.	$+300$	+ 339	+ 300	+1060	+ 340	$+342$	+ 377	+ 288	+ 288	$+354$	+ 395	+ 428	+ 401
$\left\{\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	14	12	15	1	7	13	10	16	6	10	10	19	\ldots

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non-Rainy Days, at every Hour of the Day.

(The results depend on the Photographic Register, using only those days on which no rainfall was recorded. The scale employed is arbitrary: the sign + indicates positive potential.)

$\begin{gathered} \text { Hour, } \\ \substack{\text { Greenwich } \\ \text { Civil Time. }} \end{gathered}$	1912.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{\text { chen }}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October	November.	December.	
Midnight	+ 735	+658	$+{ }^{27}$	$+705$	$+468$	$+360$	+ 281	+ 270	+ 265	$+567$	+ 544	$+542$	+ 485
$\mathbf{1}^{\text {h }}$	+ 712	+ 637	+ 394	+ 653	+ 414	+ 352	+251	+ 259	+ 249	+ 557	+ 523	$+460$	$+455$
2	+687	+ 561	$+330$	+619	$+382$	+ 325	+ 231	+ 256	+ 234	+ 516	+ 493	$+400$	$+4^{20}$
3	+ 661	+ 530	+ 297	+ 593	+ 328	+ 305	+ 241	+ 259	+ 215	+ 512	+ 473	+ 395	+ 401
4	+ 627	+ 525	+ 297	+ 597	+ 317	+ 287	+ 232	+ 271	+ 215	+ 529	+ 473	$+370$	+ 395
5	+ 645	+ 524	+ 307	+ 626	+ 337	+ 303	+ 230	+ 279	+226	+ 541	+ 492	+ 337	+ 404
6	+681	$+536$	+ 341	+ 685	+ 4^{01}	$+337$	+ 263	+ 316	+ 256	+ 568	+ 528	$+360$	$+439$
7	+683	+ 607	$+428$	$+782$	+ 476	+ 366	+ 285	+ 324	+ 287	+ 544	+ 540	$+462$	+ 482
8	+ 729	+ 653	+ 487	$+857$	+ 538	$+387$	+ 286	+ 372	+ 307	+ 562	+ 581	+ 520	$+523$
9	+ 834	+ 724	+ 524	+ 887	+ 581	$+4^{21}$	+ 299	+ 425	+ 345	+ 607	+ 654	+ 615	$+576$
10	+ 922	$+805$	$+536$	$+847$	$+590$	$+431$	+ 303	+ 444	+ 373	+651	+ 757	$+703$	+613
11	+ 939	$+830$	$+482$	+ 752	+ 543	+ 391	+ 270	+ 394	+ 365	+ 680	+798	+ 713	$+596$
Noon	+ 929	+ 861	$+467$	+ 714	+ 492	+ 331	+ 264	+ 358	$+338$	+ 574	+817	+ 662	$+567$
$13^{\text {b }}$	+ 906	+ 811	$+432$	+ 657	+ 474	+ 305	+ 260	+ 334	$+336$	+ 523	+827	$+662$	+ 544
14	+ 870	+ 810	+ 433	+ 647	+ 516	+ 297	+ 239	+ 341	+ 353	+ 505	+ 830	+ 662	+ 542
15	+ 840	$+860$	$+450$	+ 667	+ 526	+ 318	+ 244	$+330$	+ 370	+ 541	+857	+ 657	+ 555
16	+ 860	+ 825	+ 483	+ 668	+ 532	+ 325	+ 260	+ 334	+ 416	+ 574	+ 921	+ 697	+ 575
17	+ 910	+819	+ 500	+ 703	$+541$	+ 355	+ 294	+ 386	+ 446	+619	+913	+ 752	$+603$
18	+ 908	+ 835	+ 571	+745	+ 599	+ 416	+ 285	+ 425	+ 445	+ 609	+ 893	+ 777	$+626$
19	+ 919	+ 829	+ 579	+ 774	+ 622	$+410$	+ 283	+ 4^{29}	+ 454	+ 549	+ 894	+ 743	+624
20	+ 910	$+804$	+ 547	+ 753	+ 604	+ 4^{18}	+ 298	+ 4^{26}	+ 461	+ 510	+ 880	+ 720	+611
21	$+896$	+ 794	+ 563	+727	+ 539	$+430$	+ 324	$+376$	$+446$	+ 512	+801	$+687$	$+591$
22	+ 887	+ 708	+ 552	+742	+ 558	$+424$	+ 339	+ 345	+387	$+503$	+ 672	+ 678	$+566$
23	+ 839	$+656$	+ 507	+ 726	+ 513	$+380$	+ 342	+ 326	+ 357	+ 530	+ 597	+627	+ 533
24	+ 798	$+560$	$+443$	+ 641	+ 459	$+360$	+ 304	+ 306	+ 334	+ 564	+ 561	$+55^{\circ}$	$+490$
$0^{\text {h }} .-23^{\text {h }}$.	+814	$+717$	+ 456	+ 714	+ 495	$+361$	+ 275	+ 345	+ 339	+ 55^{8}	+ 698	+ 592	$+530$
$\bar{z} \quad 1^{\text {b }} \cdot-24^{\text {b }}$.	+ 816	+713	+ 456	+ 711	+ 495	$+36 \mathrm{I}$	+ 276	+ 346	+ 342	$+55^{8}$	+ 699	+ 592	$+530$
$\left.\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	11	8	9	26	18	10	14	8	19	14	9	6	...

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

OF

LUMINOUS METEORS.

1912.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\underset{\text { Iq12. }}{\text { Month and Day, }}\) \& (treenwich \& Observer. \& \begin{tabular}{c}
Brightuess \\
of Meteor \\
\hline
\end{tabular} in Star Magnitu \& Of Meteor. \& Duration of Meteor in Time. \& Appearance
and Duration and Duratio \& \[
\begin{aligned}
\& \text { Length of } \\
\& \text { Meteor's } \\
\& \text { Path in } \\
\& \text { Degrees. }
\end{aligned}
\] \& Path of Meteor in the Sky. \\
\hline \multirow{38}{*}{April} \& m \& \& \& \& \& \& \& \(\bigcirc{ }^{\circ}\) - \\
\hline \& I. 55.48 \& T \& 1 \& Yellow \& \(\bigcirc 3\) \& None \& 8 \& \(345+54\) to \(0+56\) \\
\hline \& I. 59. 32 \& FB \& 2 \& Bluish-white \& \(\bigcirc \cdot 3\) \& None \& 14 \& \(290+33\) to \(306+30\) \\
\hline \& 1. 59. 39 \& FB \& 3 \& Bluish-white \& \(0 \cdot 3\) \& None \& 10 \& \(258+25\) to \(267+20\) \\
\hline \& 2. 3. 13 \& T \& \(>\) I \& Yellow \& \(2 \cdot 0\) \& Bright : 1 sec. \& 22 \& \(188+54\) to \(225+53\) \\
\hline \& 2. 8. 56 \& FB \& 3 \& White \& \(\bigcirc \cdot 3\) \& None \& 12 \& \(290+18\) to \(293+6\) \\
\hline \& 2. 16. 12 \& FB \& T \& 1 \& Whit \& \(\bigcirc \cdot 3\) \& N \& 11 \& \(296+9\) to \(285+8\) \\
\hline \& 2. 22. 2 \& FB \& 3 \& Whit \& \(0 \cdot 2\) \& None \& 6 \& \(318+32\) to \(324+28\) \\
\hline \& 2. 28. 26 \& T \& FB \& 3 \& Bluish-white \& \(\bigcirc \cdot 3\) \& None \& 10 \& \(284+37\) to \(296+42\) \\
\hline \& 2. 41.28 \& T \& 2 \& Yellow \& \(0 \cdot 2\) \& None \& 7 \& 249 - 4 to \(242-7\) \\
\hline \& 2. 45.53 \& FB \& I \& Bluish-white \& \(\bigcirc \cdot 3\) \& Slight \& 2 \& \(288+30\) to \(306+18\) \\
\hline \& 2. 46.48 \& FB \& 3 \& Bluish-white \& \(\bigcirc \cdot 3\) \& None \& 11 \& \(263+25\) to \(255+17\) \\
\hline \& 2. 47.47 \& FB \& 2 \& White \& \(0 \cdot 4\) \& Slight \& 12 \& \(263+23\) to \(257+13\) \\
\hline \& 2. 51. 56 \& FB \& 1 \& White \& \(\bigcirc 4\) \& Slight \& 8 \& \(258+34\) to \(254+26\) \\
\hline \& 3. 18.38 \& T \& 3 \& White \& \(\bigcirc \cdot 3\) \& None \& 10 \& \(237+17\) to \(228+12\) \\
\hline \& 21. 15. 20 \& D \& 2 \& Yellow \& \(\bigcirc \cdot 4\) \& None \& 7 \& \(168+16\) to \(174+20\)
\(273+33\) to \(263+32\) \\
\hline \& 21. 19. 36 \& FB \& 3 \& White \& 0.2 \& \({ }_{\text {Slight }}^{\text {None }}\) \& 13 \& \(273+33\) to \(263+32\)
\(300+44\) to \(318+47\) \\
\hline \& \(\begin{array}{llll}\text { 21. } \\ \text { 21. } \& \text { 19. } \& 47 \\ \text { 2. } \& 50\end{array}\) \& FB \& 2
\(>1\) \& White \& \(\circ\)

0
0 \& None
Bright : i sec. \& 13 \& $300+44$ to $318+47$
$158+43$ to $155+43$

\hline \& 21. 26. 2 \& D \& 2 \& Yellow \& $0 \cdot 3$ \& None \& 18 \& $200+56$ to $227+54$

\hline \& 21. 32. 4 \& D \& 3 \& Bluish-white \& $\bigcirc \cdot 2$ \& None \& 11 \& $234+39$ to $248+37$

\hline \& 21. 33.29 \& S \& D \& 2 \& Yellow \& $\bigcirc \cdot 3$ \& Slight \& 14 \& $231+29$ to $245+36$

\hline \& 21. 36. 36 \& D \& 3 \& Bluish-white \& $0 \cdot 5$ \& Slight \& 12 \& $200+56$ to $222+55$

\hline \& 21. 37.28 \& S\& D \& 2 \& W \& $\bigcirc 3$ \& None \& 6 \& $228+73$ to $246+69$

\hline \& 21. 40.47 \& D \& 3 \& B \& $0 \cdot 3$ \& None \& 20 \& $233+27$ to $213+20$

\hline \& 21.41. 49 \& S \& \& Bluish-white \& $\bigcirc \cdot 4$ \& Slight \& 10 \& $263+54$ to $243+58$
218
+
to

\hline \& 21. 58. 46 \& D \& 3 \& White \& $\bigcirc \cdot 3$ \& Slight \& $$
\begin{aligned}
& 11 \\
& 18
\end{aligned}
$$ \& $218+38$ to $231+40$

$192+57$ to $165+49$

\hline \& $\begin{array}{llll}\text { 22. } & \text { 7. } & 19 \\ \text { 22. } & 16 . & 49\end{array}$ \& D \& \& Yellow \& 0.6
0.2 \& Bright: 2 secs.
None \& 18
6 \& $192+57$ to $165+49$
$275+38$ to $267+40$

\hline \& 22. 43. 16 \& FB \& 3 \& White \& $0 \cdot 3$ \& Slight \& 10 \& $263+55$ to $270+45$

\hline \& 22. 55. 3 \& D \& 1 \& White \& $0 \cdot 5$ \& Bright : 3 secs. \& 26 \& $213+22$ to $206+47$

\hline \& 22. 55. 5 \& D \& 2 \& Yellow \& $0 \cdot 4$ \& None \& 14 \& $176+15$ to $165+5$

\hline \& 22. 57. 12 \& FB \& 3 \& Bluish-white \& $\bigcirc \cdot 3$ \& N \& 13 \& $281+39$ to $296+45$

\hline \& 23. 6. 37 \& D \& 3 \& Yellow \& $0 \cdot 2$ \& None \& 13 \& $215+38$ to $198+37$

\hline \& 23.14. 2 \& FB \& 2 \& Bluish-white \& $0 \cdot 5$ \& Slight \& 14 \& $288+44$ to $305+52$

\hline \& 23.26. 56 \& FB \& 2 \& White \& $0 \cdot 5$ \& Slight \& 13 \& $284+46$ to $302+48$

\hline \& 23. 30. 39 \& D \& 3 \& Yellow \& $\bigcirc \cdot 3$ \& None \& 14 \& $192+4$ to $188-9$
$279+38$ to $282+33$

\hline \& 23. 41. 13 \& D \& 2 \& White \& $\bigcirc 3$ \& None \& 13 \& $279+38$ to $282+33$
$248+35$ to $260+43$

\hline \& | 23. |
| :--- |
| 23. 49. |
| 8. |
| 8 | \& $\stackrel{\text { D }}{\text { F }}$ \& 2 \& Bluish-white

Yellow \& 0.2
0.4 \& None
None \& 13 \& $248+35$ to $260+43$
$281+42$ to $275+39$

\hline \& 23. 49. 5^{8} \& FB \& \& Yellow \& 0.4 \& None \& 5 \& $281+42$ to $275+39$

\hline \multirow[t]{20}{*}{$\begin{array}{cc}\text { April } & 23 \\ & ", \\ & " \\ & " \\ & " \\ & " \\ & " \\ & " \\ & " \\ & " \\ & " \\ & " \\ & " \\ & " \\ & " \\ & " \\ & "\end{array}$} \& 0. 6. 49 \& FB \& I \& Bluish-white \& 0.4 \& \& \&

\hline \& 0. 7. 58 \& D \& 3 \& Yellow \& $\bigcirc \cdot 3$ \& None \& 11 \& $264+46$ to $252+52$

\hline \& 0. 10. 58 \& FB \& 1 \& Bluish-white \& $\bigcirc \cdot 5$ \& Slight \& 5 \& $275+42$ to $273+37$

\hline \& -. 14. 37 \& D \& 2 \& Yellow \& $\bigcirc \cdot 3$ \& None \& 9 \& $215+20$ to $221+27$

\hline \& -. 31. 16 \& D \& 1 \& Bluish-white \& $0 \cdot 3$ \& Bright : 2 secs. \& 13 \& $290+37$ to $305+37$

\hline \& -. 37.54 \& FB \& 1 \& Yellow \& 0.4 \& Faint \& 7 \& $345+85$ to $338+78$
$281+38$ to $282+33$

\hline \& o. $4^{8 .} 33$ \& FB \& 2 \& Bluish-white \& 0.4 \& Faint \& 5 \& $281+38$ to $282+33$
$215+20$ to $206+18$

\hline \& o. 49. 26 \& D \& 3 \& Bluish-white
White \& 0.3
0.7 \& None \& 10 \& $215+20$ to $206+18$
$237+41$ to $224+40$

\hline \& -. 50. 19 \& D \& F \& \& Bluish-white \& 1.0 \& Bright : 2 secs. \& 23 \& $266+38$ to $294+38$

\hline \& 1. 4. ${ }_{\text {I. }}$ I3 \& D \& \& White \& $1 \cdot$ \& None \& 14 \& $185+12$ to $173+5$

\hline \& I. 6.47 \& D \& \& Bluish-white \& $0 \cdot 7$ \& Slight \& 8 \& $221+26$ to $215+20$

\hline \& I. 12. 4^{8} \& FB \& \& ellow \& $3{ }^{\circ}$ \& Bright: 3 secs. \& 20 \& $308+62$ to $318+43$

\hline \& 1. 16. 59 \& D \& \& White \& $0 \cdot 5$ \& Bright: $3 \cdot 5$ secs. \& 11 \& $239+38$ to $225+41$

\hline \& I. 17. 39 \& D \& 2 \& Bluish-white \& $0 \cdot 3$ \& None \& 6 \& $224+39$ to $216+38$

\hline \& 1. 26.58 \& D \& I \& White \& 2.0 \& Bright: 2 secs. \& 13 \& $219+36$ to $236+37$

\hline \& I. 39.40 \& FB \& 1 \& Yellow \& $1{ }^{\circ}$ \& Slight \& 12 \& $297+9$ to $303-2$

\hline \& 1. 44.21 \& D \& 1 \& Yellow \& $1 \times$ \& None \& 17 \& $215+20$ to $201+11$

\hline \& I. 49.55 \& D \& 2 \& Bluish-white \& 0.7 \& None \& 13 \& $192+38$ to $183+27$
$266+42$ to $267+39$

\hline \& $\begin{array}{llll}\text { I. } & 55 . & 12 \\ \text { I. } 59 . & 58\end{array}$ \& FB \& 1 \& Bluish-white \& $1 \cdot 0$ \& Bright : 0.5 sec . \& 7 \& $284+31$ to $276+34$

\hline \& 1. 59. 2.25 \& FB \& 2 \& White \& $0 \cdot 6$ \& Faint \& 3 \& $234+10$ to $231+7$

\hline
\end{tabular}

The time is expressed in civil reckoning, commencing at midnight and counting from on to $\mathbf{2 4}^{\text {h }}$.

Month and Day, 1912.	Greenwich Civil Time.	Observer.	Brightness of Meteor in Star Magnitudes	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's $\underset{\text { Degrees. }}{\text { Path in }}$	Path of Meteor in the Sky.
April 23	h m				s		-	$\bigcirc \circ \circ{ }^{\circ}$
	2. 14. 23	FB	3	White	0.2	None	1	$276+40$ to $275+39$
	2. 16. 40	FB	2	Bluish-white	$0 \cdot 5$	Faint	14	$287+38$ to $305+40$
	2. 29. 37	D	2	Bluish-white	$0 \cdot 3$	None	12	$278+36$ to $264+38$
	2. 35.57	D \& FB	3	White	$0 \cdot 2$	None	7	$282+38$ to $275+35$
	2. 59. 37	D	2	White	$0 \cdot 1$	Faint	17	$281+34$ to $263+28$
	3. 3. 50	FB	3	White	$0 \cdot 3$	None	5	$281+35$ to $275+33$
	3. 3. 55	FB	3	White	$0 \cdot 3$	None	5	$278+38$ to $273+35$
	3. 5. 58	FB	3	Bluish-white	0.2	None	6	$282+32$ to $275+31$
	3. 8. 17	D	3	White	$0 \cdot 5$	None	7	$278+39$ to $269+43$
	3. 8. 56	D	3	White	$0 \cdot 3$	None	11	$290+34$ to $276+34$
	3. 10. 13	D	3	White	0.2	None	9	$251+43$ to $261+38$
	3. II. 3	D	1	Blue	$2 \cdot 0$	Bright: 5 secs.	28	$221+28$ to $200+9$
	3. 15. 36	FB	2	Bluish-white	0.8	Faint	3	$284+31$ to $281+33$
	3. 17. 54	FB	3	White	$0 \cdot 4$	Faint	9	$263+31$ to $257+24$
	3. 20. 4	D	3	Bluish-white	$0 \cdot 3$	None	8	$267+33$ to $276+33$
		T \& D	1	Yellow	1×0	Bright : 2 secs.	23	$3+60$ to $45+55$
	-. 28. 38	D	2	Yellow	$1 \cdot 0$	None	14	$336+40$ to $321+33$
	-. 30. 19	D	3	Bluish-white	$0 \cdot 7$	None	13	$305+44$ to $288+41$
	-. 33.13	T	1	Yellow	1.0	Bright : I sec.	23	$0+38$ to $341+24$
	-. 37. 11	T \& D	2	Blue	0.5	None	9	$353+44$ to $345+36$
	-. 37. 57	T	1	White	0.5	Bright	24	$35+64$ to 341 + 65
	-. 40.10	T	2	Yellow	$0 \cdot 5$	None	9	$339+66$ to $318+64$
	-. $4^{2}, 17$	T	3	Bluish-white	$0 \cdot 3$	None	7	$353+15$ to $350+9$
	-. 42.20	T	1	Yellow	$0 \cdot 5$	Faint	22	$9+43$ to $353+27$
	-. 47. 33	T	3	Bluish-white	$\bigcirc \cdot 3$	None	6	$15+86$ to $285+86$
	1. 2. 33	D	2	Bluish-white	$1{ }^{\circ}$	None	15	$0+25$ to $345+20$
	1. 2. 57	D	I	White	1.5	Bright : 2 secs.	15	$339+66$ to $305+63$
	1. 7. 26	T	I	Yellow	0.5	Bright	14	$21+65$ to $350+63$
	I. 7.45	T	2	White	$0 \cdot 3$	None	13	$356+26$ to $348+17$
	1. 7.46	T	2	White	0.4	None	19	$326+5$ to $336+22$
	I. IC. 41	D	I	White	$1 \cdot 0$	None	14	$5+27$ to $357+14$
	1. II. 19	I)	1	White	$1 \cdot 0$	None	8	$5+23$ to $0+16$
	1. 13. 20	D	2	Blue	0.5	Slight	15	$26+46$ to $15+34$
	1. 44.41	T	2	Bluish-white	$\bigcirc \cdot 3$	None	7	$38+54$ to $4^{8}+52$
	1. 53. 22	D	3	White	$0 \cdot 3$	None	11	$26+33$ to $18+25$
	2. 7. 33	T	1	White	1.0	Faint	17	$8+40$ to $356+27$
	2. 19. 26	T \& D	1	White	1.0	Faint	25	$356+44$ to $326+36$
	2. 19. 51	D	I	Bluish-white	$1 \cdot 3$	Faint	25	$356+44$ to $326+36$
	2. 21.7	T	I	Yellow	$0 \cdot 5$	Faint	15	$12+44$ to $29+54$
	2. 26. 29	$\stackrel{\text { D }}{\text { T }}$	2	Bluish-white	$0 \cdot 4$	None	11	341 + 27 to $330+22$
	2. 29. 26	T \& D	3	Bluish-white	$0 \cdot 3$	None	7	20 41 1
	2. 3 I. 44	T	2	White	0.4 0.3	None	13	$41+24$ to $51+17$ $342+28$ to $327+14$
	2. 35. 2. 35. 36	D	1	Yellow	0.3 0.5	None	120	$342+28$ to $327+14$ 11
	2. 2 20. 28	T \& D	$>\mathrm{I}$	Yellow	1.5	Bright : 1.0 sec .	6	$30+59$ to $23+55$
	2. 42. 19	D	>1	Blue	0.2	Bright : 0.5 sec .	9	$359+14$ to $351+9$
	2. $4^{6} .4^{2}$	T	3	Bluish-white	$0 \cdot 3$	None	7	$53+61$ to $66+63$
	2. 49. 1	D	I	White	0.4	None	7	$50+47$ to $56+42$
	2. 50.23	T	$>\mathrm{I}$	Yellow	2.0	Bright: i.0 sec.	17	$54+66$ to $86+82$
	2. 55.16	D	>1	White	$0 \cdot 8$	Bright : 2.0 secs.	22	$353+58$ to $317+51$
	2. 58. 49	J	1	Yellow	0.7	Bright : 0.5 sec .	10	$3+57$ to $345+57$
December 8	20. 34. 士	D	> I	White	1'5	Bright : 2.0 secs.	25	$32+62$ to $71+53$
The time is expressed in civil reckoning, commencing at miduight and counting from $0^{\text {h }}$ to $24^{\text {h }}$.								

[^0]: The greatest recorded pressure of the wind on the square foot in the year was 22.5 lbs . on November 26.
 The greatest recorded daily horizontal movement of the air in the year was 754 miles on December 14 .
 The least recorded daily horizontal movement of the air in the year was 56 miles on October 11 .

