R ESULTS

OF THE

Magnetical and Meteorological observations

MADE AT
THE ROYAL OBSERVATORY, GREENWICH,

IN THE YEAR
1913
UNDER THE DIRECTION OF
F. W. D Y S O N, M.A., LL.D., F.R.S., ASTRONOMER ROYAL.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY, IN OBEDIENCE TO HIS MAJESTY'S COMMAND.

EDINBURGH:
PRINTED UNDER THE AUTHORITY OF HIS MAJESTY'S STATIONERY OFFICE By NEiLL \& CO., Limited, Bellevue.

I N D E X.

INTRODUCTION PAGE
Prrsonal Establishmbnt and Arrangements Ei
Genaral Description of the Buildings and Instrumbnts Ei
Subjects of Observation E iii
Magnetic Instruments-
Deqlination Magnet for Absolutr Determinations E iii
Dip Instrument E iv
Absolute Horizontal Force Ingtrument Eiv
Dedinnation Variometer E vii
Horizontal Forde Variometer E viii
Vertioal Force Variometer E viii
Magnetic Reductions Ex
Table of Magnetic Elements detrrmined at Greenwich from 1841 Exiv
Methorological Instruments-
Standard Barometer Exv
Photographic Barometer Exv
Dry and Wet Bulb Thermombters Exvi
Photographic Dry and Wet Bulb Teermometers Exvi
Radiation Thermometrrs Exvii
Earth Thermometers Exvii
Osler's Anemometer Exviii
Robinson's Anemometrr Exviii
Rain-Gauges E xix
Eleotrometrr Exx
Sunghine Recorder E xx
Meteorological Reduotions Exxi

I N DEX.

RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABULAR ARRANGEMENT :- Page
Results of Magnetical Observations E 1
Table I.-Mean Magnetic Declination West for each Civil Day E 2
Table II.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West. E 2
Table III.-Diurnal Range of Declination on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register E 3
Table IV.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Days, in each Month E 3
Table V.-Mean Horizontal Magnetic Force for each Civil Day E 4
Table VI.—Monthly and Annual Mean Diurnal Inequalities of Horizontal Magnetic Force E 4
Table VII.-Diurnal Range of Horizontal Magnetic Force on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register E 5
Table VIII.-Monthly and Annual Mean Diurnal Inequalities of Horizontal Magnetic Force from Hourly Ordinates, on Five Selected Days, in each Month E 5
Table IX.—Mean Vertical Magnetic Force for each Civil Day E 6
Table X.—Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force E 6
Table XI.-Diurnal Range of Vertical Magnetic Force on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register E 7
Table XII.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Days, in each Month E 7
Table XIII.-Mean Temperature for each Civil Day within the box inclosing the Horizontal Force Magnet E 8
Table XIV. - Monthly and Annual Mean Temperature at each Hour of the Day within the box inclosing the Horizontal Force Magnet E 8
Table XV.-Mean Temperature for each Civil Day within the box inclosing the Vertical Force Magnet E 9Table XVI.-Monthly and Annual Mean Temperature at each Hour of the Day within the boxinclosing the Vertical Force MagnetE 9
Table XVII.-Values of the Coefficients in the Periodical Expression-

$$
\mathrm{V}_{t}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+\& \mathrm{c}
$$

for the Magnetic Diurnal InequalitiesE 10
Table XVIII.-Values of the Coefficients and Constant Angles in the Periodical Expressions-

$$
\begin{aligned}
\mathrm{V}_{t} & =m+c_{1} \sin (t+\alpha)+c_{2} \sin (2 t+\beta)+\& c . \\
\mathrm{V}_{t^{\prime}} & =m+c_{1} \sin \left(t^{\prime}+\alpha^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+\& \mathrm{c} .
\end{aligned}
$$

for the Magnetic Diurnal Inequalities E 11
Table XIX.-Determinations of the Absolute Value of Horizontal Magnetic Force E 12
Table XX.- 13
Table XXI.—Results of Observations of Magnetic Dip E 14
Table XXII.-Monthly and Annual Means of Magnetic Dip E 15
Table XXIII.-Annual Summary of the Magnetic Elements E 15
Magnetic Disturbances E 16
Explanation of the Plates of Magnetic Disturbances E 16
Plates I.-II., photo-lithographed from tracings of the Photographic Registers of MagneticDisturbances.
Platr III., photo-lithographed from tracings of the Photographic Registers of Magnetic Movements, as types of the Diurnal Variations, at four seasons of the year.
Brief description of Magnetic Movements (superposed on the ordinary diurnal movement)exceeding 3^{\prime} in Declination, 20γ in Horizontal Force, or 12γ in Vertical Force, takenfrom the Photographic RegisterE 18
Results of Methorological Observations E 25
Daily Results of the Meteorological Observations E 26
Highest and Lowest Readings of the Barometer E 50
Highest and Lowest Readings of the Barometer for each Month E 50
Monthly Results of Meteorological Elements E51
Monthly Mean Reading of the Barometer at every Hour of the Day E 52
Monthly Mean Temperature of the Air at every Hour of the Day. E 52
Monthly Mean Temperature of Evaporation at every Hour of the Day E 53
Monthly Mean Temperature of the Dew-Point at every Hour of the Day E 53
Monthly Mean Degree of Humidity at every Hour of the Day E 54
Total Amount of Sunshine registered in each Hour of the Day in each Month E 54
Readings of Thermometers on the ordinary stand in the Magnetic Pavilion Enclosure E 55
Excess of Readings in Stevenson Screen above those in ordinary stand E 58
Amount of Rain collected in each Month by the different gauges E 58
Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures as derived from the Records of Robinson's Anemometer E 59
Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day E 60
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, at every Hour of the Day E 61
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day E 62
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non- Rainy Days, at every Hour of the Day E 63
Orservations of Luminous Meteors E 65

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS,

1913

Introduction.

In the present volume a sufficient account is given of the instruments and methods of reduction now in use. Fuller information, principally of a historical nature, may be found in the Introductions to the volumes for 1909 and previous years.
§ 1. Personal Establishment and Arrangements.
During the year 1913 the personal establishment in the Magnetical and Meteorological Department of the Royal Observatory consisted of Walter William Bryant, Superintendent, aided by one Junior Assistant, David J. R. Edney, and five Computers. The Computers employed during the year were:-William H. Timbury, Sydney T. Divers, Frederick Brown, Harold George Showell, and Harry Joseph Mitchell.

Mr. Bryant controls and superintends the whole of the work of the Department. The routine magnetical and meteorological observations are in general made by the Computers.

§ 2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory.

The buildings and instruments remained substantially unchanged throughout the year 1913. For a detailed historical account of them, reference should be made to the Introductions to earlier volumes of these observations.

Eii Introduction to Greenwich Magnetical Observations, 1913.

The instruments for photographic registration of changes in the atmospheric pressure, magnetic declination, and horizontal and vertical magnetic force, are situated in an underground chamber (known as the Magnet Basement) ; this chamber is kept at a nearly uniform temperature by means of gas stoves. The small variations of temperature are recorded on a Richard thermograph. In the same room there are two mean solar clocks, one being of peculiar construction in order to interrupt the photographic traces at each hour. All these instruments are mounted on or suspended from supports carried by piers built from the ground.

In a wooden building (called the Magnet House) above this chamber are placed the standard barometer, and a Thomson electrometer for photographic registration of the variations of atmospheric electricity. A platform erected above the roof of the Magnet House is used for the observation of meteors; and a nephoscope is mounted there for occasional observations. On the same platform there is a rain-gauge, at a height of 20 feet above the ground.

Near the Magnet House, on what is known as the Magnet Ground, are the earth thermometers, the photographic dry and wet-bulb thermometer apparatus, a rain-gauge, and a set of dry-bulb, wet-bulb, and maximum and minimum thermometers in a Stevenson screen.

The Magnet House is built of non-magnetic material, but during the years 18911898 considerable masses of iron were introduced into its neighbourhood by the building of certain additions to the Observatory. Hence the instruments which were formerly placed in the Magnet House, for absolute determinations of magnetic declination, dip, and horizontal force, were transferred to the Magnetic Pavilion. This building is constructed of non-magnetic materials, and stands in an enclosure in Greenwich Park, 350 yards to the east of the Observatory, on a site carefully chosen for its freedom from abnormal magnetic conditions. In the enclosure there are two sets of thermometers used for ordinary eye observations, the thermometers for solar and terrestrial radiation, and two rain-gauges.

The anemometers, three rain-gauges, and the sunshine recorder are fixed above the roof of the Octagon Room (the ancient part of the Observatory).

During 1913 a new Magnetograph House has been under construction in the Magnetic Enclosure, having its centre 50 feet North-West of that of the Magnetic Pavilion. This building is to replace the present Magnet House, which is old and in need of renewal. The construction of modern magnetographs with which the new building will be equipped has also been in progress.

§ 3. Subjects of Observation in the year 1913.

The observations comprise determinations of absolute magnetic declination, hor1zontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force; eye observations of the ordinary meteorological instruments, including the barometer, dry and wet-bulb thermometers, radiation and earth thermometers; continuous photographic record of the variations of the barometer, dry and wet-bulb thermometers, and electrometer (for atmospheric electricity) ; continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine; observations of some of the principal meteor showers; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud, special cloud observations in connection with the International Balloon ascents, and occasional phenomena.

Since 1885, Greenwich civil time, reckoning from midnight to midnight, and counting from 0 to 24 hours, has been employed throughout the magnetical and meteorological sections.

§ 4. Mugnetic Instruments.

Declination Magnet for Absolute Determinations.-Since 1899 January 1, regular observations of declination have been made in the Magnetic Pavilion. The hollow cylindrical magnet Elliot No. 75 is used in conjunction with a telescope by Troughton and Simms, placed on a pier about 2 feet south of the magnet. The magnet is about 4 inches long, and at one end is an engraved glass scale for collimation. The telescope is 21 inches long, and the aperture of its object-glass is 2 inches; its horizontal circle is 16.6 inches in diameter, divided to 5^{\prime} and read by verniers to $5^{\prime \prime}$. It has no vertical circle. The eye-piece has one fixed horizontal wire and one vertical wire, moved by a micrometer screw, the value of one revolution of which is $1^{\prime} 34^{\prime \prime} \cdot 2$. The adopted collimation reading was $100^{\text {r. }} 280$ until November 15, when it became necessary to insert a new wire, for which the adopted reading was $100^{r} \cdot 300$.

The vertical axis of the telescope is adjusted by means of a fixed level, one division of which corresponds to $1^{\prime \prime} \cdot 15$. The level correction for inequality of the pivots of the axis of the telescope was found in 1898 to be $-6^{\text {div }} 00$ or $-6^{\prime \prime} \cdot 9$.

During 1913 experiments have been in progress with a view to the substitution of some other form of suspension of the magnet for the silk fibres previously used. In order to eliminate the difficulties arising from the variable torsion of the silk, quartz fibres were first tried, but their torsion was too great in proportion to their tensile

Eiv Introduction to Greenwich Magnetical Observations, 1913.
strength. Successful results have been obtained, however, with tungsten wire of 0.02 mm . diameter; with a fibre about 9 inches in length, the effect of 90° of torsion is to turn the magnet through 4^{\prime}. The torsion is found to change little or not at all.

Since 1913 September 2, tungsten wire has been adopted for the magnet suspension. The torsion is determined monthly; usually its effect is quite negligible, but a correction on this account is made when necessary. The change in the method of suspending the magnet has made it possible to reduce the number of observations of its collimation error from one each week to one per month. This is done by observing the position of the magnet in its usual position with the scale direct, then with the scale reversed (by turning the magnet through 180° in its carrier, about the longitudinal axis), and again direct. In the reduction of the observations of declination the determinations of collimation error and azimuth zero reading are combined into half-yearly means.

The reading of the azimuth circle corresponding to the astronomical meridian is determined by observations of Polaris, taken once a week whenever practicable.

Declination observations have been made thrice weekly since the tungsten suspension was mounted.

Dip Instrument.-The standard dip instrument in use during 1913 was the Airy dip circle, described in detail in the 1912 volume. Dip observations were made twelve times in each calendar month, at approximately equal intervals. Two needles, D_{1} and D_{2}, were used, which gave results differing systematically by about 2^{\prime}. The mean of the results from the two needles has been adopted.

The annual values of dip given in the volumes previous to 1910 have been corrected in succeeding volumes on account of non-coincidence of the mass centre of the needle with the pivots (see p. Ev, 1912).

The dip inductor and galvanometer which was obtained in 1912 from the Cambridge Scientific Instrument Company has been used experimentally during 1913, but was not finally adopted as the standard dip instrument till the beginning of 1914.

Absolute Horizontal Force Ins'trument.-This instrument is of the Kew pattern, and rests on a slate slab in the Magnetic Pavilion.

The deffected magnet, used only to ascertain the ratio which the magnetic force due to the deflecting magnet at a given distance bears to the horizontal component
of the terrestrial magnetic field is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to, and rotating with, the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflection the deflecting magnet is placed on the transverse deflection rod, carried by the rotating frame, at the distances 1.0 foot and 1.3 foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter : it is graduated to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$.

The instrumental constants, determined at Kew before the establishment of the instrument at Greenwich, and communicated by the late Professor Balfour Stewart, are as follow :-

The increase in the magnetic moment of the deflecting magnet produced by the inductive action of unit magnetic force in the English system of absolute measurement $=\mu=0.00015587$.
The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35° Fahrenheit $=c$ $=0.00013126(t-35)+0.000000259(t-35)^{2} ; t$ representing the temperature (in degrees Fahrenheit) at which the observation is made.
The distance on the deflection rod from $1^{\mathrm{ft}} .0$ east to $1^{\mathrm{ft}} .0$ west of the engraved scale, at temperature 62°, is too long by 0.0034 inch, and the distance from $1^{\mathrm{ft}} 3$ east to $1^{\mathrm{ft}} .3$ west is too long by 0.0053 inch. The coefficient of expansion of the scale for 1° is ${ }^{\circ} 00001$.

These distances have since been verified at the National Physical Laboratory in June 1914, the new measures agreeing completely with the former values.

The value of the moment of inertia (K), which was originally communicated and which has been used in the reductions up to and including the present volume, is given by $\log K=0.66643$ at temperature 30°, and 0.66679 at temperature 90°. During 1913 a monthly determination of the moment of inertia has been made by taking observations of the time of vibration of the magnet with and without a brass inertia bar, of known dimensions, attached to it. These observations indicated that the adopted value of K hitherto used was ton small, thus agreeing with a former

E vi Introduction to Greenwich Magnetical Observations, 1913.

determination made in 1878 (but never used), which gave $\log K$ at temperature 30° as 0.66727 . It was found, however, that these observations were liable to be affected by a change of torsion of the silk, owing to the extra weight, and a new series was begun (in 1914 May), using a tungsten suspension, which is not subject to this drawback. The later observations being much more accurate than the earlier set, the latter were rejected. On p. Exiv corrected mean annual absolute values of horizontal force are given instead of those previously published ; the correction amounts approximately to multiplication by a factor 1.0010 (the values of the magnetic moment of the magnet, also require the same correction factor), or to an increase of 18γ in the horizontal force.

The following details of the computation may be mentioned: m will denote the magnetic moment of the deflecting or vibrating magnet, H the horizontal components of the Earth's magnetic force, u_{1} and u_{2} the observed angles of deflection at the distances r_{1} and r_{2} (approximately 1.0 and 1.3 foot) corrected for scale error and temperature. Let

$$
A_{1}=\frac{1}{2} r_{1}^{3} \sin u_{1}\left(1+\frac{2 \mu}{r_{1}^{3}}+c\right) \quad A_{2}=\frac{1}{2} r_{2}^{3} \sin u_{2}\left(1+\frac{2 \mu}{r_{2}^{3}}+c\right) .
$$

The first " distribution co-efficient" P, which is alone used in the reduction, is equal to

$$
\left(A_{1}-A_{2}\right) /\left(\frac{A_{1}}{r_{1}^{2}}-\frac{A_{2}}{r_{2}^{2}}\right),
$$

but, for convenience in logarithmic computation, the sufficiently approximate formula

$$
P=\frac{\log . A_{1}-\log . A_{2}}{\text { modulus }} \cdot \frac{r_{1}^{2}, r_{2}^{2}}{r_{2}^{2}-r_{1}^{2}}=\left(\log . A_{1}-\log . A_{2}\right) \times 5 \cdot 64
$$

has been used instead, since 1877. The annual mean value of P is adopted for the reductions during the corresponding year, and substituted in the expressions $A_{1}\left(1-\frac{P}{r_{1}^{2}}\right)$ and $A_{2}\left(1-\frac{P}{r_{2}^{2}}\right)$, the mean of which is adopted as the true value of m / H.

In the vibration observation, T_{1} the observed vibration time, corrected for chronometer rate and are of vibration, is further corrected for temperature, induction, and torsion by the formula

$$
T^{2}=T_{1}^{2}\left(1+\frac{H}{\bar{F}}+\mu \frac{H}{m}-c\right)
$$

where H / F, the ratio of the torsion couple to the magnetic couple, is equal to $\theta /\left(90^{\circ}-\theta\right)$ where θ is the angle through which the magnet is deflected by a twist of 90° in the suspension wire. T_{1} or T is obtained from the mean of 100 vibrations observed immediately before, and of another 100 vibrations observed immediately after, the

Declination Variometer.

deflection observations. Since 1913 October 31, the accuracy of the determination of T_{1} has been increased by making five observations of 100 vibrations (105 in all being used) before and after the deflection observation. The product $m H$ is given by $\pi^{2} K / T^{2}$.

From the values of $m H$ and m / H thus calculated, m and H are deduced. The actual computation is performed, as heretofore, in British (foot-grain-second) units, after which the derived value of H is redưced to C.G.S. units, as given in the tables.

Observations of the absolute horizontal magnetic force are made weekly. Before 1912 February they were made twice monthly. Observations of the moment of inertia of the deflecting magnet are made monthly.

Declination Variometer.-The magnet used in this instrument is 2 feet long, $1 \frac{1}{2}$ inches wide, and $\frac{1}{4}$ inch thick. It is suspended by a skein of silk, consisting of a bundle of fine threads bound together at intervals of 6 or 7 inches : the skein is about 12 feet long, 6 feet of which is vertical. The magnet is taken from its carrier at the beginning of each year, in order to remove any torsion which may have accumulated; this is done by stretching the skein under the weight of a brass torsion rod for a few hours, adjusting the torsion circle till the bar rests in the magnetic meridian. The magnet is enclosed in a double wooden box, and is encircled by a copper damper to reduce accidental vibrations.

The drum for photographic registration revolves normally in 26 hours; by a changespeed device the rate of rotation can be increased twelvefold when required. The photographic sheets are changed daily at 11 a.m. Gas-light illumination is used. On each sheet a reference line is photographed by a fixed spot of light. The traces are interrupted automatically for 4 minutes at every hour, to afford a time scale. By another shutter the observer occasionally cuts off the light for a few minutes, noting the time ; this facilitates the numeration of the hourly breaks. The length of 24 hours on the sheet is about 13.3 inches.

The distance between the concave speculum mirror carried by the magnet, and the surface of the cylinder, is 134.4 inches. Since a movement of the mirror through 1° produces 2° of motion in the reflected ray, a change of 1° in declination corresponds to 119.15 mm . [$0^{\prime} .5$ of are per mm.] on the photographic paper. A card-board strip, graduated on this scale to degrees and minutes, is prepared for reading from the sheets.

The base line value for this magnet is adopted monthly from the absolute declination observations made in the Magnetic Pavilion.

Eviii Introduction to Greenwich Magnetical Observations, 1913.
Horizontal Force Variometer.-The magnet used in this instrument is 2 feet long, $1 \frac{1}{2}$ inches broad, and about $\frac{1}{4}$ inch thick; it is enclosed in a double wooden box. The bifilar suspension consists of a silk skein passing under two small pulleys, which are attached to a vernier piece used in connection with a torsion circle on the frame which holds the magnet. The effective length of each branch of the skein is about $7^{\text {ft. }} 6^{\text {in. }}$; the distances between the branches at the upper and lower ends are respectively $1^{\text {in. }} \cdot 14$ and $0^{\text {in. }} \cdot 80$. The present skein was mounted in $19^{\circ} 9$ December.

The torsion circle is fixed relative to the magnet, while the vernier is movable; the circle is divided to half degrees, and read by vernier to 1^{\prime}. The torsion is adjusted so as to make the magnet hang approximately transverse to the magnetic meridian, the north magnetic pole being west. Accidental vibrations of the magnet are reduced by a copper damper.

The changes of horizontal force are registered photographically on the cylinder already described in connection with the declination variometer; the same reference line is used for each trace, and the arrangements for interruption of the traces are similar.

The method of determining the scale value of the records of this instrument is described in the Introduction, pp. E ix and x, for 1912. The scale value determinations are made annually on the first convenient day in the new year, and the mean value from two successive observations is adopted for the intervening year. The adopted scale value for the year 1913 is 2.95γ per mm .

The temperature in the magnet basement is subject to slow changes during the course of a year, and the horizontal force records require correction on this account. The correction is applied to the mean daily and the monthly mean hourly values, using the mean daily and monthly mean hourly values of the temperature as recorded on a Richard thermograph, corrected by comparison with reading of a thermometer with its bulb projecting into the magnet box itself.

The adopted temperature correction (determined in 1885 and 1886) is -4.26γ per 1° rise in temperature, at 65° Fahrenheit; this correction increases or diminishes numerically by 0.37γ per degree, with each rise or fall in temperature of 5°.

Vertical Force Variometer.-The magnet used in this instrument is $1 \frac{1}{2}$ feet long, and lozenge-shaped, being broad at the centre and pointed at the ends. The steel knife-edge, which is 8 inches löng, and passes through an aperture in the magnet, rests on two agate planes. The magnet is placed unsymmetrically on the knife edge,
being nearer to its southern end. The axis of vibration was originally in the magnetic meridian, but is now a few degrees distant, on account of the secular change of declination.

Two steel screw stalks, carrying adjustable serew weights, are attached to the magnet, one being vertical in order to vary the sensitiveness, the other horizontal in order to adjust the balance of the magnet, which should rest in a nearly horizontal position. Formerly a copper damper encircled the magnet, but, as it was found to be unnecessary, it has not been used since 1902. The magnet and supporting frame are enclosed in a wooden box with suitable glass-covered apertures. The temperature within the box is indicated by a thermometer, the bulb of which projects well into the interior of the box.

The photographic arrangements are generally similar to those already described in connection with the declination and horizontal force variometers. The cylinder carrying the photographic sheet is in this case vertical, and also receives the record of the variations of barometric pressure. The time scale is the same as for the other magnetic registers.

The scale coefficient of the instrument is determined by the method of vibrations. When the magnet is approximately horizontal, and transverse to the magnetic meridian, the variation of the vertical force, in terms of the whole vertical force, which will produce a small angular motion θ (measured in radians) $=\operatorname{cotan} \operatorname{dip} \times\left(\frac{T^{1}}{T}\right)^{2} \times \theta$; T and T^{1} are the times of vibration of the magnet in the vertical and horizontal planes respectively.

Observations of T are made once a week by means of the telescope and scale provided for eye readings of the position of the magnet. The mean of 53 observations made during the year gives the value $18^{8 .} 785$.

The time of vibration in the horizontal plane $\left(T^{1}\right)$ is determined once every three years, as the observation requires the removal of the magnet from its box. The magnet; with all its attached parts, is suspended from a tripod, with its broad side horizontal. The arc of vibration is kept small. Observations on 1912 January 1 gave for the time of vibration in the horizontal plane $16^{8.484}$. This value has been adopted for the year 1913.

Since the distance between the concave mirror of the magnet and the surface of the cylinder is $100 \cdot 2$ inches, the length on the cylinder, in inches, which corresponds to a Greenwich Magnetical and Meteorological Observations, 1913.

Ex Introduction to Greenwich Magnetical Observations, 1913.

change of 0.01 part of the whole vertical force $=2 \times 100.2 \times \tan \operatorname{dip} \times$ $\left(\frac{T}{T^{1}}\right)^{2} \times 0.01$. Taking $T=18^{8.785}, T^{1}=16^{85} 484$, and dip $=66^{\circ} 50^{\prime} 27^{\prime \prime}$, this length is found to be 6.084 inches. The cardboard scale, which is used for measuring the curves for the year, is constructed with this as unit.

The temperature corrections for this magnet are applied in a manner similar to that described for the horizontal force variometer. The correction (which is constant over the normal temperature range) is $-9 \cdot 20 \gamma$ per 1° Fahrenheit.

§ 5. Magnetic Reductions.

The results given in the Magnetic Section refer to the civil day, commencing at midnight.

Before the photographic records of magnetic declination, horizontal force, and vertical force are discussed, they are divided into two groups-one including all days on which the traces show no particular disturbance, and which, therefore, are suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces are so irregular that it appears impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are no days in the year 1913 which are classed as days of great disturbance. Days of lesser disturbance are January 3, March 14, April 9-10, June 1-2. When two days are mentioned, it is to be understood that the reference is usually to one set of photographic sheets extending from noon to noon, and including the last half and the first half respectively of two consecutive civil days.

Through each photographic trace, including those on days of lesser disturbance, a pencil line was drawn, representing the general form of the curve without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour; and from the tables of these measures, for each calendar month, are obtained the mean monthly values for each hour of the day, and the mean daily value of the element for each day of the month. The daily mean is taken from the 24 ordinates 0^{h} to 23^{h}. Tables I. to IV. contain the results for declination, Tables V. to VIII. those for horizontal force, and Tables IX. to XII. those for vertical force. For each element the mean daily value and daily range are given for every day of the year (except January 1), together with the monthly and annual mean diurnal inequalities for' all days and for quiet days (as selected by the International Committee). In the formation of diurnal inequalities it is unimportant
whether a day omitted be a complete civil day, or the parts of two successive civil days making together a whole day, although in the latter case the results are not available for daily values. No days were omitted on account of great disturbance in the formation of these Tables.

By means of two stoves placed in the Basement, the temperature has been kept nearly constant throughout the year, the endeavour being to keep it as near to 67° as possible. The results in Tables V. to XII. are corrected for temperature, the corrections applied (which are mentioned in the description of each instrument) being founded on the daily and hourly values of temperature given in Tables XIII. to XVI., as mentioned on p . E viii.

The variations of declination are given in arc and those of horizontal and vertical force in C.G.S. measure.

The magnetic diurnal inequalities of declination, horizontal force, and vertical force, for each month and for the year, as given in Tables II., VI., and X., have been treated by the method of harmonic analysis, and the results are given in Tables XVII. and XVIII.

The results of the observations for Absolute Measure of Horizontal Force contained in Tables XIX. and XX. require no special remark, the method of reduction and all necessary explanation having been given with the description of the instrument employed. The observed result in each month has been also given as reduced to the mean value for the month, by application of the difference between the horizontal force ordinate at the time of observation and the mean value for the month, as obtained from the photographic register.

As regards Magnetic Dip, the result of each complete observation of dip with each of the needles in ordinary use, is given in Table XXI.; and in Table XXII., the concluded monthly and yearly values for each needle.

Table XXIII. contains au annual summary of the magnetic elements giving the mean monthly values, the monthly mean diurnal ranges, and sums of hourly deviations from mean.

In order to facilitate the comparison of the diurnal inequalities of magnetism at the different British and other magnetic observatories, an arrangement was made with the Sub-Committee of the Kew Committee of the Royal Society, by which five quiet days were selected at Greenwich in each month of every year for adoption

Exii Introduction to Greenwich Magnetical Observations, 1913.

at all these observatories for determination of the monthly diurnal inequalities of declination, horizontal force, and vertical force, thus providing for further discussion results which should be strictly comparable. Beginning with 1911, the five days selected by the International Committee from a comparison of data from all contributing stations, have been adopted instead. The particular days selected and the results found for Greenwich are contained in Tables IV., VIII., and XII., which it is interesting to compare with the values found from the records of all days, as given in Tables II., VI., and X.

Reduced copies of the magnetograms for certain disturbed days (mentioned on p. Ex) have been printed in each volume since 1882. The list of these days since the year 1889 has been selected in concert with M. Mascart, or his successor M. Angot, so that the two Observatories of Val Joyeux (formerly of the Parc Saint Maur) and Greenwich should publish the magnetic registers for the same days of disturbance with a view to the comparison of the results. It is now proposed to adopt as far as possible the list of days of greater disturbance selected by the International Committee as in the case of the quiet days.

The plates are followed by a brief description of all other significant magnetic motions (superposed on the ordinary diurnal movement) recorded throughout the year. These, in combination with the plates, give very complete information on magnetic disturbances during the year 1913, affording thereby, it is hoped, facilities for making comparison with solar phenomena.

With regard to the plates, on each day three distinct registers are usually given, viz. : declination, horizontal force, and vertical force; all necessary information for proper understanding of the plates being added in the notes on page (E 16).

An additional plate (III.) exhibits the registers of declination, horizontal force and vertical force on four quiet days, which may be taken as types of the ordinary diurnal movement at four seasons of the year. These are given for the civil day as exhibiting more clearly the character of the diurnal movement.

The indications of horizontal and vertical force are given as registered; they are therefore affected, slightly as compared with the amount of motion on disturbed days, by the small recorded changes of temperature of the magnets. The recorded hourly temperatures being inserted on the plates, reference to the temperature-correction of the magnets, given at pages E viii and $\mathrm{E} x$, will show the effect produced. Briefly, an increase of about $4 \frac{1}{2}^{\circ}$ of temperature throws the horizontal force curve upward by
0.001 of the whole horizontal force; an increase of about 5° of temperature throws the vertical force curve downward by 0.001 of the whole vertical force.

The original photographs have been reduced in the proportion of 20 to 11 on the plates, and the corresponding scale values are:-

\circ	mm.		
I \circ of Declination is	65.53	on the Plates.	
0.01 of Horizontal Force is	34.24	$"$	$"$
0.01 of Vertical Force is	84.99	,	$"$

At the foot of each plate scales, in C.G.S. measure, are given for each of the magnetic registers.

Since the preceding scale values are not immediately comparable for the different elements, it therefore becomes desirable to refer them all to the same unit, say 0.01 of the horizontal force.

Now, the transverse force represented by a variation of 1° of Declination $=\cdot 0175$ of Horizontal Force,
and Vertical Force $=$ Horizontal Force $\times \tan$ dip [adopted dip $=66^{\circ} .50^{\prime} .27^{\prime \prime}$]
$=$ Horizontal Force $\times 2.3378$;
whence we have the following equivalent scale values for the different elements :-
${ }_{37}^{\mathrm{mm} .4}$ on the Declination Curve corresponds to 0.01 of Horizontal Force.
34.2 " Horizontal Force ", ", " "
$36 \cdot 4$, Vertical Force ", ", ",
If we divide the last three numbers by $0 \cdot 18514$, we get $202^{\mathrm{mm} \cdot} 3,184^{\mathrm{mm} \cdot 9} \cdot 196^{\mathrm{mm} \cdot} \cdot 4$, which represent the lengths on the respective three curves equivalent to 0.01 C.G.S. unit.

The subjoined table gives the values of Magnetic Elements determined at the Royal Observatory, Greenwich :-

Exiv Introduction to Greenwich Meteorological Observations, 1913.

Year.	Declination West.	Horizontal Force, \dagger C.G.S. Unit.	Dip. \ddagger	Year.	Declination West.	Horizontal Force, \dagger C.G.S. Unit.	Dip. \ddagger
1841	$23^{\circ} 16^{\prime}{ }_{2}$		$\stackrel{ }{\circ}$	1877	$18.57^{\circ} \cdot 1$	$0 \cdot 1800$	$67.39^{\circ} 7$
1842	23.14 .6			1878	$18.49{ }^{\circ} 3$	$0 \cdot 1802$	$67.38 \cdot 2$
1843	23.11.7	\ldots	69. 0.6	1879	$18.40{ }^{\circ} 5$	$0 \cdot 1805$	$67.37{ }^{\circ}$
1844	23.15 \%	\ldots	69. $0 \cdot 3$	1880	18.32.6	0.1805	67.357
1845	$22.56 \cdot 7$		68.57.5	1881	$18.27{ }^{1}$	-1.1807	$67.34 \cdot 7$
1846	22.49 .6	0.1731	$68.58 \cdot \mathrm{I}$	1882	$18.22{ }^{\circ}$	0.1806	67.34 .2
1847	22.51 .3	0.1736	68.59°	1883	$18.15{ }^{\circ}$	$0 \cdot 1812$	67.317
1848	22.51.8	$0 \cdot 1731$	68.54.7	1884	18. $7 \cdot 6$	0.1814	67.29*7
1849	22.37 .8	$0 \cdot 1733$	$68.51 \cdot 3$	1885	18. 177	$0 \cdot 1817$	$67.28{ }^{\circ}$
1850	22.23 .5	0.1738	$68.46 \cdot 9$	1886	17.54*5	$0 \cdot 1818$	$67.27 \cdot 1$
1851	22.18.3	$0 \cdot 1744$	$68.40 \cdot 4$	1887	$17.49^{\text {I }}$	0.1819	$67.26 \cdot 6$
1852	$22.17{ }^{\circ} 9$	0.1745	68.42.7	1888	$17.40 \cdot 4$	0.1822	$67.25 \cdot 6$
1853	$22.10 \cdot 1$	0.1748	$68.44 \cdot 6$	1889	17.34 .9	0.1823	67.24 .3
1854	22. 0.8	0.1749	68.47 7	1890	$17.28 \cdot 6$	0.1825	$67.23{ }^{\circ}$
1855	21.48 .4	0.1756	$68.44 \cdot 6$	1891	17.23 .4	0.1827	$67.21 \cdot 5$
1856	21.43 .5	$0 \cdot 1759$	$68.43 \cdot 5$	1892	17.174	0.1829	$67.20{ }^{\circ}$
1857	21.35 .4	$0 \cdot 1769$	$68.31 \cdot 1$	1893	17.11.4	0.1831	67.17.9
1858	$21.30 \cdot 3$	$0 \cdot 1762$	$68.28 \cdot 3$	1894	17. $4^{\circ} 6$	0.1831	$67.17 \cdot 4$
1859	21.23 .5	0.1761	68.26 .9	1895	$16.57 \% 4$	0.1834	67.16.1*
1860	21.14 .3	...	$68.30 \cdot 1$	1896	16.517**	$0.1835 *$	67.15.1*
1861	21. 5.5	$0 \cdot 1773$	68.24 .6	1897	16.45**	-1.1838	$67.13 .5 *$
1861	5	$0 \cdot 1759$	$68.15 \cdot 8$	1898	16.39*2*	0.1840	$67.12{ }^{\circ} \mathrm{I}$
1862	20.52.6	0.1763	68. $9 \cdot 6$	1899	$16.34{ }^{\circ}$	$0 \cdot 1843$	67.10 .5
1863	20.45*9	0.1764	68. $7 \cdot 0$	1900	$16.29{ }^{\circ}$	$0 \cdot 1846$	67. $8 \cdot 8$
1864		$0 \cdot 1767$	68. $4^{1 / 1}$	1901	16.26 .0	0.1850	$67.6 \cdot 4$
1865	20.33 .9	0.1767	68. $2 \cdot 7$	1902	16.22 .8	0.1852	67. $3 \cdot 8$
1866	$20.28{ }^{\circ}$	$0 \cdot 1773$	68. 1•3	1903	16.19 .1	0.1852	67. 1.2
1867	$20.20 \cdot 5$	$0 \cdot 1777$	$67.57 \cdot 2$	1904	16.15 .0	0.1854	$66.57 \cdot 6$
1868	$20.13 \cdot 1$	$0 \cdot 1779$	$67.56 \cdot 5$	1905	16. $9 \cdot 9$	0.1854	$66.56 \cdot 3$
1869	20. 4^{11}	0.1782	67.54 .8	1906	16. $3 \cdot 6$	0.1854	$66.55 \cdot 6$
1870	$19.53{ }^{\circ}$	0.1784	$67.52 \cdot 5$	1907	15.59 .8	0.1855	$66.56 \cdot 2$
1871	19.41.9	0.1786	$67.50 \cdot 3$	1908	15.53 .5	0.1854	$66.56 \cdot 3$
1872	19.36 .8	0.1789	$67.47 \cdot 8$	1909	15.47 .6	0.1854	66.54.1
1873	19.33 .4	$0 \cdot 1793$	$67.45 \cdot 8$	1910	15.41 .2	$0 \cdot 1855$	$66.52 \cdot 8$
1874	19.28 .9	$0 \cdot 1797$	$67.43 \cdot 6$	1911	15.33°	0.1855	$66.52 \cdot 1$
1875	19.21 .2	$0 \cdot 1797$	67.42 .4	1912	15.24 .3	0.1855	66.51 .8
1876	19. $8 \cdot 3$	$0 \cdot 1799$	67.41 \%	1913	$15.15{ }^{\circ}$	0.1853	$66.50 \cdot 5$

* Corrected for the effect of the iron in the new buildings (see p. E ii).
\dagger The values of the Horizontal Force from 186I differ from those given in previous volumes, on account of the correction mentioned on p. E vi.
\ddagger These values of the dip differ slightly in some instances from those given in previous volumes, on account of the correction mentioned on p. E v.

In 1861 the new Unifilar Apparatus for absolute Horizontal Force and the Airy DipCircle were introduced, both sets of apparatus being used in that year. In 1864 the
excavation of the Magnetic Basement caused the suspension of complete Declination Observations.

§ 6. Meteorological Instruments.

Standard Barometer.-The standard barometer, mounted in 1840 on the southern wall of the western arm of the Upper Magnet Room, is Newman No. 64. Its tube is $0^{\text {in }} 565$ in diameter, and the depression of the mercury due to capillary action is $0^{\text {th }} 0002$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{\text {in }} 05$, sub-divided by vernier to $0^{\text {in }} 002$. The height of the barometer above the mean level of the sea is 159 feet.

The barometer is read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Each reading is corrected by application of an index-correction, and reduced to the temperature 32°. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

Photographic Barometer.-The barometric record is made on the same cylinder as is used for magnetic vertical force. A siphon barometer fixed to the northern wall of the Magnet Basement is employed, the bore of the upper and lower extremities of the tube being about $1 \cdot 1$ inch, and that of the intermediate portion 0.3 inch. A metallic plunger, floating on the mercury in the shorter arm of the siphon, is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of aluminium, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet. A base line is traced on the sheet, and the record is interrupted at each hour by the clock, and occasionally by the observer, in the same way as for the magnetic registers. The length of the time scale is also the same.

The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found $=4^{\text {in }} 16$ on the paper. Ordinates

Exvi Introduction to Greenwich Magnetical Observations, 1913.

measured for the times of observation of the standard barometer, combined with the corrected readings of the standard barometer, give apparent values of the base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, from which the bourly ordinates (see page Ex) are measured as for the magnetic registers. As the diurnal change of temperature in the Basement is very small, no appreciable differential effect is produced on the photographic register by the expansion of the column of mercury.

Dry and Wet Bulb Thermometers.-The Standard dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. This, together with details of the thermometers and the corrections applicable to them, may be found fully described in the volumes for 1912 and previous years.

Since 1899 January 4 this stand has stood in an open position in the Magnetic Pavilion enclosure.

The corrections to be applied to the thermometers in ordinary use are determined, usually once each year for the whole extent of scale actually employed, by observations at 32° in pounded ice and by comparison with the standard thermometer No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society.

The dry bulb thermometer used throughout the year was Negretti and Zambra, No. 45354. The correction $-0^{\circ} 4$ has been applied to the readings of this thermometer. The wet bulb thermometer used throughout the year was Negretti and Zambra, No. 94737. The correction $-0^{\circ} \cdot 2$ has been applied to the readings of this thermometer.

Similar readings were also taken of a set of thermometers in a Stevenson screen placed in the Magnetic Pavilion enclosure. The differences between the readings of these thermometers and those in the Ordinary Stand are summarised on p. E 58.

The dry and wet bulb thermometers are read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Readings of the maximum and minimum thermometers are taken at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} every day. Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.

Photographic Dry-Bulb and" Wet-Bulb Thermometers.-The apparatus which has been in use since 1887 was designed by Sir W. H. M. Christie, and since 1899
has stood in its present position in the Magnet Ground. It is placed in a shed, 8 feet square, standing upon posts about 8 feet high, and open to the north. The apparatus is screened from the direct rays of the sun, without impeding the circulation of the air. The recording mechanism is similar in general plan to that already described in correction with the magnetometers in the Magnet Basement, the illumination being by gaslight. The traces consist of broad bands, due to the free passage of light to the drum, above the mercury column in the dry-bulb, and through an airbubble in that of the wet-bulb, crossed by fine lines caused by the shadows of the graduations on the thermometer tubes. The two traces fall on the same part of the cylinder as regards time scale. The stems of the thermometers are placed close together, each being covered by a vertical metal plate having a fine vertical slit, so that light passes through only at such parts of the bore of the tube as do not contain mercury. Further details of the thermometers and recording arrangements may be found in the volume for 1912. The scale value of the records is approximately 10° per inch.

Radiation Thermometers.-These thermometers are placed in the Magnetic Pavilion enclosure, in an open position about 50 feet south-west of the building. The thermometer for solar radiation is a self-registering mercurial maximum thermometer on Negretti and Zambra's principle, with its bulb blackened, and the thermometer enclosed in a glass sphere from which the air has been exhausted. The thermometer employed until August was Negretti and Zambra, No. 121588. This was stolen on August 1, and replaced by Negretti and Zambra, No. 157738. The thermometer for radiation to the sky until August was a self-registering spirit minimum thermometer, Negretti and Zambra, No. 137640. This was stolen on August 1, and replaced by Negretti and Zambra, No. 140216. The thermometers are laid on short grass and freely exposed to the sky; they require no correction for index-error.

Earth Thermometers.-These four thermometers, the bulbs of which are sunk to depths of $25 \cdot 6,12 \cdot 8,6 \cdot 4$, and 3.2 feet below the surface, are fully described in earlier volumes. The shortest thermometer is read daily at noon, the readings being given (subject to an unknown small index correction) in the daily results. The other thermometers are read weekly on Monday at noon, but the results are not published, as the daily readings previously printed for many years seem to offer all the information which these thermometers are likely to afford. A discussion by Professor Everett of the observations up to 1859 was given in an appendix to the volume for 1860.

Exviii Introduction to Greenwich Meteorological Observations, 1913.

Osler's Anemometer.-This self-registering anemometer, devised by A. Follett Osler, for continuous registration of the direction and pressure of the wind and of the amount of rain, is fixed above the north-western turret of the ancient part of the observatory. The direction of the wind is registered by means of a large vane ($9^{\mathrm{ft} .} 2^{\mathrm{in}}$. in length), connected by gearing with a rack-work carrying a pencil; the latter marks on a flat horizontally moving sheet of paper. The vane is 25 feet above the roof of the Octagon Room, 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board.

A circular pressure plate with an area of 192 square inches is attached two feet below the vane; moving with the latter, it is always kept directed against the wind. A light wind causes the plate to compress slender springs, the motion being registered on the horizontal sheet by a pencil connected with the plate by a flexible brass chain, which is always in tension. Higher wind pressures bring stiffer springs into play behind the plate, and the two sets of springs are adjusted by screws and clamps so as to afford fixed scales on the sheet, the scale for light winds being double that for heavy winds. The scale is determined experimentally in lbs. per square foot from time to time.

The recording sheet is changed daily at noon. The time scale, ordinarily the same as that of the magnetic registers, can be increased 24 -fold by altering the gearing.

A self-registering rain gauge of peculiar construction forms part of the apparatus; this is described under the heading "Rain Gauges."

Robinson's Anemometer.--This instrument, for registration of the horizontal movement of the air, is mounted above the roof of the Octagon Room. It was brought into use in 1866 , and is of smaller size than that now usual, the four hemispherical cups being 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The cups are 21 feet above the roof of the Octagon Room, 56 feet above the adjacent ground, and 211 feet above the mean level of the sea. A motion of the recording pencil through 1 inch corresponds to horizontal motion of the air through 100 miles. The time scale is the same as for the magnetic registers, and the sheet is changed daily at noon.

In preceding volumes the values of wind velocity V given in the tables are three times the actual velocity v of the cups. From some tests of the Browning instru-
ment, made by Mr. W. H. Dines at Hersham in 1889, on his whirling machine, it appears that the relation between V and v is more correctly given by

$$
\mathrm{V}=4 \cdot 0+2 \cdot 0 v
$$

The instrument thus fails to record wind velocities less than 4 miles per hour ; and values of the wind velocity given by the formula $\mathrm{V}=3 v$ are too high when V exceeds
12. Since the two formulæ agree, however, for $V=12$, the mean values of the wind velocity (which seldom differ much from 12) will be approximately correct in either case; therefore, for the sake of continuity and simplicity, the formula $\mathrm{V}=3 v$ will continue to be used. In this volume, however, the greatest hourly measures (p. E 59) are given according to both formulæ, and the least hourly measures omitted.

The experiments by Mr. W. H. Dines, above referred to, are described in the Introduction to the volume for 1889 .

Rain Gadges.-During the year 1913 eight rain gauges were employed, placed at different elevations above the ground, for which see page E 58 of the Meteorological Results.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The receiving surface is a rectangular opening 10×20 inches (200 square inches in area). The collected water passes into a vessel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected. The water then discharges itself by means of the following modification of the siphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube a larger tube, closed at the top, is loosely placed. The accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full, the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe-the only outlet. This creates a partial vacuum in the globe sufficient to cause the longer leg of the siphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a corresponding trace to be made on the paper fixed to the moving board of the anemometer. The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record

Exx Introduction to Greenwich Meteorological Observations, 1913.

thus gives information on the rate of the fall of rain, but the record is liable to interruption when the staging is erected for experiments with the Osler Anemometer.

Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily at 9^{h} Greenwich civil time. This is also liable to interference, just as No. 1.

Gauges Nos. 3, 4, and 5 are 8 -inch circular gauges, placed respectively on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily at $9^{\text {h }}$ Greenwich civil time.

Gauge No. 6 is an 8 -inch circular gauge placed with the receiving surface 5 inches above the ground in the Magnetic Pavilion enclosure, about 10 feet north-west of the thermometer stand, and gauge No. 7, also an 8-inch circular gauge, is similarly placed in the ground south-east of the Magnetic Observatory. No. 8 is a new gauge of the same diameter, but of the modified Snowdon pattern adopted by the Meteorological Office, having its receiving surface 1 foot above the ground. It was brought into use 1908 January 1, being fixed SW by W from No. 6 with a clear space of 6 feet between the rims. No. 6 is the Standard gauge, Nos. 7 and 8 are used as checks on the readings of No. 6. No. 6 is read daily, usually at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} Greenwich civil time, and Nos. 7 and 8 at 9^{h} only as a rule.

The present height of the Standard gauge above mean sea-level is 5 feet 9 inches less than in its old position in the Observatory Grounds, before its removal to the Pavilion Enclosure.

The gauges are also read at midnight on the last day of each calendar month.

Electrometer.-The electric potential of the atmosphere is measured by means of a Thomson self-recording quadrant electrometer, made by White, of Glasgow. It is situated in the Upper Magnet Room, in connection with Lord Kelvin's water-dropping apparatus, and with the usual arrangements for photographic registration. The time scale is the same as for the magnetic registers, the bourly break of trace being made by the driving-clock itself.

Sunshine Recorder.--The Campbell-Stokes instrument, which has been in use since 1887 , records the duration of bright sunshine by the length of blackened trace produced by the concentration of the sun's rays on a card. A spherical glass globe brings the rays to a focus. One straight card serves for the equinoctial periods of the year, and another, curved, for the solstitial periods, the only difference between the
summer and winter cards being that the summer cards are the longer: grooves are provided so that the cards are placed in position in their holders with great readiness. The daily record is transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums for each hour (reckoning from apparent midnight) through the month, are thus readily formed. The recorded durations are to be understood as indicating the amount of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud, or when the sun is very near the horizon. Until 1896 the instrument was placed above the Magnetic Observatory, since when it has been situated on the stage, above the Octagon Room, which carries the Robinson anemometer, about 50 feet above the ground. A clear view of the sun is obtained in this position from sunrise to sunset, but some inconvenience is caused by the smoke from neighbouring chimneys.

The glass globe formerly used was replaced in 1897 by a new one presented in 1881 by the late Mr. Campbell, as the records from 1894-1896 showed a notable falling off, pointed out by Mr. Marriott, due to deterioration of the glass of the old globe.

§ 7. Meteorological Reductions.

The results given in the Meteorological Section refer to the civil day, commencing at midnight.

All results in regard to atmospheric pressure, temperature of the air and of evaporation with deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye observation of the ordinary maximum and minimum thermometers at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} (civil reckoning), reference being made, however, to the photographic register when necessary to obtain the values corresponding to the civil day from midnight to midnight. The hourly readings of the photographic traces for the elements mentioned are entered into a form having double argument, the horizontal argument ranging through the 24 hours of the civil day $\left(0^{\mathrm{h}}\right.$ to $\left.23^{\mathrm{h}}\right)$, and the vertical argument through the days of a calendar month. Then for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value. It should be mentioned that before measuring out the electrometer ordinates, a pencil line was first drawn through

Exxii Introduction to Greenwich Meteorological Observations, 1913.

the trace to represent the general form of the curve, in the way described for the magnetic registers (page Ex), excepting that no day has been omitted on account of unusual electrical disturbance, as it has been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. In measuring the electrometer ordinates a scale of inches is used, and the values given in the tables which follow are expressed in thousandths of an inch, positive and negative potential being denoted by positive and negative numbers respectively. The scale has not been determined in terms of any electrical unit.

To correct the photographic indications of barometer and dry and wet bulb thermometers for small instrumental error, the means of the photographic readings at $9^{\text {h }}$, 12^{h} (noon), 15^{h}, and 21^{h} in each month are compared with the corresponding corrected mean readings of the standard larometer and standard dry and wet bulb thermometers, as given by eye observation. In the case of the standard thermometers the values deduced for midnight from comparison of the thermograph sheets with the eye-readings at night, and the minimum readings obtained at $9 \mathrm{a} . \mathrm{m}$. are also regarded as eye-readings for the correction of the thermograph registers commencing 1912 January. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb thermometers exposed on the free stand. The barometer results are not reduced to sea-level, neither are they corrected for the effect of gravity, by reduction to the latitude of 45°.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and of evaporation by use of Glaisher's Hygrometrical Tables. The table of factors for this purpose may be found in the Introductions for 1910 and previous years.

In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pages E 53 and E 54) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages E 52 and E53).

The excess of the mean temperature of the air on each day above the average of 65 years, given in the "Daily Results of the Meteorological Observations," is found by
comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the daily means deduced from the observations for the sixty-five years 1841-1905. In this series the mean daily temperature from 1841 to 1847 depends usually on 12 observations daily, in 1848 on 6 observations daily, and from 1849 to 1905 on 24 hourly readings from the photographic record. The smoothed numbers are given in Table VII., Reduction of the Greenwich Meteorological Observations, Part IV., and also in the Introduction for 1910.

The daily register of rain contained in column 16 is that recorded by the gauge No. 6, whose receiving surface is 5 inches above the ground. This gauge is usually read at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} Greenwich civil time. The continuous record of Osler's selfregistering gauge shows whether the amounts measured at 9^{h} are to be placed to the same, or to the preceding civil day ; and in cases in which rain fell both before and after midnight, also gives the means of ascertaining the proper proportion of the 9^{h} amount which should be placed to each civil day. The number of days of rain given in the footnotes, and in the abstract tables, pages $E 51$ and $E 58$, is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded $0^{\text {in. }} 005$.

The indications of atmospheric electricity are derived from Thomson's Electrometer.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration. The "Mean of 24 Hourly Measures" was in former years the mean of 24 measures of pressure taken at each hour, but commencing with 1887 January 1, it is the mean of measures, each one of which is the average pressure during the hour of which the nominal hour is the middle point.

The mean amount of cloud given in the footnotes on the right-hand pages E 27 to E 49 , and in the abstract table, page E 51 , is the mean found from observations made usually at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), 15^{h}, and 21^{h} of each civil day.

For understanding the divisions of time under the headings, "Clouds and Weather" and "Electricity," the following remarks are necessary:-In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first

Exxiv Introduction to Greenwich Meteorological Observations, 1913.

column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6^{h}, and those following it to the interval from 6^{h} to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity, the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).

The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10 .

a	denotes	aurora borealis
ci	\ldots	cirrus
ci-cu	\ldots	cirro-cumulus
ci-s	\ldots	cirro-stratus
cu	\ldots	cumulus
cu-s	\ldots	cumulo-stratus
d	\ldots	dew
hy-d	\ldots	heavy dew
f	\ldots	fog
slt-f	\ldots	slight fog
tk-f	\ldots	thick fog
fr	\ldots	frost
ho-fr	\ldots	hoar frost
g	\ldots	gale
hy-g	\ldots	heavy gale
glm	\ldots	gloom
gt-glm	\ldots	great gloom
h	\ldots	haze
slt-h	\ldots	slight haze
hl	\ldots	hail
l	\ldots	lightning
li-cl	\ldots	light clouds
lu-co	\ldots	lunar corona
lu-ha	\ldots	lunar halo
m	\ldots	mist
slt-m	\ldots	slight mist
n	\ldots	nimbus

p-cl	denotes	partially cloudy
prh	\ldots	parhelion
prs	\ldots	paraselene
r	\ldots	rain
c-r	\ldots	continued rain
fr-r	\ldots	frozen rain
fq-r	\ldots	frequent rain
hy-r	\ldots	heavy rain
c-hy-r	\ldots	continued heavy rain
m-r	\ldots	misty rain
fq-m-r	\ldots	frequent misty rain
oc-m-r	\ldots	occasional misty rain
oc-r	\ldots	occasional rain
sh-r	\ldots	shower of rain
shs-r	\ldots	showers of rain
slt-r	\ldots	slight rain
oc-slt-r	\ldots	occasional slight rain
th-r	\ldots	thin rain
fq-th-r	\ldots	frequent thin rain
oc-th-r	\ldots	occasional thin rain
hy-sh	\ldots	heavy shower
slt-sh	\ldots	slight shower
fq-shs	\ldots	frequent showers
hy-shs	\ldots	heavy showers
fq-hy-shs \ldots	frequent heavy showers	
oc-hy-shs \ldots	occasional heavy showers	
li-shs	\ldots	light showers

p-cl denotes partially cloudy
prh ... parhelion
prs ... paraselene
r ... rain
c-r $\quad .$. continued rain
fr-r $\quad .$. frozen rain
fq-r $\quad .$. frequent rain
hy-r ... heavy rain
c-hy-r .. continued heavy rain
m-r .. misty rain
$\mathrm{fq}-\mathrm{m}-\mathrm{r} \quad . . \quad$ frequent misty rain
oc-m-r $\quad . .$. occasional misty rain
oc-r $\quad .$. occasional rain
sh-r $\quad .$. shower of rain
shs-r ... showers of rain
slt-r ... slight rain
oc-slt-r ... occasional slight rain
th-r .. thin rain
fq-th-r ... frequent thin rain
oc-th-r ... occasional thin rain
hy-sh ... heavy shower
slt-sh ... slight shower
fq-shs $\quad .$. frequent showers
hy-shs ... heavy showers
fq-hy-shs ... frequent heavy showers
oc-hy-shs ... occasional heavy showers
li-shs ... light showers
oc-shs denotes occasional showers

s	\ldots	stratus
sc	\ldots	scud
li-sc	\ldots	light scud
sl	\ldots	sleet
sn	\ldots	snow
oc-sn	\ldots	occasional snow
slt-sn	\ldots	slight snow
so-ha	\ldots	solar halo
sq	\ldots	squall
sqs	\ldots	squalls

fq-sqs denotes frequient squalls
hy-sqs ... heavy squalls
fq-hy-sqs... frequent heavy squalls
oc-sqs $\quad .$. occasional squalls
$\mathrm{t} \quad .$. thunder
t-sm ... thunder storm
th-cl $\quad .$. thin clouds
v ... variable
vv ... very variable
$\mathrm{w} \quad$... wind
st-w $\quad .$. strong wind

The following is the notation employed for Electricity:-

N denotes negative
P ... positive
m ... moderate
w denotes weak
s ... strong
v ... variable

The duplication of the letter denotes intensity of the modification describedthus, ss is very strong; vv, very variable. 0 indicates zero potential, and a dash, " -," accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in $\oint 6$.

In regard to the comparisons of the extremes and means, \&c., of meteorological elements with average values, contained in the footnotes, it may be mentioned that comparison is in all cases made with mean values determined from the observations for the sixty-five years 1841-1905.

The tables following the "Daily Results" require no lengthened explanation. They consist of tables giving the highest and lowest readings of the barometer through the year ; monthly abstracts of the principal meteorological elements; hourly values in each month of barometer-reading, of temperature of air, evaporation, and dewpoint, and of degree of humidity; sunshine results; rain results; observations of thermometers on the revolving stand, with mean differences from corresponding readings in a Stevenson screen in the Magnetic Pavilion Enclosure; hourly values in each month of the horizontal movement of the air derived from Robinson's

Greenwich Magnetical and Meteorological Observa'ions, 1913

Exxvi Introduction to Greenwich Meteorological Observations, 1913.
Anemometer; results derived from the Thomson Electrometer; and observations of parhelia, paraselenæ, and meteors.

In the tables of mean values of meteorological elements at each hour for the different months of the year, the mean values have, in previous years, been given for the hours 0^{h} to 23^{h} only. But since 1886 the mean for the 24 th hour (the following midnight) has been added, thus indicating the amount of non-periodic variation. The monthly means have also been given since 1886 for the 24 hours, 1^{h} to 24^{h}, as well as for the hours, 0^{h} (midnight) to 23^{h}, which were given in former years.

It may be pointed out that the monthly means, 0^{h} to 23^{h}, for barometer and temperature of the air and of evaporation contained in these tables, pages E 52 and E 53, do not in some cases agree with the monthly means given in the daily results pages E 26 to E 48 , and in the table on page E 51 , in consequence of occasional interruption of the photographic register, at which times daily values to complete the daily results could be supplied from the eye observations, as mentioned in the footnotes; but hourly values, for the diurnal inequality tables, could not be so supplied. In such cases, however, the means given with these tables are the proper means to be used in connexion with the numbers standing immediately above them, for formation of the actual diurnal inequality.

In regard to Electric Potential of the Atmosphere, in addition to giving the hourly values in each month, including all available days, the days in each month have been (since the year 1882) further divided into two groups, one containing all days on which the rainfall amounted to or exceeded $0^{\text {in. }} 020$, the other including only days on which no rainfall was recorded, the values of daily rainfall given in column 16 of the "Daily Results of the Meteorological Observations" being adopted in selecting the days. These additional tables are given on pages E 62 and E 63 respectively.

In regard to the observations of Luminous Meteors, it is simply necessary to say that, in general, only special meteor showers are watched for, such as those of April, August, and November. The observers of meteors in the year 1913 were Mr. Edney, Mr. Timbury, Mr. Divers, Mr. Brown, and Mr Showell. Their observations are distinguished by the initials E., T., D., F.B., and S. respectively. A few observations made by Mr. Crommelin, Mr. Bowyer, Mr. Melotte, and Mr. Berry are distinguished by the initials A.C., W.B., P.M., and A.B. respectively.
F. W. DYSON,

Royal Obeervatory, Greenwich,

ROYAL OBSERVATORY, GREENWICH.

RESULTS

of

MAGNETICAL OBSERVATIONS

(EXCLUDING DAYS OF GREAT MAGNETIC DISTURBANCE),
1913.

Table I.-Mean Magnetic Declination West for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic register.)

1913.												
Day of Month.	January.	February.	March.	April.	May.	June.	July.	Angust.	September.	October.	November.	December.
	15°											
${ }_{\text {d }}$ I	\ldots	$18^{\prime} \cdot 8$	19.4	17.0	$16 \cdot 7$	16.2	$14^{\circ} \mathrm{O}$	14.3	$12^{\prime} \cdot 9$	$13^{\prime} 1$	12.6	11.8
2	19.8	18.8	189	17.7	$16 \cdot 1$	144	14.1	14.3	13.1	12.9	12.4	12.0
3	19.8	18.3	18.4	17.8	16.2	14.9	$13 \cdot 8$	13.7	12.3	12.4	12.2	12.1
4	18.7	18.5	18.0	17.3	14.8	14.5	14.1	13.6	13.2	$13^{1} 1$	12.2	12.8
5	$18 \cdot 7$	18.5	18.2	$17^{\circ} 2$	15.3	$15 \cdot 1$	14.5	$14^{\circ} \mathrm{O}$	13.1	12.4	12.4	13.7
6	$18 \cdot 9$	18.4	18.5	16.9	15.6	154	14.5	14.6	13.2	14.5	12.4	12.4
7	18.9	18.6	18.4	$17 \cdot 6$	$16 \cdot 1$	15.2	14.3	14.8	13°	$12 \cdot 1$	12.1	12.8
8	$18 \cdot 9$	$18 \cdot 8$	19°	17.7	$16 \cdot 3$	14.5	14.6	14.5	$14^{\circ} \mathrm{O}$	13.1	12.5	12.3
9	19.3	18.3	$18 \cdot 5$	18.6	16.0	$15^{\circ} 0$	14.7	13.8	12.8	12.3	12.9	11.9
10	18.7	18.2	$18 \cdot 6$	$17^{\circ} \mathrm{O}$	15.5	14.0	14.8	13.7	13.0	13.1	11.8	12.2
11	19.4	18.4	18.4	16.8	$15{ }^{\circ} 9$	14.8	14.1	14.2	13.9	13.4	11.6	12.0
12	19.1	18.9	18.7	17.1	$15 \cdot 8$	14.3	13.3	13.7	13.5	12.9	11.4	119
13	19.4	18.1	18.6	17.5	15.6	$14^{\circ} 2$	$14^{\circ} 0$	13.6	13.6	12.7	11.8	12.4
14	19.6	19.2	17.1	18.2	157	$15^{\circ} 0$	13.1	13.4	14.4	$12 \cdot 7$	11.8	13.0
15	19.3	18.4	17.9	17.2	16.0	15.5	13.8	$14^{\circ} \mathrm{O}$	14.8	12.6	12.0	12.0
16	194	18.4	18.0	17%	$15{ }^{\circ} 8$	14.7	13.3	13.8	$14^{\circ} \mathrm{O}$	12.7	12.4	11.7
17	193	$18 \cdot 5$	17.8	17.9	16.5	14.4	12.9	13.6	14.3	12.6	12.1	12.2
18	18.8	18.5	$18 \cdot 3$	16.8	17.4	15.4	13.3	13.9	$13^{1} 1$	12.3	11.6	12.3
19	18.4	$18 \cdot 7$	$18 \cdot 0$	$16 \cdot 4$	17.5	15.6	13.5	13.9	12.6	12.8	$12 \cdot 3$	12.7
20	18.5	19.5	$18 \cdot 5$	16.9	16.7	14.5	14.1	$14^{.1}$	13.2	13.2	12.5	12.3
21	18.5	18.8	18.0	$16 \cdot 7$	16.4	15.4	$14^{1} 1$	$14^{\circ} \mathrm{O}$	13.1	12.5	12.0	12.7
22	19°	18.6	17.7	15.8	16.4	14.9	14.3	14.2	13.7	12.9	129	$13^{\circ} \mathrm{O}$
23	17.9	19.1	18.0	$16 \cdot 3$	16.5	149	13.7	13.8	11.8	1311	$13^{\circ} \mathrm{O}$	12.6
24	$18 \cdot 4$	19.5	${ }^{1} 7 \cdot 8$	16.1	$16 \cdot 0$	15.5	14.9	$13^{\circ} 0$	13.4	12.9	12.5	$13^{\circ} \mathrm{O}$
25	18.0	20.0	179	16.6	$15^{\circ} 2$	14.3	14.9	14.2	13.2	12.8	12.1	13.0
26	18.9	18.5	17.8	16.0	15.3	15°	$14^{1} 1$	14.1	13.2	12.4	11-8	12.6
27	19.3	18.6	17.8	15.3	16.2	14.3	13.7	14.3	13.0	12.0	13.2	12.9
28	19.0	19.3	17.4	15.2	15°	14.8	13.4	13.6	$13^{\circ} \mathrm{O}$	12.0	12.0	13.2
29	18.6		16.9	15.6	14.8	13.4	13.6	13.1	13.4	12.4	12.3	13.2
30	19.3		17.0	15.9	$15^{1} 1$	14.6	13.9	12.4	12.9	12.5	11.8	13.1
31	I 8.8		17.7		15.8		13.5	12.2		119		13.3
Means	$19^{\prime} \circ$	18'7 7	$18^{\prime} \cdot 1$	$16^{\prime} \cdot 9$	$15^{\prime} \cdot 9$	$14^{\prime} \cdot 8$	$14^{\prime} \cdot 0$	$13^{\prime} \cdot 8$	$13^{\prime} \cdot 3$	$12 \cdot 7$	$12^{\prime} \cdot 2$	$12^{\prime} \cdot 6$

Table II.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West.
(The results in each month are diminished ly the smallest hourly value.)

1913.													
Hour $\substack{\text { Greenwich } \\ \text { Civil Time. }}$	January.	February.	March.	April.	May	June.	July.	August.	Septomber.	October.	November.	December.	$\begin{aligned} & \text { For the } \\ & \text { Year. } \end{aligned}$
Midn.	$0 \cdot 3$	$0 \cdot 3$	$1 \cdot 5$	$2 \cdot 1$	2.6	$3 \cdot 0$	$3 \cdot 0$	$2 \cdot 3$	1.6	0	$0 \cdot 3$	$0 \cdot 6$	$1 \cdot 34$
$\mathrm{I}^{\text {b }}$	0.7	0.5	1.7	2.4	2.6	29	2.9	$2 \cdot 3$	1.6	$1 \cdot 1$	0.5	$0 \cdot 6$	1.46
2	$1 \cdot 0$	$0 \cdot 8$	$1 \cdot 9$	2.6	$2 \cdot 7$	$2 \cdot 7$	$2 \cdot 8$	$2 \cdot 1$	1.4	$1 \cdot 1$	0.7	$0 \cdot 7$	I.52
3	1.3	0.9	1.7	$2 \cdot 5$	2.5	2.4	$2 \cdot 5$	2.1	$1 \cdot 5$	$1 \cdot 1$	0.9	$0 \cdot 9$	1.50
4	$1 \cdot 3$	0.9	$1 \cdot 6$	$2 \cdot 3$	$2 \cdot 0$	$2 \cdot 0$	2.2	1.8	I•3	1.2	$1 \cdot 2$	$0 \cdot 9$	1•37
5	$1 \cdot 2$	$0 \cdot 8$	$1 \cdot 4$	$1 \cdot 9$	0.9	0.8	1.2	1.0	$1 \cdot 1$	1.4	I'I	$0 \cdot 8$	$0 \cdot 94$
6	$1 \cdot 1$	$0 \cdot 7$	$1 \cdot 3$	1.7	$0 \cdot 3$	$0 \cdot 0$	$0 \cdot 3$	0.6	0.8	1.4	1.0	0.6	0.63
7	$1 \cdot 0$	0.5	0.8	$1 \cdot 0$	$0 \cdot 0$		$0 \cdot 0$	$0 \cdot 0$	0.4	$0 \cdot 9$	0.8	0.6	0.31
8	0.6	0.2	$0 \cdot 1$	$0 \cdot 0$	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 0$	$0 \cdot 1$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 3$	0.6	$0 \cdot 00$
9	0.7	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 1$	$1 \cdot 2$	1.4	1.0	1.4	0.8	0.2	$0 \cdot 3$	0.8	0.47
10	$1 \cdot 5$	0.5	1.4	$2 \cdot 0$	3.2	$3 \cdot 2$	$2 \cdot 9$	$3 \cdot 6$	2.8	$1 \cdot 9$	$1 \cdot 1$	I•3	$1 \cdot 93$
11	$2 \cdot 3$	1.8	$3 \cdot 8$	44	$5 \cdot 6$	$5 \cdot 5$	$5{ }^{\circ}$	5.9	$5 \cdot 3$	$4 \cdot 1$	$2 \cdot 5$	$1 \cdot 9$	3.82
Noon	3.3	$3 \cdot 3$	$6 \cdot 0$	$7 \cdot 0$	$7 \cdot 5$	$7 \cdot 7$	$7 \cdot 2$	7.9	$7 \cdot 2$	5.5	$3 \cdot 6$	$2 \cdot 3$	$5 \cdot 52$
$13^{\text {h }}$	3.9	$3 \cdot 8$	$6 \cdot 9$	$8 \cdot 3$	$7 \cdot 8$	$8 \cdot 5$	8.1	8.5	7.5	5.5	$3 \cdot 9$	2.4	6:07
14	3.2	3.7	$6 \cdot 6$	$8 \cdot 0$	$7 \cdot 2$	$8 \cdot 3$	$8 \cdot 4$	$7 \cdot 9$	$6 \cdot 6$	4.9	$3 \cdot 0$	$2 \cdot 0$	$5 \cdot 63$
15	$2 \cdot 3$	$2 \cdot 9$	$5 \cdot 2$	$6 \cdot 4$	$6 \cdot 0$	74	$7 \cdot 6$	6.2	$5 \cdot 0$	3.6	$2 \cdot 1$	1.6	4.50
16	$1 \cdot 9$	$2 \cdot 0$	3.7	$5 \cdot 1$	$5 \cdot 0$	$6 \cdot 3$	$6 \cdot 3$	4.5	3.6	2.4	$1 \cdot 7$	$1 \cdot 3$	3.46
17	1.8	1×9	$2 \cdot 7$	4.0	3.9	$5 \cdot 1$	$5 \cdot 1$	3.2	2.6	$2 \cdot 1$	1.6	$1 \cdot 0$	$2 \cdot 73$
18	1.6	$1 \cdot 7$	2.4	$3 \cdot 1$	3.2	4.3	4.4	2.8	2.2	$1 \cdot 7$	1.2	0.8	$2 \cdot 26$
19	$1 \cdot 1$	1.1	20	2.6	2.8	$4 \cdot 0$	3.8	3.0	$2 \cdot 1$	$1 \cdot 1$	$0 \cdot 9$	0.6	1.90
20	0.4	0.5	1.7	$2 \cdot 3$	2.7	$3 \cdot 7$	$3 \cdot 5$	2.9	1.9	0.6	0.6	0.4	$1 \cdot 58$
21	$0 \cdot 0$	$0 \cdot 1$	$1 \cdot 3$	$2 \cdot 1$	$2 \cdot 7$	3.6	3.4	$2 \cdot 6$	1.8	0.4	$0 \cdot 1$	0.2	133
22	$0 \cdot 0$	0.1	$1 \cdot 1$	$2 \cdot 2$	$2 \cdot 7$	$3 \cdot 3$	$3 \cdot 1$	$2 \cdot 3$	1.6	$0 \cdot 3$	$0 \cdot 0$	$0 \cdot 0$	I-20
23	$0 \cdot 1$	0.2	$1 \cdot 0$	$2 \cdot 1$	$2 \cdot 7$	3.1	$3 \cdot 1$	$2 \cdot 3$	$1 \cdot 5$	0.5	$0 \cdot 0$	0.2	I.2I
24	$0 \cdot 3$	0.4	$1 \cdot 3$	$2 \cdot 3$	$2 \cdot 7$	2.9	3.0	$2 \cdot 3$	$1 \cdot 6$	0.8	$0 \cdot 3$	0.5	$1 \cdot 34$
$0^{0^{h}-23^{h}}$	1'36	$\mathrm{I}^{\prime} \cdot 22$	$2^{\prime} \cdot 41$	$3^{\prime} \cdot 18$	$3^{\prime} \cdot 25$	$3^{\prime} \cdot 73$	$3^{\prime} \cdot 66$	$3^{\prime} \cdot 22$	2'59	$\mathrm{I}^{\prime} \cdot 83$	$1^{\prime} \cdot 22$	-'95	2'19
$\mid 1^{\text {h }}-24^{\text {b }}$	I'36	$1^{\prime} \cdot 22$	$2 \cdot 40$	$3^{\prime} \cdot 18$	$3^{\prime} \cdot 25$	$3^{\prime} 773$	$3^{\prime} \cdot 66$	$3^{\prime} \cdot 22$	2'59	I'83	$\mathrm{I}^{\prime} \cdot 22$	-'.96	2'19

Table III.-Diurnal Range of Declination, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers.

1913.												
$\underset{\substack{\text { Day of } \\ \text { Month. }}}{ }$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
$\stackrel{\text { d }}{1}$	\ldots	2.8	5%	$10 \cdot 9$	$7 \cdot 3$	11.0	$9 \cdot 8$	${ }_{11} 1^{\prime}$	$10^{\prime} 7$	$8 \stackrel{9}{9}$	$6{ }^{\circ}$	
2	3.0	3.2	5.0	$9 \cdot 4$	$9 \cdot 3$	$9 \cdot 4$	8.2	11.0	10.8	$9 \cdot 4$	$10 \cdot 1$	$4 \cdot 4$
3	$8 \cdot 9$	$2 \cdot 8$	$5 \cdot 5$	10.5	8 \% 1	8.8	$9 \cdot 2$	8.5	10.3	6.6	$8 \cdot 3$	3.0
4	3.9	$2 \cdot 9$	6.1	$10 \cdot 0$	94	$10 \cdot 7$	$10 \cdot 3$	$7 \cdot 0$	10.5	$7 \cdot 1$	$4 \cdot 6$	$3 \cdot 6$
5	4.6	4°	5.9	8.9	$8 \cdot 9$	9.9	$9 \cdot 2$	$8 \cdot 7$	9.5	12.0	$5 \cdot 2$	5.2
6	3.6	3.4	7.0	10.4	12.5	$9 \cdot 6$	10.8	$9{ }^{\circ}$	10.5	$8 \cdot 7$	4.5	$4 \cdot 6$
7	$3 \cdot 8$	$4{ }^{\circ}$	$7 \cdot 8$	10.5	$8 \cdot 3$	$10 \cdot 7$	$9 \cdot 5$	10°	7.6	$9 \cdot 5$	$6 \cdot 3$	$3 \cdot 1$
8	$3{ }^{1}$	3.4	10.4	10.9	77	$8 \cdot 6$	$9 \cdot 1$	94	117	$9 \cdot 8$	3.7	2.5
9	4.4	$4 \cdot 1$	$7{ }^{\circ}$	15.5	$6 \cdot 1$	79	10.6	$9 \cdot 8$	11.2	79	$4 \cdot 8$	2.4
10	$6 \cdot 6$	$3 \cdot 5$	$7{ }^{\circ}$	89	$9 \cdot 1$	$7 \cdot 6$	10.5	8.3	$7 \cdot 0$	6.4	4.4	3.2
11	$3 \cdot 2$	3.6	$5 \cdot 1$	8.0	8.0	$7 \cdot 6$	6.1	8.4	$6 \cdot 7$	$7 \cdot 8$	4.4	17
12	$3 \cdot 6$	$7 \cdot 8$	$6 \cdot 6$	$10 \cdot 6$	79	9.9	$9 \cdot 4$	$7 \cdot 6$	$9 \cdot 6$	8.0	43	2.5
13	4.3	$7{ }^{\circ}$	6.3	$9 \cdot 2$	6.9	8.0	8.2	$7 \cdot 5$	57	$5 \cdot 9$	3.9	$2 \cdot 8$
14	44	$5 \cdot 4$	139	$9 \cdot 3$	5.9	$10 \cdot 7$	$7 \cdot 2$	8.6	6.0	$5 \cdot 1$	$4 \cdot 3$	3.9
15	4.7	5.9	$8 \cdot 8$	$8 \cdot 1$	$9 \cdot 1$	10.2	9.9	10.2	74	$6 \cdot 8$	4.8	$3 \cdot 1$
16	3.2	8.9	$7 \cdot 0$	$10 \cdot 3$	5.9	$9 \cdot 6$	11.2	$9 \cdot 4$	$6{ }^{\circ}$	7.2	4.9	1.9
17	$5 \cdot 2$	5.7	$10 \cdot 6$	$9^{\cdot 2}$	8.4 8.8	$9{ }^{\circ}$	9°	8.0	$8 \cdot 3$	$6 \cdot 5$	4.0	$2 \cdot 7$
18	11.5	6.5	7.4	$7 \cdot 2$	$8 \cdot 8$	$10 \cdot 9$	$10 \cdot 3$	10.7	$7 \cdot 6$	13.3	$4 \cdot 2$	4.0
19	8.2	$6 \cdot 1$	$6 \cdot 7$	9°	$6 \cdot 9$	99	6.9	11.8	10.2	12.7	$2 \cdot 7$	$6 \cdot 0$
20	7.8	$6 \cdot 3$	9.4	9°	$9 \cdot 2$	$9{ }^{1}$	$11 \cdot 3$	$9 \cdot 3$	$9 \cdot 5$	$4 \cdot 8$	4.9	$2 \cdot 8$
21	3.8	4.8	9.7	7.9	$9 \cdot 1$	10.4	74	10.1	8.7	$6 \cdot 1$	4.6	1.9
22	47	4.9	8.0	10.0	9.4	$9 \cdot 5$	$9 \cdot 8$	11.4	12.6	$6 \cdot 0$	$3 \cdot 3$	1.8
23	$3 \cdot 3$		8.9	77	11.1	8.1	79	$10 \cdot 3$	11.3	$5 \cdot 7$		1.5
24	$4 \cdot 1$	$4 \cdot 8$	$8 \cdot 8$	$7 \cdot 1$	8.7	10.2	7.2	$10 \cdot 4$	6.5	4.3	$3 \cdot 6$	2.2
25	$6 \cdot 1$	8.4	$8 \cdot 3$	$6 \cdot 1$	9.8	$6 \cdot 8$	97	$8 \cdot 2$	$6{ }^{\circ}$	$8 \cdot 1$	3.9	$5 \cdot 8$
26	$3 \cdot 8$	$5 \cdot 3$	$8 \cdot 5$	$6 \cdot 1$	$7 \cdot 4$	9.9	8.9	8.0	$4 \cdot 8$	$6 \cdot 0$	4.5	$3 \cdot 8$
27	3.1	3.2	9.3	$7 \cdot 6$	$10 \cdot 9$	$8 \cdot 1$	$8 \cdot 2$	$6 \cdot 8$	$5 \cdot 8$	$5{ }^{\circ}$	$6 \cdot 9$	4.0
28	47	$4 \cdot 1$	8.8	6.5	$8 \cdot \mathrm{I}$	10.4	$5 \cdot 9$	59	$5 \cdot 1$	6.4	$6 \cdot 6$	2.5
29	3.6		7.9	$7 \cdot 4$	$9 \cdot 2$	$7 \cdot 7$	$8 \cdot 3$	7.1	77	$5 \cdot 4$	4.6	2.4
30 31	5.2 4.8		$\begin{array}{r}8.5 \\ 1.6 \\ \hline\end{array}$	8.0	9.5 6.4	$8 \cdot 1$	10.8	8.7 8.2	$6 \cdot 3$	8.7 10.4	4.4	2.2 1.8
$\frac{31}{\text { Means }}$	4.8 4.8		$\underline{11 \cdot 6}$		6.4		94	$8 \cdot 2$		$10 \cdot 4$		1.8
Means	$4^{\prime \cdot 8}$	$5^{\prime} 0$	$8^{\prime} \cdot 0$	$9^{\prime} \cdot 0$	$8^{\prime} \cdot 5$	$9^{\prime} 3$	$9^{\prime} \cdot 0$	$9^{\prime} \cdot 0$	$8^{\prime} \cdot 4$	$7^{\prime} \cdot 6$	$4^{\prime \prime} 9$	$3^{\prime} \cdot 1$
The mean of the twelve monthly values is $7^{\prime} \cdot 22$.												

Table IV.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Days, in each Montif.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected by the International Committee for comparison with results at other Observatories. The results in each case are diminished by the smallest hourly value. The days included are (* January 6 substituted for January 1):-

	$\begin{aligned} & \text { January } 6^{*}, 7,12,16,24 . \\ & \text { February } 12,16,24 . \\ & \text { March } \\ & 1,4,23,10,26,26,27 . \end{aligned}$			April 6, 20, 21, 22, 26. May 14, 20, 21, 22, 23. June 7, 8, 11, 12, 27.			July 4, $9,17,19,28$. August 1, $5,20,29,30$. September $4,14,20,27,29$.			October 2, 3, 23, 24, 28. November 4, 14, 15, 16, 25. December 10, 11, 13, 17, 23.			
1913.													
$\begin{aligned} & \text { Hour } \\ & \text { Gron } \\ & \text { civen } \end{aligned}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	${ }_{\substack{\text { For the } \\ \text { Year. }}}^{\text {ctic }}$
Midn.	$0 \cdot 4$	$0 \cdot 2$	$2 \cdot 3$	$3 \cdot 3$	$3 \cdot 7$	$4 \stackrel{0}{0}$	$3{ }^{\circ}$	$2 \cdot 1$	$1 \cdot 6$	$2 \cdot 5$	\bigcirc	$0 \cdot 2$	${ }_{1} 182$
$1^{\text {b }}$	$\bigcirc 9$	$0 \cdot 6$	2.2	3.5	$3 \cdot 5$	3.9	$2 \cdot 9$	17	$1 \cdot 9$	2.5	$\bigcirc \cdot 5$	$\bigcirc \cdot 4$	1.92
2	$1 \cdot 2$	$1{ }^{\circ}$	2.5	3.6	$3 \cdot 7$	$3 \cdot 6$	3.0	1.7	19	2.6	0.6	$0 \cdot 4$	2.03
3	1.2	$1 \cdot 2$	2.0	3.5	$3 \cdot 8$	$3 \cdot 4$	$2 \cdot 8$	1.6	$1 \cdot 7$	2.4	$1 \cdot 1$	$\bigcirc \cdot 3$	1.96
4	$1 \cdot 2$	12	$2 \cdot 1$	$3 \cdot 3$	2.9	2.9	2.2	$1 \cdot 3$	$1 \cdot 5$	$2 \cdot 2$	$1 \cdot 1$	$0 \cdot 4$	$1 \cdot 74$
5	$0 \cdot 9$	$1 \cdot 1$	$1 \cdot 9$	2.9	1.6	1.5	$1 \cdot 4$	$0 \cdot 4$	1.5	19	1.0	$\bigcirc \cdot 3$	125
6	0.6	$\bigcirc \cdot 9$	1.8	2.4	0.6	0.4	0.6	$\bigcirc \cdot 1$	$1 \cdot 1$	$1 \cdot 7$	$0 \cdot 8$	$\bigcirc \cdot 1$	0.81
7	$\bigcirc \cdot 4$	$0 \cdot 7$	$1 \cdot 3$	1.4	$\bigcirc \cdot 1$	$0 \cdot 2$	$\bigcirc \cdot 1$	$\bigcirc \cdot$	$\bigcirc \cdot 4$	1.0	0.6	$\bigcirc \cdot 1$	0.40
8	$0 \cdot 1$	$0 \cdot 4$	$\bigcirc \cdot 3$	0.2	$\bigcirc \cdot 0$	$\bigcirc \cdot$	$\bigcirc \circ$	$0 \cdot 2$	$0 \cdot 0$	$\bigcirc \cdot$	$\bigcirc \cdot 1$	$\bigcirc \cdot 1$	0.00
9	$\bigcirc \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	$\bigcirc \circ$	$1 \cdot 1$	$\bigcirc \cdot 7$	$0 \cdot 7$	$1 \cdot 1$	$0 \cdot 6$	$\bigcirc \cdot 1$	$0 \cdot 0$	$0 \cdot 3$	$0 \cdot 26$
10	$\bigcirc \cdot 7$	0.4	$1 \cdot 2$	1.6	3.4	$2 \cdot 8$	$2 \cdot 7$	2.8	$2 \cdot 7$	$2 \cdot 3$	$\bigcirc \cdot 6$	$0 \cdot 8$	$1 \cdot 71$
11	$1 \cdot 3$	I.8	3.7	$4 \cdot 1$	$6 \cdot 2$	$5 \cdot 4$	$4 \cdot 5$	$5 \cdot 2$	$5 \cdot 1$	$4 \cdot 8$	1.9	1.5	$3 \cdot 67$
Noon	$2 \cdot 1$	$3 \cdot 3$	$6 \cdot 2$	$6 \cdot 8$	$8 \cdot 1$		6.2	$7 \cdot 4$	$7 \cdot 1$	6.2	3.5	2.0	
$13^{\text {h }}$	$3 \cdot 3$	3.8	$6 \cdot 7$	8.5	8.5	$8 \cdot 6$	$7 \cdot 3$	$8 \cdot 3$	$7 \cdot 5$	$6 \cdot 1$	3.8	$2 \cdot 1$	6.09
14	2.4	3.8	6.7	8.2	8.0	8.4	8.2	$7 \cdot 8$	6.7	$5 \cdot 3$	3.0	1%	$5 \cdot 71$
15	17	2.9	$5 \cdot 3$	$7{ }^{\circ}$	$6 \cdot 5$	7.6	$7 \cdot 8$	$5 \cdot 8$	$5 \cdot 4$	4.0	1.9	0.9	4.61
16	1.4	19	3.7	$5 \cdot 8$	$5 \cdot 1$	$6 \cdot 2$	6.4	3.7	4.0	$3 \cdot 1$	17	$0 \cdot 7$	3.52
17	1.2	$1 \cdot 5$	3.0	$5{ }^{\circ}$	3.9	52	$5 \cdot 1$	$2 \cdot 2$	3.1	3.1	1.2	0.6	$2 \cdot 81$
18	$1 \cdot 2$	13	2.6	4.3	$3 \cdot 4$	4.6	$4 \cdot 4$	$2 \cdot 0$	2.6	2.9	$0 \cdot 9$	$0 \cdot 4$	2.43
19	$\bigcirc \cdot 9$	1.2	2.6	3.9	3.5	4.5	39	2.4	2.4	$2 \cdot 8$	$0 \cdot 7$	0.2	2.30
20	$0 \cdot 5$	1.0	2.5 2	3.6	3.5	4.4	37	$2 \cdot 3$	2.5	2.4	$0 \cdot 5$	$\bigcirc \cdot 1$	2.13
21	0.4	$0 \cdot 8$	$2 \cdot 3$	3.4	$3 \cdot 7$	$4 \cdot 6$	$3 \cdot 5$	$2 \cdot 3$	2.4	2.5	0.2	$0 \cdot 0$	2.05
22	$0 \cdot 2$	$0 \cdot 6$	$2 \cdot 0$	3.4	3.7	44	$3{ }^{\circ}$	$2 \cdot 3$	$2 \cdot 3$	2.2	$\bigcirc \cdot 3$	$0 \cdot 0$	1.91
23	$\bigcirc \cdot 3$	$0 \cdot 6$	$1 \cdot 9$	3.2	$3 \cdot 8$	4.2	$3 \cdot 3$	2.1	$2 \cdot 2$	2.2	$\bigcirc \cdot 3$	$0 \cdot 1$	1.90
24	$0 \cdot 5$	$0 \cdot 7$	2.0	3.0	$3 \cdot 6$	$3 \cdot 7$	3.2	$2 \cdot 0$	2.0	2.4	$0 \cdot 1$	0.2	1.83
	$\mathrm{I}^{\prime} \cdot 02$	$\mathrm{I}^{\prime} \cdot 34$	$2^{\prime} \cdot 78$	$3^{\prime} \cdot 87$	$3^{\prime} \cdot 85$	$4^{\prime \cdot 13}$	$3^{\prime} \cdot 61$	${ }^{\prime} \cdot 78$	${ }^{\prime} \cdot 84$	${ }^{\prime} \cdot 78$	$\mathrm{I}^{\prime} \cdot 10$	$0^{\prime} \cdot 56$	$2^{\prime} \cdot 44$
	$\mathrm{I}^{\prime} \cdot 03$	$\mathrm{I}^{\prime} \cdot 36$	${ }^{\prime} \cdot 77$	$3^{\prime} .86$	$3^{\prime} \cdot 84$	$4^{\prime \cdot 12}$	$3^{\prime} \cdot 62$	$2^{\prime} \cdot 78$	$2^{\prime} \cdot 86$	$2^{\prime} \cdot 78$	$\mathrm{I}^{\prime} \cdot 10$	$0 \cdot 56$	$2^{\prime} \cdot 44$

Table V.-Mean Horizontal Magnetic Force for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in C.G.S. units. The values are corrected for Temperature.)

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table VI.-Monirly and Annual Diurnal Inequalitirs of Horizontal Magnetic Force.
(The results are expressed in C.G.S. units and in each case diminished by the smallest hourly value.)

1913.													
	January.	February.	March.	April.	May.	Jwe.	July.	August.	September.	October.	November.	December.	
Midn.	10γ	11γ	13γ	25γ	22γ	25γ	25γ	${ }^{26} \gamma$	29γ	25γ	14γ	${ }^{1} \gamma$	18.17
$1^{\text {b }}$	10	11	13	23	21	24	24	26	29	24	13	γ	17.5
2	9	10	12	21	19	23	21	24	28	24	14	2	$16 \cdot 6$
3	10	11	12	21	17	21	20	23	27	25	14	3	16.3
4	11	11	12	21	16	21	19	23	26	26	15	4	16.4
5	13	13	14	20	15	19	19	21	24	26	16	6	$16 \cdot 5$
6	15	14	14	19	12	15	16	18	22	24	17	7	154
7	14	14	14	17	8	10	13	13	18	20	16	6	12.9
8	11	12	11	12	3	5	7	6	11	14	11	5	8.3
9	5	8	4	5	1	2	4	2	4	7	5	2	3.6
10	2	4	1	1	\bigcirc	-	-	-	-	1	1	2	$0 \cdot 3$
11	-	\bigcirc	-	-	3	2	\bigcirc	3	1	\bigcirc	\bigcirc	\bigcirc	$0 \cdot 0$
Noon	-	-	2	5	6	6	3	8	8	4	2	-	$3 \cdot 0$
$13^{\text {b }}$	4	2	5	10	11	${ }_{1}$	7	14	16	10	5	1	73
14	6	5	8	13	16	18	11	17	20	14	8	2	10.8
15	7	6	10	18	19	24	17	20	22	17	10	1	13.5
16	7	7	12	21	20	27	22	23	23	19	11	2	15.5
17	9	8	12	24	22	31	25	25	26	20	14	4	17.6
18	9	10	14	26	25	33	28	28	28	22	14	3	19.3
19	8	11	14	27	26	34	31	31	30	23	15	3	204
20	8	11	16	26	25	33	31	31	31	23	14		20.2
21	9	11	15	26	26	31	30	31	31	24	14	1	$20 \cdot 0$
22	9	10	15	26	24	29	29	29	30	24	14	1	19.3
23	9	11	14	26	23	27	26	27	30	24	14	1	18.6
24	9	11	14	25	23	25	26	26	29	24	14	\bigcirc	18.1
$\stackrel{m}{ } 0^{\text {h }}-23^{\text {b }}$	$8 \cdot 1$	8.8	$10^{\prime} 7$	18.0	15.8	19.6	178	19.5	214	18.3	$11 \cdot 3$	$2 \cdot 6$	13.6
	8.1	8.8	10.8	18.0	15%	19.6	17.9	19.5	214	18.3	113	$2 \cdot 5$	13.6

Table Vil.-Diurnal Range of Horizontal Magnetic Force, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers.
(The results are corrected for Temperature and are expressed in C.G.S. units.)

Table VIII.-Monthly and Annual Mean Diurnal Inequalities of Horizontal Magnetic Force from Hourly Ordinates, on Five Selected Days in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected by the International Committee for comparison with results at other Observatories. The results are corrected for Temperature and in each case diminished by the smallest hourly value. The days included are (* January 6 substituted for January 1) :-

January 6*, 7, 12, 16, 24.	April 6, 20, 21, 22, 26.	July	4, 9, 17, 19, 28.	October 2, 3, 23, 24, 28.		
February	3, 4, 23, 24, 28.	May 14, 20, 21, 22, 23.	August	1, 5, 20, 29, 30.	November 4, 14, 15, 16, 25.	
March	1, 2, 10, 26, 27.	June 7, 8, 11, 12, 27.	September	4, 14, 20, 27, 29.	December	

Hour, $\substack{\text { Greanwich } \\ \text { Civil Time. }}$	January.	February	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	15γ		I I γ	26γ	22γ	22γ	21γ	317	26γ	26γ	14γ	7γ	
$\mathrm{I}^{\text {h }}$	16	4		26	21	2 I	18	30	26	27	11	5	$17 \circ^{\circ}$
2	14	4	11	25	19	21	16	28	27	28	11	5	16.4
3	15	4	13	23	16	19	15	28	26	28	12	4	15.9
4	16	4	13	23	18	19	15	27	25	27	13	4	$16 \cdot 0$
5	17	5	15	22	16	19	15	25	24	27	12	5	15.8
6	18	6	15	23	14	16	13	22	23	26	12	6	15.2
7	19	6	16	23	9	7	10	16	20	23	11	6	12.8
8	16	6	16	19	2	4	7	8	13	16	8	5	9°
9	8	5	8	13	\bigcirc	1	5	4	5	8	4	5	$4 \cdot 5$
10	3	2	I	4	1	\bigcirc	1	0	1	\bigcirc	\bigcirc	3	$0 \cdot 3$
11	0	\bigcirc	0	\bigcirc	3	0	\bigcirc	5	0	4	\bigcirc	\bigcirc	$0 \cdot 0$
Noon	1	\bigcirc	3	7	9	3	I	13	5	9	4	1	$3 \cdot 7$
$13^{\text {h }}$	8	2	6	12	16	9	2	19	12	16	7	2	$8 \cdot 3$
14	11	3	8	16	22	14	6	20	17	22	1 I	5	11.9
15	14	4	10	21	25	17	11	24	18	27	11	5	14.6
16	15	5	15	25	23	20	17	26	20	28	12	6	16.7
17	16	9	18	29	26	24	23	29	23	29	15	6	19.6
18	16	11	17	32	27	27	27	31	25	31	16	8	21.3
19	14	10	19	33	29	28	27	35	28	32	16	7	22.2
20	13	9	19	31	29	26	27	36	31	30	16	6	21.7
21	13	9	18	32	32	24	26	35	30	29	15	4	21.3
22	15	10	19	33	31	22	24	34	29	29	14	3	20.9
23	14		17	33	29	21	22	34	29	28	14	1	19.9
24	15	8	17	32	28	19	21	34	28	27	13	2	19.3
den $0^{\mathrm{b}_{-2} 3^{\text {b }}}$	12.8	5.5	12.5	22.1	18.3	16.0	14.5	23.3	20.1	22.9	10.8	$4 \cdot 5$	14.3
${ }_{4}^{4}{ }^{\text {h }}-24^{\text {b }}$	12.8	$5 \cdot 6$	12.7	22.4	18.5	15.9	145	23.5	20.2	23.0	$10 \cdot 8$	$4 \cdot 3$	14.3

Table IX.-Mean Vertical Magnetic Force for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in C.G.S. units. The values are corrected for Temperature.)

1913.												
(Day of	January.	February.	March.	April.	May.	June.	July.	August.	September.	Octuber.	November.	December.
$43000 \gamma+$												
${ }_{1}^{\text {d }}$	\cdots	298γ	305γ	264γ	278γ	290γ	312γ		313γ	287γ	299γ	
2	295γ	298	299	266	28 I	273	303	309	314	286	308	295
3	306	298	303	260	278	297	302	293	305	276	299	295
4	306	308	314	265	278	292	303	304	303	283	295	293 286
5	320	310	316	265	263	294	305	302	302	283	288	286
6	303	311	328	267	267	287	304	296	309	281	286	282
7	319	313	319	256	267	276	290	291	313	286	291	274
8	313	311	320	244	258	274	294	293	302	275	283	273
9	303	307	309	259	268	270	284	285	303	277	280	280
10	306	310	304	253	272	266	281	286	301	275	276	283
11	290	302	313	246	282	264	290	279	294	259	286	275
12	288	300	318	238	273	263	295	286	294	259	282	272
13	276	292	320	235	282	267	302	289	306	257	280	276
14	269	286	321	241	285	267	299	292	300	264	276	272
15	281	283	314	238	287	266	299	290	286	260	273	266
16	274	284	314	250	287	271	299	298	277	261	261	265
17	274	268	315	244	286	281	295	296	278	257	260	266
18	278	258	308	237	286	287	301	299	275	252	273	267
19	280	258	308	239	281	293	306	298	273	253	269	254
20	280	255	308	246	278	295	306	290	264	255	264	255
21	282	251	305	252	278	287	304	287	270	263	262	253
22	282	260	312	249	278	282	297	285	274	257	260	249
23	271	251	312	258	278	276	294	296	272	256	250	244
24	282	256	311	264	281	287	295	294	275	248	241	245
25	295	268	305	272	285	275	298	283	279	241	239	238
26	290	266	304	271	295	269	309	289		244	245	242
27	285	273	307	267	306	274	307	285	288	246	237	244
28	274	274	308	270	307	273	300	287	294	251	239	239
29	276		315	279	312	274	308	296	292	256	244	232
30	287		316	278	324	294	311	297	292	259	247	226
31	287		322		332		311	303		253		214
Means	289	284	312	256	284	279	300	293	291	263	270	263

Table X.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force.
(The results are expressed in C.G.S. units and in each case diminished by the smallest hourly value.)
1913.

$\begin{aligned} & \text { Grour } \\ & \text { Crear } \\ & \text { Civer } \end{aligned}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	${ }_{\substack{\text { For the } \\ \text { Year. }}}^{\substack{\text { a }}}$
Midn.	17	12γ	18γ	19γ	${ }^{21} \gamma$	17γ	17γ	15γ	14γ	9γ	4γ	6γ	12.7γ
$1^{\text {b }}$	-	10	18	19	21	17	17	15	12	9	3	6	$12 \cdot 1$
2	1	10	18	2 I	22	17	16	15	12	8	3	6	$12 \cdot 3$
3	2	9	18	23	23	17	16	15	12	7	3	6	12.5
4	3	10	19	24	24	19	19	16	12	7	3	7	13.5
5	3	10	19	23	26	20	20	17	14	7	3	8	14.1
6	4	10	18	23	25	20	19	18	14	7	4	6	139
7	3	10	17	22	23	19	19	18	16	8	4	6	13.7
8	2	8	17	19	21	14	16	16	13	9	3	3	11.6
9	2	8	14	15	16	11	13	14	11	7	1	2	9.4
10	2	3	8	8	9	6	10	10	6	3	-	-	$5 \cdot 3$
11	1	\bigcirc	3	3	2	1	4	4	2	c	\bigcirc	\bigcirc	1.6
Noon	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	\bigcirc	1	\bigcirc	$0 \cdot 0$
$13^{\text {b }}$	1	4	2	1	5	5	2	3	2	4	1	-	2.4
14	4	8	9	9	11	9	7	9	6	8	5	2	$7 \cdot 2$
15	5	11	13	17	17.	13	12						10.8
16	5	14	19	21	21	17	15	16	13	12	5	6	13.6
17	4	15	20	24	26	21	20	17	14	11	7	6	15.3
18	4	13	19	26	26	22	23	17	14	12	7	6	15.6
19	4	13	19	26	26	22	22	16	15	12	6	6	15.5
20	3	11	20	24	25	19	21	16	13	11	5	6	14.4
21	-	11	19	22	25	18	18	13	13	10	5	5	13.2
22	-	10	18	20	24	17	17	14	13	10	3	4	12.4
23	\bigcirc	10	18	19	24	16	17	15	13	9		3	12.1
24	\bigcirc	12	18	20	23	17	17	16	13	8	2	3	12.3
${ }^{\infty} 1^{0^{h}-23^{b}}$	$2 \cdot 3$	$9^{\circ} 2$	15^{1}	17.8	$19 \cdot 3$	14.9	15°	13.4	$1{ }^{\circ} \mathrm{O}$	8.0	3.5	43	110
${ }_{\text {c }}{ }^{\text {b }}-24^{\text {b }}$	$2 \cdot 2$	$9^{\cdot 2}$	15.1	17.9	$19^{\circ} 4$	14.9	15°	13.5	$1{ }^{\circ} \mathrm{O}$	7%	34	$4 \cdot 2$	$1{ }^{\circ} \mathrm{O}$

Table XI.-Diurnal Range of Vertical Magnetic Force, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers. (The results are corrected for Temperature and expressed in C.G.S. units.)												
1913.												
Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d												
1	\cdots	15γ	12γ	29γ	49γ	28γ	26γ	14γ	23γ	26γ	${ }^{16} \gamma$	14γ
2	13γ	19	22	27	35	37	36	23	32	26	28	16
3	59	22	24	24	35	23	37	29	28	33	23	10
4	17	16	23	23	48	28	24	12	19	22	14	26
5	19	10	19	32	61	25	21	23	30	32	10	17
6	15	18	20	32	58	59	31	29	21	28	11	14
7	10	11	22	46	23	33	36	29	25	18	15	10
8	21	24	32	32	29	30	20	27	28	35	19	12
9	7	13	38	70	29	29	23	25	32	19	13	10
10	20	17	30	29	31	30	31	17	17	25	18	12
11	11	49	23	39	29	29	16	29	11	20	13	16
12	8	27	24	36	35	22	34	30	20	14	12	17
13	17	19	26	27	34	25	20	23	7	18	23	19
14	12	37	40	25	42	26	23	20	28	9	18	14
15	20	43	33	29	29	23	44	21	15	19	18	10
16	13	18	36	38	21	29	24	21	12	12	16	18
17	11	29.	23	34	18	13	28	23	24	22	26	22
18	13	23	32	29	27	16	29	26	27	52	14	19
19.	13	12	19	19	37	38	16	32	23	16	19	9
20	16	21	30	27	33	17	62	23	31	15	17	8
21	13	23	35	42	29	39	20	20	26	10	13	11
22	11	23	24	27	42	20	29	31	23	15	9	10
23	11	45	32	25	48	38	26	22	20	10	21	10
24	23	25	23	39	32	13	26	26	23	17	17	10
25	12	33	40	36	22	29	41	17	17	14	19	15
26	15	32	36	33	35	25	20	23	23	11	12	12
27	7	17	32	38	22	19	26	18	22	16	17	12
28	25	14	37	33	41	24	27	22	16	10	28	13
29	13		32	37	28	36	29	21	24	10	13	21
30	14		29	30	29	18	24	29	22	16	9	12
31	24		38		29		20	17		23		9
$\underline{\text { Means }}$	$16 \cdot 1$	23.4	28.6	32.9	$34^{\circ} 2$	$27 \% 4$	$28^{\circ} 0$	23.3	22.3	19.8	167	$13^{\circ} 8$
The mean of the twelve monthly values is 23.9γ.												

Table XII.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Days in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected by the International Committee for comparison with results at other Observatories. The results are corrected for Temperature and in each case diminished by the smallest hourly value. The days included are (${ }^{*}$ January 6 substituted for January $\mathbf{1}$):-

1913.													
$\begin{aligned} & \text { Hour, } \\ & \text { Greenwich } \\ & \text { Civil Time. } \end{aligned}$	January.	February	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	${ }_{\text {cher }}^{\substack{\text { For the } \\ \text { Year. }}}$
Midn.	${ }^{2} \gamma$	14γ	18γ	25γ	${ }^{27} \gamma$	18γ	17γ	15γ	17γ	${ }^{11} \gamma$	${ }_{6} \gamma$	${ }_{8}^{6} \gamma$	13.8γ
$1^{\text {b }}$	-	13	18	26	27	15	16	16	17	13	6		13.9
2	1	15	19	27	29	17	16	16	16	13	4	8	14.4
3	-	14	19	29	30	21	18	17	16	12	4	10	15.1
4	1	13	19	29	32	22	20	16	16	12	5	9	15.5
5	4	13	19	29	34	23	20	18	19	13	6	10	
6	3	11	19	28	34	23	21	17	20	13	6	10	16.4
7	1	11	19	26	33	23	21	17	20	16	6	10	16.2
8	2	9	18	23	30	16	17	16	20	15	4	5	139
9	2	9	17	19	22	10	14	15	16	10	3	2	$10 \cdot 9$
10	3	4	9	12	10	7	10	12	10	5	3	\bigcirc	$6 \cdot 4$
11	4	\bigcirc	3	5	1	1	4	5	4	2	1	1	19
Noon	2	1	\bigcirc	\bigcirc	-	-	1	\bigcirc		-	2	1	$\bigcirc \cdot \bigcirc$
$13^{\text {b }}$	2	5	2	\bigcirc	5	3	-	4	-	5	-	4	1.8
14	5	9	6	6	12	10	5	10	1	10	7	5	$6 \cdot 5$
15	5	14	11	11	19	14	9	12	6	11	7	5	9.6
16	4	16	19	13	21	20	13	15	9	11	5	7	12.0
17	5	17	19	19	26	24	17	15	13	11	6	8	14.3
18	7	18	19	19	24	22	19	14	12	10	6	9	$14^{\prime 2}$
19	5	16	19	20	22	23	19	13	11	12	3		13.5 12.5
20	6	14	19	19	21	19	17	12	9	11	3	8	12.5
21	3	14	18	19	21	19	16	10	10	11	3	8	12.0
22	3	12	19	21	21	18	16	11	10	10	2	6	117
23	3	13	19	20	23	18	16	13	12	10	1	6	12.1
24	3	11	20	26	25	17	18	16	13	11	1	6	13.2
	3°	11.5	$15 \cdot 3$	18.5	21.8	16.1	14.2	12.9	11.9	$10 \cdot 3$	4.0	$6 \cdot 4$	11.5
2 ${ }^{11^{\text {b }}-24^{\text {h }}}$	3.1	$11 \cdot 3$	15.4	18.6	21.8	16.0	14.3	12.9	117	103	3.9	$6 \cdot 4$	114

Table XIII.-Mean Temperature for each Civil Day within the box inclosing the Horizontal Force Magnet.

Table XIV.-Monthly and Annual Mean Temperature at each Hour of the Day within the box inclosing the Horizontal Force Magnet.

1913.													
Hour, Greenwich Civil Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	$67^{\circ} 2$	$67^{\circ} 4$	$67^{\circ} \cdot 6$	$67^{\circ} \cdot 5$	$68^{\circ} \cdot$	$67^{\circ} \cdot 8$	$67^{\circ} \cdot 5$	$67^{\circ} \cdot 6$	$67 \cdot 3$	$67^{\circ} \cdot 2$	$67^{\circ} \cdot 2$	$67^{\circ} \mathrm{O}$	$67^{\circ} \cdot 44$
$\mathrm{I}^{\text {b }}$	67.0	$67 \cdot 1$	67.4	$67 \cdot 3$	67.9	67.7	67.4	67.5	$67 \cdot 3$	67.1	$67 \cdot 1$	$66 \cdot 9$	67.31
2	$66 \cdot 8$	$65 \cdot 9$	67.2	67.1	67.7	67.6	67.3	67.4	$67 \cdot 2$	$67^{\circ} \mathrm{O}$	$66 \cdot 9$	$66 \cdot 8$	$67 \cdot 16$
3	$66 \cdot 6$	$66 \cdot 6$	$67^{\circ} \mathrm{O}$	$66 \cdot 9$	67.5	67.5	$67 \cdot 2$	67.3	$67 \cdot 1$	$66 \cdot 9$	$66 \cdot 8$	$66 \cdot 7$	67.01
4	$66 \cdot 4$	$66 \cdot 4$	$66 \cdot 8$	$66 \cdot 7$	67.4	67.4	$67 \cdot 1$	$67 \cdot 2$	67°	$66 \cdot 8$	$66 \cdot 7$	$66 \cdot 5$	66.87
5	$66 \cdot 2$	$66 \cdot 3$	$66 \cdot 7$	$66 \cdot 5$	67.2	$67 \cdot 3$	67.0	$67 \cdot 1$	$66 \cdot 9$	66.7	$66 \cdot 6$	66.4	$66 \cdot 74$
6	$66 \cdot 1$	$66 \cdot 2$	$66 \cdot 6$	$66 \cdot 4$	$67 \cdot 1$	$67 \cdot 2$	67°	$67 \cdot 1$	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 6$	$66 \cdot 3$	66.66
7	$66 \cdot 1$	$66 \cdot 1$	$66 \cdot 6$	$66 \cdot 4$	$67 \cdot 1$	67.2	$66 \cdot 9$	67°	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 5$	$66 \cdot 3$	$66 \cdot 62$
8	$66 \cdot 1$	$66 \cdot 1$	$66 \cdot 6$	$66 \cdot 4$	67.1	67.2	$66 \cdot 9$	67.0	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 5$	66.4	66.63
9	$66 \cdot 1$	$66 \cdot 1$	$66 \cdot 6$	$66 \cdot 5$	67.1	67.2	$66 \cdot 9$	67.0	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 6$	$66 \cdot 4$	$66 \cdot 65$
10	$66 \cdot 2$	$66 \cdot 2$	$66 \cdot 6$	$66 \cdot 5$	$67 \cdot 1$	67.2	67.0	67.0	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 5$	$66 \cdot 4$	$66 \cdot 68$
11	$66 \cdot 3$	$66 \cdot 3$	$66 \cdot 6$	$66 \cdot 5$	$67 \cdot 2$	$67 \cdot 2$	66.9	$67 \cdot 1$	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 5$	$66 \cdot 4$	$66 \cdot 70$
Noon	$66 \cdot 4$	$66 \cdot 3$	$66 \cdot 6$	$66 \cdot 6$	$67 \cdot 3$	$67 \cdot 2$	$66 \cdot 9$	$67 \cdot 1$	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 6$	$66 \cdot 4$	$66 \cdot 73$
$13^{\text {b }}$	$66 \cdot 5$	$66 \cdot 4$	66.7	$66 \cdot 7$	67.5	$67 \cdot 3$	$67 \cdot 1$	$67 \cdot 2$	$67 \cdot 0$	$66 \cdot 7$	$66 \cdot 7$	$66 \cdot 5$	$66 \cdot 86$
14	$66 \cdot 6$	$66 \cdot 6$	$66 \cdot 8$	$66 \cdot 8$	$67 \cdot 6$	67.4	$67 \cdot 1$	$67 \cdot 3$	$67 \cdot$	$66 \cdot 8$	$66 \cdot 8$	$66 \cdot 6$	66.95
15	$66 \cdot 7$	$66 \cdot 7$	67.0	$66 \cdot 9$	67.7	$67 \cdot 5$	$67 \cdot 2$	67.3	$67 \cdot 1$	$66 \cdot 9$	$66 \cdot 9$	$66 \cdot 7$	67.05
16	$66 \cdot 8$	$66 \cdot 8$	$67 \cdot 2$	$67 \cdot 1$	$67 \cdot 8$	$67 \cdot 6$	$67 \cdot 3$	67.4	67.2	$67 \cdot 0$	67.0	$66 \cdot 8$	67.17
17	$66 \cdot 8$	$66 \cdot 9$	$67 \cdot 2$	$67 \cdot 2$	67.9	$67 \cdot 7$	$67 \cdot 3$	67.5	67.3	$67 \cdot 1$	67.0	$66 \cdot 8$	67.22
18	$66 \cdot 9$	67.0	$67 \cdot 3$	$67 \cdot 3$	68.0	67.7	$67 \cdot 3$	$67 \cdot 5$	$67 \cdot 3$	$67 \cdot 1$	67°	$66 \cdot 7$	$67 \cdot 26$
19	$66 \cdot 9$	67.0	$67 \cdot 3$	$67 \cdot 4$	68.1	67.7	$67 \cdot 4$	67.5	67.3	$67 \cdot 2$	67.0	$66 \cdot 7$	67.29
20	$66 \cdot 9$	$67 \cdot 1$	67.4	67.4	$68 \cdot 1$	$67 \cdot 8$	$67 \cdot 4$	67.6	67.4	$67 \cdot 2$	$67 \cdot 0$	$66 \cdot 7$	67.33
21	67.0	$67 \cdot 2$	67.4	67.4	68.2	67.8	$67 \cdot 5$	$67 \cdot 6$	673	$67 \cdot 2$	67°	$66 \cdot 8$	67.37
22	$67 \cdot 1$	67.3	67.5	67.4	$68 \cdot 1$	$67 \cdot 8$	67.5	67.7	$67 \cdot 3$	$67 \cdot 2$	$67^{1} 1$	$66 \cdot 9$	67.41
23	$67 \cdot 2$	67.4	67.6	67.4	$68 \cdot 1$	67.9	67.5	$67 \cdot 6$	673	$67 \cdot 2$	$67^{\circ} 1$	67.0	67.44
24	$67 \cdot 2$	673	$67 \cdot 6$	67.4	68.0	$67 \cdot 8$	67.5	67.6	$67 \cdot 3$	$67 \cdot 2$	$67 \cdot 2$	67°	67.43

Table XV.-Mean Temperature for each Civil Day within the box inclosing the Vertical Force Magnet.

1913.												
$\begin{gathered} \text { Day } \\ \text { oy } \\ \text { Month. } \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
$\stackrel{\text { d }}{ }$...	67.6	$66^{\circ} \cdot$	$67^{\circ} \mathrm{O}$	$67^{\circ} \mathrm{I}$	67.0	$66^{\circ} \mathrm{P}$	$66^{\circ}{ }^{\circ}$	$66^{\circ} \cdot$	$66^{\circ} \cdot 3$	$66 \cdot 8$	$66^{\circ} \cdot 6$
2	66.5	67.3	$66 \cdot 8$	66.7	$67 \cdot 1$	68.3	67.7	$66 \cdot 1$	$66 \cdot{ }^{\circ}$	$66 \cdot 4$	$67 \cdot 1$	$66 \cdot 5$
3	$66 \cdot 8$	67.7	67.7	$67 \cdot 9$	$67 \cdot 0$	$66 \cdot 5$	68.0	$68 \cdot 2$	$66 \cdot 9$	$67 \cdot 8$	66.7	$66 \cdot 9$
4	68.5	$66 \cdot 6$	67.7	$67 \cdot 4$	$66 \cdot 1$	67.0	$67 \cdot 6$	$67 \cdot 1$	67.8	66.8	$66 \cdot 8$	$67^{\circ} \mathrm{O}$
5	$66 \cdot 9$	67°	$68 \cdot 0$	67.2	$66 \cdot 8$	$66 \cdot 7$	66.7	$66 \cdot 3$	$67 \cdot 8$	$66 \cdot 0$	68.0	67.2
6	68.1	$67 \cdot 1$	67.3	$66 \cdot 8$	67.5	$66 \cdot 6$	$66 \cdot{ }^{\circ}$	$66 \cdot 1$	$66 \cdot 7$	$66 \cdot 3$	66.9	$67 \cdot 1$
7	$66 \cdot 3$	67.1	67.7	$66 \cdot 8$	$66 \cdot 3$	$67 \cdot 4$	67.8	$66 \cdot 9$	$65 \cdot 7$	$65 \cdot 6$	$66 \cdot 3$	66.9
8	$65^{\circ} 9$	67°	$66 \cdot 3$	$67 \cdot 6$	$67 \cdot 7$	679	$66 \cdot 9$	$65^{\circ} 9$	$66 \cdot 8$	67.2	$67 \cdot 2$	$67 \cdot 1$
9	67°	674	$66 \cdot 2$	67°	$67 \cdot 6$	$67 \cdot 1$	$67{ }^{\circ}$	66.5	67°	$66 \cdot 6$	67.4	$66 \cdot 6$
10	$66 \cdot 2$	$67 \cdot 8$	67.5	$66 \cdot 4$	67°	$67 \cdot 2$	67.5	67.0	65.9	$65^{\circ} 9$	$68 \cdot 2$	66.0
11	$66 \cdot 6$	$66 \cdot 9$	67.0	$66 \cdot 7$	$66 \cdot 7$	67.6	$67 \cdot 0$	68.0	$66 \cdot 6$	67.0	$66 \cdot 5$	$66 \cdot 8$
12	66.4	$66 \cdot 2$	$67 \cdot 6$	67.3	$68 \cdot 1$	67.4	679	$66 \cdot 8$	67.7	67.3	$66 \cdot 6$	66.9
13	$66 \cdot 5$	$67 \cdot 1$	$67 \cdot 1$	67.3	$68 \cdot 1$	67.3	67.8	$66 \cdot 1$	$66 \cdot 5$	$67 \cdot 8$	$65 \cdot 6$	$66 \cdot 1$
14	674	$66 \cdot 5$	$66 \cdot 8$	67.0	67°	673	66.9	$66 \cdot 3$	66.4	$66 \cdot 4$	$66 \cdot 1$	66.4
15	$66 \cdot 5$	$67 \cdot 8$	$67 \cdot 3$	$67 \cdot 6$	$67 \cdot 1$	677	$66 \cdot 9$	66.7	$67 \cdot 2$	$66 \cdot 7$	$65 \cdot 9$	67.0
16	67.6	$67 \cdot 1$	68.5	67.2	66.9	$68 \cdot 1$	67.2	$66 \cdot 5$	67.4	$66 \cdot 9$	$67 \cdot 1$	$66 \cdot 2$
17	67.5	67.9	66.5	$66 \cdot 5$	$67 \cdot 6$	$68 \cdot 5$	67.3	$66 \cdot 7$	66.9	$66 \cdot 8$	68.1	$66 \cdot 6$
18	$67 \cdot 6$	67.4	67.5	$67 \cdot 1$	$67^{\circ} 9$	$68 \cdot 3$	67.7	$66 \cdot 6$	$66 \cdot 7$	$67 \cdot 9$	67.5	$65 \cdot 9$
19	$66 \cdot 7$	$66 \cdot 8$	67.6	68.0	$66 \cdot 7$	$67 \cdot 7$	$66 \cdot 6$	65.9	$66 \cdot 7$	$67 \cdot 3$	$66 \cdot 3$	67.0
20	673	66.3	67.3	$67 \cdot 2$	66.9	$66 \cdot 9$	67°	$66 \cdot 6$	67.8	67.7	$67 \cdot 6$	$67 \cdot 1$
21	67.0	$66 \cdot 6$	67.3	${ }^{66 \cdot 1}$	$67 \cdot 8$	$66 \cdot 4$	666	$67 \cdot 2$	67.5 66.8	66.6	$67 \cdot 5$	$66 \cdot 7$ 66.8
23	$66 \cdot 5$	$66^{\circ} 9$	$68 \cdot$ 67.	$67 \cdot 1$ 67.1	67.2	$66 \cdot 9$	67.2 66.6	67.5	$66 \cdot 8$ 66.8	$66 \cdot 5$	$66 \cdot 4$ 6.8	$66 \cdot 8$
23	$67 \cdot 8$	$66 \cdot 6$	$67 \cdot 8$	67.5	$67 \cdot 6$	$68 \cdot 6$	$66 \cdot 6$	$67^{\circ} \mathrm{O}$	$66 \cdot 8$	$67 \cdot 1$ 67.2	$65^{6} 8$	67.1 66.4
24 24	67.9 67.3	$67 \cdot 0$ 66.8	$67 \cdot 1$ $66 \cdot 4$	$67 \cdot 1$ 67.7	67.6 67.5	$66 \cdot 2$ $66 \cdot 4$	$66 \cdot 5$ 68.0	$66 \cdot 1$ 67.9	67.2 67.7	67.2 67.5	67.2 68.4	
25 26	67.3 67.2	$66 \cdot 8$ $67 \cdot 2$	$66 \cdot 4$ $67 \cdot 5$	67.7 66.3	67.5 67.9	$66 \cdot 4$ $67 \cdot 1$	68.0 66.8	67.9 66.6	$67 \cdot 7$ 67.7	67.5 67.6	68.4 66.8	$66 \cdot 7$ $67 \cdot 0$
26 27	66.8	67. 67	67.5 67.3	66.3 670	67.9 679	671 67	66.7	$67 \cdot 1$	67.9	$67 \cdot 8$	$67 \cdot 1$	$66 \cdot 8$
28	$67 \cdot 6$	$67 \cdot 0$	$67 \cdot 8$	$68 \cdot 1$	$67 \cdot 8$	67.5	68.0	67.5	$67 \cdot 1$	67.2	68.0	66.5
29	67.9		66.6	$66 \cdot 6$	68.3	68.7	$66 \cdot 9$	67.7	$66 \cdot 6$	$66 \cdot 9$	$67 \cdot 6$	${ }_{66 \cdot 1}$
30	67.4		67.7	67.5	$68 \cdot 5$	$67 \cdot 3$	$66 \cdot 6$	$67 \cdot 6$	$66 \cdot 6$	$66 \cdot 6$	67.4	66.7
31	$67 \cdot 1$		67°		$66 \cdot 9$		$66 \cdot 1$	$67 \cdot 7$		$67 \cdot 1$		677
Means	$67^{\circ} \cdot 09$	$67^{\circ} \cdot 08$	$67^{\circ} \cdot 26$	$67^{\circ} \cdot 12$	$67^{\circ} \cdot 36$	$67^{\circ} \cdot 36$	$67^{\circ} \cdot 11$	$66^{\circ} \cdot 86$	$66^{\circ} 96$	$66^{\circ} 93$	$67^{\circ} 03$	$66^{\circ} \cdot 72$

Table XVI.-Monthly and Annual Mean Temperature at each Hour of the Day within the box inclosing the Vertical Force Magnet.

1913.													
Hour Greenwich Civil Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	$67^{\circ} 7$	67.7	$67^{\circ} \cdot 8$	$67^{\circ} 7$	$67^{\circ} 7$	$67^{\circ} \cdot 6$	$67^{\circ} 4$	$67^{\circ} 1$	$67^{\circ} \cdot 2$	$67^{\circ} 2$	$67^{\circ} 3$	$67^{\circ} \cdot 1$	$67^{\circ} \cdot 46$
$1^{\text {b }}$	67.5	67.5	$67 \cdot 6$	$67 \cdot 5$	67.6	67.5	$67 \cdot 3$	67°	$67 \cdot 1$	$67 \cdot 1$	$67 \cdot 2$	67°	$67 \cdot 32$
2	$67 \cdot 2$	$67 \cdot 2$	67.4	67.2	67.4	67.4	67.2	$66 \cdot 9$	$67 \cdot 0$	67.0	$67 \cdot 1$	$66 \cdot 8$	$67 \cdot 15$
3	67.0	67.0	$67 \cdot 2$	67.0	$67 \cdot 2$	$67 \cdot 3$	$67 \cdot 1$	$66 \cdot 8$	$66 \cdot 9$	$66 \cdot 9$	$67^{\circ} 0$	$66 \cdot 7$	67.01
4	$66 \cdot 8$	$66 \cdot 7$	67.0	$66 \cdot 8$	$67 \cdot 1$	67.2	67.0	$66 \cdot 7$	$66 \cdot 8$	$66 \cdot 8$	$66 \cdot 9$	$66 \cdot 5$	$66 \cdot 86$
5	$66 \cdot 6$	$66 \cdot 6$	$66 \cdot 8$	$66 \cdot 7$	$66 \cdot 9$	$67 \cdot 1$	$66 \cdot 9$	$66 \cdot 6$	$66 \cdot 7$	66.7	$66 \cdot 8$	$66 \cdot 4$	$66 \cdot 73$
6	$66 \cdot 5$	66.4	$66 \cdot 7$	$66 \cdot 5$	$66 \cdot 8$	67.0	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 7$	$66 \cdot 5$	$66 \cdot 7$	$66 \cdot 3$	$66 \cdot 62$
7	$66 \cdot 5$	$66 \cdot 4$	$66 \cdot 7$	$66 \cdot 5$	$66 \cdot 8$	66.9	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 6$	$66 \cdot 5$	$66 \cdot 7$	$66 \cdot 4$	$66 \cdot 61$
8	$66 \cdot 5$	$66 \cdot 4$	$66 \cdot 6$	$66 \cdot 6$	$66 \cdot 8$	$67 \cdot 0$	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 6$	$66 \cdot 5$	$66 \cdot 7$	66.4	66.62
9	$66 \cdot 5$	$66 \cdot 4$	$66 \cdot 6$	$66 \cdot 6$	$66 \cdot 8$	67.0	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 6$	$66 \cdot 5$	$66 \cdot 8$	$66 \cdot 4$	66.63
10	$66 \cdot 6$	$66 \cdot 5$	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 9$	67°	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 8$	$66 \cdot 5$	$66 \cdot 68$
11	$66 \cdot 8$	66.7	$66 \cdot 8$	$66 \cdot 6$	$67 \cdot 1$	$67 \cdot 1$	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 7$	66.7	$66 \cdot 8$	$66 \cdot 6$	66.77
Noon.	$66 \cdot 9$	$66 \cdot 8$	$66 \cdot 9$	$66 \cdot 7$	$67 \cdot 2$	$67 \cdot 2$	$66 \cdot 8$	$66 \cdot 7$	$66 \cdot 8$	$66 \cdot 8$	$66 \cdot 9$	$66 \cdot 7$	$66 \cdot 87$
$13^{\text {b }}$	$67 \cdot 0$	$66 \cdot 9$	$67 \cdot 1$	67.0	$67 \cdot 3$	$67 \cdot 3$	$67 \cdot 0$	$66 \cdot 8$	$66 \cdot 9$	$66 \cdot 9$	67°	$66 \cdot 8$	67.00
14	67.1	$67 \cdot 1$	$67 \cdot 3$	$67 \cdot 2$	67.5	$67 \cdot 5$	$67 \cdot 1$	$66 \cdot 9$	$67^{\circ} \mathrm{O}$	67°	$67 \cdot 1$	$66 \cdot 9$	67.14
15	$67 \cdot 2$	$67 \cdot 3$	67.5	67.3	67.5	$67 \cdot 6$	$67 \cdot 2$	67°	$67 \cdot 1$	67.1	$67 \cdot 2$	67°	67.25
16	$67 \cdot 2$	67.3	67.6	67.4	67.7	67.7	$67 \cdot 3$	$67 \cdot 1$	$67 \cdot 2$	$67 \cdot 2$	$67 \cdot 3$	$66 \cdot 9$	67.32
17	67.3	67.4	67.6	67.5	$67 \cdot 7$	$67 \cdot 7$	67.3	$67 \cdot 1$	$67 \cdot 2$	67.2	$67 \cdot 3$	$66 \cdot 9$ $66 \cdot 8$	67.35
18	67.4	67.5	677	$67 \cdot 6$	$67 \cdot 8$	67.7	67.3	$67 \cdot 1$	$67 \cdot 2$	67.2 67.2	67.2	$66 \cdot 8$ $66 \cdot 8$	67.37 67.37
19	674	67.5	67.7	67.6	$67 \cdot 8$	67.6	67.3	$67 \cdot 1$	$67 \cdot 2$	67.2	67.2	$66 \cdot 8$	67.37 67.37
20	67.5	67.5	67.7	$67 \cdot 6$ 67.6	67.8 67.8	67.6 67.6	67.3 67.4	$67 \cdot 1$ 67.2	$67 \cdot 2$ $67 \cdot 2$	$67 \cdot 2$ 67.2	67.1 67.1	$66 \cdot 8$ $66 \cdot 8$	67.37 67.40
21	$67 \cdot 6$	$67 \cdot 6$	67.7	67.6 67.6	$67 \cdot 8$ 67.8	$67 \cdot 6$ 67.6	67.4	67.2 67.2	$67 \cdot 2$ $67 \cdot 2$	67.2 67.2	$67 \cdot 1$ $67 \cdot 2$	$66 \cdot 8$ $66 \cdot 9$	67.40 67.44
22	677	67.7 67.8	$67 \cdot 8$	67.6 67.6	$67 \cdot 8$	67.6 67.7	67.4 67.4	67.2 67.1	$67 \cdot 2$ $67 \cdot 2$	$67 \cdot 2$ $67 \cdot 2$	$67 \cdot 2$ $67 \cdot 3$	$66 \cdot 9$ $67 \cdot 0$	67.44 67.46
23 24	$67 \cdot 7$ 67.7	67.8 67.7	$67 \cdot 8$ $67 \cdot 9$	$67 \cdot 6$ 67.6	$67 \cdot 7$ $67 \cdot 7$	67.7 67.6	67.4 67.4	$67 \cdot 1$ $67 \cdot 1$	$67 \cdot 2$ $67 \cdot 2$	$67 \cdot 2$ $67 \cdot 2$	67.3 $67 \cdot 3$	67.0 $67 \cdot 1$	67.46 6746
24	677	67.7	67.9	67.6	$67 \cdot 7$	67.6	67.4	$67 \cdot 1$	67.2	672	67	67	6746

Table XVII.-Values of the Co-efficients in the Periodical Expresbion

$$
\mathrm{V}_{t}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+a_{3} \cos 3 t+b_{3} \sin 3 t+a_{4} \cos 4 t+b_{4} \sin 4 t
$$

(in which t is the time from Green wich mean midnight converted into arc at the rate of 15° to each hour, and V_{t} the mean value of the magnetic element at the time t for each month and for the year, as given in Tables II., V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature).

The values of the co-efficients for Declination are given in minutes of arc: the unit for Horizontal Force and Vertical Force is 1γ ($0 \cdot 0000$ I C.G.S. unit).

	m	a_{1}	b_{1}	a_{2}	b_{2}	a_{3}	b_{3}	a_{4}	b_{4}
	Declination West.								
January	$1: 36$		- 0.20	+0.28	+ $0^{\prime} 72$	- 0.37	-0.05	+ $0^{\prime} \cdot 26$	$+0^{\prime}{ }_{13}$
February.	$1 \cdot 22$	- 1.04	-0.58	+0.31	+0.89	---0.33	-0.25	+0.25	+0.21
March.	2.41	- 1-53	- I. 08	+0.95	+ 1.37	-0.67	-0.55	+0.34	+0.36
April.	$3 \cdot 18$	- 1.59	- 1.44	+ 113	+1.66	-0.71	-0.69	+0.32	+0.23
May	3.25	-1.56	- 1.62	+ 1.60	+ $1 \cdot 15$	-0.72	-0.18	+0.13	-0.01
June.	3.73	- 1.64	-2.31	+1.48	+1.23	-0.61	- 0.24	+0.02	+ 0.08
July .	$3 \cdot 65$	- 1.50	- 2.26	+1.32	+1.44	-0.55	-0.32	+0.03	+0.04
August.	3.22	-1.92	- 1.55	+ 1.69	+1.05	-0.93	-0.35	+0.15	+0.16
September.	2.59 1.83	- 1.87	- 1.15	+ 1.42	+0.95	-0.87	- 0.42	+0.35	+0.12
October...	$1 \cdot 83$	- I•59	- 0.50	+0.85	+ 0.98	-0.64	-0.31	+0.53	+0.09
November.	$1 \cdot 22$	- 1.09	-0.25	+0.36	+0.67	-0.50	-0.16	+0.34	+0.11
December.	$\bigcirc 95$	-0.73.	- 0.05	+0.29	$+0.38$	-0.23	+0.02	+ $0 \cdot 09$	+0.04
For the Year ...	$2 \cdot 19$	- 143	- 1.08	+0.97	+1.04	-0.59	-0.29	+0.23	+0.13

Horizontal Force.

January.	$8 \cdot 1$	+ 32	+ 15	- 3.1	+ 0.7	+ 13	- 17	+ 0.4	+ 0.7
February.	$8 \cdot 8$	+ 4°	+ 14	3.2	-0.5	+ 13	- 0.9	- 0.1	+ 0.9
March..	$10 \cdot 7$	+ $5^{\circ} \mathrm{O}$	- 1.3	-3.3	+ 0.4	+ 0.9	- 1.8	+ 0.1	$+\quad 0.9$
April..	18.0	+93	- 4.8	4^{1}	+ 197	+ 1.0	- 1.8	+ 0.7	+ 0.7
May .	15.8	+ +8.0	- $7 \cdot 7$	- 1.9	+ 2.5	- 0.4	- 1.4	+ 0.4	+ 0.4
June.	19.6	+ 988	- 10.0	- 43	+ $3 \cdot 1$	- 0.2	- 1.0	+ 0.2	+ 0.1
July .	17.8	+ 10.9 +10.2	- 7.2	- 43	$\begin{array}{r}+\quad .9 \\ +\quad .9 \\ \hline\end{array}$	$\begin{array}{r} \\ +\quad 0.2 \\ \hline\end{array}$	- 1.1	+0.3 +0.6	$+\quad 0.4$ $+\quad 0.8$
August	19.5	+10.2	- 7.1	- 3.0	+ 2.8 $+\quad 3$	$1 \cdot 2$	- 199	+ 0.6	+ 0.8
September.	21.4	+ 109	- 54	-3.2	+ 3.6	-0.2	$-\quad 2.7$	+0.5	+179
October...	18.3	+ 95	$1 \circ$	- 44	+ 3.0	+ 0.7	- 26	+0.3	+ 0.9
November.	$11 \cdot 3$	+ $5 \cdot 2$	- 0.2	- $3 \cdot 9$	+ 1.1	$+\quad 0 \cdot 9$ $+\quad 0.3$	- 1.7	+ 0.5	+ 0.8
December.	2.6		+ 14	-2.2	$0 \cdot 0$	$+0.3$	-0.3	+ 0.2	+ 0.1
For the Year	13.6	$+7 \cdot 2$	-34	-3.4	1.6	$+\quad 0.4$	- 1.6	$+0.3$	+ 0.7

Vertical Force.

January	$2 \cdot 3$	- 0.8	- 0.5	1.7	$+0.8$	+ 03	$0 \cdot 0$	- 0.2	$\bigcirc \cdot 0$
February.	9.2	a $+\quad 29$	- 2.0	- 3.2	+ 111	+ 2.1	- $0 \cdot 2$	- 0.4	+ 0.1
March .	15.1	+ 6.1	- 0.6	- 4.9	+ O.I	+ 2.4	+ 0.2	- 13	- 0.3
April..	17.8	+ 72	0.8	- 7.6	+ 0.4	+ 2.0	+ 0.6	- 1.1	- 0.1
May	19.3	+79	- 0.9	- 7.1	$0 \cdot 0$	+ 2.3	- 0.6	- 0.9	$-\mathrm{or}$
June	14.9	+59	- 1.1	- $6 \cdot 0$	+ 0.7	+ 17	- 0.2	+ 0.1	+ 0.4
July	$15^{\circ} \mathrm{O}$	+ 5.8	- 0.6	- $5 \cdot 9$	- 0.9	+ 1.6	+ 0.7		- 0.1
August	13.4	+3.8	+ 0.5	- 4.6	$0 \cdot 0$	+ 2.7	+ 0.2	- 0.7	- 0.1
September.	11.0	+ $4^{\circ} \mathrm{O}$	- 0.1	- 3.9	- 0.5	+ 23	- 0.2	- 0.3	+ 0.1
October...	$8 \cdot 0$	+ 2.2	- 23	- 24	+ 0.3	+ 19	- 0.3	- 0.9	+ 0.7
November	3.5	+ 0.7	- 1.6	- $\mathrm{I}^{\prime} 7$	+ $0 \cdot 7$	+ 0.5	- 0.2		+ 0.5
December.	$4 \cdot 3$	+ 24	+ 0.1	-2.1	+ 1.0	+ 0.2	+ 0.1	$+0.2$	+ 0.1
For the Year	11.0	$+4^{\circ}$	- 0.8	- 43	$+03$	+ 17	$\bigcirc \circ$	- 0.5	+ 0.1

Table XVIII.-Values of the Co-ffficients and Constant Angles in the Periodical Expressions

$$
\begin{aligned}
& \mathrm{V}_{t}=m+c_{1} \sin (t+a)+c_{2} \sin (2 t+\beta)+c_{3} \sin (3 t+\gamma)+c_{4} \sin (4 t+\delta) \\
& \mathrm{V}_{t^{\prime}}=m+c_{1} \sin \left(t^{\prime}+a^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+c_{3} \sin \left(3 t^{\prime}+\gamma^{\prime}\right)+c_{4} \sin \left(4 t^{\prime}+\delta^{\prime}\right)
\end{aligned}
$$

(in which t and t^{\prime} are the times from Greenwich mean midnight and apparent midnight respectively, converted into arc at the rate of 15° to each hour, and $\mathrm{V}_{t}, \mathrm{~V}_{t}$ the mean value of the magnetic element at the time t or t^{\prime} for each month and for the year, as given in Tables II. V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature).

The values of the co-efficients for Declination are given in minutes of arc: the unit for Horizontal Force and Vertical Force is i γ (0.00001 C.G.S. unit)

Month, 1913.	m	c_{1}	α	a^{\prime}	c_{2}	β	β^{\prime}	c_{3}	γ	γ^{\prime}	c_{4}	δ	δ^{\prime}
	Declination West.												
January	$1 \cdot 36$	I'II	259. 5°	262. 13	0.77	$20^{\circ} .48$	25. 29^{\prime}	$0 \cdot 37$	262. 5	269.7 ${ }^{\text {a }}$	$0 \cdot 29$	63.17	$72^{\circ} .40^{\prime}$
February.	$1 \cdot 22$	I•I9	240.36	244. 6	-.94	19. I	26. 0	$0 \cdot 41$	233. 6	243.35	0.33	50.33	64.31
March.	2.41	I. 87	234. 54	237. 5	I.66	$34 \cdot 47$	39. 10	- 87	230.30	237. 4	$0 \cdot 50$	43. 26	52. 11
April.	3-18	2.14	227.45	227.49	$2 \cdot 1$	34. 11	34. 18	$\bigcirc \cdot 99$	225.41	225.52	$\bigcirc{ }^{\circ} 40$	54.37	54.52
May	3.25	2.25	223.50	222. 59	1.97	54.24	52.41	0.74	256. 1	253.27	0.13	93. 19	89.53
June.	3.73	$2 \cdot 84$	215. 22	215.27	I-92	50.14	50.23	-0.6;	248.22	$2{ }^{2} 8.36$	0.08	14.45	15.3
July	$3 \cdot 66$	$2 \cdot 71$	213.30	214.52	$1 \cdot 95$	42.41	45.25	$0 \cdot 64$	239.38	${ }^{2} 43.44$	$0 \cdot 05$	37. 34	43. ${ }^{2}$
August.	3.22	247	230. 58	231.56	- 179	58. 11	60.8	\bigcirc	249. 18	252.13	0.22	43. 18	47.12 6.38
September	2.59	2.20	238.18	237. 5	170	56.13	53.47	$\bigcirc \cdot 96$	244. 23	240.44	0.37	70.30	65.38 66.0
October..	1.83	${ }^{1} 67$	252.40	249. 11	$\begin{array}{r}13 \\ \hline 1.76\end{array}$	41. 6	34.9	$\bigcirc 0.71$	244.2	233.36	\bigcirc	79. 55	66. ${ }^{\circ} \mathrm{O}$
November	1.22	1.12	257. 5	253.23	- 0.76	28.30	21. 7	0.52	252.15	241.10 271.0	0.35 0.09	72. 12 67.44	57.26 63.27
December.	$\bigcirc \cdot 95$	$0 \cdot 73$	265.43	264.39	0.48	$3^{8 .} 2$	35.53	0.23	27+. 13	271. ○	$\bigcirc \cdot 09$	67.44	63.27
For the Year.	$2 \cdot 19$	179	232.50	232.50	$1 \cdot 42$	43. 8	43. 8	0.66	243.48	243.48	0.27	60.59	60.59
	Horizontal Force.												
January	$8 \cdot 1$	3.5	64.21	66. 4^{2}	$3 \cdot 2$	282. 8	286.49	$2 \cdot 1$	141. 2	148. 4	$0 \cdot 8$	29. 53	39.16
February	$8 \cdot 8$	$4 \cdot 2$	70. 57	74.27	$3 \cdot 2$	260. 19	267. 18	$1 \cdot 5$	125.19	135.48	$\bigcirc 9$	354. 30	
March.	$10 \cdot 7$	$5 \cdot 2$	104. 22	106.33	$3 \cdot 3$	277. 3	281. 26	2.0	153.39	160.13	\bigcirc	7. 34	16. 19
April.	18.0	10.5	117. 5	117.9	4.5	292.57	293. 4	$2 \cdot 1$	150. 36	150.47	1.0	42. 36	42. 51
May .	15.8	HIT_{1}	133.36	132.45	$3 \cdot 1$	322.46	321. 3	1.4	196. 13	193. 39	0.6	+3. 53	40. 27
June.	19.6	$14^{\circ} \mathrm{O}$	135.33	135.38	$5 \cdot 3$	306. 2	306. 11	1.0	194. 23	194. 37	$0 \cdot 2$	49. 3^{8}	49. 56
July .	$17 \cdot 8$	$13^{1} 1$	123.25	124.47	$4 \cdot 4$	281.40	284. 24	1.1	169.18	173.24	0.5	39. 9	44.37
August.	19.5	12.5	124.52	125.50	$4 \cdot 1$	313.41	315.38	2.3	211. 11	214.6	$1 \cdot 0$	38. 17	42. 11
September	21.4	12.2	116.19	115. 6	4.9	318.33	316. 7	2.8	183.28	179.49	$1 \cdot 7$	13.27	10.35
October....	18.3	$9 \cdot 6$	96. 9	92.40	$5 \cdot 3$	303.49	296. 5^{2}	$2 \cdot 6$	165.42	155.16	\bigcirc	16. 5	2. 10
November	11.3	5.2	91. 39	87.57	$4 \cdot 1$	285.53	278. 30	$1 \cdot 9$	151.44	140.39	$1 \cdot$	$3+.23$	19.37
December	$2 \cdot 6$	14	358.38	357. 34	$2 \cdot 2$	270. 0	267. 51	$0 \cdot 5$	132. 4	128. 51	$\bigcirc 3$	60.28	56.11
For the Year.	13.6	79	II5. 1	115. I	3.8	295.17	295. 17	1.6	166. 21	166. 21	$\bigcirc \cdot 8$	25.47	25.47

Vertical Force.

January	$2 \cdot 3$	0.9	238.13	240.34
February..	$9 \cdot 2$	$3 \cdot 5$	124.13	127.43
March.	15.1	6.1	95.13	97.24
April..	17.8	$7 \cdot 3$	94. 23	94.27
May.	193	8.0	96.18	95.17
June.	14.9	$6 \cdot 0$	100.14	100.19
July ..	15°	$5 \cdot 8$	95.45	97. 7
August.	13.4	3.9	82. 13	83.11
September.................	11.0	4*\%	90. 51	89.38
October...	8.0	3.2	136. 53	133. 24
November.	3.5	1.8	I 57.54	154.12
December	$4 \cdot 3$	2.4	87. 59	86.55
For the Year..	11.0	4.1	101. 30	101.30

I'9	296. 34
$3 \cdot 3$	288. 34
$5{ }^{\circ}$	270.41
$7 \cdot 6$	273. 9
$7 \cdot 1$	269. 44
$6 \cdot 1$	276.52
6.0	261.31
$4 \cdot 6$	270.31
3.9	263.5
$2 \cdot 4$	277. 18
19	291. 57
$2 \cdot 3$	293.55
$4 \cdot 3$	274. 9

0.3	94.11	101.13
$2 \cdot 1$	96.10	106.39
2.4	84.30	$9 . .4$
$2 \cdot 1$	73.6	73.17
2.4	104.22	101.48
1.7	96.53	97.7
18	65.29	69.35
2.7	85.43	88.38
2.3	94.57	91.18
19	100.17	89.51
0.6	112.33	101.28
0.2	75.28	72.15
1.7	90.40	90.40

0.2	270.0
0.4	288.47
1.3	256.52
1.1	266.11
0.9	261.13
0.4	19.14
0.1	180.0
0.7	253.57
0.4	293.2
1.2	308.20
0.5	4.41
0.2	70.12
0.5	281.43

279.23
302.45
265.37
266.26
257.47
19.32
185.28
267.51
288.10
294.25
349.55
65.55
281.43

Table XIX.—Determinations of the Absolute Value of Horizontal Magnetic Force in the Year igiz.
Abstract of the Observations of Deflection of a Magnet for Absolute Measure of Horizontal Force made with the Gibson Instrument in the Magnetic Pavilion.

Greenwich Civil Time, 1913.	$\left.\begin{array}{\|c\|} \text { Distance } \\ \text { of Centres } \\ \text { of Maguets. } \end{array} \right\rvert\,$	$\begin{aligned} & \text { Tenpera- } \\ & \text { fulr } \\ & \text { Falrei. } \\ & \text { heit. } \end{aligned}$	Observed		$\left\lvert\, \begin{gathered} \text { Number } \\ \text { Not } \\ \text { yibar } \\ \text { tions. } \end{gathered}\right.$	$\begin{array}{\|c\|c\|c\|c\|c\|cr:} \text { Tunpre- } \\ \text { Fahrou- } \\ \text { heit. } \end{array}$	竒	Greenwich Civil Time, 1913.	Distances of Centres of Magnets.	$\begin{aligned} & \text { Tempera- } \\ & \text { fuhr } \\ & \text { fuhren- } \\ & \text { heit. } \end{aligned}$	Observed Deflection.	$\begin{array}{\|l\|l} \text { Meain of the } \\ \text { Sibrato of } \\ \text { Vibration of } \\ \text { Deffecting } \\ \text { Magnat. } \end{array}$	$\begin{array}{\|c} \text { Number } \\ \text { of } \\ \text { Yibra. } \\ \text { tions. } \end{array}$	Tempera- Fahren. heit.	安
$\text { Jan. } \quad \begin{gathered} \text { d } \\ 7 \cdot 12 \end{gathered}$	$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{I} \circ \\ & 1 \circ 3 \end{aligned}$	54°	$\left\|\begin{array}{l} 9.34 .25 \\ 4.20 .40 \end{array}\right\|$	$\begin{gathered} s \\ 5 \cdot 826 \\ 5 \cdot 827 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 54 \cdot 4 \\ & 55 \cdot 2 \end{aligned}$	B	$\begin{array}{lll} & \mathrm{d} & \mathrm{~h} \\ \text { July } & 9.15 \end{array}$	$\begin{aligned} & \mathrm{ft} . \\ & \mathrm{I} \circ \\ & \mathrm{I} \circ 3 \end{aligned}$	$\stackrel{\circ}{6 \sigma_{4}}$	$\left\lvert\, \begin{array}{ccc} 0 & \prime & \prime \prime \\ 9 . & 32 & 3 \\ 4 . & 19 . & 5 \end{array}\right.$	$\begin{gathered} s \\ 5 \cdot 829 \\ 5 \cdot 831 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{gathered} 6.0 \\ 65 \cdot 9 \\ 66.9 \end{gathered}$	B
Jan. 15.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$46 \cdot 2$	$\begin{array}{\|l\|} 9.35 \cdot 13 \\ 4 \cdot 2 \mathrm{I} .18 \end{array}$	$\begin{aligned} & 5 \cdot 824 \\ & 5.824 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 47 \cdot 6 \\ & 48 \cdot 4 \end{aligned}$	B	July 16.13	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	$62 \cdot 8$	$\begin{aligned} & 9.33 .30 \\ & 4.20 .30 \end{aligned}$	$\begin{aligned} & 5 \cdot 829 \\ & 5 \cdot 831 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 62 \cdot 6 \\ & 63 \cdot 7 \end{aligned}$	B
Jan. 22. 12	$\begin{aligned} & 1 \circ 0 \\ & 1.3 \end{aligned}$	${ }^{2} 4$	$\begin{aligned} & 9.35 .40 \\ & 4.21 .21 \end{aligned}$	$\begin{aligned} & 5.823 \\ & 5.823 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 42 \cdot 3 \\ & 43 \cdot 9 \end{aligned}$	E	July 23.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$57 \cdot 1$	$\begin{aligned} & 9.33 .55 \\ & 4.20 .30 \end{aligned}$	5.828	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 57 \cdot 1 \\ & 577 \\ & \hline \end{aligned}$	E
Jan. 29.13	$\begin{aligned} & 10 \\ & 1.3 \end{aligned}$	47^{11}	$\begin{aligned} & 9.34 .5 \\ & 4.21 . \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 47 \%+ \\ & 49^{\circ} \end{aligned}$	E	July 30.12	$\begin{aligned} & 1 \circ \\ & 1 \circ 3 \end{aligned}$	$63 \cdot 1$	$\begin{aligned} & 9.32 .58 \\ & 4.20 . \\ & \hline \end{aligned}$	$\begin{aligned} & 5.830 \\ & 5.830 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \cdot 3 \\ & 64 \cdot 1 \end{aligned}$	E
Feb. 5.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	51.6	$\begin{aligned} & 9 \cdot 34 \cdot 18 \\ & 4 \cdot 20.58 \end{aligned}$	$\begin{aligned} & 5.823 \\ & 5.826 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 31 \cdot 8 \\ & 52.7 \end{aligned}$	E	Aug. 6. 11	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$62 \cdot 8$	$\left\lvert\, \begin{aligned} & 9.33 \cdot 10 \\ & 4.20 .28 \end{aligned}\right.$	$\begin{aligned} & 5.830 \\ & 5.829 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 63.1 \\ & 64.7 \end{aligned}$	E
Feb. 12. 12	$\begin{aligned} & 1 \circ \\ & 1.0 \\ & 1.3 \end{aligned}$	45°	$\begin{aligned} & 9 \cdot 35 \cdot 11 \\ & 4 \cdot 21.10 \end{aligned}$	$\begin{aligned} & 5 \cdot 821 \\ & 5.822 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 4+\cdot 9 \\ & 46 \cdot 1 \end{aligned}$	E	Aug. 13. 12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$63^{\circ} 6$	$\left\lvert\, \begin{aligned} & 9 \cdot 33 \cdot 15 \\ & 4.20 .0 \end{aligned}\right.$	$\begin{aligned} & 5.831 \\ & 5.831 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 63 \cdot 3 \\ & 64.5 \end{aligned}$	B
Feb. 19. 12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	43°	$\left\|\begin{array}{l} 9.35 .13 \\ 4.21 .10 \end{array}\right\|$	$\begin{aligned} & 5.822 \\ & 5.822 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 45.4 \\ & 44^{6} \end{aligned}$	B	Aug. 20, 12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$60 \cdot 7$	$\left\|\begin{array}{c} 9 \cdot 33 \cdot 19 \\ 4 \cdot 20.18 \end{array}\right\|$	$\begin{aligned} & 5.83 \mathrm{I} \\ & 5.830 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 61 \cdot 0 \\ & 62 \cdot 8 \end{aligned}$	E
Feb. 26. 12	$\begin{aligned} & 1 \circ \\ & 103 \end{aligned}$	53.7	$\left\|\begin{array}{l} 9 \cdot 33.53 \\ 4.20 .40 \end{array}\right\|$	$\begin{aligned} & 5.825 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 55 \cdot 3 \\ & 55 \cdot 1 \end{aligned}$	B	Aug. 27. 11	$\begin{aligned} & 1 \circ \circ \\ & 1.3 \end{aligned}$	$65 \cdot 6$	$\begin{aligned} & 9.32 .53 \\ & 4.20 .10 \end{aligned}$	$\begin{aligned} & 5.831 \\ & 5.831 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 64 \cdot 9 \\ & 66 \cdot 5 \end{aligned}$	B
Mar. 5.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	59.2	$\begin{aligned} & 9.33 .23 \\ & 4.20 .25 \end{aligned}$	$\begin{aligned} & 5.827 \\ & 5.327 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58.7 \\ & 59.9 \end{aligned}$	B	Sept. 3.13	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	607	$\begin{aligned} & 9.33 .35 \\ & 4.20 .20 \end{aligned}$	$\begin{aligned} & 5.831 \\ & 5.829 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 60 \cdot 3 \\ & 61 \cdot 9 \end{aligned}$	B
Mar. 12. 12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	53°	$\begin{aligned} & 9 \cdot 34 \cdot 38 \\ & 4 \cdot 20.48 \end{aligned}$	$\begin{aligned} & 5.825 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 52 \cdot 3 \\ & 54 \cdot 1 \end{aligned}$	B	Sept. 10. 12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$60 \cdot 2$	$\begin{aligned} & 9.34 .25 \\ & \text { 4. } 20.45 \end{aligned}$	$\begin{aligned} & 5.831 \\ & 5.831 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 60 \circ \\ & 61 \circ \end{aligned}$	B
Mar. 18.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	43^{11}	$\left\|\begin{array}{l} 9.35 .45 \\ 4.21 .24 \end{array}\right\|$	$\begin{aligned} & 5 \cdot 8: 9 \\ & 5 \cdot 821 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 43 \cdot 3 \\ & 44 \div 7 \end{aligned}$	E	Sept. 17.12	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	59.9	$\begin{array}{\|l} 9.33 \cdot 15 \\ 4.20 .8 \end{array}$	$\begin{aligned} & 5.829 \\ & 5 \cdot 829 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 60 \cdot 3 \\ & 62 \cdot 1 \end{aligned}$	E
Mar. 26. 12	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	$44^{\circ} 6$	$\begin{array}{\|l\|l\|} \hline 9.35 . & 6 \\ 4.21 .18 \\ \hline \end{array}$	$\begin{aligned} & 5.821 \\ & 5.821 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 45 \cdot 9 \\ 48 \cdot 2 \end{array}$	E	Sept. 24.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	65.0	$\begin{array}{\|cc\|} \hline 9.32 . & 4^{8} \\ 4 . & 20 . \\ \hline \end{array}$	$\begin{aligned} & 5.833 \\ & 5.835 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 66 \cdot 2 \\ & 68 \cdot 0 \end{aligned}$	E
Apr. 1. 12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$49^{\circ} 9$	$\begin{array}{\|l} 9.34 .45 \\ 4.20 .58 \end{array}$	$\begin{aligned} & 5.825 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 507 \\ & 519 \end{aligned}$	E	Oct. 2.13	$\begin{aligned} & 100 \\ & 1.3 \end{aligned}$	$6{ }^{\circ} 5$	$\left\|\begin{array}{cc} 9.33 . & 0 \\ 4 . & 20.10 \end{array}\right\|$	$\begin{aligned} & 5.831 \\ & 5.831 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 64 \cdot 1 \\ & 65 \cdot 1 \end{aligned}$	B
Apr. 10.13	$\begin{aligned} & 10 \\ & 1.3 \end{aligned}$	47.6	$\begin{array}{\|l\|} \hline 9.35 .51 \\ 4.21 .26 \end{array}$	$\begin{aligned} & 5.825 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 4^{8 \cdot 1} \\ & 49^{\circ} \end{aligned}$	E	Oct. 8.12	$\begin{aligned} & 10 \\ & 1.3 \end{aligned}$	571	$\left\|\begin{array}{c} 9.33 .45 \\ 4 \cdot 20.33 \end{array}\right\|$	$\begin{aligned} & 5.830 \\ & 5.831 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 56 \cdot 9 \\ 58 \cdot 3 \\ \hline \end{array}$	E
Apr. 16.14	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	53.9	$\begin{array}{r} \hline 9.34 .48 \\ 4.21 . \quad 5 \end{array}$	$\begin{aligned} & 5 \cdot 827 \\ & 5 \cdot 825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 53.7 \\ & 55 \cdot 3 \end{aligned}$	B	Oct. 15.13	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	58.2	$\begin{array}{\|l\|} \hline \text { 9. } 33.35 \\ 4.20 .28 \end{array}$	$\begin{aligned} & 5.834 \\ & 5.832 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 58 \cdot 8 \\ 59 \cdot 1 \\ \hline \end{array}$	E
Apr. 23.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	59.2	$\begin{aligned} & 9.34 \cdot 10 \\ & 4.20 .43 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58 \cdot 8 \\ & 60 \cdot 8 \end{aligned}$	B	Oct. 22.13	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	55.4	$\begin{array}{lll} 9 . & 34 \cdot & 5 \\ 4 . & 20 . & 35 \end{array}$	$\begin{aligned} & 5.832 \\ & 5.831 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 557 \\ & 56 \cdot 3 \end{aligned}$	B
Apr. 30.12	$\begin{aligned} & 1 \circ \\ & 1 \circ 3 \end{aligned}$	57\%	$\begin{aligned} & \text { 9. } 34 \cdot 15 \\ & 4.20 .45 \end{aligned}$	$\begin{aligned} & 5.829 \\ & 5.829 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 57.4 \\ & 58.4 \end{aligned}$	B	Oct. 31.13	$\begin{aligned} & 1 \circ \circ \\ & 1 \cdot 3 \end{aligned}$	57.9	$\begin{aligned} & 9.33 .43 \\ & 4.20 .13 \end{aligned}$	$\begin{aligned} & 5 \cdot 8346 \\ & 5 \cdot 8338 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58 \cdot 6 \\ & 58 \cdot 4 \end{aligned}$	B
May 7.11	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	52.9	$\begin{aligned} & 9.34 .45 \\ & 4.21 .0 \end{aligned}$	$\begin{aligned} & 5.828 \\ & 5.828 \end{aligned}$	$\begin{aligned} & .100 \\ & 100 \end{aligned}$	$\begin{aligned} & 52.4 \\ & 54 \cdot 2 \end{aligned}$	B	Nov. 5.13	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 3 \end{aligned}$	53.6	$\begin{array}{r} 9.33 .40 \\ 4.21 . \end{array}$	$\begin{aligned} & 5 \cdot 8336 \\ & 5 \cdot 8316 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 53 \cdot 7 \\ & 54: 7 \end{aligned}$	B
May 14.15	$\begin{aligned} & 1 \cdot 0 \\ & 1.3 \end{aligned}$	$62 \cdot 3$	$\begin{aligned} & 9.32 .55 \\ & 4.20 .15 \end{aligned}$	$\begin{aligned} & 5.826 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 61 \cdot 9 \\ & 63 \cdot 3 \end{aligned}$	B	Nov. 12. 13	$\begin{aligned} & 100 \\ & 1.3 \end{aligned}$	54.6	$\begin{aligned} & 9.33 .25 \\ & 4.20 .35 \end{aligned}$	$\begin{aligned} & 5.8320 \\ & 5.8310 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 54 \cdot 6 \\ & 55 \cdot 4 \end{aligned}$	B
Nay 21.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	58.1	$\left\lvert\, \begin{aligned} & 9.33 .40 \\ & 4.20 .25 \end{aligned}\right.$	$\begin{aligned} & 5.827 \\ & 5.827 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 59^{\circ} 1 \\ & 60^{\circ} 6 \end{aligned}$	E	Nov. 19.13	$\begin{aligned} & 1 \circ \\ & 1.0 \end{aligned}$	$4^{8.1}$	$\begin{array}{\|l\|} 9.34 \cdot 11 \\ 4.20 .38 \end{array}$	$\begin{aligned} & 5.8274 \\ & 5.8284 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 49.1 \\ 49^{\circ} \end{array}$	E
May 29.12	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	71.1	$\begin{aligned} & 9.32 .5 \\ & 4.19 .45 \end{aligned}$	$\begin{aligned} & 5.834 \\ & 5.834 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 720 \\ & 73^{\circ} 4 \end{aligned}$	E	Nov. 26. 12	$\begin{aligned} & 10 \\ & 1 \circ 3 \end{aligned}$	51°	$\begin{aligned} & \hline 9.35 . \\ & 4.21 .10 \end{aligned}$	$\begin{aligned} & 5.8240 \\ & 5.8250 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 51.5 \\ 519 \end{array}$	E
June 4.12	$\begin{aligned} & 1^{\circ} \circ \\ & 0^{2} \end{aligned}$	$66 \cdot 8$	$\left\lvert\, \begin{array}{lll} 9 \cdot 33 . & 0 \\ 4.20 . & 24 \end{array}\right.$	$\begin{aligned} & 5.833 \\ & 5.834 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 673 \\ & 683 \end{aligned}$	E	Dec. 3.12	$\begin{aligned} & 1 \circ \\ & 1 \circ 3 \end{aligned}$	$50 \cdot 5$	$\begin{aligned} & 9.35 \cdot 13 \\ & 4.2 \mathrm{I} .20 \end{aligned}$	$\begin{aligned} & 5.8250 \\ & 5.8250 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 51 \cdot 1 \\ & 51 \cdot 5 \end{aligned}$	E
June 10. 12	$\begin{aligned} & 1 \circ \\ & 1 \div 3 \end{aligned}$	58.6	$\begin{aligned} & 9.33 .54 \\ & 4.20 .40 \end{aligned}$	$\begin{aligned} & 5.828 \\ & 5.826 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58.4 \\ & 60^{\circ} \end{aligned}$	E	Dec. 10. 12	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$46 \cdot 6$	$\left.\begin{aligned} & 9.35 .13 \\ & 4.21 .14 \end{aligned} \right\rvert\,$	$\begin{aligned} & 5 \cdot 8256 \\ & 5.8230 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 46 \cdot 6 \\ & 47 \cdot 2 \end{aligned}$	E
June 18.12	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	714	$\left\lvert\, \begin{aligned} & 9.32 .50 \\ & 4.20 . \end{aligned}\right.$	5.834	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 7099 \\ & 729 \end{aligned}$	B	Dec. 17.12	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$46 \cdot 6$	$\begin{aligned} & 9.35 \cdot 13 \\ & 4.21 .13 \end{aligned}$	$\begin{aligned} & 5 \cdot 8208 \\ & 5 \cdot 8200 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 46 \cdot 9 \\ 47 \cdot 1 \end{array}$	B
June 25.11	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	58%	$\left\lvert\, \begin{array}{cc} 9 \cdot 34 \cdot 13 \\ 4 \cdot 20.40 \end{array}\right.$	$\begin{aligned} & 5.826 \\ & 5.827 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 58.4 \\ & 59.4 \end{aligned}$	I)	1)ec. 24.13	$\begin{aligned} & 1 \circ \\ & 1.0 \\ & 1.3 \end{aligned}$	419	$\begin{aligned} & 9.35 \cdot 43 \\ & 4.21 .15 \end{aligned}$	$\begin{aligned} & 5 \cdot 8270 \\ & 5 \cdot 8198 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 41 \cdot 1 \\ & 4^{2} \cdot 7 \end{aligned}$	B
Juiy 2. 13	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	$66 \cdot 3$	9. 32.45 4.20 .15	$\begin{aligned} & 5.830 \\ & 5.830 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 67 \cdot 8 \\ & 67 \cdot 4 \end{aligned}$	B	Dec. 31.13	$\begin{aligned} & 1 \circ 0 \\ & 1.3 \end{aligned}$	$40^{\circ} 4$	$\begin{array}{\|} 9.35 .58 \\ 4.21 .25 \end{array}$	$\begin{aligned} & 5.8230 \\ & 5.8202 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 39 \cdot 1 \\ & 4 \circ \cdot 9 \end{aligned}$	B

The deflecting marnet is placed on the east side of the suspended magnet, with its marked pole alternately east and west, and on the west side with its marked pole also alternately east and west: the deffection given in the table above is the mean of four deflections observed in these positions of the magnets.
In the subsequent calculations every observation is reduced to the temperature 35° Fahrenheit.

Table XX.-Computation of the Values of Horizontal Force in Absolute Measure.
From Observations made with the Gibson Instrument in the Magnetic Pavilion.

Greenwich Civil Time, 1913.	In British Units.								In C. G. S. Units. Value of Horizontal Force.	
			Apparent				Value	Value of		
	Value of \boldsymbol{A}_{1}.	Value of A_{2}.	Value of P.	Log. $\frac{m}{\mathrm{H} .}$	Vibration of Deflecting Magnet.	Log. m H.	of m.	Force H.	$\underset{\text { observed. }}{\text { As }}$	Reduced to Mean of Month.
	0.08341	0.08346	-0.00141	.8.92248	$5 \cdot 8282$	0.12980	$0 \cdot 3358$	40148	-18511	-18507
, 15. 12	0.08341	0.08355	- 0.00395	8.92271	$5 \cdot 8282$	$0 \cdot 12975$	0.3359	4 -O1 35	-18505	-18519
", 22. 12	0.08343	0.08352	- 0.00265	$8 \cdot 92266$	5.8298	0.12950	0.3358	4.0125	$\cdot 18501$	-18529
" 29.13	$0 \cdot 08338$	0.08349	- 0.00299	8.92246	5.8287	- 112968	0.3358	40143	$\cdot 18509$	-18514
Feb. 5. 12	0.08336	0.08352	-0.00474	8.92250	$5 \cdot 8273$	O'12993	- 3359	4.0153	-18514	-18505
$\Rightarrow \quad 12.12$	0.08340	0.08349	- 0.00288	8.92252	5.8277	$0 \cdot 12982$	$0 \cdot 3359$	4.0147	$\cdot 18511$	-18515
" 19. 12	$0 \cdot 08337$	0.08347	- 0.00288	8.92237	$5 \cdot 8283$	$0 \cdot 12972$	0.3358	4.0149	\cdots	-18530
" 26. 12	0.08333	0.08346	-0.00378	8.92225	$5 \cdot 8269$	- 12999	0.3358	4.0167	$\cdot 18520$	-18511
Mar. 5. 12	0.08334	0.08346	- 0.00355	8.92226	$5 \cdot 8277$	$0 \cdot 12991$	0.335^{8}	4.0163	-18518	-18515
" 12.12	0.08343	0.08349	-0.00164	8.92258	5.8292	- 12965	$0 \cdot 3358$	4.0136	$\cdot 18506$	-18515
" 18.12	0.08345	0.08354	-0.00265	8.92277	$5 \cdot 8283$	-112973	$\bigcirc 3359$	4.0131	$\cdot \cdot 18504$	$\cdot 18544$
, 26. 12	0.08338	0.08353	- 0.00446	8.92255	$5 \cdot 8282$	- 12975	0.3359	$4{ }^{\circ} 1012$	$\cdot 18509$	-18533
April 1. 12	0.08340	0.08350	-0.00282	8.92255	$5 \cdot 8292$	$0 \cdot 12963$	0.3358	4.0137	-18506	- 18508
" 10. 13	-0.08353	0.08362	- 0.00259	8.92319	5.8314	$0 \cdot 12930$	$0 \cdot 3359$	4.0092	$\cdot 18486$	$\cdot 18511$
", 16.14	0.08346	0.08359	-0.00378	8.92295	5.8294	- 12962	$\bigcirc \cdot 3360$	4.0118	-18498	$\cdot 18518$
" 23.12	0.08345	0.08355	- 0.00293	8.92280	5.8314	-0.12936	- 33358	4.0113	$\cdot 18495$ $\cdot 18497$	$\cdot 18494$ $\cdot 18483$
" 30. 12	0.08344	0.08354	- 0.00293	8.92274	5.8312	- 112938	- 3358	4.0116	- 18497	-18483
May 7. II	0.08344	0.08355	-0.00316	8.92280	$5 \cdot 8322$	0.12921	0.3357	4.0106	$\cdot 18492$ $\cdot 18527$	'I8527
" 14.15	0.08332	0.08345	- 0.00389	8.92219	5.8255 5.8293	0.13026 0.12967	0.3359 0.3357	4.0182 4.0150	$\cdot 18527$ $\cdot 18513$	$\begin{aligned} & \cdot 18504 \\ & \cdot 18541 \end{aligned}$
$" 21.12$	0.08336 0.08332	0.08344 0.08342	-0.00231 $-\quad 0.00276$	8.92229 8.92213	5.8293 5.8306	0.12967 0.12955	0.3357 0.3356	4.0150 4.0152	.18513 $\cdot 18514$	$\begin{aligned} & \cdot 18541 \\ & \cdot 18488 \end{aligned}$
" 29. 12	0.08332	0.08342	-0.00276	8.92213	$5 \cdot 8306$	0.12955	0.3356	4.0152	-18514	-18488
June 4. 12	0.08339	0.08356	-0.00491	8.92268	5.8329	O.12918	0.3357	4.0110	- 18494 .18502	$\begin{aligned} & \cdot 18517 \\ & \cdot 18515 \end{aligned}$
, 10. 12	0.08340	0.08353	-0.00372	8.92263	$5 \cdot 8302$	$0 \cdot 12953$	0.3358	4.0128	- $\cdot 18502$	$\cdot 18515$
\% 18.12	0.08344	0.08350	- 0.00197	8.92264	5.8325	$0 \cdot 12926$	0.3357 0.3359	4.0115	$\cdot 18497$ $\cdot 18503$	18505
" 25.11	0.08344	0.08353	-0.00243	8.92273	$5 \cdot 8293$	- 12966	- 3359	40130	18503	-18513
July 2. 13	0.08335	0.08351	-0.00462	8.92243	5.8303	$0 \cdot 12956$	0.3357	4.0139	$\cdot 18507$	$\cdot 18531$
," 9. 15	0.0833 I	0.08340	- 0.00254	8.92206	5.8303	-112956	0.3356	4.0156	\cdots	$\cdot 18526$
", 16. 13	0.08341	0.08354	- 0.00378	$8 \cdot 92266$	5.8307	-12949	0.3358	4.0125	$\cdot 18501$ $\cdot 18505$	$\cdot 18505$
" 23.12	0.08339	0.08345	-0.00203	8.92239	5.8311	$0 \cdot 12939$	0.3357	4.0133	$\cdot 18505$.18514	18521 .18527
" 30. 12	0.08334	0.08341	-0.00214	8.92214	$5 \cdot 8301$	- 12958	0.3356	$4 \bigcirc 153$	$\cdot 18514$	$\cdot 18527$
$\text { Aug. 6. } 1 \text { I }$	0.08336	0.08352	-0.00479	8.92250	5.8301	0.12958	0.3358 0.3356	$4 \circ 0137$	$\cdot 18506$ $\cdot 18507$	
" 13. 12	0.08339	0.08339	- 0.00017	$8 \cdot 92222$	5.8316	0.12935	0.3356 0.3355	$4 \cdot 0139$	$\cdot 18507$ $\cdot 18504$	$\begin{array}{r} 18518 \\ \cdot 18522 \end{array}$
$" \quad 20.12$	0.08335	0.08344	-0.00265	8.92225 8.92235	5.8323 5.8304	-0.12923	0.3355 0.3357	4.0132 4.0142	$\cdot 18504$ $\cdot 18509$	$\cdot 18522$ $\cdot 18507$
" 27. 11	0.08336	0.08347	- 0.00333	8.92235	$5 \cdot 8304$	$0 \cdot 12954$	- 3357	40142	$\cdot 18509$	-18507
Sept. 3. 13	0.08339	0.08345	-0.00186	8.92239	$5 \cdot 8308$	O.12945	$\bigcirc \bigcirc 3357$	$4 \circ 136$	-18506	
," 10. 12	0.08350	0.08358	- 0.00226	$8 \cdot 92301$	5.8322	$0 \cdot 12925$	0.3358	4.0098	$\cdot 18488$ \cdot $\cdot 18517$	$.18516$
$, \quad 17.12$	0.08333	0.08337	-0.00124	$8 \cdot 92199$	5.8302 5.8318	0.12955 0.12934	0.3356 0.3355	4.0159 4.0142	$\cdot 18517$ $\cdot 18509$	$\begin{aligned} & \cdot 18530 \\ & \cdot 18521 \end{aligned}$
" 24. 12	0.08334	0.08341	-0.00231	8.92215	5.8318	$0 \cdot 12934$	$0 \cdot 3355$	40142	$\cdot 18509$	-1852
Oct. 2. 13	0.08336	0.08345	-0.00276		$5 \cdot 8300$			4.0146	-18511	-18486
" 8. 12	0.08336	0.08347	-0.00316	8.92236	5.8320	-0.12926	0.3356 0.3355	4.0128 4.0123	$\cdot 18502$ $\cdot 18500$	$\begin{aligned} & \cdot 18505 \\ & \cdot 18501 \end{aligned}$
$" \quad 15.13$	0.08335	0.08345	- 0.00299	8.92230 8.92238	5.8332 5.8326	0.12908 0.12915	0.3355 0.3356	$\begin{aligned} & 40123 \\ & 4.0122 \end{aligned}$	$\begin{aligned} & \cdot 18500 \\ & \cdot \\ & \text { I } 8500 \end{aligned}$	$\begin{aligned} & \cdot 18501 \\ & \cdot 18528 \end{aligned}$
$" \quad 22.13$	0.08338	0.08345	-0.00214 -0.00028	8.92238 8.92226	$\begin{aligned} & 5.8326 \\ & 5.8324 \end{aligned}$	$\begin{aligned} & 0.12915 \\ & 0.12920 \end{aligned}$	0.3356 0.3355	4.0122 4.0130	$\cdot 18500$ $\cdot 18503$	$\begin{aligned} & \cdot 18528 \\ & \cdot 18510 \end{aligned}$
" 3I. 13	0.08339	0.08340	-0.00028	8.92226	$5 \cdot 8324$	$0 \cdot 12920$	$0 \cdot 3355$	40130	-18,03	-18510
Nov. 5. 13	0.08330	0.08364	-0.00998	8.92262	$5 \cdot 8326$	0.12914	0.3356	4.0111	- 18494	$\cdot 18501$
", 12.13	0.08330	0.08347	- 0.00496	$8 \cdot 92222$	5.8315	0.12932	0.3356	4.0137	$\cdot 18507$.18511	-18505
$" \quad 19.13$	0.08329	0.08344	- 0.00440	88.92210	5.8306	0.12941	0.3355 0.3362	$4^{\circ 1} 147$	$\begin{array}{r} 18511 \\ .18505 \end{array}$	$\begin{array}{r} 18524 \\ \cdot 18508 \end{array}$
$" \quad 26.12$	0.08349	0.08361	-0.00361	8.92305	$5 \cdot 8263$	0.13006	0.3362	$4^{\circ} \mathrm{O} 33$	$\cdot 18505$	18508
		0.08370	-0.00666					$4^{\circ} \mathrm{OI} 19$		
$, \quad 10.12$	0.08344	0.08357	-0.00355	8.92283	5.8281	$0 \cdot 12977$	0.3360	4.0130	-18503	-18499
$, \quad 17.12$	0.08344	0.08356	- 0.00333	$8 \cdot 92281$	$5 \cdot 8243$	$0 \cdot 13034$	0.3362	4.0157	$\cdot 18516$	$\cdot 18515$
$" \quad 24.13$	0.08342	0.08355	- 0.00378	8.92273 8.92286	5.8291	0.12959	$\begin{array}{r} 0.3359 \\ 0.2260 \end{array}$	4.0126 4.0128	$\begin{aligned} & \cdot 18502 \\ & \cdot 18502 \end{aligned}$	$\begin{aligned} & .18505 \\ & .18517 \end{aligned}$
" 31.13	0.08344	0.08358	-0.00429	8.92286	$5 \cdot 8280$					
Means			-0.00322	...	\ldots	\ldots	\ldots	4.0135	$\cdot 18506$.18514

Table XXI．－Results of Observations of Magnetic Dip made in the Magnetic Pavilion in the Year igiz．

Greenwich Civil Time， 1913	（	Magnetic Dip．	訔	Greenwich Civil Time， 1913．	$\underbrace{\substack{\text { 3－inch } \\ \text { Needle }}}$	Magnetic Dip．	哏	Greenwich Civil Time， 1913.		Magnetic Dip．	㵄
Jan． $\begin{array}{rlr}\text { d } \\ 3\end{array}$		66． 5 5． 34				668．50． 16	B	Sept． $\begin{aligned} & \text { a } \\ & \text { I }\end{aligned}$	D_{1}	66． 51.58	B
4． 12	D_{2}	66．49． 24	B	5． 13	D_{2}	66． 50.15	B	3． 12	D_{2}	66．50． 28	13
6． 12	D_{1}	66．56． 6	B	7． 12	D_{1}	66．51． 8	B	5． 12	D_{1}	66．52． 20	B
13． 15	D_{1}	66．50． 25	B	13． 15	D_{1}	66．49． 35	B	8． 13	D_{2}	66． 50.59	B
14． 13	D_{2}	66． 50.52	B	15． 13	D_{2}	66． 48.45	B	II． 13	D_{1}	66．52． 49	B
17． 12	D_{2}	66．49． 44	E	19． 12	D_{2}	66． 45.55	E	12． 12	D_{2}	66．52． 7	B
20． 12	D_{1}	66．51． 3^{6}	E	21． 11	D_{1}	66． 51.33	E	16． 12	D_{2}	66．52． 34	E
22． 11	D_{2}	66．50． 14	E	23． 12	D_{2}	66． 51.35	E	18． 12	D_{1}	66．51． 4^{6}	E
27． 12	D_{1}	66．52． 2	E	26． 12	D_{1}	66． 54.27	E	22． 12	D_{2}	66． 50.16	E
29． 12	D_{2}	66．50． 1	E	29． 11	D_{2}	66． 48.1	$\underset{\mathrm{E}}{\mathrm{E}}$	23． 122	D_{1}	66．49． 16	E
31． 12	D_{1}	66．52， 45	E	30． 12	D_{1}	66．52． 53	E	25.12 29.12	D_{2}	66． 49.31 66.50 .24	$\underset{\mathrm{E}}{\mathrm{E}}$
Feb．3． 12	D_{1}	66．52． 53	E	June 2． 12	D_{1}	66．51． 50	E	Oct．3． 12	D_{1}	66． 52.7	
5． 11	D_{2}	66． 51.10	E	4．II	L_{2}	66． 47.48	E	3． 13	D_{2}	66．50． 44	E
7． 12	D_{1}	66． 53.3	E	6.13	D_{1}	66．52． 2	E	6． 12	D_{1}	66．52． 0	E
10． 12	D_{2}	66． 52.52	E	9． 12	D_{2}	66．48． 20	E	9． 12	D_{2}	66．50． 34	$\underset{\mathrm{E}}{\mathrm{E}}$
12． 11	D_{1}	66．52． 20	E	12． 12	D_{1}	66． 51.7	E	13． 12	D_{1}	66． 51.20	E
14． 15	D_{2}	66．52． 21	E	13． 12	D_{2}	66． 49.38	E	14． 12	D_{2}	66．49． 59	E
17． 13	D_{2}	66． 51.12	B	16． 12	D_{2}	66． $47 \cdot 31$	B	17． 12	D_{2}	66．50． 47	B
19． 12	D_{1}	66．54． 24	B	18． 13	D_{1}	66．50． 38	B	20． 13	D_{1}	66．50． 49	B
21． 15	D_{1}	66．53． 37	B	20． 13	D_{2}	66．48． 54	B	23.13	D_{2}	66．47． 4^{2}	B
22． 13	D_{2}	66．49． 57	B	23． 11	D_{1}	66． 51.2	B	24.13	D_{1}	66.52. 66.58 66.	B
25． 13	D_{2}	66．51． 25	${ }^{\text {B }}$	25.12	D_{2}	66． 49.45	${ }_{\text {B }}^{\text {B }}$	27.13 30.12		66． 48.59 66.41 .24	${ }_{\text {B }}^{\text {B }}$
28． 11	D_{1}	66．54．I	B	27.13	D_{1}	66．51． 9	B			66．51． 24	B
Mar．3． 13	D_{1}	66．53． 10	B	July 1． 13	D_{1}		B ${ }_{\text {B }}$	Nov．3． $\begin{aligned} & \text { 3．} \\ & \text { 6．} 13 \\ & \text { 8．}\end{aligned}$			B B
5． 15	D_{2}	66．50．${ }^{\text {66 }}$	B	3． 12	D_{2}	66． 47.14	B ${ }^{\text {B }}$	6． 13 8． 12 c．	D_{2}	66．44． 51 66． 49.22	B B
7． 12	D_{1}	66． 53.43	B	7． 11	D_{1}	66． 51.23 66.49 .54	B ${ }_{\text {B }}$	8． 12 10.13	D_{1}	66．49． 22 66． 45.53	B B
10． 12． 12 13，	$\mathrm{D}_{2} \mathrm{D}_{1}$	66． 47.12	B ${ }^{\text {B }}$	9． II． 12 12 1.	D_{2}	66． 49.54	B ${ }^{\text {B }}$	10． 13 II． 13 I	D_{2}	66． 45.53 66.49 .14	B B
12.12 13.12	D_{1}	66．54． 56	B ${ }^{\text {B }}$	$\begin{array}{ll}\text { 11．} & 12 \\ 14 . & 12 \\ 17 .\end{array}$	D_{1}	66．51． 58 66.46 .40	${ }^{\text {B }}$	11.13 13.13 18	D_{1}	66． 66． 47.14 47． 53	${ }^{\text {B }}$
13.12 17.13	D_{2}	66． 66． 51． 5． 22	E	14.12 17.12 17.12	D_{2}	66．48．${ }^{\text {64 }} 1$	E	17． 12	D_{2}	66．50． 47	E
19． 12	D_{1}	66．50． 41	E	21． 12	D_{1}	66．51． 59	E	18． 12	D_{1}	66．51． 18	E
25． 13	i_{2}	66．48． 37	E	23． 11	D_{2}	66．46． 22	E	21． 12	D_{2}	66．50． 28	E
26． 11	D_{1}	66．50． 49	E	25． 12	D_{1}	66．52． 3	E	24． 12	D_{1}	66．49． 7	E
31． 12	D_{1}	66． 52.17	E	28． 12	D_{2}	66．49． 11	E	27． 12	D_{2}	66．50． 9	E
				30． 11	D_{1}	66．51．I	E	28． 12	D_{1}	66． 50.33	E
Apr．1． 12	D_{1}	66． 51.2		Aug．1． 12	D_{1}	66．52． 23	E	Dec．1． 12	D_{1}	66．50． 2	E
4．4． 12	I_{2}		E	5． 12			E	5． 12	D_{2}	66． 50.17	E
8． 12	$\mathrm{I}_{1}{ }_{1}$	66． 49.47	E	6． 12	D_{1}	66．50． 18	E	8． 12	D_{1}	66． 47.58	E
9． 11	$\mathrm{I}{ }_{2}$	66． 49.58	E	8． 12	D_{2}	66．50． 28	E	9． 11	D_{2}	66．50． 26	E
11． 11	I ${ }_{1}$	66．50． 53	E	11． 12	D_{1}	66． 50.55	E	11． 12	D_{1}	66．48． 23	E_{2}
14． 11	J_{2}	66．51． 24	E	13． 11	D_{2}	66．51． 20	E	15． 12	D_{2}	66．${ }^{\text {66．}}$＋ 45	E
16． 11	D_{2}	66． 48.34	B	18． 10	D_{1}	66． 53.54	L	16． 13	D_{1}	66． 51.58	B
16． 12	I）${ }_{1}$	66． 49.12	P	20． 10	D_{2}	66．51． 0	B	18.13	$1{ }_{2}$	66． 46.41	B
19． 12	I_{2}	66．50． 11	13	25.13	L_{2}	66． 47.14	B	20． 12	D_{2}	66．50． 10	B
23． 14	$1)_{1}$	66．51． 26	B	26． 12	D_{1}	66．51． 33	B	22． 13	D_{1}	66． 46.5	B
25．12	$1{ }_{2}$	66． 49.12	B	28． 13	D_{2}	66． 45.38	$\stackrel{1}{1}$	27． 13 29． 15		66． 49.49	${ }_{\text {B }}^{\text {B }}$
28． 13	$1)_{1}$	66．－1． 37	B	29． 12	D_{1}	66． 50.6	B	29． 15	D_{1}	66． $46 .+5$	B

Table XXII.-Monthly and Annual Means of Magnetic Dip from Observations made in the Year igiz.

Monthly Means of Magnetic Dip.				
$\begin{aligned} & \text { Month, } \\ & \text { 1913. } \end{aligned}$	$\underset{3-i n c h ~}{\text { D }}$ Needle.	Number of Observations.	$\stackrel{D_{2}}{3 \text {-inch }}$	Number of Observations.
January	66. $53.1 / 5$	6	66. 50. 10	6
February	66. 53.23	6	66. 51. 30	6
March.	66. 52.36	6	66. $4^{8 .} 4^{6}$	6
April	66. 50.40	6	66. 49. 54	6
May	66. 51.39	6	66. 49. 3	6
June......................................	66. 51.18	6	66. 48.39	6
July	66. 51.21	6	66. 47. 57	6
August...................................	66. 51.32	6	66. 49. 20	6
September .	66. 51.26	6	66. 50. 59	6
October.........................	66. 51. 37	6	66. 49.48	6
November...............................	66. 50. 24	6	66. $4^{8 .} 20$	6
December..............................	66. $4^{8 .} 3^{2}$	6	66. 49. I	6
Means.....................................	66. 5 I .28	Sum 72	66. 49.27	Sum 72
Annual Mean Dip		66°		

The monthly means have been formed without reference to the hour at which the observation on each day was made.
In combining the monthly results, to form annual means, weights have been given proportional to the number of observations.

Table XXIII.-Annual Summary of the Magnetic Elements.

Month, 1913.	Mean Value of				Monthly Mean Diurual Range of			Sum of Hourly Deviations from Mean of		
	Westerly Declination.	Horizontal Force C.G.S	Vertical Force C.G.S.	Dip.	Declination,	Horizontal Force.	Vertical Foree.	Deelination.	$\begin{aligned} & \text { Horizontal } \\ & \text { Force. } \end{aligned}$	Vertical Force.
January	$1 \stackrel{\circ}{5} \cdot 19^{\circ} \circ$	'I8517	-43289	66̊. 51.37	$3 \div 9$	15γ	5γ	194	65γ	33γ
February .	15.18.7	-18515	43284	66. 52. 26	3.8	14	15	$22 \cdot 6$	78	68
March.	15.18.1	$\cdot 18527$	43312	66. 50.41	$6 \cdot 9$	16	20	$36 \cdot 0$	87	I 14
April..	15.16.9	$\cdot 18503$	43256	66. 50. 17	$8 \cdot 3$	27	26	$42 \cdot 2$	162	144
May .	15. 15.9	'18515	43284	66. 50. 21	$7 \cdot 8$	26	26	$40^{\circ} 1$	167	153
June.	15.14.8	-18513	43279	66. 49. 59	$8 \cdot 5$	34	22	$46 \cdot 9$	216	123
July	15. $14^{\circ} \mathrm{O}$	$\cdot 18522$	43300	66. 49. 39	$8 \cdot 4$	31	23	$4^{6 \cdot 2}$	199	115
August...	15.13.8	-18519	43293	66. 50. 26	$8 \cdot 5$	31	18	437	190	83
September	15.13.3	'18518	43^{291}	66.51. 12	7×5	31	16	$39 \cdot 8$	184	8 I
October..	15.12\%7	$\cdot 18506$	43263	66. 50. 4^{2}	$5 \cdot 5$	26	12	$30 \cdot 5$	160	58
November	15.12.2	'18509	43270	66. 49.22	3.9	17	7	194	99	37
December	15. 12.6	. 18506	43263	66. 48. 47	2.4	7	8	12.7	35	48
The Year..	15. $15{ }^{\prime} 2$	-18514	$\cdot 43282$	66. 50. 27	$6 \cdot 28$	22.9	$16 \cdot 5$	33.29	$136 \cdot 8$	88•1

Magnetograph Records on Disturbed and Normal Days in the Year i913.

Explanation of the Plates.

The magnetic motions figured on the Plates are :-
(I.) Those for days of disturbance selected by the International Committee-January 3, March 14, April $9^{d} 5^{\text {h }}$ to $1^{d} 5^{\text {h }}$, June $1^{d} 6^{\text {b }}$ to $2^{d} 6^{\text {b }}$.
(2.) Those for four quiet days-February 4, May 23, August 20, November 16-which are given as types of the ordinary diurnal movement at four seasons of the year.

The time is Greenwich Civil Time (commencing at midnight and counting the hours from \circ to 24).
The magnetic declination, horizontal force, and vertical force are indicated by the letters D., H., and V. respectively; the declination (west) is expressed in minutes of arc, the unit for horizontal and vertical force is $\mathbf{1} \gamma(0 \cdot 00001$ C.G.S.), the corresponding scales being given on the sides of each diagram. Equal changes of amplitude in the several registers correspond nearly to equal changes of absolute magnetic force, $\circ \cdot 001$ of a C.G.S. unit being represented by on. 80 $=20.2$ in the declination curve, by $0^{\text {in. }} 73=18.5$ mm. in therizontal force curve, and by $0^{\text {in. }} 77=19.6$ m. in the vertical force curve.

Downward motion indicates increase of declination and of horizontal and vertical force.

The temperatures (Fahrenheit) of the horizontal and vertical force magnets at each hour are given in small figures on the Diagrams.

Plate I.
MAGNETIC DISTURBANCES RECORDED AT THE ROYAL OBSERVATORY, GREENWICH, 1913.

SCALES FOR MAGNETIC ELEMENTS IN C.G.S. MEASURE.
 RECORDED AT THE ROYAL OBSERVATORY, GREENWICH, 1913.

ROYAL OBSERVATORY, GREENWICH.

MAGNETIC DISTURBANCES.

1913.

Magnetic Disturbances in Declination, Horizontal Force, and Vertical Force, recorded at the Royal Observatory, Greenwich, in the Year 1913.

The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 20γ in Horizontal Force, or $\mathbf{1 2 \gamma}$ in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in Horizontal and Vertical Force are expressed in C. G. S. units. When any one of the three elements is not specifically mentioned, it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated.

The term "wave" is used to indicate a movement in one direction and return; "double wave" a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movements in the same direction; "fluctuations" a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase, and - a decrease of the magnetic element. In the case of fluctuations the sign \pm denotes positive and negative movements of generally equal extent.

Magnetic movements which do not admit of brief description in this way are exhibited on accompanying plates.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from \circ to 24).

I913.
January $\quad 1^{d} 10^{h}$ to 16^{h} Loss of register in Dec. 10^{h} to 13^{h} Loss of register in H.F. and V.F. $142^{\frac{1}{h}}$ to 16^{h} Loss of register in V.F.
$2^{\mathrm{d}} 17 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $18 \frac{33^{\mathrm{h}}}{}$ Irregular double wave in H.F. $(+20 \gamma$ to $-24 \gamma)$. $17 \frac{3 \mathrm{~h}}{4}$ to $18 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. $3^{d} 0^{h}$ to $4^{d} 0^{h}$. See Plate I.
$4^{\mathrm{d}} 18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{b}}$ Wave in Dec. $\left(-7^{\prime}\right)$: in H.F. small.
$9^{\mathrm{d}} 2 \frac{1}{4}^{\mathrm{h}}$ to 3^{h} Wave in Dec. $\left(+3^{\prime}\right)$.
$10^{d} 13^{h}$ to 16^{h} Truncated wave in H.F. (-36γ). $16 \frac{1}{4}^{\mathrm{h}}$ to 18^{h} Truncated wave in H.F. (-21γ). $16 \frac{3 \mathrm{~h}}{}$ to $18 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-7^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $21_{4}^{\frac{1 \mathrm{~h}}{2}}$ Wave in Dec. $\left(-6^{\prime}\right) . \quad 20 \frac{1^{\mathrm{h}}}{}$ to $21^{\frac{1}{2} \mathrm{~h}}$ Wave in H.F. $(+20 \gamma)$.
$17^{\mathrm{d}} 20^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$18^{\mathrm{d}} 15^{\mathrm{h}}$ to $16^{\frac{3}{4} \mathrm{~h}}$ Wave in H.F (-25γ). $15^{\frac{3 \mathrm{~h}}{4}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. (-6^{\prime}). $19 \frac{1}{2}^{\mathrm{h}}$ to $\mathbf{2 2}^{\mathrm{h}}$ Irregular double wave in H.F. $\left(-25 \gamma\right.$ to $+30 \gamma$). 20^{h} to ${ }^{22 \frac{1}{2}}{ }^{\mathrm{h}}$ Irregular wave in Dec. $\left(-19^{\prime}\right)$. $18^{\mathrm{d}} \quad 23 \frac{1^{\mathrm{h}}}{}$ to $19^{\mathrm{d}} 1^{\mathrm{h}}$ Triple-crested wave in Dec. $\left(-4^{\prime}\right)$. Double-crested wave in H.F. $(+70 \gamma)$.
$19^{\mathrm{d}} 22^{\mathrm{h}}$ to $23^{\frac{3}{4} \mathrm{~h}}$ Double wave in H.F. $(-20 \gamma$ to $+20 \gamma$).
$20^{d} 20^{h}$ to $20 \frac{3 h^{h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$, followed till 21^{h} by a decrease $\left(-4^{\prime}\right)$. $20^{\frac{3}{4} h}$ to 22^{h} Wave in H.F. $(+20 \gamma)$.
$25^{\text {d }} 199^{\frac{h}{h}}$ to $21_{2}^{1 \mathrm{~h}}$ Double-crested wave in Dec. $\left(-4^{\prime}\right)$. 20^{h} to $2 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(+35 \gamma)$.
$28^{\mathrm{d}} 19^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. (-3^{\prime}).
$30^{\text {d }} 7^{\mathrm{h}}$ to $9^{\frac{1}{2} \mathrm{~h}}$ Wave in H.F. (-36γ), with superposed fluctuations: sharp fuctuations also in Dec. 23^{h} to 24^{h} Wave in H.F. $(+20 \gamma)$.
$31^{\mathrm{d}} 3^{\mathrm{h}}$ to $4^{\frac{1}{4} \mathrm{~h}}$ W'ave in Dec. $\left(+3^{\prime}\right)$. $\quad \mathbf{1 8 \frac { 1 } { 2 }}^{\mathrm{h}}$ to 20^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
1913.

February $\quad \mathrm{I}^{\mathrm{d}} 0^{\mathrm{h}}$ to $\mathrm{I} \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-20γ). $0 \frac{3}{4}^{\mathrm{h}}$ to $\mathrm{I}_{2^{\mathrm{h}}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right)$.
$9^{d} 6^{6 h}$ to $17 \frac{1}{2}^{\text {h }}$ Wave in H.F. (-20γ).
$10^{d} 23^{h}$ to $11^{d} 0 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. $(+20 \gamma)$.
 $13^{d}{ }^{d}{ }_{4}^{\frac{1}{4}}$ Two successive waves in H.F. $(+23 \gamma,+25 \gamma)$.
$13^{\mathrm{d}} 18 \frac{1 \mathrm{~h}}{4}$ to $19 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-7^{\prime}\right)$, steep at commencement. $18 \frac{1 \mathrm{l}}{}{ }^{\mathrm{h}}$ to 19^{h} Wave in H.F. (-26γ).
$14^{\mathrm{d}} 10^{\mathrm{h}}$ to $11 \frac{1}{2}{ }^{\mathrm{h}}$ Decrease in H.F. (-50γ). 13^{h} to 15^{h} Sharp wave in H.F. $(-70 \gamma) . \quad 13 \frac{1}{2}^{\mathrm{h}}$ to 15^{h} Double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-8^{\prime}\right)$, the intermediate portion very steep. ${ }^{1} 3 \frac{1}{2} \frac{\mathrm{~h}}{}$ to $\mathrm{r}_{4} \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Increase in V.F. $(+30 \gamma)$.
$15^{\mathrm{d}} \circ \frac{1}{2}^{\mathrm{h}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in. Dec. $\left(+7^{\prime}\right)$. $\circ_{\frac{1}{2}}{ }^{\mathrm{h}}$ to 3^{h} Irregular double-crested wave in H.F. $(+35 \gamma)$.
 crested wave in Dec. $\left(-6^{\prime}\right)$: truncated wave in H.F. $(+25 \gamma)$.

I $6^{\mathrm{d}} 19 \frac{1}{4}^{\mathrm{h}}$ to $21 \frac{1}{4}^{\mathrm{h}}$ Flat-crested wave in Dec. $\left(-5^{\prime}\right) . \quad 21^{\mathrm{h}}$ to $22 \frac{1_{4}^{\mathrm{h}}}{}$ Irregular double-crested wave in H.F. $(+25 \gamma)$.
$17^{\mathrm{d}} 16^{\mathrm{h}}$ to $17 \frac{3}{4}^{\mathrm{h}}$ Flat crested wave in H.F. (-20γ). $\quad 16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Truncated wave in Dec. $\left(-4^{\prime}\right) . \quad 19 \frac{3}{4}{ }^{\mathrm{h}}$ to 21^{h} Double-crested wave in Dec. $\left(-5^{\prime}\right)$: wave in H.F. $(+27 \gamma)$.
$19^{\mathrm{d}} 2^{\mathrm{h}}$ to $22 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-6^{\prime}\right)$: in H.F. small.
$22^{\mathrm{d}} 20^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. $22 \frac{1 \frac{1}{2}^{\mathrm{h}}}{}$ to $23 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$25^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to $33^{\frac{3 \mathrm{~h}}{4}}$ Truncated wave in Dec. $\left(+3^{\prime}\right)$. $25^{\mathrm{d}} 233^{\mathrm{h}}$ to $26^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ Waves in Dec. $\left(+4^{\prime}\right)$ and H.F. $(+27 \gamma)$. $26^{\mathrm{d}} 9 \frac{1}{4}^{\mathrm{h}}$ to $10 \frac{1}{2}{ }^{\mathrm{h}}$ Truncated in Dec. $\left(+3^{\prime}\right)$: wave in H.F. (-23γ). $20 \frac{1}{2}^{\mathrm{h}}$ to $21_{2}^{\frac{1}{2}}$ Double-crested wave in Dec. $\left(-5^{\prime}\right)$: wave in H.F. $(+27 \gamma)$.

March $\quad 7^{\mathrm{d}} 2_{\frac{1 \mathrm{~h}}{4}}$ to $3 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right)$.
$8^{\mathrm{d}} 20^{3} \frac{3}{4}^{\mathrm{h}}$ to 22^{h} Rounded wave in Dec. $\left(-4^{\prime}\right)$ followed till \circ^{h} by a wave $\left(-5^{\prime}\right)$.
$11^{\mathrm{d}} 23^{\mathrm{h}}$ to $12^{\mathrm{d}} \circ \frac{1}{2}^{\mathrm{h}}$ Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-3^{\prime}\right)$: wave in H.F. $(+20 \gamma)$.
$14^{d} 0^{\text {h }}$ to $15^{d} 0^{h}$. See Plate I.
$15^{\text {d }} 1 \frac{1}{2}^{\mathrm{h}}$ to $12 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-30γ). $19 \frac{1}{4}^{\frac{\mathrm{h}}{}}$ to 21^{h} Two successive waves in Dec. $\left(-4^{\prime},-4^{\prime}\right)$: small

$16^{\mathrm{d}} 0^{\mathrm{h}}$ to $1 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$. $16 \frac{1}{4}^{\mathrm{h}}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Sharp decrease in H.F. (-35γ). $\quad 16 \frac{1}{2}^{\mathrm{h}}$ to $17 \frac{3}{4} \mathrm{~h}$ Wave in Dec. (-5^{\prime}). 19^{h} to 20^{h} Irregular double-crested wave in Dec. $\left(-5^{\prime}\right)$. $19 \frac{1}{2}^{\mathrm{h}}$ to 20^{h} Sharp wave in H.F. $(+25 \gamma) . \quad 2 \frac{1}{2}^{\mathrm{h}}$ to $23^{\frac{1}{2}}{ }^{\mathrm{h}}$ Double wave in Dec. $\left(+7^{\prime}\right.$ to $\left.-4^{\prime}\right)$. 22^{h} to $2 \times \frac{1^{h}}{4}$ Sharp wave in V.F. $(+15 \gamma)$, followed till 23^{h} by a decrease (-12γ).
$17^{\mathrm{d}} 0^{\mathrm{h}}$ to $1^{\frac{3}{4}}{ }^{\mathrm{h}}$ Rounded wave in H.F. $(+37 \gamma)$. $\quad \frac{1}{4}^{\mathrm{h}}$ to 2^{h} Wave in Dec. $\left(-7^{\prime}\right)$. $\quad 1^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 4^{h} Slow wave in Dec.
 in H.F. $(+35 \gamma)$.
$21^{\mathrm{d}} 4^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 6^{h} Wave in Dec. $\left(+4^{\prime}\right)$: in H.F. small. $18 \frac{1}{2}^{\mathrm{h}}$ to 20^{h} Wave in Dec. $\left(-6^{\prime}\right) . \quad 20 \frac{1}{2}^{\mathrm{h}}$ to $21_{2^{h}}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$2^{2} \mathrm{a} \frac{3 \mathrm{~h}}{4}$ to $2 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$23^{\mathrm{d}} \circ \frac{1}{4}^{\mathrm{h}}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Double wave in Dec. $\left(-3^{\prime}\right.$ to $\left.+3^{\prime}\right)$. $\quad 13^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 15^{h} Two successive waves in Dec. $\left(+3^{\prime},+3^{\prime}\right)$. $14 \frac{1}{4}^{\mathrm{h}}$ to $15^{\frac{3 \mathrm{~h}}{4}}$ Double wave in H.F. $(+26 \gamma$ to $-22 \gamma)$.
1913.

March $24^{\text {d }} 0 \frac{1}{4}$ h to $1 \frac{1}{4}{ }^{h}$ Wave in H.F. $(+27 \gamma)$.
$29^{\mathrm{d}} 16^{\mathrm{h}}$ to $16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Decrease in H.F. (-20γ). $16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $16 \frac{33^{\mathrm{h}}}{}$ Decrease in Dec. $\left(-5^{\prime}\right)$.
$3^{d} 3^{\mathrm{h}}$ to $4 \frac{3}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+5^{\prime}\right)$. 3^{h} to $3 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(-2 \mathrm{I} \gamma)$. $2 \mathrm{I}^{\frac{3}{4}}$ to 2^{h} Sharp decrease in Dec. $\left(-5^{\prime}\right) . \quad 21 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 23^{h} Wave in H.F. $(+30 \gamma)$, steep at commencement. $3{ }^{\mathrm{d}} 22^{\frac{1}{4}}$ h to 24^{h} Truncated wave in Dec. $\left(-6^{\prime}\right)$: in H.F. small.
 Truncated wave in Dec. $\left(-5^{\prime}\right)$: in H.F. small.
$5^{\mathrm{d}} \mathrm{O}_{4}^{\frac{1 \mathrm{~h}}{4}}$ to $\mathrm{I}_{\frac{1}{4}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$8^{\mathrm{d}}{ }^{19 \frac{3}{4}^{\mathrm{h}}}$ Sudden increase in H.F. $(+33 \gamma)$, partly returning (-17γ) by 20^{h}.
$9^{d} 5^{\mathrm{h}}$ to $\mathrm{I}^{\mathrm{d}} 5^{\mathrm{h}}$ See Plate II.
$10^{d} 16 \frac{1}{4}{ }^{h}$ to $17 \frac{3}{4}^{\frac{h}{h}}$ Double wave in H.F. $\left(-20 \gamma\right.$ to $+20 \gamma$), the intermediate portion very steep. $16 \frac{3}{4}^{\mathrm{h}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$, steep at commencement. 20^{h} to 21^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $20 \frac{1}{4}^{\mathrm{h}}$ to $2 \mathrm{I}^{\frac{3}{4}}$ Wave in H.F. $(+25 \gamma)$.
 Sharp wave in H.F. (-29γ). 19^{h} to 22^{h} Slow wave in Dec. $\left(+5^{\prime}\right)$. $22 \frac{1 \mathrm{~h}}{4}$ to 24^{h} Double wave in Dec. $\left(-7^{\prime}\right.$ to $+4^{\prime}$), the second portion double-crested. $12^{d} 23^{h}$ to $13^{d} \circ \frac{1}{2}{ }^{\mathrm{h}}$ Wave in H.F. $(+32 \gamma)$. $12^{d} 23^{\text {b }}$ to $13^{d} I^{\text {h }}$ Wave in V.F. (-13γ).
${ }_{1} 3^{d} 2^{h}$ to 3^{h} Rounded wave in Dec. $\left(+4^{\prime}\right)$.
$14^{\mathrm{d}} 17 \frac{1}{4}^{\mathrm{h}}$ to $17 \frac{3}{4}^{\mathrm{h}}$ Decrease in H.F. (-20γ).
$15^{d} 2 \frac{1}{2}^{h}$ to $3 \frac{4^{h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$. $15^{d} 22^{h}$ to $16^{d} \circ \frac{1}{2}^{h}$ Irregular double wave in Dec. $\left(-5^{\prime}\right.$ to $\left.+5^{\prime}\right)$. $15^{\mathrm{d}} 22 \frac{1}{2}^{\mathrm{h}}$ to $16^{\mathrm{d}} 0 \frac{1}{4}^{\mathrm{h}}$ Flat-crested wave in H.F. (-20γ).
 double-crested wave in H.F. $(+35 \gamma)$. $20 \frac{3}{4} \mathrm{~h}$ to $22 \frac{1 \mathrm{~h}}{}{ }^{h}$ Double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-4^{\prime}\right)$, the intermediate portion very steep.
$17^{\mathrm{d}} 22 \frac{1}{2}^{\mathrm{h}}$ to 24^{h} Irregular wave in Dec. $\left(-7^{\prime}\right) . \quad 17^{\mathrm{d}} 23 \frac{1}{4}^{\text {h }}$ to $18^{\mathrm{d}} 0^{\frac{1}{2}}{ }^{\mathrm{h}}$ Irregular wave in H.F. $(+20 \gamma)$.
$23^{\mathrm{d}} 5 \frac{1}{4}^{\mathrm{h}}$ to $7 \frac{\frac{1}{4}^{\mathrm{h}}}{}$ Wave in Dec. $\left(+5^{\prime}\right)$.
$24^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}}$ to 22^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$27^{\mathrm{d}} 12 \frac{1}{2}^{\mathrm{h}}$ to $\mathrm{I}_{3} \frac{3}{4}^{\mathrm{h}}$ Irregular wave in H.F. $(+2 \mathrm{I} \gamma)$.
$28^{d} \frac{1}{4}^{h}$ to 3^{h} Flat-crested wave in Dec. $\left(+3^{\prime}\right)$.

May $\quad 4^{\text {d }} 15 \frac{3}{4}$ h to $16 \frac{3}{4} \mathrm{~h}$ Truncated wave in H.F. (-29γ), followed till $18 \frac{3}{4}$ by a double wave $(-42 \gamma$ to $+28 \gamma)$. 17^{h} to $20 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Donble-crested wave in Dec. $\left(-8^{\prime}\right)$. $\quad 17 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 18^{h} Increase in V.F. $(+1+\gamma)$.
$5^{\mathrm{d}} 0^{\mathrm{h}}$ to 1^{h} Waves in Dec. $\left(+3^{\prime}\right)$ and H.F. $(+20 \gamma) .2^{\text {h }}$ to $4 \frac{t^{h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+12^{\prime}\right)$, steep at commencement. $\quad 2 \frac{1}{4}^{\mathrm{h}}$ to $\frac{1}{2}^{\mathrm{b}}$ Irregular double-crested wave in H.F. $(+33 \gamma) . \quad 2 \frac{1}{2}^{\mathrm{h}}$ to 3^{h} Decrease in V.F. (-20γ). $5^{d} 22^{h}$ to $6^{d} 2^{h}$ Triple wave in Dec. $\left(-4^{\prime},+4^{\prime},-5^{\prime}\right)$. $5^{d} 23^{h}$ to $6^{d} 1^{h}$ Double wave in H.F. $\left(-20 \gamma\right.$ to $+25 \gamma$). $\quad 5^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $6^{\mathrm{d}} 2^{\mathrm{h}}$ Wave in V.F. (-24γ).
1913.

May
$6^{\mathrm{d}} 3^{\frac{1}{4}}{ }^{\mathrm{h}}$ to 5^{h} Wave in H.F. (-22γ). $8 \frac{1}{4}^{\mathrm{h}}$ to $9 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-24γ). 1^{h} to $17_{4^{\frac{1 \mathrm{~h}}{2}}}$ Two successive waves in H.F. $(-26 \gamma,-22 \gamma)$: in Dec. small. 20^{h} to $2 \mathbf{1}_{4}^{\mathrm{hh}}$ Wave iu H.F. (-20γ). $\mathbf{2 1}^{\mathrm{h}}$ to $22 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right) .6^{d}{ }^{2} 3^{3 h}$ to $7^{d} 3^{h}$ Two successive irregular waves in Dec. $\left(+4^{\prime},+8^{\prime}\right)$, the second double-crested.
$7^{\mathrm{d}} \circ \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Irregular wave in H.F. $(+23 \gamma)$, followed till $3 \frac{1}{2}^{\mathrm{h}}$ by a wave $(+20 \gamma)$. $1_{\frac{1}{2}^{\mathrm{h}}}$ to 2^{h} Decrease in V.F. (-14γ). $18 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+20 \gamma)$. $19 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right) . \quad 22 \frac{1}{2}^{\mathrm{h}}$ to 24^{h} Double-crested wave in $\operatorname{Dec}\left(+5^{\prime}\right)$.
$9^{\mathrm{d}} 23^{\mathrm{h}}$ to 24^{h} Truncated wave in H.F. $(+20 \gamma)$.
$13^{\mathrm{d}} 3^{\frac{1}{2}}$ to 5^{h} Wave in Dec. $\left(+4^{\prime}\right)$.
$27^{\text {d }} 134^{1 \mathrm{~h}}$ to $15 \frac{1}{4}^{\text {h }}$ Loss of Dec., H.F., and V.F. Registers.

June $\quad 1^{\mathrm{d}} 6^{\mathrm{h}}$ to $2^{\mathrm{d}} 6^{\mathrm{b}}$ See Plate II.
$4^{\mathrm{d}} 20 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $21 \frac{3}{4} \frac{\mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$: in H.F. small.
$19^{\mathrm{d}} 17^{\mathrm{h}}$ to $199^{\frac{3 \mathrm{~h}}{}}$ Irregular triple-crested wave in H.F. $(+34 \gamma) . \quad 20^{\mathrm{h}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-3^{\prime}\right)$.
$21^{\mathrm{d}} 17 \mathrm{~m}_{4}^{3 \mathrm{~h}}$ to 19^{b} Truncated wave in H.F. (-22γ).
$23^{\text {d }} 1 \frac{3}{4}^{\text {h }}$ to $134^{\text {h }}$ Truncated wave in H.F. (-22γ).
$26^{\mathrm{d}} 13 \frac{1}{2}^{\mathrm{h}}$ to 15^{h} Wave in H.F. (-23γ).
$28^{\mathrm{d}} 21^{\frac{1 \mathrm{~h}}{4}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Sharp decrease in Dec. $\left(-5^{\prime}\right)$.
$29^{\mathrm{d}} 3^{\frac{\mathrm{h}}{} \mathrm{h}}$ to $5^{\frac{1 \mathrm{~h}}{}}$ Wave in Dec. $\left(+6^{\prime}\right)$.

July

$3^{d} 6^{6}$ to $4^{d} 8^{h}$ Imperfect register of Dec. and H.F.
$10^{\mathrm{d}} 17 \frac{1}{2}^{\mathrm{h}}$ to 18^{h} Wave in H.F. $(+20 \gamma)$.
$12^{\mathrm{d}} 12^{\mathrm{h}}$ to 13^{h} Wave in H.F. $(+20 \gamma)$. $13 \frac{33^{\mathrm{h}}}{}$ to 16^{h} Very irregular double wave in H.F. $(-23 \gamma$ to $+21 \gamma)$. 17^{h} to $19 \frac{3}{4}^{\mathrm{h}}$ Irregular triple-crested wave in H.F. (-40γ). $18 \frac{33^{\mathrm{h}}}{}$ to $20 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$.
 Irregular wave in Dec. $\left(-4^{\prime}\right)$: in H.F. small.
$14^{\mathrm{d}} 18^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+24 \gamma)$.
$15^{\text {d }} 15^{3}{ }^{\text {h }}$ to $18^{\text {b }}$ Irregular double wave in H.F. $(+20 \gamma$ to $-20 \gamma)$.
$16^{\mathrm{d}} 20^{\mathrm{h}}$ to $17^{\mathrm{d}} 10^{\mathrm{h}}$ Loss of H.F. Registër.
$20^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to 4^{b} Wave in Dec. $\left(+3^{\prime}\right)$.
$21^{\mathrm{d}} 4^{\frac{3}{4} \mathrm{~b}}$ to 6 年 $^{\mathrm{b}}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$24^{\mathrm{d}} 15^{\mathrm{h}}$ to $16 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in H.F. $(+20 \gamma)$.
$2^{8^{\mathrm{d}}}{ }^{11} \frac{1}{4}^{\mathrm{h}}$ to 1^{h} Loss of Dec. and H.F. Registers.
1913.

August $6^{\mathrm{d}}{ }_{22^{\mathrm{h}}}$ to $7^{\mathrm{d}} 9^{\mathrm{h}}$ Loss of Dec., H.F. and V.F. Registers.

$$
9^{\mathrm{d}} 14 \frac{33^{\mathrm{h}}}{} \text { to } 15 \frac{1}{2} \mathrm{~b} \text { Wave in H.F. }(+20 \gamma)
$$

$10^{\text {d }} 11 \frac{3 \mathrm{~h}}{4}$ to 13^{h} Wave in H.F. (-24γ), followed by a loss of register until $14 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$.
$11^{d}{ }^{11 \frac{1}{2}}$ h to ${ }^{1} 3^{\frac{1}{4} h}$ Wave in H.F. (-35γ). 17^{h} to 18^{h} Small double wave in H.F. $(+16 \gamma$ to $-16 \gamma) . \quad 23 \frac{1 \mathrm{~h}}{4}$ to 24^{h} Wave in H.F. $(+20 \gamma)$.
$12^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to 22^{h} Decrease in Dec. $\left(-6^{\prime}\right) . \quad 21 \frac{3}{4}^{\mathrm{h}}$ to $22 \frac{3}{4}^{\mathrm{h}}$ Wave in H.F. $(+25 \gamma)$.
I $3^{\mathrm{d}} 3 \frac{1 \mathrm{~h}}{4}$ to $5 \frac{3 \mathrm{~h}}{\mathrm{~h}}$ Wave in Dec. $\left(+8^{\prime}\right)$.
$15^{\text {d }} 17 \frac{1}{2}^{\text {h }}$ to $18 \frac{3 h^{h}}{}$ Wave in H.F. (-25γ).
$24^{\mathrm{d}} 0^{\text {h }}$ to 1^{h} Wave in Dec. $\left(+4^{\prime}\right)$.
$28^{\mathrm{d}} 17^{\text {h }}$ to 18^{h} Wave in H.F. $(+30 \gamma)$.

September $6^{d} 1^{h}$ to $2 \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(+4^{\prime}\right)$. 13^{h} to 15^{h} Irregular wave in H.F. (-30γ) followed till $16 \frac{1}{2} \mathrm{~h}$ by a truncated wave (-24γ). $17 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(-2 \mathrm{I} \gamma)$. $17 \frac{1}{2}^{\mathrm{h}}$ to 19^{h} Wave in Dec. $\left(-5^{\prime}\right)$. $21 \frac{1}{2}^{\mathrm{h}}$ to $23 \frac{1}{4}^{\mathrm{h}}$ Truncated wave in Dec. $\left(-4^{\prime}\right)$.
$8^{\mathrm{d}} 0^{\mathrm{h}}$ to $\mathrm{I}^{\frac{1}{4} \mathrm{~h}}$ Wave in Dec. $\left(+3^{\prime}\right)$, followed till $4 \frac{1}{2}^{\mathrm{h}}$ by a triple wave $\left(+4^{\prime},-4^{\prime},+6^{\prime}\right)$. $\quad 2 \frac{1}{4}^{\mathrm{h}}$ to 4^{h} Irregular
 (-27γ). $6 \frac{3}{4}{ }^{\mathrm{h}}$ to $8 \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(+4^{\prime}\right)$. $8 \frac{1}{4}{ }^{\mathrm{h}}$ to r^{h} Wave in H.F. $(-35 \gamma) . \quad 11^{\mathrm{h}}$ to $12 \frac{1^{\mathrm{h}}}{4}$ Wave in H.F. (-37γ). ${ }^{1} 3^{\frac{1}{h}}{ }^{\mathrm{h}}$ to $14 \frac{1}{4}^{\mathrm{h}}$ Decrease in Dec. $\left(-7^{\prime}\right)$: wave in H.F. (-25γ). 20^{h} to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right) .8^{\mathrm{d}} 23^{\frac{3}{4}}{ }^{\mathrm{h}}$ to $9^{\mathrm{d}} \mathbf{1}^{\mathrm{h}}$ Wave in Dec. $\left(+\mathbf{I I}^{\prime}\right)$.
$9^{d} 0^{\mathrm{h}}$ to $\mathrm{I}_{4}^{\frac{1}{4}}$ Wave in H.F. $(+30 \gamma)$. o^{h} to I^{h} Decrease in V.F. $(-24 \gamma) .4^{\mathrm{h}}$ to 6^{h} Wave in Dec. $\left(+8^{\prime}\right)$: double wave in H.F. $(-40 \gamma$ to $+15 \gamma)$. $94^{\frac{1}{b}}$ to 11^{b} Wave in H.F. (-34γ). $12 \frac{1}{2}^{\mathrm{h}}$ to 13^{h} Increase in H.F. $(+35 \gamma)$. 17^{h} to 18^{h} Wave in Dec. $\left(-3^{\prime}\right) . \quad 21^{\mathrm{h}}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$10^{\mathrm{d}} 188^{\frac{3 \mathrm{~h}}{\mathrm{~h}}}$ to $200^{3 \mathrm{~h}}$ Irregular double-crested wave in Dec. $\left(-6^{\prime}\right)$, steep at commencement. $\quad 23^{\frac{1}{2}}$ to 24^{h} Wave in Dec. $\left(-4^{\prime}\right)$.
$12^{\mathrm{d}} 188^{\frac{1 \mathrm{~h}}{}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in H.F. $\left(-3^{\prime}\right)$.
$19^{\text {d }} 2 \frac{3}{4}^{\frac{h}{h}}$ to 23^{h} Wave in H.F. $(+20 \gamma) .22^{\mathrm{h}}$ to $23 \frac{1}{2}{ }^{\mathrm{h}}$ Truncated wave in Dec. $\left(-4^{\prime}\right)$.
$22^{\mathrm{d}} 17^{\mathrm{h}}$ to 18^{h} Wave in Dec. $\left(-4^{\prime}\right)$. $23 \frac{1}{4}^{\mathrm{h}}$ to 24^{h} Decrease in Dec. $\left(-6^{\prime}\right)$: small wave in H.F.
$23^{\mathrm{d}} 0^{\mathrm{h}}$ to $\mathrm{I}^{\frac{1 \mathrm{~h}}{}}$ Wave in Dec. $\left(+7^{\prime}\right)$. $\mathrm{I}^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $13 \frac{1}{4}^{\frac{\mathrm{h}}{}}$ Wave in H.F. (-20γ).
$30^{\text {d }} 18^{\text {h }}$ to $19 \frac{1}{4}^{\text {h }}$ Donble crested wave in Dec. $\left(-5^{\prime}\right)$, steep at commencement.

October $4^{\mathrm{d}} 2 \mathrm{I}^{\frac{1}{4}}$ to 23^{h} Wave in H.F. $(+30 \gamma)$.
$5^{\mathrm{d}} 1_{2^{\frac{1}{h}}}$ to 4^{h} Irregular wave in Dec. $\left(-8^{\prime}\right) .{42^{\mathrm{h}}}^{\mathrm{h}}$ to $5^{\frac{3}{4} \mathrm{~h}}$ Wave in H.F. $(-30 \gamma) .4 \frac{3}{4}^{\mathrm{h}}$ to $6 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+9^{\prime}\right)$.
1913.

October
$6^{\mathrm{d}} \mathrm{I}_{\frac{1}{2}}{ }^{\mathrm{h}}$ to $7 \frac{1}{2}{ }^{\mathrm{h}}$ Quadruple wave in Dec. $\left(-4^{\prime},+5^{\prime},-8^{\prime},+7^{\prime}\right)$. $\mathrm{I}_{\frac{3}{4} \mathrm{~h}}$ to 3^{h} Wave in H.F. (-25γ). $2^{\frac{3}{4} \mathrm{~h}}$ to $3^{\frac{1}{2}}{ }^{\mathrm{h}}$ Decrease in V.F. $(-15 \gamma) . \quad 5^{\mathrm{h}}$ to $6 \frac{1}{2}^{\mathrm{h}}$ Decrease in H.F. (-60γ).
 (-34γ). $14 \frac{34^{h}}{}$ to 16^{h} Wave in Dec. $\left(-3^{\prime}\right)$. $18 \frac{1^{h}}{}$ h to 20^{h} Wave in Dec. $\left(-11^{\prime}\right)$. 19^{h} to 20^{h} Wave in H.F. $\left(+4^{\circ} \gamma\right.$).
 ${ }^{1} 5 \frac{1}{2}$ h Double wave in HF. $(+18 \gamma$ to $-18 \gamma)$. $18 \frac{3 \mathrm{~h}}{4}$ to $2^{2}{ }^{\mathrm{h}}$ Irregular double-crested wave in Dec. (-8^{\prime}). $19^{\text {h }}$ to $2 \frac{1}{2}^{\frac{1 \mathrm{~h}}{}}$ Irregular wave in H.F. $\left(+4^{8} \gamma\right)$.
$9^{\mathrm{d}} 15^{\mathrm{h}}$ to 16^{h} Wave in Dec. $\left(-3^{\prime}\right)$. $16 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $17 \frac{3}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-9^{\prime}\right)$, steep at commencement: double wave in H.F. $(-23 \gamma$ to $+30 \gamma)$. $9^{\text {d } 22 \frac{1}{2}}{ }^{\mathrm{h}}$ to $\mathrm{I}^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$. Double wave in Dec. $\left(+5^{\prime}\right.$ to $\left.-4^{\prime}\right)$.
 wave in H.F. $(-3 \circ \gamma)$. $16 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $17 \frac{1 \mathrm{l}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$12^{\mathrm{d}} 2^{0^{\mathrm{h}}}$ to $\mathbf{2 1}_{4}^{1{ }_{4}^{\mathrm{h}}}$ Wave in Dec. $\left(-7^{\prime}\right)$.
$13^{\mathrm{d}} 17^{\mathrm{h}}$ to 18^{h} Wave in Dec. (-5^{\prime}).
$16^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}}$ to $2_{2}^{\frac{1}{4} \mathrm{~h}}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$18^{\mathrm{d}} 17 \frac{3}{4}^{\mathrm{h}}$ to $18 \frac{1}{2}{ }^{\mathrm{h}}$ Decrease in Dec. $\left(-6^{\prime}\right)$: in H.F. $(-50 \gamma) .22^{\mathrm{h}}$ to $22 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (-27γ).

$25^{\mathrm{d}} 22 \frac{1^{\mathrm{h}}}{}$ to 24^{h} Truncated wave in Dec. (-3^{\prime}).
$3^{0^{d}} 22 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $3 \mathrm{I}^{\mathrm{d}} \mathbf{I}^{\mathrm{h}}$ Double wave in Dec. $\left(-3^{\prime}\right.$ to $\left.+4^{\prime}\right)$.
$3 \mathrm{I}^{\mathrm{d}} \circ_{\frac{1}{4}}$ to $\mathrm{I}_{4}^{\frac{1 \mathrm{~h}}{}}$ Wave in H.F. $(+33 \gamma)$. $\mathrm{O}_{\frac{1}{\mathrm{~h}}}$ to I^{h} Decrease in V.F. (-13γ)

November $2^{\mathrm{d}} 4 \frac{1}{2}^{\mathrm{h}}$ to $6 \frac{1}{2}^{\mathrm{h}}$ Slow wave in Dec. (-3^{\prime}). 14^{h} to $1^{1} \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right)$. 18^{h} to 19^{h} Wave in Dec. $\left(-3^{\prime}\right)$. $2 \mathbf{1}^{\mathrm{h}}$ to $22_{2}^{\frac{1}{\mathrm{~h}}}$ Double-crested wave in Dec. $\left(-7^{\prime}\right)$. 22^{h} to 24^{h} Two successive waves in H.F. $(+20 \gamma$ and $+28 \gamma) . \quad 2^{\mathrm{d}} 23^{\mathrm{h}}$ to $3^{\mathrm{d}} \circ \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right)$.
$3^{\mathrm{d}} 1^{\frac{1 \mathrm{~h}}{}}$ to 2^{h} Wave in Dec. $\left(+4^{\prime}\right) . \quad 34^{\frac{1 \mathrm{~h}}{}}$ to $5^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+8^{\prime}\right) . \quad 11^{\frac{3}{4}}$ to $1^{\text {h }}$ Slow wave in H.F. (-30γ).
$7^{\mathrm{d}} \frac{1}{4} \frac{1}{4}^{\mathrm{h}}$ to 2^{h} Wave in Dec. $\left(+3^{\prime}\right)$. 15^{h} to 17^{h} Wave in H.F. $\left(-4 \mathrm{I} \gamma\right.$). $15^{\frac{1}{4} \mathrm{~h}}$ to $16 \frac{3}{4} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right)$. $7^{\mathrm{d}} 23 \frac{34^{h}}{}$ to $8^{\mathrm{d}} 0_{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right)$.
$8^{d} 0^{h}$ to 1^{h} Wave in H.F. $(+30 \gamma)$. $1^{\text {h }}$ to 2^{h} Wave in Dec $\left(+4^{\prime}\right)$. $20 \frac{30}{4}^{h}$ to $21^{\frac{1}{4}}$ Wave in H.F. $(+25 \gamma)$. $10^{d} 12 \frac{1}{2}{ }^{\text {h }}$ to $15^{\text {h }}$ Loss of Dec., H.F. and V.F. Registers.
$13^{\mathrm{d}} 23^{\mathrm{h}}$ to $14^{\mathrm{d}}{ }^{1} 1_{2}^{\mathrm{h}}$ Loss of H.F. Register.
$14^{\text {d }} 0 \frac{1}{4}^{\mathrm{h}}$ to $5 \frac{1}{2}^{\mathrm{h}}$ Partial loss of Dec. and V.F. Registers.
$28^{\mathrm{d}} 17 \frac{3}{4}^{\mathrm{h}}$ to $18 \frac{3}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right) . \quad 21_{4}^{1^{\mathrm{h}}}$ to 22^{h} Wave in Dec. $\left(-3^{\prime}\right) . \quad 21_{2}^{\frac{1}{2}^{\mathrm{h}}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+40 \gamma)$.
1913.

December $I^{d} 3^{\frac{1 \mathrm{~h}}{4}}$ to $4^{\frac{3 \mathrm{~h}}{} \mathrm{~h}}$ Irregular double-crested wave in Dec. $\left(+4^{\prime}\right)$.
$4^{\mathrm{d}} 18 \frac{1_{2}^{h}}{}$ to $2 \mathrm{I}^{\mathrm{h}}$ Two successive waves in H.F. (-50γ and -39γ). 19^{h} to $19 \frac{1}{2}^{\mathrm{h}}$ Sharp decrease in Dec. ($-14^{\text {) }}$), and increase ($+8^{\prime}$).
$7^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ Wave in H.F. $(+36 \gamma)$.

$25^{\mathrm{d}} 20 \frac{1^{\mathrm{h}}}{}$ to $2 \mathrm{I}^{\mathrm{h}}$ Sharp decrease in Dec. $\left(-9^{\prime}\right)$, and increase $\left(+6^{\prime}\right)$. $20 \frac{1^{\mathrm{h}}}{}{ }^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. (-28γ).
$26^{\mathrm{d}} 1 \frac{1}{2}{ }^{\mathrm{h}}$ to $2 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+9^{\prime}\right)$. $\mathrm{I}_{4}^{\frac{3 \mathrm{~h}}{}}$ to 3^{h} Wave in H.F. $(+30 \gamma)$. $15 \frac{3 \mathrm{~h}}{4}$ to $16 \frac{3 \mathrm{hb}}{4}$ Truncated wave in Dec. $\left(-4^{\prime}\right)$.
$27^{\mathrm{d}} 16 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular double-crested wave in Dec. $\left(-5^{\prime}\right)$. $21 \frac{3 \mathrm{~h}}{4}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+20 \gamma)$. $30^{d} 9^{h}$ to $12^{\text {h }}$ Loss of H.F. register.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

of

METEOROLOGICAL OBSERVATIONS.

1913.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Dhe a Degree on difference between the Air and Dew. Point 'Temperatures (Column is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between wethe nom Thermometers. The readings in Column 16 are taken Differences (C
daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registring thermometers.

* Rainfall (Column 17). The amount entered on January 27 is derived from frost.

The mean reading of the Barometer for the month was $29^{\text {in }} 618$, being ${ }^{\text {in }} \cdot{ }_{17} 6$ lower than the average for the 65 years, 1841-1905.
Temperature of the Ail.
The highest in the month was $52^{\circ} \cdot 1$ on January 23 ; the lowest in the month was $26^{\circ} \cdot 2$ on January I_{3}; and the range was $25^{\circ} 9$.
The mean of all the highest daily readings in the montin was $4^{\circ} \cdot 1$, being $3^{\circ} \circ$ higher than the average for the 65 years, $184^{1-1905 .}$
The mean of all the lowest daily readings in the month was $35^{\circ} 9$, being $2^{\circ} \cdot 2$ hiyher than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $10^{\circ} 2$, being $0^{\circ} .8$ greater than the average for the 65 years, 1841-1905.
The mean for the month was $41^{\circ} \cdot 1$, being $20^{\circ} .5$ higher than the average for the 65 years, $\mathbf{1 8 4 1 - 1 9 0 5}$.

The mean Temperature of Evaporation for the month was $39^{\circ} \cdot 7$, being $2^{\circ} \cdot 5$ higher than
The mean Temperature of the Dew Point for the month was $37^{\circ} 9$, being $2^{\circ} \cdot 6$ higher than The mean Degree of Humidity for the month was $89^{\circ} \circ$, being $1 \circ 0$ greater than
The mean Elastic Force of Vapour for the month was oin ${ }^{2} 28$, being oin ${ }^{022}$ greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grrs}^{6} \cdot 6$, being ogr r_{2} grecter than
The mean Weight of a Cubic Foot of Air for the month was 548 grains, being 6 grains less than
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by ro) was 6.8 .
The mean proportion of Sunshine for the month (constant sunshine being represented by r) was 0.21 . The maximum daily amount of Sunshine was 7.0 hours on January 3 I . The highest reading of the Solar Radiation Thermometer was $78^{\circ} \cdot 8$ on January 27 ; and the lowest reading of the Terrestrial Radiation Thermometer was $18^{\circ} \cdot \mathbf{2}$ on January 13 . The Proportions of Wind referred to the cardinal points were N. 2, E. 4, S. 12, and W. 9. Four days were calm.
The Greatest Pressure of the Wind in the month was $11 \circ$ lbs. on the square foot on January 31. The mean daily Horizontal Movement of the Air for the month was 297 miles; the greatest daily value was 641 miles on January 31 ; and the least daily value was 76 miles on January 29 .
Rain (oin $\cdot 005$ or over) fell on 21 days in the month, amounting to $2^{\text {in }} \cdot 654$, as measured by gauge No. 6 partly sunk below the ground ; being oin 773 greater than the average fall for the 65 years, 1841 -1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { rgr. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Temperature.							Difference between the Air Temperature and Dew Point Temperature.				temprrature.				Electricity.	
			Of the Air.					$\left\lvert\, \begin{gathered} \text { Of } \\ \text { Evapo } \\ \text { ration. } \end{gathered}\right.$	$\begin{aligned} & \text { of the } \\ & \text { Dew. } \end{aligned}$ $\begin{aligned} & \text { Dew. } \\ & \text { Point. } \end{aligned}$				Of Rad	iation.	Of the Earth				
			宮		Daily Range. Mean of z4 Hourly Halues. Valu		$\begin{gathered} \text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ 65 \text { Years. } \end{gathered}$	Mean of 24 Values.	Deduced Mean Daily Value.	嗅				$\begin{aligned} & \text { Highest } \\ & \text { in Sun's } \\ & \text { Rays. } \end{aligned}$	$\begin{aligned} & \text { Lowest } \\ & \text { on the } \\ & \text { Grass. } \end{aligned}$	$\begin{aligned} & \text { Surface } \\ & \text { of the } \\ & \text { Soil. } \end{aligned}$			
Feb. I	Greatest Dec. S.	$\begin{gathered} \text { in. } \\ 29.467 \\ 29.553 \\ 29.857 \end{gathered}$	$\begin{aligned} & 44 \cdot 1 \\ & 45 \cdot 8 \\ & 52 \cdot 3 \end{aligned}$	$\begin{aligned} & 35 \cdot 1 \\ & 33 \cdot 3 \\ & 45 \cdot 7 \end{aligned}$	$\begin{array}{r} \circ \\ 9.0 \\ \mathbf{1 2 . 5} \\ 6.6 \end{array}$	$\begin{gathered} \circ \\ 38 \cdot 5 \\ 40 \cdot 4 \\ 49 \cdot 2 \end{gathered}$	$\left\|\begin{array}{cc} & 0 \\ - & 1 \cdot 1 \\ + & 0.9 \\ + & 9.7 \end{array}\right\|$	$\begin{aligned} & 37 \cdot 2 \\ & 38 \cdot 5 \\ & 46 \cdot 2 \end{aligned}$	$\begin{gathered} \circ \\ 35 \cdot 4 \\ 36 \cdot 1 \\ 43 \cdot 0 \end{gathered}$	$\begin{aligned} & 3 \cdot 1 \\ & 4 \cdot 3 \\ & 6 \cdot 2 \end{aligned}$	$\begin{aligned} & 5 \cdot 5 \\ & 9 \cdot 3 \\ & 9 \cdot 3 \end{aligned}$	\circ					$\begin{aligned} & 43.60 \\ & 43.45 \\ & 43 \cdot 25 \end{aligned}$	in. 0.229 0.178 0.000	$\begin{gathered} m \mathrm{P}: m \mathrm{~m}, \mathrm{ssN} \\ \mathrm{mP}: \mathrm{mP}, \mathrm{ssN}: \mathrm{mP} \\ \mathrm{wP} \end{gathered}$
												$\begin{aligned} & 0.7 \\ & 1.2 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 89 \\ & 85 \end{aligned}$	$\begin{aligned} & 51 \cdot 0 \\ & 69^{\circ} 1 \end{aligned}$	$\begin{aligned} & 27 \cdot 6 \\ & 27 \cdot 6 \end{aligned}$				
													79	$71 \cdot 9$	39.4				
		30.051	55°	$44^{\circ} 5$	10.5	$49 \cdot 5$	+10.0	$46 \cdot 1$	$42 \cdot 5$	7*0	12'1	$2 \cdot 1$	77	$84^{\circ} 0$	35.7	$\begin{aligned} & 43.39 \\ & 43.72 \\ & 44.08 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.000 \\ & 0.000 \\ & 0.011 \end{aligned}\right.$	$\begin{aligned} \mathrm{wP} & : m \mathrm{mP}: m \mathrm{mP} \\ \mathrm{wP} & : \mathrm{mP}_{\mathrm{mP}}: \mathrm{mP} \end{aligned}$	
		29.877	$48 \cdot 3$	$43 \cdot 9$	4.4	$46 \cdot 1$	+ 65	$43 \cdot 8$	41.2	4.9	$\begin{array}{r} 10.4 \\ 8.6 \end{array}$	$\begin{aligned} & 1 \cdot 7 \\ & 1 \cdot 9 \end{aligned}$			$\begin{aligned} & 31 \cdot 1 \\ & 33 \cdot 1 \end{aligned}$				
	New	29.767	$52 \cdot 2$	$39^{\circ} 9$	12.3	$46 \cdot 9$	+ 73	$44 \cdot 8$	42.5	4.4									
7	Apogee	29.755	52.6	$44 *$	$8 \cdot 2$	$49 \cdot 7$	$+10.2$	479	$46 \cdot 0$	$3 \cdot 7$	$8 \cdot 4$	$2 \cdot 1$	88	$58 \cdot 5$	37°	44.08	$0 \cdot 065$	$\begin{gathered} w P: w P: w P, w w N \\ w P: m P: m P \end{gathered}$	
8	Apoge	30.108	49.3	4171	8.2	$44^{\prime} 7$	+ 5.4	$40 \cdot 4$	35.4	$9 \cdot 3$	$15 \cdot 3$	4.2	70	80.1	32.0	44.51	0.0000.073		
9	In Equator	30.236	52.0	$43 \cdot 2$	$8 \cdot 8$	47.5	$+8.4$	$45 \cdot 9$	$44^{\circ} \mathrm{I}$	3.4	7.2	0.6	89	58.0	$34 \cdot 8$	44.70			
10		30.263	53.5	$38 \cdot 7$	14.8	$46 \cdot 1$	+ 7.2	$43 \cdot 5$	$40 \cdot 5$	$5 \cdot 6$	12.5	$0 \cdot 4$	82	$75 \cdot 8$	28.0	44.71	$0 \cdot 050$	wP, wwN : mP : sP vP, wwN : mP $\mathrm{sP}: \mathrm{mP}$	
11		30.372	53.2	$32 \cdot 1$	21.1	$40 \cdot 3$	+ 15	$38 \cdot 3$	$35 \cdot 7$	$4 \cdot 6$	I19	0.5	84	73.0	23.5	44.81			
12	...	30.479	$48 \cdot 0$	30.2	17.8	38.2	-0.6	37%	$37^{\circ} 0$	$1 \cdot 2$	3.0	00°	96	$60 \cdot 3$	23°	44.70			
			$42 \cdot 0$		7.6	37.6	- 14	$37^{1} 1$	$36 \cdot 4$	1.2	34	00	96	$66 \cdot 1$	$29^{\circ} 2$	$44^{\prime} 4^{2}$	0.001**	$\mathrm{mmP}^{\text {P }}$	
13	First Quarter	30.374 30.249	42.2	34.4 302	$8 \cdot 0$	35.5	- 148	$35^{\circ} \mathrm{I}$	345	10	1.9	0'0	96	$42 \cdot 2$	28.1	44.22	0.003*	mP	
15		30.083	$39 \cdot 8$	35.4	$4 \cdot 4$	37.4	- 2.0	37°	$36 \cdot 4$	1.0	$3 \cdot 5$	$0 \cdot 2$	96	$40 \cdot 1$	$35 \cdot 4$	44.01	$0 \cdot 071$:VP	
16	Greatest Dec. N.	30.048	46.0	$33^{\prime} \mathrm{I}$	129	$38 \cdot 7$	- 0.8	35.6	315	7.2	16.4	$0 \cdot 8$	76	$86 \cdot 0$	$25^{\circ} 9$	43.63	$0 \cdot 000$	$m P: m P: m P, m N$ vN,mP:mP:mP	
17	...	30.020	$42 \cdot 0$	$32 \cdot 9$	9-1	$38 \cdot 0$	- 1.6	35.7	32.6	5.4	$\begin{array}{r}79 \\ \hline 19\end{array}$	$2 \cdot 3$	81	59.6	26.7	$43 \cdot 22$	0.020 0.000		
18	\ldots	29.973	38.4	32'I	$6 \cdot 3$	34.2	-5.3	31'1	257	$8 \cdot 5$	13.2	4.4	71						
19		29.943	$40^{\circ} 0$	$28^{\prime} 9$	11'1	33.8	- 57	$30 \cdot 8$	25.4	8.4	11.0	$3 \cdot 8$	70	83.2	$\begin{aligned} & 24 \cdot 1 \\ & 21.9 \\ & 23 \cdot 0 \end{aligned}$	$\begin{aligned} & 42.90 \\ & 42.52 \\ & 42.20 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & \mathrm{mP}: m \mathrm{mP}: \mathrm{sP} \\ & \mathrm{mP}: \mathrm{sP}: \mathrm{sP} \\ & \mathrm{sP}: \mathrm{vP}: \mathrm{sP} \end{aligned}$	
20	\cdots	29.929	$36 \cdot 2$	31.1	$5 \cdot 1$	33.7	- 5.8	30.7	25.2	8.5 7.8	$\begin{array}{r}99 \\ \hline 15\end{array}$	5.3	70	71.7					
21	Perigee : Full	30.118	$43 \cdot 3$	$33^{\circ} \mathrm{I}$	10.2	$38 \cdot 2$	- 1.4	34.9	$30^{\circ} 4$	7.8	II'3	20	73						
22	In Equator	30.280	$42 \cdot 1$	27.8	14.3	$35^{\prime} 1$	-4.6	33.3	$30 \cdot 4$	$4 \cdot 7$	10.9	$0 \cdot 0$	82	73.1	14.5	$42 \cdot 02$	$\left\lvert\, \begin{aligned} & 0.022 \\ & 0.003^{*} \\ & 0.000 \end{aligned}\right.$	$\begin{gathered} \mathrm{vP}, \mathrm{vN}: \mathrm{vP}: \mathrm{mP} \\ \mathrm{mP} \\ \mathrm{wP}: \mathrm{mP}: \mathrm{mP} \end{gathered}$	
23	In Equator	30.136	$48 \cdot 3$	24.2	$24^{\circ} 1$	35.4	-44	31.8	26.2	$9 \cdot 2$	17.5	$3 \cdot 1$	68	92.7 86.3	$10^{\circ} \mathrm{C}$	$41 \cdot 77$			
24	\cdots	29.777	$48 \cdot 6$	29.2	19.4	39.4	-0.6	35.5	$30 \cdot 4$	$9^{\circ} 0$	15.7	$3 \cdot 3$	71	$86 \cdot 3$	$15^{\circ} 8$				
		29.659	49°	$36 \cdot 1$	12.9	$42 \cdot 5$	+ 2.4	39.3	35.4	$7 \cdot 1$	12.1	2.9	77	85.3	22.2	41.59	0.000	$\begin{array}{r} m P: v P: m P \\ w P, \mathrm{sN}: w \mathrm{mP}: \mathrm{mP}, \mathrm{vN} \\ \mathrm{vP}, \mathrm{ssN}: \mathrm{mP}: \mathrm{mP}, \mathrm{sN} \end{array}$	
26		29.586	$53^{\circ} \mathrm{O}$	41.1	119	45^{\prime} I	+4.9 +4.8	42.9	$40 \cdot 4$	$4 \cdot 7$	$\begin{array}{r}9.9 \\ \hline 3.6\end{array}$	1.5	84	101.1 84.6	32.1 $30 \cdot 2$	41.69 41.90	$\begin{aligned} & 0.051 \\ & 0.028 \end{aligned}$		
27	Last Quarter	29.611	$52 \cdot 0$	$38 \cdot 1$	13.9	44.1	+ $3 \cdot 8$	$4^{17} 7$	$38 \cdot 9$	$5 \cdot 2$	13.6	I'I	8 I	84.6	$30^{\prime} 2$	$\begin{aligned} & 41.90 \\ & 42.21 \end{aligned}$			
28		30.034	$42 \cdot 0$	$36 \cdot 8$	$5{ }^{\circ}$	$39^{\circ} 5$	-0.8	$36 \cdot 8$	$33 \cdot 3$	$6 \cdot 2$	$8 \cdot 8$	3.8	79	71.4	32.9		0.003	$m P: m P: s P$	
Means	...	29.986	$46 \cdot 7$	$35 \cdot 6$	11'1	$40 \cdot 9$	+14	$38 \cdot 6$	35.4	$5 \cdot 5$	$10^{\circ} 0$	1.9	81.4	$71 \cdot 2$	277	$43 \cdot 32$	0.812	\ldots	
Number of Columin for Reference. Rens	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, $1841-1905$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns II and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amounts entered on February 12, 13, 14 and 23, are derived from fog or frost.

Temperatyer of the Aip.
The highest in the month was $55^{\circ} .0$ on February 4 ; the lowest in the month was $24^{\circ} \cdot 2$ on February 23 ; and the range was $30^{\circ} .8$.
The highest in
The mean of all the host daily readings in the month was $35^{\circ} \cdot 6$, being $1^{\circ} .4$ higher than the averave for the 65 years, i $841-1905$.
The mean of all the lowest daily readings in the month was $35^{\circ} \cdot 6$, being $1^{\circ} 4$ figher than the average for
The mean for the month was $40^{\circ} 9$, being $1^{\circ}{ }^{\circ}{ }^{\circ}$ higher than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $3^{\circ} \cdot 6$, being $0^{\circ} 9$ higher than
The mean Temperature of the Dew Point for the month was $35^{\circ} 4$, being the same as
The mean Degree of Humidity for the month was $8 \mathrm{I}^{\circ} 4$, being $4 \cdot 1$ less than
The mean Elastic Force of Vapour for the month was oin ${ }^{207}$, being the same as
the average for the 65 years, $184 \mathrm{i}-1905$.
The mean Weight of Vapour in a Cubic Foot of Air for the month was 2 grs ${ }_{4}$, being the same as
The mean Weight of a Cubic Foot of Air for the month was 554 grains, being y grain greater than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was 7.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.210 . The maximum daily amount of Sunshine was 8.0 hours on February 23 .
The highest reading of the Solar Radiation Thermometer was $101^{\circ} \cdot 1$ on February 26 ; and the lowest reading of the Terrestrial Radiation Thermometer was $10^{\circ} \cdot 0$ on February $\mathbf{2 3 .}$
The Proportions of Wind referred to the cardinal points were N. 3, E. 6, S. 5, and W. 8. Six days were calm.
The Greatest Pressure of the Wind in the month was $20 \circ \mathrm{lbs}$. on the square foot on February 7 . The mean daily Horizontal Movement of the Air for the month was 315 miles ; the greatest daily value was 636 miles on February 7 ; and the least daily value was 66 miles on February 12.
Rain (oin•005 or over) fell on in days in the month, amounting to oin $\cdot \delta_{12}$, as measured by gauge No. 6 partly sunk below the ground; being oin• 668 less than the average fall for the 65 years, 1841-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. Degree of Humidity (Column ${ }^{13}$) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. Differences (Colamns II and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermoneters. I'he readings in Oolumn i6 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 698$, being $o^{\text {in }} \cdot 048$ lower than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $59^{\circ} \cdot 0$ on March 6 ; the lowest in the month was $28^{\circ} .2$ on March 18 ; and the range was $30^{\circ} .8$.
The mean of all the highest daily readings in the month was $52^{\circ} \cdot 0$, being $2^{\circ} \cdot 2$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $38^{\circ}{ }_{3}$, being $3^{\circ} \cdot{ }_{2}$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $13^{\circ} \cdot 7$, being $1^{\circ} \circ$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $44^{\circ} \cdot 5$, being $2^{\circ} \cdot 6$ higher than the average for the 65 years, 1841-1905.

The mean Temperature of Evaporation for the month was $41^{\circ} \cdot 7$, being $2^{\circ} \cdot 3$ higher than
The mean Temperature of the Dew Point for the month was $3^{\circ} \cdot 3$, being $2^{\circ} \circ$ higher than The mean Degree of Humidity for the month was $79^{\circ} 4$, being $1 \cdot 1$ less than
The mean Elastic Force of Vapour for the month was oin.231, being oin.o17 greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grs} \cdot 7$, being ogr. 2 greater than
The mean Weight of a Cubic Foot of Air for the month was 546 grains, being 3 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 7.4 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0^{\circ} 25^{2}$. The maximum daily amount of Sunshine was $9^{\circ} \mathrm{I}$ hours on March 12 The highest reading of the Solar Radiation Thermometer was $126^{\circ}{ }_{9}$ on March 6 ; and the lowest reading of the Terrestrial Radiation Thermometer was $18^{\circ}{ }^{\circ} 9$ on March 18 .
The Proportions of Wind referred to the cardinal points were N. 3, E. 2, S. 9, and W. 14. Three days were calm.
The Greatest Pressure of the Wind in the month was 25.3 lbs , on the square foot on March 16. The mean daily Horizontal Movement of the Air for the month was 414 miles; the greatest daily value was 845 miles on March 19 ; and the least daily value was 108 miles on March 31 .
 fall for the 65 years, $184 \mathrm{I}-1905$.

$\begin{gathered} \text { MoNTH } \\ \text { and } \\ \text { DAY, } \\ \text { Igris. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$	${ }_{\text {METER }}^{\text {Baro- }}$	Temperature.							Difference between the Air Temperature and Dew Point Temperature.				Temperature.				Electricity.	
			Of the Air.					$\left\lvert\, \begin{gathered} \text { of } \\ \text { Ovapo- } \\ \text { ration. } \end{gathered}\right.$	Of the Dew Point.				Of Radiation.	of theEarthEtr. in.3elowthetheSurfaceof theSoil.					
				$\begin{aligned} & \dot{\mathbf{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	$\begin{gathered} \text { Daily } \\ \text { Rauge. } \end{gathered}$		Excess above Average of 65 Years.								$\left\|\begin{array}{c} \text { Highest } \\ \text { in Sun's } \\ \text { Rays. } \end{array}\right\|$	Lowest on the Grass.			
		in.	-	-	\bigcirc	\bigcirc	\bigcirc	\cdot	\bigcirc	-	\bigcirc	-			-	-	-	in.	
Apr. 1		29.641	$53^{\circ} \mathrm{O}$	37.2	$15^{\circ} 8$	43.4	- 1.9	411	38.4	5°	13.5	1.4	82	101.9	$29^{\circ} 0$	$44^{\prime 7} 72$	$0 \cdot 160$	wP, mN:mP : vP, ssN	
	Apogee	29.858	$55^{\circ} \mathrm{2}$	33°	22.2	44^{1}	- 1.6	$40 \cdot 9$	$37 \cdot 2$	$6 \cdot 9$	12.7	2.0	76	108.0	$25^{\circ} \mathrm{O}$	44.82	$0 \cdot 000$	$m \mathrm{~m}$: wP : mP	
3	...	29.917	$55^{\circ} \mathrm{O}$	$36 \cdot 3$	18.7	$45 \cdot 2$	-0.8	41.4	37°	$8 \cdot 2$	$18 \cdot 5$	$2 \cdot 0$	73	119.1	26.3	44.79	$0 \cdot 043$	wP : $\mathrm{\nabla P}$: vP, vN	
4		29.828	51.2	$40 \cdot 4$	10.8	$45^{1} 1$	- I'I	$43^{\circ} \mathrm{O}$	$40 \cdot 6$	$4 \cdot 5$	$6 \cdot 8$	$2 \cdot 6$	84	$72 \cdot 8$	$39^{\circ} 0$	44.90	- 108	vN, wP : mP : wP	
5	In Equator	29.658	52.6	$42 \cdot 1$	10.5	$46 \cdot 2$	- O'I	43.9	$41 \cdot 3$	$4^{\circ} 9$	$8 \cdot 4$	$0 \cdot 9$	84	101.2	$41 \cdot 9$	$44^{\circ} 91$	$0 \cdot 023$	wP : mP :	
6	New	29.601	$55 \cdot 0$	41.0	14.0	$46 \cdot 4$	+0.1	$42 \cdot 3$	37.7	$8 \cdot 7$	$16 \cdot 1$	3•I	72	112.6	$38 \cdot 6$	$45^{\circ} 09$	$0 \cdot 000$	\ldots... wP, vN : wP	
8	- \cdot	29.678	5111	$39^{\circ} 5$	11.6	$43^{\circ} 1$	- 3.2	$38 \cdot 5$	$33^{\circ} \mathrm{O}$	$10^{\circ} 1$	17.4	$4 \cdot 8$	67	108.9	$34 \cdot 6$	$45^{\circ} 21$	$0 \cdot 001$	wP : mP, mN :mP	
8	...	29.901	513	$34^{\circ} 9$	16.4	42.4	- 37	$38 \cdot 8$	34.4	$8 \cdot 0$	12.8	$3 \cdot 2$	74	$96 \cdot 0$	28.2	$45^{\circ} \mathrm{I}$ I	$0 \cdot 000$	mP	
9	..	29.952	$47^{\circ} \mathrm{O}$	$38 \cdot 2$	$8 \cdot 8$	$42 \cdot 2$	- 3.8	$38 \cdot 9$	34.9	7×3	11.0	$3 \cdot 5$	76	85.2	$27 \cdot 6$	45.22	$0 \cdot 000$	$m P: m P: s P$	
10	\ldots	29.828	49.4	$38 \cdot 1$	11.3	43.9	-2.0	42.1	39*9	$4^{\circ} \mathrm{O}$	7\%	$2 \cdot 1$	86	$68 \cdot 6$	33°	$45^{\circ} 20$	0.123		
11		29.692	44°	34^{\prime} I	$9 \cdot 9$	39°	- 6.8	37.2	34.9	4^{-1}	10.4	$2 \cdot 3$	86	64.0	$32 \cdot 9$	45.23	$0 \cdot 374$	$\mathrm{vP}: \vee \mathrm{P}, \operatorname{ss} \mathrm{~N}: \operatorname{ss} \mathrm{N}, \mathrm{mP}$	
12	Greatest Dec. N.	29.701	44^{11}	33.2	10.9	38.0	-79	$34^{\circ} \mathrm{O}$	$28 \cdot 6$	94	14.6	$2 \cdot 0$	68	109.8	25^{2}	45.20	0.040	$\mathrm{vN}, \mathrm{vP}: \mathrm{mP}: \mathrm{sP}$	
13		$29^{\circ} 941$	$45 \cdot 8$	$29^{\circ} 0$	16.8	37.4	-8.7	33.4	27.8	$9 \cdot 6$	15.2	$3 \cdot 7$	68	109.2	17.9	44.92	$0 \cdot 000$	sP :mP : wP	
14	First Quarter	29.905	$48 \cdot 6$	33.4	15.2	$41 \cdot 6$	-4.8	$38 \cdot 8$	$35^{\circ} 2$	$6 \cdot 4$	11.6	1•1	80	91.5	23.9	44.70	$0 \cdot 060$	$\mathrm{wP}: \mathrm{mP}: \mathrm{mP}, \mathrm{ss} N$	
15	...	29759	52.6	$42 \cdot 8$	$9 \cdot 8$	47.4	+0.6	44.2	$40 \cdot 6$	$6 \cdot 8$	10.9	2.4	78	78.6	37°	$44 \cdot 59$	$0 \cdot 000$	mP	
16	\ldots	29.352	57.9	37.8	20.1	$48 \cdot 2$	+ 1.0	44*9	41'3	$6 \cdot 9$	16.2	2.2	77	106.9	27.1	$44^{\prime} 71$	0.250	wP, wwN : vN , wP : sP	
17		29.396	$55^{\circ} 9$	31.2	24.7	43°	-4.6	$39^{\circ} \mathrm{I}$	34.4	$8 \cdot 6$	15.2	I. 6	72	127.9	23.2	$45^{\circ} \mathrm{I}$	0.052	$\mathrm{mP}: \mathrm{vP}, \mathrm{ssN}: \mathrm{ssN}, \mathrm{sP}$	
18	Perigee: In Equator	29.439	54.1	$35 \cdot 3$	18.8	$45^{\prime 2}$	-2.8	$42 \cdot 9$	$40 \cdot 3$	$4 * 9$	11.1	$1 \cdot 2$	83	$97 \cdot 8$	28.0	$45 \cdot 1 \mathrm{~J}$	$0 \cdot 092$	$\mathrm{mP}: \mathrm{vP}, \mathrm{sN}$: wP	
19		29.374	57.0	$40 \cdot 8$	16.2	49.7	+1.4	$45^{\circ} 2$	$40 \cdot 4$	93	$21 \cdot 1$	I•9	71	$124^{\circ} \mathrm{I}$	$33^{\circ} 1$	45.20	$0 \cdot 050$	$\mathrm{wP}: \mathrm{sN}, \mathrm{vP}: \mathrm{mP}$	
20	Full	29.744	58.2	38.0	$20 \cdot 2$	$46 \cdot 8$	- 1.7	41.9	$36 \cdot 4$	$10 \cdot 4$	21.6	$2 \cdot 5$	68	$106 \cdot 2$	$30^{\circ} 1$	45.53	$0 \cdot 000$	$\mathrm{mP}: \mathrm{mP}: \ldots$	
21	...	$29^{\circ 7} 11$	61.2	$43^{\circ} \mathrm{O}$	18.2	$51 \cdot 2$	$+2.5$	$48 \cdot 7$	$4^{6 \cdot 1}$	$5 \cdot 1$	11.3	$1 \cdot 7$	83	122.0	$38 \cdot 7$	$45 \cdot 69$	$0 \cdot 053$.. : wP	
22		29.874	64.2	477	16.5	54.6	+ $5 \cdot 9$	52.2	$49^{\circ} 9$	47	11.3	0.6	84	127.2	40\%	45.93	$0 \cdot 008$	wP, wN : wP, ssN : wP	
23	\ldots	29.866	63.8	$41^{\circ} \mathrm{x}$	22.7	52.1	+3.5	$46 \cdot 4$	$40 \cdot 6$	11.5	21.2	2.8	66	128.1	29.9	46.49	$0 \cdot 000$	wP	
24		29.535	$67 \cdot 2$	$33^{\prime} 1$	$34 \cdot 1$	51.1	+ 25	$46 \cdot 8$	$42 \cdot 3$	8.8	$20 \cdot 2$	0.5	72	127.3	24.0	$46 \cdot 92$	$0 \cdot 000$	mP : wP : mP	
25	Greatest Dec. S.	29.326	59°	$40^{\circ} 1$	18.9	49*3	$+0.7$	46.1	$42 \cdot 7$	$6 \cdot 6$	$17 \cdot 1$	1.2	78	127.0	$36 \cdot 9$	47.21	$0 \cdot 173$	wP: wP : vP, ssN	
26		29.339	$57 \cdot 2$	39'1	$18 \cdot 1$	49^{1}	+0.5	$45 \cdot 4$	41.4	7.7	$12 \cdot 3$	1.6	75	105.5	$32 \cdot 1$	$47 \cdot 53$	0.094	mN, wP : wP, vN : wP	
27	...	29.299	$62 \cdot 6$	$50 \cdot 5$	12.1	56.1	+ 74	517	$47 \cdot 5$	$8 \cdot 6$	13.2	$4 \cdot 3$	73	102.8	$46 \cdot 9$	4775	0.047	wP : wP, wN : wP	
28	Last Quarter	29.600	$62 \cdot 8$	47°	$15 \cdot 8$	54.9	+6.1	52.5				$2 \cdot 8$	84						
29		29.776	64.9	$42 \cdot 0$	22.9	$54 \cdot 1$	+ 511	$50 \cdot 2$	46.4	7.7	16.0	0.6	75	136.0	$32 \cdot 1$	$48 \cdot 40$	$0 \cdot 265$	$w P: \ldots: v P, v N$	
30	Apogee	29.661	58.7	473	114	52.3	+ 32	49.5	$46 \cdot 7$	$5 \cdot 6$	12.0	$0 \cdot 4$	82	122.6	37.9	48.61	$0 \cdot 126$	wP : mP	
Means	\ldots	29.672	$55^{\circ} 4$	$38 \cdot 9$	16.4	$46 \cdot 8$	-0.5	434	$39^{\circ} 6$	$7 \cdot 2$	13.9	$2 \cdot 1$	$76 \cdot 6$	$106 \cdot 3$	$32 \cdot 0$	$45 \cdot 76$	$\begin{gathered} \text { Sum } \\ 2.229 \end{gathered}$...	
Number of Column for Reterence.	I	2	3	4	5	6	7	8	9	10	II	12	13	14	15	16	17	18	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, $1841-1905$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dow Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 672$, being $0^{\text {in }} \cdot 076$ lower than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $67^{\circ} \cdot 2$ on April 24 ; the lowest in the month was $29^{\circ} \circ$ on April 13 ; and the range was $38^{\circ} \cdot 2$.
The mean of all the highest daily readings in the month was $55^{\circ} \cdot 4$, being $x^{\circ} \cdot 8$ lower than the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was $38^{\circ}{ }^{\circ} 9$, being $0^{\circ} \cdot 1$ lower than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $16^{\circ} 4$, being $1^{\circ} .8$ less than the average for the 65 years, 1841-1905.
The mean for the month was $4^{\circ} \cdot 8$, being $0^{\circ} \cdot 5$ lower than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $43^{\circ} \cdot 4$, being $0^{\circ}{ }^{\circ}$ lower than
The mean Temperature of the Dew Point for the month was $39^{\circ} \cdot 6$, being $0^{\circ} \cdot 5$ lower than
The mean Degree of Humidity for the month was $76 \cdot 6$, being 0.8 greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 243$, being oin•005 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grs} \cdot 8$, being ogr $\cdot{ }^{1}$ less than
The mean Weight of a Cubic Foot of Air for the month was 543 grains, being the same as
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by ro) was 7.8 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.290 . The maximum daily amount of Sunshine was ir 8 hours on April 23 .
The highest reading of the Solar Radiation Thermometer was $\mathbf{1}_{3} 6^{\circ} \circ$ on April 29 ; and the lowest reading of the Terrestrial Radiation Thermometer was $17^{\circ} \cdot 9$ on April 13 .
The Proportions of Wind referred to the cardinal points were N. 5, E. 6, S. 9, and W. 8. Two days were calm.
The Greatest Pressure of the Wind in the month was 15.8 lbs . on the square foot on April 19. The mean daily Horizontal Movement of the Air for the month was 36 I miles; the greatest daily value was 620 miles on April 19 ; and the least daily value was 126 miles on April 13 .
Rain (oin $\cdot 005$ or over) fell on 20 days in the month, amounting to $\mathbf{2}^{\text {in }} \cdot \mathbf{2 2 9}$, as measured by gauge No. 6 partly sunk below the ground ; being oin 663 greater than the average fall for the 65 years, 1841 I-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { r913. } \end{gathered}$	$\begin{aligned} & \text { Phases } \\ & \text { of } \\ & \text { the } \\ & \text { Moon. } \end{aligned}$		Temperature．							Difference between the Air Temperature and Dew PointTemperature．Temperature.				temperature．				Electricity．	
			Of the Air．						Of the Dew Point． De－ duced Mean Daily Value．				Of Radiation．	Oif theHarth3ath in．felowtheSurfaceof theSoil．					
			宫	－	$\begin{aligned} & \text { Daily } \\ & \text { Range. } \end{aligned}$	$\begin{gathered} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{gathered}$	$\begin{array}{c\|} \text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ 65 \text { Years. } \end{array}$			刨	$\begin{aligned} & \text { 高 } \\ & \text { B } \\ & \text { \# } \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \stackrel{\rightharpoonup}{\leftrightarrows} \end{aligned}$			$\begin{gathered} \text { Highest } \\ \text { in Sun's } \\ \text { Rays. } \end{gathered}$	Lowiest on the Grass．			
		in．		－	－	\bigcirc	－	－	－	。	－	－			。	－	－	in．	
May I		29.731	$62 \cdot 2$	$44^{\circ} \mathrm{O}$	18.2	50.5	＋1．2	$4^{6 \cdot 6}$	42.5	$8 \cdot 0$	17.3	－0＇0	75	122．I	34.6	$48 \cdot 95$	0.000	$m \mathrm{P}$	
	In Equator	29.705	6 I I	$39^{\circ} 6$	215	$47 \cdot 8$	－ 17	$44^{\circ} 9$	41.8	$6 \cdot 0$	17.3	－0	8 I	108.9	31.0	49^{-11}	0.006	wP ：mP ：mP，wwN	
3		29.501	$60 \cdot 0$	$40 \cdot 1$	19.9	$48 \cdot 9$	－ 0.9	$45 \cdot 1$	$41^{\circ} \mathrm{O}$	$7 \cdot 9$	15.2	$0 \cdot 0$	74	129.5	$29^{\circ} 2$	$49^{1} 16$	0.060	$w \mathrm{P}: w \mathrm{P}: w \mathrm{P}, \mathrm{vN}$	
4	\ldots	29.226	53.3	$42 \cdot 2$	11．1	$46 \cdot 9$	$-3 \cdot 1$	$44^{\prime 7}$	$42 \cdot 2$	47	9.8	$0 \cdot 0$	85	103．0	424	49．21	0.271	$\downarrow^{*} \mathrm{~N}, \mathrm{vP}: \mathrm{wN}, \mathrm{wP}: \mathrm{vP}, \mathrm{ssN}$	
5		29.439	62.6	45.2	17.4	51.2	＋ 0.9	$48 \cdot 7$	$46 \cdot 1$	$5 \cdot 1$	10.8	$0 \cdot 0$	83	126.0	$34 \cdot 5$	49.36	0.191	$\nabla N, w P: m P: w P$	
6	New	29.410	61.4	$40 \cdot 1$	213	$48 \cdot 8$	－ 1.7	$46 \cdot 4$	$43 \cdot 8$	$5 \cdot 0$	12.9	$0 \cdot 4$	82	$125^{\circ} 8$	$32 \cdot 5$	$49 \cdot 40$	0.026	wP ：．．．：mP	
7	．．．	29.496	59°	$36 \cdot 3$	22.7	$47 \cdot 6$	－ $3 \cdot 1$	$44^{\circ} 2$	$40 \cdot 4$	$7 \cdot 2$	13.1	1•7	77	129.6	28.7	49.41	0.013	mP ：vP，ssN ：mP	
8		29.461	54°	44.7	$9 \cdot 3$	$49 \cdot 8$	－J．2	$46 \cdot 7$	43.4	$6 \cdot 4$	1199	2.6	79	$72 \cdot 0$	39^{6}	$49^{\circ} 4^{1}$	0.063	wP ：wP，vN ：mP	
9	Greatest Dec．N．	29.448	57.5	$47 \cdot 6$	$9 \cdot 9$	51.3	＋O．I	$49^{\circ} \mathrm{I}$	$46 \cdot 8$	$4 \cdot 5$	9＊0	0.6	85	94.9	$40 \cdot 0$	$49 \cdot 47$	0.024	wP ：wP ：mP	
10	\ldots	29.582	63.2	43.9	19.3	52.8	＋ 13	$48 \cdot 9$	45°	$7 \bullet 8$	157	$0 \cdot 0$	75	114.8	33.3	49＊54	0.038	wP，wN ：wP ：wP	
11	\ldots	29.735	65°	41.0	24.0	$52 \cdot 2$	＋0．4	$48 \cdot 8$	45.3	$6 \cdot 9$	14.8	0.4	78	138.6	30.0	49.72	0.034	wP ：vP，ssN ：wP	
12	\ldots	29786	61.0	$4^{2 \cdot 8}$	18.2	523	＋0．2	$49 \cdot 6$	$46 \cdot 9$	$5 \cdot 4$	11.6	$0 \cdot 0$	82	109.9	317	50．00	0.015	wP	
13	First Quarter	29.898	68.0	$49^{\circ} 8$	18.2	57.4	＋ 5.0	$52 \cdot 6$	$48 \cdot 2$	$9^{\circ} 2$	17.2	$1 \cdot 2$	71	133.3	$38 \cdot 4$	$50 \cdot 25$	$0 \cdot 000$	wP	
14	－	29.929	$64 \cdot 6$	$45^{\circ} 4$	19.2	54.6	＋ $2 \cdot 0$	50.4	$46 \cdot 4$	$8 \cdot 2$	15.2	I＇5	73	107.2	$34^{\circ} \mathrm{O}$	$50 \cdot 54$	0.000	wP	
15	\cdots	29.930	60．I	$43^{\prime} 1$	17.0	50.2	－ 2.6	$46 \cdot 2$	42.0	$8 \cdot 2$	14.0	$3 \cdot 0$	74	$135^{\prime} 1$	393	$50 \cdot 80$	0.000	wP	
16	$\underset{\substack{\text { Perigee } \\ \text { Equator } \\ \text { In }}}{\text { a }}$	29.799	$65^{\circ} 2$	$43 \cdot 3$	21.9	517	-1.3	$47 \cdot 4$	43°	$8 \cdot 7$	15.3	$3 \cdot 3$	73	131°	37°	51．08	$0 \cdot 000$	wP ：mP ：mP	
17	．．．	29.547	$70 \cdot 6$	39.4	312	$55^{\prime} 1$	＋ 2.0	$48 \cdot 3$	41.8	13.3	26.0	$0 \cdot 5$	61	$125^{\circ} 1$	31.1	51.21	$0 \cdot 000$	$m P: s P: m P$	
18		29.640	$60 \cdot 0$	43.7	16.3	50.5	－ 2.8	$43 \cdot 9$	$36 \cdot 9$	13.6	21.8	77	60	125.6	34°	51.29	0.005	$\mathrm{mP}: \mathrm{mP}$ ：ssN，sP	
19		29.801	$60 \cdot 5$	38．3	22.2	$4^{8 \cdot 3}$	-5.2	$43^{2} 2$	37.6	10.7	194	$3 \cdot 0$	67	$13^{2} 0$	27.2	51．51	$0 \cdot 008$	$\mathrm{vP}^{\text {：}} \mathrm{s} \mathrm{P}, \mathrm{ssN}: \mathrm{ss} \mathrm{P}$	
20	Full	29.895	65.3	37＇1	28.2	$50 \cdot 7$	-3.1	$47 \cdot 4$	43.9	$6 \cdot 8$	$17^{\circ} 0$	1.4	78	120.0	$27^{\circ} 0$	5149	$0 \cdot 000$	$\mathrm{w} P: w \mathrm{w}: \mathrm{vP}$	
21	．．．	29.861	$66 \cdot 1$	47．1	19.0	54.4	$+0.2$	50.1	$45 \cdot 9$	8.5	$17^{\circ} 0$	$2 \cdot 3$	73	$134{ }^{\circ} 3$	$40 \cdot 3$	51.52	0.000	wwP ：wP ：mP	
22	Greatest Dec．S．	29.894	63.0	$45 \cdot 6$	174	53.3	－I•3	48.4	43.5	$9 \cdot 8$	176	24	70	128.1	$39^{\circ} 3$	5171	$0 \cdot 000$	wP ：mP ：mP	
23	．．．	29.963	71．8	52.5	19.3	59°	＋ 4^{1}	$55^{\circ} \mathrm{O}$	51.4	$7 \cdot 6$	16.6	1.2	76	126.9	$45^{\circ} 3$	51＊98	$0 \cdot 000$	$w \mathrm{P}: \mathrm{mP}$ ：mP	
24	．．	30.090	74.9	53.3	21.6	62.4	＋ 711	57.3	53°	9.4	19.4	$2 \cdot 8$	73	$138{ }^{\circ}$	$42 \cdot 0$	52.40	$0 \cdot 000$	wP	
25	\ldots	30.088	81．2	50＇3	30\％9	$65 \cdot 5$	＋10\％	$59^{\circ} 4$	54.4	1 I＇I	$24^{\circ} \mathrm{O}$	1．6	68	142.8	37.6	53.02	0.000	wP	
26	\ldots	30.002	83.5	$52 \cdot 2$	31.3	67.5	＋1177	61°	55^{8}	117	24.4	$2 \cdot 3$	66	149.5	$39 \cdot 3$	53.73	$0 \cdot 000$	${ }^{\mathrm{wP}}$	
27	\ldots	29.849	84.1	53.2	$30 \cdot 9$	$66 \cdot 8$	$+10 \cdot 8$	61．2	56.7	10＇1	$24^{\circ} \mathrm{O}$	$2 \cdot 1$	71	143.2	42.0	54.50	0.033	wP ：vP，ssN ：vP，ssN	
28	$\begin{aligned} & \text { Last Quarter : } \\ & \text { Apogee } \end{aligned}$	29.862	$80 \cdot 8$	51.6	29.2	64.9	＋ 87	57.8	519	13.0	25.5	3.9	63	$144{ }^{\circ} \mathrm{O}$	37.6	55.28	0.000	wP ：wP ：mP	
29		29.712	8 I 4	57×1	24.3	$66 \cdot 4$	＋10．0	$60 \cdot 8$	$56 \cdot 3$	$10 \cdot 1$	21.4	2.8	70	139.6	47.7	$55 \cdot 81$	$0 \cdot 000$	w^{w}	
30	In Equator	29．538	79.5	5011	29.4	65.0	$+8.3$	59.9	55%	$9 \cdot 3$	18.5	$0 \cdot 4$	72	144.2	$42 \cdot 3$	56.41	0.370	vP，vN ：wP ：mP	
31	\ldots	29724	$62 \cdot 3$	$45^{\prime 2}$	17.1	54.4	－ 27	493	443	$10 \cdot 1$	15.6	$2 \cdot 7$	69	115.8	$32 \cdot 7$	$56 \cdot 71$	0.000	wP ：mP ：mP	
Means	\ldots	29727	$66 \cdot 6$	$45^{\prime 3}$	21.2	$54 \cdot 8$	＋17	$50 \cdot 4$	$46 \cdot 3$	$8 \cdot 5$	17.1	$1 \cdot 7$	$73 * 7$	125.5	$36 \cdot 2$	51．42	$\begin{gathered} \text { Sum } \\ \text { I•157 } 57 \end{gathered}$	．．．	
Number of Column for Reference．	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records．
The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9）and the
Degree of Humidity（Column．13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column 10）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns in and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column 16 are taken daily at noon．
The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．
The mean reading of the Barometer for the month was $29^{\text {in }}{ }^{7} \mathbf{7 2 7}$ ，being oin $\cdot 067$ lower than the average for the 65 years， $\mathbf{1 8 4 r - 1 9 0 5 .}$
Temperature of the Air．
The highest in the month was $84^{\circ} \cdot 1$ on May 27；the lowest in the month was $36^{\circ} \cdot 3$ on May 7 ；and the range was $47^{\circ} .8$ ．
The mean of all the highest daily readings in the month was $66^{\circ} \cdot 6$ ，being $2^{\circ} .7$ higher than the average for the 65 years， $1841-1905$ ．
The mean of all the lowest daily readings in the month was $45^{\circ} \cdot 3$ ，being ${ }^{\circ}{ }^{\circ} 6$ higher than the average for the 65 years， $1841-1905$ ．
The mean of the daily ranges was $21^{\circ} \cdot 2$ ，being $1^{\circ} \circ$ greater than the average for the 65 years， $184 \mathrm{I}-1905$ ．
The mean for the month was $54^{\circ} \cdot 8$ ，being $I^{\circ} 7$ kigher than the average for the 65 years，1841－1905．

The mean Temperature of Evaporation for the month was $50^{\circ} \cdot 4$, being $1^{\circ}{ }_{4}$ higher than
The mean Temperature of the Dew Point for the month was $46^{\circ} \cdot 3$, being $1^{\circ} \cdot 3$ higher than The mean Degree of Humidity for the month was $73^{\circ} 7$, being 0.5 less than
The mean Elastic Force of Vapour for the month was oin 315 , being oin•o16 greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\mathrm{grs}} \cdot 5$, being ogr. greater than
The mean Weight of a Cubic Foot of Air for the month was 535 grains, being 3 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 6.2 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.419 . The maximum daily amount of Sunshine was $\mathbf{1 4 . 3}$ hours on May 25 .
The highest reading of the Solar Radiation Thermometer was $149^{\circ} \cdot 5$ on May 26 ; and the lowest reading of the Terrestrial Radiation Thermometer was $27^{\circ} \circ 0$ on May 20.
The Proportions of Wind referred to the cardinal points were N. 5, E. 4, S. 8, and W. ri. Three days were calm.
The Greatest Pressure of the Wind in the month was 8.3 lbs . on the square foot on May 15 . The mean daily Horizontal Movement of the Air for the month was 269 miles; the greatest daily value was 559 miles on May 15 ; and the least daily value was 126 miles on May 26.
Rain (oin. 005 or over) fell on 15 days in the month, amounting to $\mathrm{i}^{\text {in }} \cdot 157$, as measured by gange No. 6 partly sunk below the ground; being oin 75^{8} less than the average fall for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { roys. } \end{gathered}$	$\begin{aligned} & \text { Phases } \\ & \text { of } \\ & \text { the } \\ & \text { Moon. } \end{aligned}$		Temperature.							Difference between the Air Temperature and Dew Point Temperature.				Temperature.				Electricity.	
			Of the Air.					$\begin{gathered} \text { Of } \\ \begin{array}{c} \text { Evapo } \\ \text { ration. } \end{array} \end{gathered}$	Of the Dew Point.				Of Radiation.	$\begin{aligned} & \text { Of the } \\ & \text { Earth } \\ & \text { Eft. in. } \\ & \text { sftow } \\ & \text { below } \\ & \text { the } \\ & \text { Surface } \\ & \text { of the } \\ & \text { Soil. } \end{aligned}$					
				+	Daily Rauge.		$\begin{array}{\|c\|} \text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ 65 \text { Years. } \end{array}$	Mean of 24 Values.	De- duced Mean Daily Value.						Highest in suns Rays.	Lowest on the Grass.			
		in.	\checkmark	-				\bigcirc	\bigcirc	-	\bigcirc	-			\bigcirc	-	\bigcirc	in.	$\begin{gathered} \mathrm{mP}: \mathrm{wP}: \mathrm{vP}, \mathrm{mN} \\ \mathrm{wP}: \mathrm{vP}: \mathrm{mP} \\ \mathrm{wP}: \mathrm{mP}: \mathrm{mP} \end{gathered}$
June I		29.880	$66 \cdot 0$	$42 \cdot 2$	23.8	53.8	-3.6	$49^{\circ} 8$	$45^{\circ} 9$	$7 \cdot 9$	18.1	I•I	75	136.3	28.9	$56 \cdot 93$	0.002		
		29.907	$73^{\circ} \mathrm{O}$	$46 \cdot 0$	$27^{\circ} \mathrm{O}$	58.1	+ 0.3	52.0	$46 \cdot 5$	I1.6	21.2	$1 \cdot 1$	66	148.6	31.9	$56 \cdot 95$	$0 \cdot 000$		
3		29.883	79^{1}	45^{2}	33.9	$60 \cdot 3$	+ 2.2	53.8	$48 \cdot 2$	12.1	21.9	4.4	64	139.2	$31^{\circ} \mathrm{O}$	$56 \cdot 95$	0.000		
	New	29.827	$71^{\circ} 0$	50.9	$20^{\prime} 1$	$60^{\prime} 7$	+ 2.4	55.9	51.8	$8 \cdot 9$	$16 \cdot 7$	1.2	72	126.2	38°	57.09	$0 \cdot 000$	$\begin{gathered} \mathrm{mP}: \mathrm{wP}: \mathrm{mP} \\ \mathrm{wP}: \mathrm{wP}: \mathrm{mP} \\ \mathrm{vP}, \mathrm{ssN}: \mathrm{vP}, \mathrm{ssN}: \mathrm{mP} \end{gathered}$	
5		29.644	$70 \cdot 2$	51.0	19.2	58.2	-0.2	53.9	50.0	$8 \cdot 2$	17.4	2.6	75	$134{ }^{\circ} \mathrm{O}$	37.0	57.34	$0 \cdot 000$		
6	Greatest Dec. N.	29.686	$66 \cdot 1$	$48 \cdot 8$	17.3	54.3		51.3	$48 \cdot 4$	$5 * 9$	123	1.6	80	129.8	$4^{2.0}$	57\% 51	0.078		
7		29.766	$70 \cdot 0$	48.1	21.9	56.5	- I 7	51'5	$46 \cdot 9$	$9 \cdot 6$	$20 \cdot 7$	$1 \cdot 5$	70	139°	35.4	57.50	0.038	$\begin{gathered} w P: w P: v P \\ w P: w P, s N: v P \\ m P: v P: m P \end{gathered}$	
8		29.779	$68 \cdot 5$	$46 \cdot 4$	22.1	$54 \cdot 8$	$-3 \cdot 3$	517	$48 \cdot 7$	$6 \cdot 1$	21.9	$1 \cdot 5$	79	$129^{\circ} 8$	$3 \mathrm{I}^{\circ} 3$	57.28	O-139		
9		29.931	$68 \cdot 0$	$43 \cdot 1$	24.9	54.2	-3.8	$49 \cdot 3$	$44 \cdot 5$	97	19.7	$1 \cdot 3$	69	137.5	$33^{\circ} \mathrm{O}$	57'19	0.001		
10	Perigee	29.641	$68 \cdot 9$	51.2	17.7	57.4	- 0.7	$52 \cdot 3$	47.6	9.8	17.5 19.3	4.8 2.1	70	135.9 I 37.2	46.9 4.9	56.94	0.000 0.000		
11	First Quarter	29.835	67.4	$48 \cdot 2$	$19^{\circ} 2$	56.9	- 1.3	$50 \cdot 5$	44.6	12.3	19.3	2.1 1.8	64	137.2 123.8	$41^{\circ} 9$	$56 \cdot 95$ $56 \cdot 93$	0.000	$\begin{aligned} & \mathrm{mP} \\ & \mathrm{mP} \end{aligned}$	
12	In Equator	$29^{\circ} 901$	$67 \cdot 3$	50.2	17.1	$56 \cdot 9$	- 15	$52 \cdot 0$	$47 \cdot 5$	94	$15^{\circ} 7$	r 8	71	123.8	$44^{\circ} \mathrm{O}$	56.93	0.000	mP	
13	\ldots	$30^{\circ} 002$	64°	49'1	14.9	$56 \cdot 1$	-24	$53 \cdot 0$	50.1	$6 \cdot 0$	11.2	1.0	80	105.2	$36 \cdot 9$	57.02	$0 \cdot 000$	$\begin{gathered} w P: m P: w P, w w N \\ w P, w w N: w P: w P \\ w P \end{gathered}$	
14	\ldots	$30 \cdot 154$	$70 \cdot 7$	51.6	$19^{\prime} 1$	58.5	-0.2	$53 \cdot 6$	$49^{\circ} 2$	$9 \cdot 3$	18.1	2.4	71	145.7	42.1	57.25	$0 \cdot 000$		
15	\ldots	30.046	$74^{\circ} \mathrm{O}$	49^{1}	24.9	61.2	$+24$	54.4	$48 \cdot 5$	I 2.7	$25 \cdot 3$	$2 \cdot 3$	63	$143{ }^{\circ} \mathrm{I}$	36.4	57.32	$0 \cdot 000$		
16		29.890	$82 \cdot 0$	4711	34.9	65°	+6.1	$58 \cdot 1$	$52 \cdot 5$	12.5	$25^{\circ} 2$	I 6	64	145.6	31.6	57.62	$0: 000$	${ }_{\text {w }} \mathrm{P}$	
17		29.813	87.1	54.2	32.9	68.4	+ 94	$62 \cdot 3$	57.5	10.9	22.5	I. 3	67	144.7	43.5	58.00	$0 \cdot 000$	wP	
18	Full : Greatest Dec.	29.805	$78 \cdot 1$	52.2	25.9	63.9	+ 47	58.3	53.6	$10 \cdot 3$	21.2	2.6	70	1487	$44^{\circ} 8$	58.48	$0 \cdot 000$	- wP	
19	\ldots	29.843	73°	51-9	21.1	$60 \cdot 8$	+ 1.3	53.9	47.9	12.9	23.3	4.9	62	145.9	44°	59.02	$0 \cdot 000$	$\begin{aligned} & \text { wP }: m P: s P \\ & \mathrm{vP}, \mathrm{ssN}: \mathrm{sP}, \mathrm{ssN}: m \mathrm{mP} \\ & . \mathrm{mP}: \mathrm{mP}: \mathrm{wP} \end{aligned}$	
20		29.862	69°	$49 \cdot 5$	19.5	54.5	-5.4	52.0	$49 \cdot 6$	49	16.2	$0 \cdot 0$	83	14.18	$41^{1 \cdot 1}$	59.36	0.414		
21	\ldots	29.901	673	$43 \cdot 8$	23.5	56.4	-3.9	52.9	497	$6 \cdot 7$	13.5	$0 \cdot 0$	78	II 8.5	35%	59.46	$0 \cdot 000$		
22	\ldots	29.957	$78 \cdot 3$	$47^{1} 1$	31.2	$6 I^{\circ}$	$+0.4$	$56 \cdot 0$	517	$9 \cdot 3$	19.7	1.6	72	138.9	$37^{\circ} 1$	59.30	0.000	$\begin{gathered} w \mathrm{P} \\ \mathrm{wP}: \mathrm{wP}, \mathrm{ssN}: \mathrm{wP} \\ \mathrm{wP}: \mathrm{mP}: \mathrm{mP} \end{gathered}$	
23		29.879	66°	52.4	13.6	57.4	- $3 \cdot 5$	54.4	517	5.7 5	11.7	1.4	81	$106 \cdot 6$	$46 \cdot 1$	59.40	0.034		
24	\ldots	29.833	64.1	51×1	13.0	$56 \cdot 2$	-5.0	$50 \cdot 6$	$45^{\circ} 4$	10.8	$16 \cdot 0$	$4 \cdot 3$	67	1II 5	$45^{\circ} \mathrm{O}$	59.39	$0 \cdot 000$		
		29.864	$67 \cdot 3$	$49 \cdot 3$	$18 \cdot 0$	57.4	- 4.0	52.7	48.4	90 11	I5.5	$3 \cdot 1$	72	$122{ }^{\circ} \mathrm{O}$	$45 \cdot 6$			vP, wN:mP : mP	
26	In Equator:	30.002	69° 68.2	$53 \cdot 1$	$15{ }^{\circ} 9$	60.4 58		$54 \cdot 1$ $52 \cdot 3$	$48 \cdot 6$ $46 \cdot 6$	11.8	17.3	$5 \cdot 4$ $4 \cdot 3$	65 65	123.8 133.2	42.9 43.3	$\begin{aligned} & 59.18 \\ & 59.17 \end{aligned}$	$\begin{array}{\|l\|} 0.002 \\ 0.007 \end{array}$	$\underset{m P}{ } \quad \mathrm{mP}$ P $: \mathrm{sP}$	
27	tartyarer	$30 \cdot 039$	$68 \cdot 2$	53.2	15°	58.7	-2.9	$52 \cdot 3$	$46 \cdot 6$	12.1	19.7	$4 \cdot 3$	65	$133^{\circ} 2$	$43 \cdot 3$	59.17	-007	mP : mP : sP	
28		30'155	779	47\%	$30^{\circ} 0$	$62 \cdot 7$	+ I•I	$55^{\circ} 8$	$49^{\circ} 9$	12.8	19.8	$4 \cdot 4$	63	1416	$36 \cdot 8$	59.30	$0 \cdot 000$	WP	
29	\ldots	30.140	79.5	$5 \mathrm{I} \cdot 6$	27.9	$66 \cdot 5$	+ 49	59.1	$53 \cdot 1$	13.4	23.8	$5 \cdot 1$	62	150.3	41.6	59.40	$0 \cdot 000$	$\begin{gathered} \mathrm{wP} \\ \mathrm{wP}: \mathrm{mP}: w \mathrm{P} \end{gathered}$	
30		30.166	71.2	$49^{\prime \prime}$	22.1	$59^{\circ} \mathrm{I}$	-2.4	54.6	$50 \cdot 6$	$8 \cdot 5$	16.2	2.4	74	${ }^{137} 1$	37.9	59.62	$0 \cdot 000$		
Means	\cdots	290901	7174	49.2	22.3	$58 \cdot 9$	-0.5	537	49°	$9 * 7$	18.6	2.4	$70 \cdot 5$	134°	$39^{1} 1$	58.11	0.733	\ldots	
Number of Column for Reference.	1	2	3	4	5	6	7	8	9	10	II	12	I 3	14	15	16	17	18	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in and i2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 901$, being oin 086 higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $87^{\circ} \cdot 1$ on June 17 ; the lowest in the month was $42^{\circ} \cdot 2$ on June 1 ; and the range was $44^{\circ} \cdot 9$.
The mean of all the highest daily readings in the month was $71^{\circ} 4$, being $0^{\circ} \cdot 7$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $49^{\circ}{ }^{\circ}$, being $0^{\circ}{ }^{\circ}$ lower than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $22^{\circ} \cdot 3$, being $1^{\circ} \cdot 5$ greater than the average for the 65 years, 1841-1905.
The mean for the month was $5^{\circ}{ }^{\circ} 9$, being $0^{\circ} .5$ lower than the average for the 65 years, 1841 -1905.

The mean Temperature of Evaporation for the month was $53^{\circ} \cdot 7$, being $\mathrm{r}^{\circ} \cdot 2$ lower than
The mean Temperature of the Dew Point for the month was $49^{\circ} \cdot 2$, being $I^{\circ} \cdot 7$ lower than
The mean Degree of Humidity for the month was 70.5 , being $3 \cdot 1$ less than
The mean Elastic Force of Vapour for the month was oin•345, being oin $\cdot 028$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\mathrm{grs}} \cdot 9$, being ogr. 3 less than
The mean Weight of a Cubic Foot of Air for the month was 533 grains, being 2 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 6.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.413 . The maximum daily amount of Sunshine was $14{ }^{\circ} 7$ hours on June 15 .
The highest reading of the Solar Radiation Thermometer was $150^{\circ} \cdot 3$ on June 29 ; and the lowest reading of the Terrestrial Radiation Thermometer was $28^{\circ}{ }_{9}$ on June 1 .
The Proportions of Wind referred to the cardinal points were N. 6, E. 3, S. 5, and W. 13. Three days were caim.
The Greatest Pressure of the Wind in the month was 10.3 lbs . on the square foot on June 10 . The mean daily Horizontal Movement of the Air for the month was 285 miles; the greatest daily value was 675 miles on June 10 ; and the least daily value was 97 miles on June 21 .
Rain (oin 005 or over) fell on 7 days in the month, amounting to oin $\cdot 733$, as measured by gauge No. 6 partly sunk below the ground; being ${ }^{\text {in }} \cdot 305$ less than the average fall for the 65 years, $184 \mathrm{I}-1905$.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 19İ. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$	Baro-METER.	Temperature.							Difference between the Air Temperature and Dew Point Temperature.				Temperature.				Electricity.	
			Of the Air.					$\left\|\begin{array}{c}\text { Of } \\ \text { Evapo- } \\ \text { ration. }\end{array}\right\|$	Of the Dew Point. De- duced Mean Daily Value.				Of Radiation.	Of theEarthEtt. in.3belowtheSurfaceof theSoil.S.					
					$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$	$\begin{gathered} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{gathered}$	Excess above Average of 65 Years.				$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{W}} \\ & \text {. } \\ & \text { W. } \\ & \text { © } \end{aligned}$				$\left\lvert\, \begin{gathered} \text { Highest } \\ \text { in Sun's } \\ \text { Rays. } \end{gathered}\right.$	$\begin{aligned} & \text { Lowest } \\ & \text { on the } \\ & \text { Grass. } \end{aligned}$			
$\begin{array}{ll}\text { July } & \mathbf{1} \\ & \mathbf{2} \\ & 3 \\ & \\ \\ 4 \\ & 5 \\ & 6\end{array}$		$\begin{aligned} & 30 \cdot 165 \\ & 30.082 \\ & 29.902 \end{aligned}$	$\begin{aligned} & 70 \cdot 0 \\ & 72 \cdot 1 \\ & 68 \cdot 9 \end{aligned}$	$\begin{gathered} \circ \\ 49 \cdot 1 \\ 5 I \cdot I \\ 54 \cdot 3 \end{gathered}$	$\begin{gathered} \circ \\ 20.9 \\ 21.0 \\ 14.6 \end{gathered}$	$\begin{aligned} & 58 \cdot 5 \\ & 59 \cdot 5 \\ & 59 \cdot 5 \end{aligned}$	$\left\|\begin{array}{ll} - & 3.0 \\ - & 2.1 \\ - & 2.3 \end{array}\right\|$	$\begin{aligned} & 54 \cdot 2 \\ & 55 \cdot 3 \\ & 56 \cdot 1 \end{aligned}$	$\begin{aligned} & 50 \cdot 3 \\ & 51 \cdot 6 \\ & 53 \cdot 1 \end{aligned}$	$\begin{aligned} & 8 \cdot 2 \\ & 7 \cdot 9 \\ & 6 \cdot 4 \end{aligned}$	$\begin{aligned} & 17.9 \\ & 19.0 \\ & 13.0 \end{aligned}$	$\begin{gathered} \circ \\ 1.4 \\ 1.9 \\ 2.0 \end{gathered}$		$\begin{aligned} & 74 \\ & 75 \\ & 80 \end{aligned}$	$\begin{aligned} & 139^{\circ} 9 \\ & 1377^{\circ} \\ & 130^{\circ} 1 \end{aligned}$	$\begin{aligned} & 37 \cdot 9 \\ & 46 \cdot 0 \\ & 52 \cdot 7 \end{aligned}$	$\begin{aligned} & 59.79 \\ & 59.97 \\ & 59^{\circ} 95 \end{aligned}$	in. 0.000 0.047 0.012	$\begin{gathered} w P: m P: m P \\ w P: m P: w P, v N \\ w P: m P: m P \end{gathered}$
	,																		
	Greatest Dec. N .																		
	New\cdots	$\begin{aligned} & 297794 \\ & 29760 \\ & 29.563 \end{aligned}$		53.2	15%	58.6	- 3.5	$56 \cdot 0$	53.7	$\begin{aligned} & 4.9 \\ & 6.7 \end{aligned}$	12.6	$\begin{aligned} & 1.2 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 83 \\ & 78 \end{aligned}$	123.7	$\begin{aligned} & 48 \cdot 0 \\ & 51 \cdot 3 \end{aligned}$	59.9960.02	$\begin{aligned} & 0.099 \\ & 0.046 \end{aligned}$	$\begin{aligned} & w \mathrm{P} \\ & \mathrm{w} \end{aligned}$	
				$51 \cdot 3$	15.6	57.2	- 5.1	53.7	$50 \cdot 5$		13.5			$\begin{array}{r} 110 \cdot 9 \\ 80 \cdot 1 \end{array}$					
	Perigee			$50 \cdot 9$	9.2	54.5	-79	53.5	52.5	2.0	9.3	0.0	93		$\begin{aligned} & 51 \cdot 3 \\ & 49^{\prime} 1 \end{aligned}$	$\begin{aligned} & 60.02 \\ & 60.00 \end{aligned}$	$\begin{aligned} & 0.046 \\ & 0.352 \end{aligned}$	$w P: v P, s s N: v P, w N$	
7	\ldots	29.705	$66 \cdot 0$	$49^{\circ} \mathrm{I}$	16.9	53.5	-8.9	50.4	47*3	$6 \cdot 2$	16.6	0.2	79	144.6	$40^{\circ} 0$	59.77	$\bigcirc \cdot 163$	wP : vP, $\mathrm{ssN} \mathrm{f}: \mathrm{mP}$	
	\therefore	29.863	$64 \cdot 8$	$46 \cdot 2$	18.6	$54^{\circ} \mathrm{I}$	- 8.3	$48 \cdot 8$	$43 \cdot 6$	10.5	$20 \cdot 2$	$2 \cdot 7$	68	128.6	$33 \cdot 5$	59.43	$0 \cdot 000$	$\mathrm{mP}: \mathrm{sP}: \mathrm{vP}$	
9	In Equator	29.829	69.2	$47 \cdot 6$	21.6	55.6	-6.8	$52 \cdot 2$	49°	$6 \cdot 6$	17.0	$1 \cdot 9$	79	$137 \cdot 1$	$39^{\circ} 9$	59*21	$0 \cdot 002$	$w P$	
10	First Quarter	29.665	$66 \cdot 2$	53.5	12.7	$56 \cdot 3$	-6.2	54.5	52.8	$3 \cdot 5$	$9 \cdot 3$	$0 \cdot 8$	88	122.0	$48 \cdot 6$	59.09	$0 \cdot 822$	wP, wwN: vP, vN : vN, mP	
11		29.777	68.2	$53 \cdot 1$	15.1	59.9	- 2.8	$56 \cdot 3$	53.2	$6 \cdot 7$	13.7	$1 \cdot 3$	79	115.8	$47^{\circ} \mathrm{O}$	59'15	0.000	wP : mP : wP	
12	\ldots	29.831	$75 \cdot 8$	$50 \cdot 2$	25.6	$62 \cdot 3$	-0.6	57.2	$52 \cdot 8$	$9 \cdot 5$	173	$0 \cdot 2$	72	128.6	39^{2}	59.18	$0 \cdot 000$	wP	
13	\ldots	29.838	73.0	$53^{\circ} \mathrm{O}$	$20^{\circ} 0$	$60 \cdot 5$	- 2.6	$56 \cdot 6$	53.2	73	15.4	0.8	77	1317	$42 \cdot 7$	59.31	$0 \cdot 000$	wP	
14	...	29.734	69.2	51.2	18.0	$60 \cdot 5$	-2.8	$58 \cdot 1$	$56 \cdot 0$	4.5	99	$1 \cdot 2$	86	106.5	$42 \cdot 1$	59.60	$0 \cdot 042$	wP	
15	\ldots	29.699	6I•6	$53 \cdot 1$	$8 \cdot 5$	$57 \cdot 6$	- 5.8	$56 \cdot 7$	559	$1 \cdot 7$	$3 \cdot 0$	$0 \cdot 0$	94	$73 \cdot 2$	53.2	59.70	$0 \cdot 209$	vP, vN : w	
16	Greatest Dec. S.	29.812	67.0	$55 \% 3$	11.7	60.5	- 2.9	57.5	$54^{\circ} 9$	$5 \cdot 6$	$9 \cdot 3$	$0 \cdot 4$	82	106.9	49°	59'70	0015	${ }_{w} \mathrm{P}$	
17		29.858	$73 \cdot 8$	52.1	$21 \cdot 7$	$62 \cdot 2$	- I. 2	$58 \cdot 3$	$55^{\circ} \mathrm{O}$	$7 \cdot 2$	13.5	$1 \cdot 0$	78	126.0	$44^{\circ} 9$	59.70	$0 \cdot 002$	wP	
18	Full	29.883	$69^{\circ} \mathrm{O}$	56.8	12.2	614	- I.9	58.3	$55 \cdot 6$	$5 \cdot 8$	$12 \cdot 0$	0.2	82	112.0	$50 \cdot 0$	59.62	0.081	wP, wN : wP : wP	
19	\ldots	29.909	64.0	52.9	II'I	58.1	- 5.1	55.2	52.6	5*5	7.3	0.8	82	$90^{\circ} 9$	$45^{\circ} 8$	59.62	0.171	wP	
20		29.934	69°	$52 \cdot 6$	16.4	60°	- 3.2	53.2	$47 \cdot 2$	12.8	18.8	$3 \cdot 0$	63	$139{ }^{\circ}$	$44^{\cdot 2}$	59.72	$0 \cdot 000$	wP : wP : ...	
21		29.939	65.9	$48 \cdot 7$	$17 \cdot 2$	$57 \cdot 2$	- 6.0	52.9	$48 \cdot 9$	$8 \cdot 3$	13.0	$3 \cdot 1$	73	103.2	$40 \cdot 2$	59.59	$0 \cdot 000$	$w P: m P: w P$	
22	Apogee	29.888	$67 \cdot 0$	$52 \cdot 6$	14.4	57\%	$-6 \cdot 1$	53.6	50.6	$6 \cdot 4$	$16 \cdot 5$	1.2	79	$13^{2}{ }^{\circ}$	47*3	59.51	0.054	wP : mP	
23	In Equator	29.859	59.2	5 I 1	$8 \cdot 1$	54.5	-8.5	51.6	$48 \cdot 8$	$5 \cdot 7$	$8 \cdot 4$	3.0	81	$87^{\circ} \mathrm{I}$	44.5	59.44	0.000	wP	
24	...	29.954	71.3	517	19.6	59.9	-3.0	557	52.0	$7 \cdot 9$	175	$1 \cdot 4$	76	142.9	43°	$59^{\circ} 4^{1}$	0.000	wP	
25		29.994	703	511	19.2	58.6	- 4 '1	$55^{\circ} \mathrm{O}$	51-8	$6 \cdot 8$	$15^{\circ} \mathrm{O}$	1.6	78	145.7	$44^{* 7}$	59.23	0.000	wP	
26	Last Quarter	30.014	$66 \cdot 0$	53.1	12.9	57.9	-46	55.4	53.2	4×7	10.4	$1 \cdot 4$	84	109.0	$52 \cdot 2$	59.27	0.000	wP	
27	...	30.073	62.5	52.I	$10 \cdot 4$	$56 \cdot 8$	-5.6	$55^{\circ} \mathrm{O}$	53.	$3 \cdot 4$	$6 \cdot 7$	$0 \cdot 2$	88	$86 \cdot 8$	$53^{\circ} \mathrm{O}$	59.35	0.004	wwP : wP : wP	
28	\ldots	30.023	$74^{\circ} 2$	52.4	2 I•8	$60 \cdot 8$	- I•5	$57 \cdot 2$	54*1	$6 \cdot 7$	$17^{\circ} 1$	I'4	79	141'1	$45^{\circ} \mathrm{O}$	$59^{\circ} 5^{2}$	0.000	${ }_{w} \mathrm{P}$	
29		29.928	$73^{\circ} \mathrm{O}$	$50 \cdot 1$	22.9	59.5	- $2 \cdot 8$	56.0	529	$6 \cdot 6$	19.7	$0 \cdot 0$	79	138.2	$42 \cdot 3$	59.67	$0 \cdot 000$	wP	
30	Greatest Dec. N.	29.851	$64 \cdot 6$	52.5	$12 \cdot 1$	$57^{\circ} 9$	- 4.4	54.9	$52 \cdot 3$	5.6	$9 \cdot 1$	$0 \cdot 8$	82	$107 \cdot 6$	$45 \cdot 8$	59.71	$0 \cdot 000$	wP	
31	\ldots	29.853	75°	524	22.6	62.3	$+0.1$	58.0	$54 * 4$	7*9	18.7	I 2	76	148.0	$45 \cdot 7$	59.79	$0 \cdot 000$	wP	
Means	\ldots	29.870	$68 \cdot 2$	51.8	16.4	$58 \cdot 5$	-4.2	$55^{\prime} \mathrm{I}$	52\%	6.4	13.6	I 2	79.6	120.2	$45^{\circ} 4$	59*5	$\stackrel{\text { Sum }}{2.12 I}$		
Number of Column for Reference.	1	2	3	4	5	6	7	8	9	10	II	12	13	14	15	16	17	18	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Teinveratures (Column io) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in and I2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column in are taken Differences (Co
daily at noon.
The values given in Columns 3, 4, 5, 14, and $\times 5$ are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 870$, being $0^{\text {in }} \cdot 071$ higher than the average for the 65 years, $184 \mathrm{I}-1905$.
Temperature of the Air.
The highest in the month was $75^{\circ} \cdot 8$ on July 12 ; the lowest in the month was $46^{\circ} \cdot 2$ on July 8 ; and the range was $29^{\circ} .6$.
The mean of all the highest daily readings in the month was $68^{\circ} \cdot 2$, being $6^{\circ} \circ$ lower than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $51^{\circ} \cdot 8$, being $1^{\circ} \cdot 5$ lower than the average for the 65 years, $184^{\circ} 1-1905$.
The mean of the daily ranges was $16^{\circ} .4$, heing $4^{\circ} \cdot 5$ less than the average for the 65 years, $1841-1905$
The mean for the month was $58^{\circ}{ }^{\circ}$, being $4^{\circ} \circ 2$ lower than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $55^{\circ}{ }^{\circ}$, being $2^{\circ} \cdot 8$ lower than
The mean Temperature of the Dew Point for the month was $5^{\circ} \circ$, being $1^{\circ} .8$ lower than
The mean Degree of Humidity for the month was $79 \cdot 6$, being 6.8 greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 388$, being oin $\cdot 027$ less than
the average for the 65 years, $1841-1905$
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4{ }^{\mathrm{grs} \cdot} \cdot 3$, being $\mathrm{ogr}^{3} 3$ less than
The mean Weight of a Cubic Foot of Air for the month was 533 grains, being 6 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 8.2 .
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was $0 \cdot 190$. The maximum daily amount of Sunshine was in 3 hours ou July 29 .
The highest reading of the Solar Radiation Thermometer was $14^{\circ} \cdot \circ$ on July 31; and the lowest reading of the Terrestrial Radiation Thermometer was $33^{\circ} 5$ on July 8 .
The Proportions of Wind referred to the cardinal points were N. 11, E. 9, S. 2, and W. 5. Four days were calm.
The Greatest Pressure of the Wind in the month was $8 . \circ \mathrm{lbs}$. on the square foot on July 23 . The mean daily Horizontal Movement of the Air for the month was 219 miles; the greatest daily value was 417 miles on July 23 ; and the least daily value was 106 miles on July 6 .
Rain (oin $\cdot 005$ or over) fell on 13 days in the month, amounting to $\mathbf{2}^{\text {in }} \mathbf{1 2 1}$, as measured by gauge No. 6 partly sunk below the ground; being oin $\cdot \mathbf{2 7} 8$ less than the average fall for the 65 years, 1841 -1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records.
 Degree of Humidity (Colunn 7aparation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 871$, being oin 088 higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $80^{\circ} \circ$ on August $2 x$; the lowest in the month was $45^{\circ} \circ$ on August 25 ; and the range was $35^{\circ} \circ$.
The mean of all the highest daily readiugs in the month was $71^{\circ} \cdot 1$, being $1^{\circ} \cdot 6$ lower than the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was $52^{\circ} \circ$, being $I^{\circ} \circ$ lower than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $19^{\circ} \cdot 1$, being $0^{\circ} .6$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $60^{\circ} \circ$, being ${ }^{\circ} \cdot 6$ lower than the average for the 65 years, 1841-1905.

The mean Temperature of Evaporation for the month was $55^{\circ} \cdot 8$, being $1^{\circ} \cdot 7$ lower than
The mean Temperature of the Dew Point for the month was $52^{\circ} \circ$, being $2^{\circ} \circ$ lower than
The mean Degree of Humidity for the month was $75^{\circ} 3^{\circ}$, being $\mathrm{r} \circ$ less than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 388$, being oin $\cdot 030$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4 \mathrm{grs}^{\mathrm{gr}}$, being ogr. 3 less than
The mean Weight of a Cubic Foot of Air for the month was 531 grains, being 3 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by 10) was 6.6 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.317 . The maximum daily amount of Sunshine was 12.2 hours on August $\mathbf{2 5}$. The highest reading of the Solar Radiation Thermometer was $151^{\circ} \cdot 3$ on August 5 ; and the lowest reading of the T'errestrial Radiation Thermoneter was $32^{\circ} \cdot 1$ on August 26 .
The Proportions of Wind referred to the cardinal points were N. 6, E. 8, S. 2, and W. 7. Eight days were calm.
The Greatest Pressure of the Wind in the month was $8 \cdot 0 \mathrm{lbs}$. on the square foot on August 22. The mean daily Horizontal Movement of the Air for the month was 202 miles; the greatest daily value was 423 miles on August 22 ; and the least daily value was 86 miles on August 30 .
 for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAYY, } \\ \text { I913. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Temperature．							Difference between the Air Temperature and Dew PointTemperature．1ещрегайre.				Temperature．				Electricity．		
			Of the Air．						Of the Dew Point． Dee duced Mean Daily Value．				Of Radiation．	$\begin{array}{c\|c} \text { Of the } \\ \text { Earth } \\ \text { E ft. } 2 \text { in. } \\ \text { below } \\ \text { the } \\ \text { ene } & \text { Surface } \\ \text { of the } \\ \text { Soil. } \end{array}$						
			哭	灾	$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$		$\begin{array}{c\|c} \text { Excess } \\ \text { above } \\ \text { y } & \text { Average } \\ \text { s. } & \text { of } \\ 65 & \text { Years. } \end{array}$			㔡		炭			$\left\lvert\, \begin{gathered} \text { Highest } \\ \text { in Sun's } \\ \text { Rays. } \end{gathered}\right.$	Lowest on the Grass．				
Sept． 1 2 3 4 5 6	PerigeeIn Equator\cdots	$\begin{gathered} \text { in. } \\ 29.783 \\ 29.831 \\ 29.912 \end{gathered}$	$\begin{aligned} & 58 \cdot 7 \\ & 63 \cdot 0 \\ & 67 \cdot 8 \end{aligned}$	$\begin{aligned} & 54.4 \\ & 54.9 \\ & 53.5 \end{aligned}$	43	55.9	-3.9	$55 \cdot 2$	$54 \cdot 6$	$\begin{gathered} 1 \cdot 3 \end{gathered}$	3.5	$0 \cdot 0$		95	$\stackrel{\circ}{66 \cdot 6}$	$54^{1} 1$	$\stackrel{\circ}{ } 60 \cdot$	in．	$\begin{gathered} w w P, w w N: w P \\ w w P: w w P: \ldots \\ \ldots: w w P: \ldots \end{gathered}$	
													$\begin{aligned} & 0.514 \\ & 0.058 \\ & 0.001 \end{aligned}$							
					14.3	57.6	－ $2 \cdot 1$	$57^{\circ} 1$	56.7	$0 \cdot 9$	$2 \cdot 3$	0.2		97	76．0	$54^{\circ} \mathrm{O}$	$\begin{aligned} & 60 \cdot 75 \\ & 60 \cdot 57 \end{aligned}$			
						59.5	－0．1	57.1	55°	$4 \cdot 5$	$9 \cdot 5$	1.6		86	I 10.8	52.0				
	．．$\ldots$$\ldots$		68.0	$\begin{aligned} & 59 \cdot 4 \\ & 58 \cdot 2 \\ & 54 \cdot 5 \end{aligned}$	8.66.9110	$\begin{aligned} & 6 \mathbf{I} \cdot 8 \\ & 60 \cdot 5 \\ & 59 \cdot 7 \end{aligned}$	＋ 23	59.2	57.0	$\begin{aligned} & 4 \cdot 8 \\ & 3 \cdot 2 \end{aligned}$	11.08.0	2.1	84	$106 \cdot 3$	$\begin{aligned} & 55.0 \\ & 57.6 \end{aligned}$	$60 \cdot 500.000$		$\ldots: w_{w P}: \ldots$$\ldots w \mathrm{w}, \ldots \mathrm{w}$ww		
		29.901 30.056	$\begin{aligned} & 65 \cdot 1 \\ & 65 \cdot 5 \end{aligned}$				＋ $1 \cdot 1$	$58 \cdot 8$	57.3			0.6	90	$93^{\circ} \mathrm{O}$		$\begin{aligned} & 60 \cdot 50 \\ & 60 \cdot 42 \\ & 60 \cdot 47 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.287 \\ & 0.000 \end{aligned}$			
							＋ 05	57.1	$54 \cdot 8$	4.9	$10 \cdot 7$	17	84	85°	49°					
7	First Quarter Greatest Dec．S． ．＊＊	30＇123	69.0	$52 \cdot 7$	16.3	58．6－0．4		54.6	51.0	$7 \cdot 6$	15.7	1．6	76	120.6	445	$60 \cdot 47$$60 \cdot 38$	$0 \cdot 000$	wwP ：wP		
8		$30 \cdot 112$	69.8	$48 \cdot 2$	2 1．6	57.9	－0．9	$54^{\circ} 1$	50%	$\begin{aligned} & 7.2 \\ & 3.7 \end{aligned}$	$\begin{array}{r} 17.7 \\ 9.5 \end{array}$	$\begin{aligned} & 0.4 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 77 \\ & 88 \end{aligned}$	$\begin{aligned} & 125^{\circ} \\ & 108.0 \end{aligned}$	$\begin{aligned} & 36 \cdot 3 \\ & 35 \cdot 2 \end{aligned}$		$0 \cdot 000$	$\begin{aligned} & w P \\ & w P \end{aligned}$		
9		30.002	67.8	$46 \cdot 2$	21.6	$53 \cdot 8$	-4.8	519	$50 \cdot 1$							60＇17	$0 \cdot 055$			
10		30.080	64.3	45.3	19.0	53.5	－ 4.9	$49^{\circ} 5$	$45 \cdot 5$	$8 \cdot 0$	15.6	0.9	74	108.4	$36 \cdot 1$	59.98	$0 \cdot 000$			
1 I	\cdots	29.951	7 I 1	47.9	23.2	58.5	$+0.4$	$55^{\circ} 3$	52.4	$6 \cdot 1$	12.0	$2 \cdot 1$	80	112.5	38：1	59.68	$0 \cdot 000$			
12	\ldots	$29 \cdot 646$	71.0	$52 \cdot 8$	18.2	59.7	＋ 17	57°	54.6	$5 \cdot 1$	11．2	0.4	84	132.0	43.0	59.49	$0 \cdot 000$			
13	\ldots	29.317	71.6	49^{11}	22.5	59.2	＋1．4	$55^{1} 1$	51.4	$7 \cdot 8$	17.5	$0 \cdot 0$	76	118.6	$37^{\circ} \circ$	59．55	－｀000	wP		
14	Apogee ：Full	$\begin{aligned} & 29.213 \\ & 29.374 \end{aligned}$	$\begin{aligned} & 66 \cdot 3 \\ & 64 \cdot 2 \end{aligned}$	$46 \cdot 7$	19.6	$57.0-0.7$		$52 \cdot 2$$50 \cdot 1$	$\begin{aligned} & 47 \cdot 8 \\ & 46 \cdot 9 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 6.4 \end{aligned}$	19^{-1}	1.90.2	71	126.0	33.5	59.58	$0 \cdot 008$	$w w P, w w N: w P: w P$ wP，wN ：vP，vN ：wP		
15				44.9	19.3	53.3	-43				144		79	125.2	29.8	59.50	0×099			
16	In Equator	29.402	$65 \cdot 8$	$43 \cdot 0$	$22 \cdot 8$	53.2	－ 43	50．4 47.6		5.6	16.8	$0 \cdot 0$	81	113.1	28.5	59.30 58.95 8.380 0.020		$\begin{gathered} w P: w P: v P, s s N \\ w P \end{gathered}$		
17	．．．	29.420	$66 \cdot 0$	47.3	18.7	54.6	-2.6	$52 \cdot 7$	50．9	3.7	12.3	$0 \cdot 4$	87	1317	38.0					
18	\cdots	29.658	65.8	$45 \cdot 3$	20.5	53.6	－ 3.3	$52^{\circ} \mathrm{O}$	$50 \cdot 4$	$3 \cdot 2$	$9 \cdot 7$	$0 \cdot 0$	89	$119^{\circ} 0$	$35 \cdot 8$	$58 \cdot 73$	$0 \cdot 000$	$w \mathrm{P}$		
19	\cdots	29.761	$70 \cdot 9$	42．I	28.8	$\begin{aligned} & 55 \cdot 1 \\ & 56 \cdot 0 \\ & 56 \cdot 4 \end{aligned}$	－1．4	52．6	50．2	$\begin{aligned} & 4.9 \\ & 6.0 \end{aligned}$	15.9	$\begin{aligned} & 0.0 \\ & 0.6 \\ & 0.2 \end{aligned}$	84	1179	34°	$\begin{aligned} & 58 \cdot 70 \\ & 58 \cdot 46 \end{aligned}$	$0 \cdot 045$ 0’047 00000	$\begin{gathered} \mathrm{wP}: \mathrm{wP}: \mathrm{wP}, \mathrm{wwN} \\ \mathrm{vN}, \mathrm{wP}: \mathrm{wP}^{\mathrm{wP}}: \mathrm{mP} \\ \mathrm{wP} \end{gathered}$		
20	．．．	29.721	$61 \cdot 2$	$51 \cdot 5$	9.7		－ 0.2	$52 \cdot 9$	50.0		12.3		80	$84^{\circ} \mathrm{O}$	$45 \cdot 6$					
21	．．．	29.954	67.0	49.5	17.5		＋0．5	$54^{1} 1$	$51 \cdot 9$	4.5	11．2		85	99°	$40 \cdot 4$	$58 \cdot 46$				
22		29.954	$66 \cdot 3$	$46 \cdot 0$	20.3	$55^{\circ} 4$	－0．2	53.4	515	3.9	$11^{\circ} \mathrm{O}$	0.2	87	$103{ }^{\circ}$	37－9	$58 \cdot 41$	$0 \cdot 038$	wP		
23	Createst Dec． $\begin{gathered}\text { N．} \\ \text { Last Quarter }\end{gathered}$	29.826	$64 \cdot 1$	52.4	11.7	57＊1	＋ 17	$55 \cdot 5$	$54 \cdot 1$	3.0	8.2	$0 \cdot 0$	89	$95^{\circ} 3$	$49^{\circ} 4$	$58 \cdot 30$	$0 \cdot 095$	${ }_{w} \mathrm{P}$		
24	，	29.772	71.6	51.0	$20 \cdot 6$	$60 \cdot 8$	＋ $5 \cdot 5$	$56 \cdot 2$	$52 \cdot 2$	$8 \cdot 6$	19.2	$0 \cdot 0$	73	$118{ }^{\circ}$	37＊2	58.42	$0 \cdot 000$	wP		
25	\ldots	29.769	$72 \cdot 5$	49.6	22.9	$\begin{aligned} & 60 \cdot 4+5 \cdot 2 \\ & 63 \cdot 8+8 \cdot 6 \\ & 63 \cdot 6+8 \cdot 5 \end{aligned}$		$\begin{aligned} & 57 \cdot 1 \\ & 61 \cdot 2 \\ & 59 \cdot 4 \end{aligned}$	$\begin{aligned} & 54.3 \\ & 59^{\circ} 0 \end{aligned}$	$\begin{aligned} & 6 \cdot 1 \\ & 4 \cdot 8 \\ & 7 \cdot 7 \end{aligned}$	$\begin{aligned} & 13.2 \\ & 15.1 \\ & 21.8 \end{aligned}$	$\begin{aligned} & \circ \cdot 9 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 81 \\ & 85 \end{aligned}$	124.9121.2124	$\begin{aligned} & 34 \cdot 9 \\ & 46 \cdot 0 \\ & 39 \cdot 8 \end{aligned}$	58.45 58.48 $58 \cdot 68$		$\begin{gathered} w P \\ w P: w w P: w w P \\ w w P: w w P: w P \end{gathered}$		
26	\ldots	29．813	$77 \cdot 4$	$55 \cdot 3$	$22 \cdot 1$															
27	\cdots	29.797	75°	$52 \cdot 5$	22.5			55.9	1•5			77	124.8							
28		29.796	70．9	50．3	20.6	$58 \cdot 6$	$+37$		$55 \cdot 8$	53．3	$5 \% 3$	11.2	0.6	83	114.2	35%	58.81	$0 \cdot 000$	$\begin{aligned} & w P \\ & w P \\ & w P \end{aligned}$	
29	In Equator：Perigee	29.83 I	69.0	$49 \cdot 4$	19.6	57.9	＋ 3.2	55.7	53.7	$4 \cdot 2$	12.4	$0 \cdot 0$	86	112．1	37＊3	58.83	$0 \cdot 000$			
30	New	29.753	$67 \cdot 8$	$53^{\cdot 1}$	14.7	58.8	＋ 44	55.6	52.7	$6 \cdot 1$	154	0.2	81	IIII9	4711	$58 \cdot 80$	$0 \cdot 000$			
Means	．．．	29．781	$67 \cdot 8$	50.2	17.6	577	$+0.5$	55°	52.4	$5 \cdot 3$	12.8	0.6	$83^{\circ} \mathrm{O}$	11002	414	$59^{\circ} 4^{1}$	1.647	\cdots		
Number of Column for Reference．	1	2	3	4	5	6	7	8	9	10	II	12	13	14	15	16	17	18		

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Claisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column 10）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns in and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column 16 are taken daily at noon．
The values given in Columns 3，4，5， 14 ，and 15 are derived from eye－readings of self－registering thermometers．

Temperature of the Air．
The highest in the month was $77^{\circ} \cdot 4$ on September 26 ；the lowest in the month was $42^{\circ} \cdot 1$ on September 19 ；and the range was $35^{\circ} \cdot 3$ ．
The mean of all the highest daily readings in the month was $67^{\circ} \cdot 8$ ，being $0^{\circ} \cdot 5$ higher than the average for the 65 years， $1841-1905$.
The mean of all the lowest daily readings in the month was $50^{\circ} \cdot 2$ ，being $\mathrm{r}^{\circ} \cdot 1$ higher than the average for the 65 years，1841－1905．
The mean of the daily ranges was $17^{\circ} 6$ ，being $0^{\circ} .6$ less than the average for the 65 years，1841－1905．
The mean for the month was $57^{\circ} 7$ ，being $0^{\circ} 5$ higher than the average for the 65 years， $1841-1905$ ．

The mean Temperature of Evaporation for the month was $55^{\circ} \cdot 0$, being $0^{\circ} \cdot 9$ higher than
The mean Temperature of the Dew Point for the month was $52^{\circ} 4$, being $1^{\circ} \cdot 2$ higher than
The mean Degree of Humidity for the month was $83^{\circ} 0$, being $2^{\circ} 8$ greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 394$, being oin 017 greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs}}{ }^{4}$, being ogr. ${ }^{2}$ greater than
The mean Weight of a Cubic Foot of Air for the month was 53^{2} grains, being I grain less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was $60^{\circ} 0$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0^{\circ} 392$. The maximum daily amount of Sunshine was $10{ }^{\circ} 9$ hours on September 8 .
The highest reading of the Solar Radiation Thermometer was $32^{\circ} \circ$ on September $\mathbf{1 2}$; and the lowest reading of the Terrestrial Radiation Thermameter was $28^{\circ}{ }_{5} 5$ on September $\mathbf{1 6}$.
The Proportions of Wind referred to the cardinal points were N. 4, E. 9, S. 8, and W. 4. Five days were calm.
The Greatest Pressure of the Wind in the month was 4.5 lbs . on the square foot on September 16. The mean daily Horizontal Movement of the Air for the month was 208 miles ; the greatest daily value was 362 miles on September 4 ; and the least daily value was 80 miles on September 18.
 for the 65 years, 1841-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. (8 14-1005. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Graisher's Hygrometrical rable The mean difference between the Air and Dew Point Temperatures (Column 10) is the diferengble Wet-bulb Thermometers. The readings in Column 16 are taken Differences (Columns if and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermome. daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amounts entered on October 13, 14, 17, 24, and 25 are derived from fog and dew.

The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 686$, being oin ${ }^{\circ} 035$ lower than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $67^{\circ} \cdot 3$ on October 4; the lowest in the month was $6^{\circ} \cdot 1$ on October 23 ; and the range was $31^{\circ} \cdot 2$.
The mean of all the highest daily readings in the month was $61^{\circ} \cdot 2$, being $3^{\circ} \cdot 7$ higher than the average for the 65 years, $1841-1905$.
號
The mean of all daily ranges was $15^{\circ} \%$, being $1^{\circ} \circ$ greater than the average for the 65 years, $1841-1905$.
The mean for the month was $52^{\circ} \cdot 7$, being $2^{\circ} \cdot 7$ higher than the average for the 65 years, 184^{1-1905}.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1913. } \end{gathered}$			Wind as Deduced from Self-Registering anemometers.					Clouds and Weather.			
			OSLER's.								
			General Direction.		$\begin{gathered} \text { Pressure } \\ \text { on the } \\ \text { Square Foot. } \end{gathered}$						
			A.M.	P.M.				A.M.		P.M.	
Oct. $\begin{array}{r}1 \\ 2 \\ 3 \\ 3 \\ \\ 4 \\ 5 \\ 6 \\ \\ \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11\end{array}$	hours.	hours.	ENE: E E:SE WSW : Calm	$\begin{gathered} \text { ESE : E } \\ \text { SE : Calm : WSW } \\ \mathrm{W}: \mathrm{WSW} \end{gathered}$	lbs.	lbs.	miles.		3, cu, w Io, cu, n, oc..r,t: 5, ci. cu, cu:		$\begin{aligned} & \text { p.-cl, slt.-r, l } \\ & \text { Io, slt.-m } \\ & \text { p.-cl, f } \end{aligned}$
	$5 \cdot 5$	11.6			$4 \cdot 6$	0.28	315			1 :	
	3.5	11.6			0.9	0.01	145			9, 1 :	
	3.9	11.5			$0 \cdot 1$	$0 \cdot 00$	141			p.-cl, ci.-s, cu, d:	
	$2 \cdot 5$	1144	Calm : Variable	SE : SSW : S	$0 \cdot 9$	$0 \cdot 01$	133	$9, \mathrm{f}$ $:$ $9, \mathrm{f}$ $: \quad 9, \mathrm{cu}, \mathrm{s}$ o, f $:$ 9 $:$ 9 $:$ $\mathrm{p},-\mathrm{cl}$ $: \quad 5, \mathrm{ci}, \mathrm{ci}, \mathrm{ci} .-\mathrm{s}, \mathrm{ci} .-\mathrm{cu}$	$\begin{array}{r} \text { p.-cl, cu, } \mathrm{n}: \\ \begin{array}{r} \text { rocu, } \mathrm{cos}, \mathrm{~s}, \mathrm{slt} . \mathrm{r} \end{array} \\ \mathrm{p} . \mathrm{cl}, \mathrm{cu}, \mathrm{n}, \mathrm{slt}-\mathrm{sh}: \end{array}$	p.el, r, hy.sh., l :	2
	0.0	1114	Calm: W	W	$0 \cdot 7$	$0 \cdot 01$	153				
	$6 \cdot 8$	113	W : Calm : S	Variable : SE : ESE	c. 8	0.02	159			$\text { p. cl,ci,cu, } \mathbf{n}:$	p.-cl, hy.-d
	$2 \cdot 7$	11.2	SE : ESE : SW	SSW : SW : S	2.6	0.17	236	$\begin{array}{c:llc} 9 & : 10, \mathrm{c} .-\mathrm{r} & : 10, \mathrm{~s}, \mathrm{n}, \mathrm{c} .-\mathrm{r} \\ 9, \text { slt.-r } & : 10, \mathrm{r} & : & \text { p.ell,cu,cu-s,fq.-shs } \\ 10 & : & 9 . & : \\ & 5, \mathrm{cii} . \mathrm{s}, \mathrm{cu}, \mathrm{n} \end{array}$	$\begin{aligned} & 5, \mathrm{cu}: \\ & \text { 9, cu, cu.s. } \mathrm{s}, \mathrm{li} . \cdot \mathrm{shs}: \\ & \text { p.-cl, } \mathrm{cu}, \mathrm{n}: \end{aligned}$	3, cu	p.-cl
	$2 \cdot 1$ 4.4	(1911	S: SW	SW: WSW : W	4.0	0.29	326			$\mathrm{lo}, \mathrm{sc}, \mathrm{n}, \mathrm{fq} . \mathrm{r}:$	10, w
	4.4	II•I	$\mathrm{W}: \mathrm{N}$	N : NE: E	0.7	0.03	184			p.-cl, slt.-m :	p.-cl, hy.-d
	$5 \cdot 3$	110	E : ESE	SE : ESE	$2 \cdot 3$	-'19	222	$\begin{array}{llll} \text { p.-cl, d } & : & \text { p.-cl,li.-cl: } & 5, \text { ci.-cu, cu } \\ 9 & : & \text { p.-cl } & : \\ 9 & : & \text { ı0, } \mathrm{s}, \mathrm{n}, \mathrm{r} \\ 9 & : & 6, \mathrm{cu}, \mathrm{~s}, \text { slt.-f } \end{array}$	7, ci, ci.-s, cu:		p. cl , cil. s , ci. $\cdot \mathrm{cu}$
	$0 \cdot 0$	1009	ESE : E	Calm : Variable : W	$1 \cdot 9$	0.08	198		Io, c.-r : 1	ıo, r, slt.-m :	$\text { p. }-\mathrm{cl}, \mathrm{~m}$
	$5 \cdot 7$	$10 \cdot 9$	W : Calm	W : Calm : SW	$0 \cdot 3$	$0 \cdot 02$	131		2, cu, n :	p.-cl :	p.-cl,slt.-m,d
13	4.2	10.8	SW : Calm	S	$0 \cdot 1$	0.00	115	$\begin{array}{clll} \text { p.-cl, m } & : & f & 8, \mathrm{cu}, \mathrm{~s}, \text { slt.-f } \\ \text { th.-cl } & : & 9, \text { th.-cl }: & 9, \mathrm{cu}, \mathrm{n} \\ 10, \mathrm{r} & & : \quad \text { p.-cl } \end{array}$	7, ci.-s, cu, h,so.-ha: 9, cu, n, s :		s,hy.d.lu.-ba,lu.co
14	$0 \cdot 9$	$10 \cdot 8$	SSW : S : SW	SW	$1 \cdot 9$	0.15	247				p.-cl
15	$4^{\cdot 1}$	10.7	W: N	N: NNE	$1 \cdot 5$	0.17	269		9, cu.-s, n	: $10, \mathrm{~s}, \mathrm{n}$	
16	3.4	10.6	Calm	SE: S : Calm	$0 \cdot 0$	0.00	106	10 : 9 : 7, cu, cu.-s	6, cu	1	o,sit.-m, hy. -d,lu.co
17	$7 \cdot 6$	$10 \cdot 6$	Calm : SSW	SW : S	1.0	0.03	142	o, f: $0, \mathrm{f}: \quad 3 \mathrm{cu}$	I, cu	o, slt.-m, hy. -d :	m, li. -cl, stt.-m, hy.d
18	$6 \cdot 1$	$10 \cdot 5$	SSE : Calm : WSW	WSW : SW	$\bigcirc \cdot 7$	0.02	177	p.ecl : 9 : 5, cu, cu.-s	I, cu	I, th.-cl ;	I, th. -cl, slt.-m, d
19	4.3	$10^{\circ} 5$	SW : S : SSW	S:SSW	$2 \cdot 0$	0.06	194	p.-cl : 10 : 5	$4 \quad: 10$	10	p.-cl, d
20	0.2	$10 \cdot 4$	SW	SW:SSW : S	$2 \cdot 0$	0.21	277	p.-cl : p.-cl : 8, ci.-s, ci..cu, cui	${ }_{\text {ro, }} \mathrm{s}$, oc.-th.-r: 1	10, slt.rr :	p.-cl, slt.-r
21	$0 \cdot 0$	103	SSW : SW : W	Calm : Variable : SW	1.3	0.04	156	$10, \mathrm{r} \quad: \mathrm{I} 0, \mathrm{~s}, \mathrm{n}, \mathrm{fq} . \mathrm{r}$	Io, s, n, fq.-r :	10, n, r, slt.-f:	ro, slt.-f, oc.ssit.-r
22	$6 \cdot 7$	$10 \cdot 3$	Calm : SSW	SW: Calm	$0 \cdot 5$	0.02	190		5, ci.-s, cu, n, so.-ha:		
23	0.5	$10 \cdot 2$	Calm	NE: N	$\bigcirc \cdot 9$	$0 \cdot 03$	131		9	p.ccl, cu, s, slt.f:	p.-cl, h, d
24	45	$10 \cdot 1$	NNE : NE: Calm	Calm	$0 \cdot 3$	$0 \cdot 00$	79	IO, slt.f : $10: 6$, ci, ci.-s, s	r,th.-cl, slt.-f:	f :	tk.-f, hy.-d
25	4.8	$10 \cdot 1$	Calm : E	$\mathrm{E}: \mathrm{ESE}$	1.0	$0 \cdot 05$	176	tk.-f : f : 2, cu, f	p.-cl, cu :	p.-cl,cu, hy.-d:	p.-cl, hy.dd
26	$0 \cdot 0$	$10 \cdot 0$	$\stackrel{\text { Calm }}{\text { Sw }}$	Calm : W : SW	2.0	0.05	159	Io, f : io, f : io, f, glm, r	ıo, tk.-f, c.-r : I	r, , sc, s, r :	p.ecl, ci..sp, th. cl
27	I•9	$9^{\circ} 9$	SW : SSE : S	S : SSW : SW	2.8	0.22	278	p.-cl : $9: 9$ 9, cu.-s, n	8, cu.-s, s, n :	p.-cl :	p.-cl, d
28	$2 \cdot 6$	9'9	SW : S	S : Variable	2.4	0.20	258	p.cl $\quad: \quad 9, \mathrm{r} \quad: \quad 8$, ci, cu, cu. s , sil. r	8, cu. -s, s, n, sh. -r:	8, oc.-slt.-r :	10, r
29	$7 \cdot 7$	$9 \cdot 8$	S : SSE : SSW	SSW : SW	8.5	0.77	398	p.-cl, r : $1: 5$: ci.s, cu, w	$\text { p. }-\mathrm{cl}, \mathrm{cu}, \mathrm{cu} .-\mathrm{s}, \mathrm{w}:$	p.-cl, w :	p.-cl, shs.-r, w
30	$2 \cdot 5$	$9 \cdot 7$	SW : SSW	SSW: S	$5 \cdot 2$	0.44	369	p.-cl, oc.-r, w : 8, $\mathbf{\text { cie } - \mathrm { s } , \mathrm { cu } , \mathrm { cu } . - \mathrm { s } , \mathrm { oc } . - \mathrm { shs }}$	9, cu.s.s, n, oc.-slt.r:	9, oc.-slt.-r :	p.-cl, slt.-r
31	$6 \cdot 2$	97	S : WSW : SW	SW: S	$6 \cdot 2$	$0 \cdot 18$	271	10, r, sq, w: 2 : 2, cu	p.-cl, ci, cu.-s, sh.rs:	p.-cl :	9
Means	3.6	10.6	\cdots	...	\cdots	$0 \cdot 12$	204				
Number of Column for Reference.	19	20	21	22	23	24	25	26		27	

The mean Temperature of Evaporation for the month was $50^{\circ} \cdot 6$, being $2^{\circ}{ }_{7}$ higher than
The mean Temperature of the Dew Point for the month was $48^{\circ} \cdot 5$, being $2^{\circ} \cdot 8$ higher than
The mean Degree of Humidity for the month was $86^{\prime} \mathrm{I}$, being $\mathrm{I} \cdot \mathrm{I}$ greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 342$, being oin ${ }^{\circ}{ }_{35}$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\mathrm{grs}} \cdot 8$, being $0^{\mathrm{gr} \cdot} 3$ greater than
The mean Weight of a Cubic Foot of Air for the month was 536 grains, being 4 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 1o) was 6.4 .
The mean proportion of Sunshine for the month (constant sunshine being represented by \mathbf{r}) was $0^{\circ} 335$. The maximum daily amount of Sunshine was 7.7 hours on October 29 .
The highest reading of the Solar Radiation Thermometer was $115^{\circ} \cdot 2$ on October 6 ; and the lowest reading of the Terrestrial Radiation Thermometer was $26^{\circ} \cdot 1$ on October 17 and 18 .
The Proportions of Wind referred to the cardinal points were N. r, E. 5, S. ir, and W. 7. Seven days were calm.
The Greatest Pressure of the Wind in the month was 8.5 lbs . on the square foot on October 29. The mean daily Horizontal Movement of the Air for the month was 204 miles ; the greatest daily value was 398 miles on October 29 ; and the least daily value was 79 miles on October 24.
Rain (oin $\cdot 005$ or over) fell on 13 days in the month, amounting to $3^{\text {in }} \cdot 423$, as measured by gauge No. 6 partly sunk below the ground; being oin $\cdot 641$ greater than the average fall for the 65 years, 1841 -1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables.
 Differences (Columns if and i2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amounts entered on November 23 and 29 are derived from frost, fog, and dew.

The mean reading of the Barometer for the month was $29^{\text {in }} 727$, being oin ${ }^{\circ} \mathrm{O}$ I lower than the average for the 65 years, $1841-1905$.
Temperature of the ark.
The highest in the month was $59^{\circ} 5$ on November 17 ; the lowest in the month was $27^{\circ} \cdot 6$ on November 23 ; and the range was $31^{\circ} 9$.
The mean of all the highest daily readings in the month was $54^{\circ} \cdot 2$, being $5^{\circ} \cdot 2$ higher than the average for the 65 years, $1841-1905$.
Thean of all the lowest daily readings in the month was $42^{\circ}{ }^{\circ} \mathrm{O}$, being $4^{\circ} \cdot 1$ higher than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $12^{\circ} \cdot 2$, being $1^{\circ} \cdot 1$ greater than the average for the 65 years, 1841-1905.
The mean for the month was $4^{\circ} \cdot 3$, being $4^{\circ} \cdot 8$ higher than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the menth was $46^{\circ}{ }^{\circ}$, being $4^{\circ}{ }^{\circ}$ higher than
The mean Temperature of the Dew Point for the month was $43^{\circ} 7$, being $3^{\circ} \cdot 7$ higher than
The mean Degree of Humidity for the month was $84 \cdot 8$, being 2.5 less than
The mean Elastic Force of Vapour for the month was oin $\cdot 285$, being oin $\cdot 038$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\mathrm{grs}}{ }_{3}$, being $0^{\mathrm{ogr}} \mathrm{r}_{5}$ greater than
The mean Weight of a Cubic Foot of Air for the month was 542 grains, being 6 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 6.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.27 I . The maximum daily amount of Sunshine was 6.2 hours on November 4 .
The highest reading of the Solar Radiation Thermometer was $93^{\circ} \cdot 2$ on November 3 ; and the lowest reading of the Terrestrial Radiation Thermometer was $19^{\circ} \cdot 0$ on November 23 .
The Proportions of Wind referred to the cardinal points were N. 2, E. o, S. 7, and W. ı8. Three days were calm.
The Greatest Pressure of the Wind in the month was $10^{\circ} \circ$ lbs. on the square foot on November 18. The mean daily Horizontal Movement of the Air for the month was 336 miles; the greatest daily value was 532 miles on November 18 ; and the least daily value was 94 miles on November 23.
Rain (oin. 005 or over) fell on 17 days in the month, amounting to $2^{\text {in }} 694$, as measured by gauge No. 6 partly sunk below the ground ; being oin 474 greater than the average fall for the 65 years, 184 x-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the The average temperature (Column 7) is deduced from the 5 years observations, the Air and Evaporation by means of Glaisher's Hygrometrical Tables. Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and evaporation in Columns 6 and 9 , and the Greatest and Least
 Differences (C
daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amounts entered on December 14 and 25 are derired from frost.

The mean reading of the Barometer for the month was $29^{\text {in }}{ }_{913}$, being $0^{\text {in }} \cdot{ }_{128}$ higher than the average for the 65 years, $1841-1905$.

Temperature of the Air.

The highest in the month was $54^{\circ} \cdot 6$ on December 9 ; the lowest in the month was $28^{\circ} \cdot 1$ on December 3^{1}; and the range was $26^{\circ} \cdot 5$.
The mean of all the highest daily readings in the month was $45^{\circ}{ }^{\circ}$, being $1^{\circ} \cdot 7$ higher than the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was 37.7 , being $2^{\circ} \cdot 7$ higher than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $8^{\circ} \cdot 2$, being $x^{\circ} \circ$ less than the average for the 65 years, 1841-1905.
The mean for the month was $41^{\circ} 9$, being $2^{\circ} \circ$ higher than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $39^{\circ} \cdot 6$, being $\mathbf{x}^{\circ} \cdot 1$ higher than
The mean T^{\prime} emperature of the Dew Point for the month was $3^{\circ}{ }^{\circ} 7$, being the same as
The mean Degree of Humidity for the month was $82^{\circ} \mathrm{I}$, being 6.5 less than
The mean Elastic Force of Vapour for the month was oin 218 , being the same as
The mean Weight of Vapour in a Cubic Foot of Air for the month was 2 grs $\cdot{ }_{5}$, being ogr $\cdot{ }^{1}$ less than
The mean Weight of a Cubic Foot of Air for the month was 553 grains, being I grain greater than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was 7.5 .
The mean proportion of Sunshine for the month (coustant sunshine being represented by 1) was $0 \cdot 111$. The maximum daily amount of Sunshine was 5.2 hours on December $\mathbf{3 0}^{\circ}$.
The highest reading of the Solar Radiation Thermometer was $76^{\circ} \cdot 5$ on December 8; and the lowest reading of the Terrestrial Radiation Thermometer was $18^{\circ}{ }^{\circ} 1$ on December 3^{1}.
The Proportions of Wind referred to the cardinal points were N. 7, E. 4, S. 3, and W. 15. Two days were calm.
The Greatest Pressure of the Wind in the month was 26.0 lbs. on the square foot on December 26 . The mean daily Horizontal Movement of the Air for the month was 35^{8} niles; the greatest daily value was 754 miles on December 26 ; and the least daily value was ror miles on December 7 .
Rain (onn 005 or over) fell on 11 days in the month, amounting to $0^{\text {in }} \cdot 877$, as measured by gauge No. 6 partly sunk below the ground; being oin 950 less than the average fall for the 65 years, 1841 -1905.

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records.

The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period.
The time is expressed in civil reckoning, commencing at midnight and counting from 0^{b} to 24^{h}.
The height of the barometer cistern above mean sea level is 159 feet : no correction has been applied to the readings to reduce to sea level.

Highest and Lowest Readings of the Barometer in each Month for the Year igi 3.

	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	in.											
Highest	30.177	30.522	$30 \cdot 381$	29.996	30.124	30.197	30.190	30'119	30.147	30.304	30.250	30.489
Lowest.	28.931	29.282	28.730	29.220	29.167	29.589	29.530	29.524	$29^{\prime} 110$	$29^{\circ} 070$	28.935	29.174
Range..	$1 \cdot 246$	1.240	1.651	0.776	0.957	0.608	0.660	0.595	I•037	$1 \cdot 234$	1•315	1•315

The highest reading in the year was $30^{\text {in. }} \mathbf{5 2 2}$. The lowest reading in the year was 28 in. 730 .
The range of reading in the year was $\mathrm{r}^{\mathrm{in}} 7 \mathrm{7g2}^{2}$.

Monthly Results of Meteorological Elements for the Year 1913.																											
момтн, 1973.	Mean Reading of the Barometer.	trempriaturi of the arr.														$\begin{gathered} \text { Mean } \\ \text { Temperature } \\ \text { of } \\ \text { Evaporation. } \end{gathered}$		$\begin{array}{\|l\|l} \text { Tempera- } \\ \text { ture of the } \\ \text { Dew Point. } \end{array}$	$\begin{gathered} \text { Mean } \\ \begin{array}{c} \text { Degreo } \\ \text { Hemidity. } \\ \text { (Saturation } \\ =\text { roon) } \end{array} \\ \hline \end{gathered}$								
		Highest.		Lowest.	$\begin{gathered} \text { Range in } \\ \text { Honthe } \\ \text { Month. } \end{gathered}$	Mean of all Highest.		Mean of all Lowest.		Mean ofthe DailyRanges Ranges.		$\begin{aligned} & \text { Monthly } \\ & \text { Mean. } \end{aligned}$		Excess of Mean above Average o 6_{5} Years.													
$\begin{aligned} & \text { Tanuary } \\ & \text { February.... } \end{aligned}$	$\begin{gathered} \text { in. } \\ 29^{\cdot 618} \end{gathered}$	$5_{2} 1$		$\stackrel{\circ}{26 \cdot 2}$	25.9	$46^{\circ} \cdot 1$		$35^{\circ} 9$		$10 \cdot 2$		$41 \cdot$		$\begin{array}{r} \circ \\ +\quad 2.5 \end{array}$		39.7		379	$89^{\circ} 0$								
	29.986	55°		24^{2}	$30 \cdot 8$	$46 \cdot 7$		$35 \cdot 6$		11.1		$40 \cdot 9$		+ 1.4.		$38 \cdot 6$		$35 \cdot 4$	81.4								
March	29.698	59°		28.2	$30 \cdot 8$	52.0		$38 \cdot 3$		13.7		$44^{\prime} 5$		+ 2.6		$4{ }^{1} 7$		$38 \cdot 3$	79.4								
April.........	29.672	$67 \cdot 2$		29°	38.2	55.4		$38 \cdot 9$		16.4		$46 \cdot 8$		-0.5		$43 \cdot 4$		$39 \cdot 6$	$76 \cdot 6$								
May	29.727	84^{1}		$36 \cdot 3$	$47 \cdot 8$	$66 \cdot 6$		453		21.2		$54 \cdot 8$		+1.7		50.4		$46 \cdot 3$	73.7								
June...	29.901	$87 \cdot 1$		$42 \cdot 2$	44.9	714		49.2		22.3		58.9		-0.5		53.7		$49^{\circ} 2$	$70 \cdot 5$								
July	29.870	$75 \cdot 8$		$46 \cdot 2$	29.6	$68 \cdot 2$		51.8		16.4		58.5		-4.2		55^{1}			$79 \cdot 6$								
August......	29.871	$80 \cdot 0$		45°	35°	71.1		$52 \cdot$		19.1		$60 \cdot 0$		-1.6		55°		$\begin{aligned} & 52^{\circ} \\ & 52^{\circ} \end{aligned}$	$75 \cdot 3$								
September ..	29.781	$77 \cdot 4$		$4{ }^{2 \cdot 1}$	$35 \cdot 3$	$67 \cdot 8$		$50 \cdot 2$		$17 \cdot 6$		57.7		+ 0.5		55°		$\begin{aligned} & 52.0 \\ & 52.4 \end{aligned}$	$83 \cdot \circ$								
October......	29.686	67.3		$36 \cdot 1$	31.2	$61 \cdot 2$		$45^{\circ} 9$		153		$52 \cdot 7$		+ 2.7		50.6		$\begin{aligned} & 52.4 \\ & 48.5 \end{aligned}$	$86 \cdot 1$								
November...	29.727	59.5		$27 \cdot 6$	31.9	54^{2}		42°		12.2		$48 \cdot 3$	+ 4.8			$46 \cdot 1$		43.7	84.8								
December...	29.913	$54 \cdot 6$		28.1	26.5	$45^{\circ} 9$		377		8.2		$41^{\circ} 9$		+ 2.0		$39 \cdot 6$		$36 \cdot 7$	82.1								
Means.	29.788	$\begin{aligned} & \text { Highest } \\ & 87 \cdot 1 \end{aligned}$		$\begin{aligned} & \text { Lowest } \\ & 24^{.2} \end{aligned}$	$\begin{gathered} \text { Annual Range } \\ 62.9 \end{gathered}$	58	$\cdot 9$		$\cdot 6$	15		$50 \cdot 5$		$+1$		$47 \cdot 5$		443	$80 \cdot 1$								
момтн, 1973.	$\begin{gathered} \text { Mean } \\ \text { Elastic } \\ \text { Foree } \\ \text { of } \\ \text { Vapour. } \end{gathered}$	MeanWeightofVapourin aCubicFoot ofAir.	MeanWeightof aCubicFoot ofAir.		$\begin{gathered} \text { Mean } \\ \text { Amount } \\ \text { of } \\ \text { Cloud. } \\ (0-10 .) \end{gathered}$	rain.			Wind.																		
						Number of Rainy Days (oin $\cdot 005$ or over).			From Osier's Anemometer.										$\begin{gathered} \text { From } \\ \substack{\text { Roboin- } \\ \text { sonis } \\ \text { Anomo. } \\ \text { meter. }} \end{gathered}$								
									Number of Hours of Prevalence of each Wind referred to different Points of Azimuth.																		
									N.	N.E.	E.	s.e.	s.	s.w.	w.	N.w.											
January......	in. 0.228	$\begin{gathered} \mathrm{grs} . \\ 2.6 \end{gathered}$	$\begin{aligned} & \text { grs. } \\ & 54{ }^{2} \end{aligned}$	4478	$6 \cdot 8$	21											$\begin{array}{r} \mathrm{h} \\ 26 \end{array}$	$\begin{array}{r} \mathrm{h} \\ \mathrm{I} 2 \end{array}$	$\begin{array}{r} h \\ 30 \end{array}$	$\left.\begin{array}{r} \mathrm{h} \\ 122 \end{array} \right\rvert\,$	122	205	[r ${ }^{\text {h }}$	$10^{\text {h }}$	$\begin{gathered} \mathrm{h} \\ 95 \end{gathered}$	1bs. 0.25	$\begin{aligned} & \text { miles. } \\ & 297 \end{aligned}$
February....	$0 \cdot 207$	$2 \cdot 4$	554	43.32	$7 \cdot 5$	11			24	84	91	36	50	146	87	14	140	$0 \cdot 39$	315								
March	0.231	$2 \cdot 7$	546	43.97	$7 \cdot 4$	18		23	37	27	32	28	60	272	190	25	73	$\bigcirc \cdot 71$	414								
April.........	0.243	$2 \cdot 8$	543	45.76	$7 \cdot 8$	20		29	54	153	41	48	95	182	68	22	57	$0 \cdot 53$	361								
May	$0 \cdot 315$	3.5	535	5142	$6 \cdot 2$	15		57	37	97	23	52	84	213	122	51	65	0.25	269								
June.........	$\bigcirc \cdot 345$	39	533	$58 \cdot 11$	$6 \cdot 5$	7		33	64	30	41	60	23	147	187	85	83	$0 \cdot 32$	285								
July	$0 \cdot 388$	43	533	59.58	$8 \cdot 2$	13		21	154	187	89	22	9	80	73	37	93	$0 \cdot 12$	219								
August......	$0 \cdot 388$	43	531	$60 \cdot 38$	$6 \cdot 6$	11		669	73	121	108	31	4	78	125	14	190	$\bigcirc \cdot 09$	202								
September...	$\bigcirc \cdot 394$	4.4	532	59.41	$6 \cdot 0$	12		647	26	91	125	87	102	97	51	24	117	$0 \cdot 10$	208								
October......	$\bigcirc \cdot 342$	3.8	536	56.34	6.4	13		23	33	24	65	68	139	176	72	5	162	$0 \cdot 12$	204								
November...	0.285	3.3	542	51.68	6.5	17	$2 \cdot 6$	64	29	8	7	33	45	215	276	36	71	$\bigcirc \cdot 33$	336								
December...	$0 \cdot 218$	$2 \cdot 5$	553	$47 \cdot 81$	$7 \cdot 5$	11			71	81	56	16	14	90	262	102	52	0.41	358								
Sums..	\cdots	\cdots	...	169	22.4		628	915	708	603	747	1901	1635	425	198	\ldots	\ldots								
Means	$0 \cdot 299$	3.4	540	51.88	$6 \cdot 9$	\ldots			\ldots	\ldots	\ldots	\ldots	\ldots	$0 \cdot 30$	289								
			e greatest r e greatest r least reco	recorded p recorded d orded daily	pressure of daily horizo y horizonta	the win ontal mo al move.		he sq nt of of the	uare for he air air in	ot in t in the the yea		r was was 845 66 mile	$\begin{aligned} & 26 \cdot 0 \mathrm{lv} \\ & 5 \text { miles } \\ & \text { les on } \end{aligned}$	los. on D es on Ma Februa	ecembe rch 19. 12.	$\text { er } 26 .$											

Monthly Mean Reading of the Barometer at every Hour of the Day, as deduced from the Photographic Records.

Hour,GreenwichCivil Time.	1913.												Yearly Means.
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$\begin{gathered} \text { in. } \\ 29^{\circ} \cdot 6 \end{gathered}$	$\begin{aligned} & \text { in. } \\ & 29^{\circ} 977 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 29^{\circ} 717 \end{aligned}$	$\begin{gathered} \text { in. } \\ 29.674 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29 \cdot 737 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29^{\circ} 910 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29 \cdot 886 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29.881 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29.788 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29^{\circ} 692 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29^{\circ} 728 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29.920 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29 \div 794 \end{gathered}$
I^{h}	29.612	29.980	29.715	29.669	29.732	29.906	29.880	29.878	29.785	29.690	29.725	29.914	29.791
2	29.615	29.979	29.706	29.666	29.730	29.903	29.876	29.875	29.781	29.686	29.723	29.914	29.788
3	29.615	29.977	29.697	29.666	29724	29.898	29.872	29.870	29.775	29.682	29.719	29.912	29.784
4	29.612	29.976	29.692	29.664	29722	29.898	29.869	29.865	29.771	29.682	29.713	29.905	29.781 29.781
5	29.610	29.980	29.689	29.667	29.725	29.899	29.869	29.866	29.772 29.776	29.683 29.685	29.711 29.712	29.900 29.899	29.781 29.783
6	29.613	29.983	29.690	29.673	29.728	29.901	29.870	29.871	29.776	29.685	29.712 29.720	29.899 29.900	297783 29.788
7	29.618	29.988	29.692	29.678	29.732	29.905	29.872	29.876 29.878	29.780 29.786	29.691 29.697	29.720 29.727	29.900 29.905	29788 29.793
8	29.626	29.997	29.698	29.682	29.735	29.907	29.874	29.878 29881	29.786 29.791	29.697 29.701	297727 29.728	29.905 29.910	297793 29.796
9	29.634 29.640	30.003 30.005	29.706 29.710	29.684 29.685	29.735 29.734	29.906 29.903	29.875 29.875	29.881 29.883	29.791 29.793	29.701 29.702	29.728 29.732	29.910 29.920	29796 29798
10	29.640 29.638	$30 \cdot 005$ 30.008	29.710 29.710	29.685 29.680	29.734 29.730	29.903 29.903	29.875 29.874	29.883 29.879	29793 29.790	29.702 29.699	29.732 29.734	29.920 29.920	29798 29.797 2979
Noon	29.629	30.003	29.705	29.675	29.724	29.898	29.869	29.875	29.784	29.688	29.726	29.913	29.791
$13^{\text {h }}$	29.619	29.991	29.698	29.672	29.721	29.894	29.865	29.872	29.781	29.680	29.722	29.907	29.785
14	29.615	29.981	29.690	29.668	29.717	29.892	29.863	29.867	29.776	29.674	29.718	29.903	29780
15	29.614	29.973	29.685	29.663	29.714	29.889	29.859	29.861	29.770	29.669	29.719	29.903	29777
16	29.616	29.970	29.680	29.660	29.711	29.887	29.856	29.856	29.766	29.667	29.722	29.908	29.775
17	29.617	29.973	29.682	29.659	29.710	29.886	29.855	29.854	29.768.	29.669	29'729	29.912	29.776
18	29.618	29.979	29.688	29.664	29.714	29.889	29.856	29.857	29.771	29.677	29.735	29.917	29.780
19	29.619	29.981	29.694	29.667	29.720	29.895	29.860	29.860	29779	29.682	29.738	$29^{\circ} 922$	29.785
20	29.614	29.984	29.699	29.673	29.730	29.903	29.868	29.870	29.784	29.687	29.739	29.926	29.790
21	29.612	29.989	29.700	29.679	$29^{\circ} 741$	29.915	29.878	29.876	29.788	29.692	. 29.741	29.929	29.795
22	29.609	29.992	29.701	29.677	29.743	29.920	29.882	29.877	29788	29.694	29.740	29.931	29796
23	29.607	29.995	29.702	29.679	29.743	29.922	29.882	29.877	29790	29.693	29.738	29.933	29.797
24	29.606	29.997	29.700	29.678	29.740	29.920	29.879	29.875	29786	29.692	29.737	29.934	29 '795
$\stackrel{0}{=} \int^{\text {b }} \cdot-23^{h}$.	29.618	29.986	29.698	29.672	29.727	29.901	29.870	29.871	29.781	29.686	29×727	29.913	29.788
	29.618	29.987	29.697	29.672	29'727	29*902	29.870	29.871	29.780	29.686	29.727	29.914	29.788
$\underset{\substack{\text { Number of Days } \\ \text { employed. }}}{\substack{\text { chen }}}$	31	28	31	30	31	30	3 I	31	30	31	30	31	...

Monthly Mean Temperature of the Air at every Hour of the Day, as deduced from the Photographic Records.

Hour,GreenwichCivil Time.	1913.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{\text { chen }}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$40 \cdot 6$	$39^{\circ} \cdot 3$	$42 \cdot 2$	$43 \cdot 5$	$49^{\circ} \cdot 2$	$5^{\circ} \cdot 6$	$54^{\circ} \cdot 8$	$55^{\circ} 3$	$53^{\circ} \cdot 5$	$49^{\circ} 9$	$47^{\circ} \mathrm{I}$	$41^{\circ} \cdot 6$	$47^{\circ} \cdot 5$
$\mathrm{I}^{\text {b }}$	$40 \cdot 2$	38.9	41.8	$42 \cdot 8$	48.4	${ }_{51} \cdot 8$	54.0	54.7	53.2	$49 \cdot 6$	$46 \cdot 6$	41.1	$46 \cdot 9$
2	39.7	38.4	$41 \cdot 5$	$42 \cdot 1$	477	509	53.3	54.1	52.9	49°	$46 \cdot 3$	$40 \cdot 9$	$46^{\circ} 4$
3	39.5	$37 \cdot 9$	$41^{\circ} \mathrm{O}$	41.6	$47 \cdot 1$	$50 \cdot 3$	53.0	53.6	52.5	49°	45.8	$40 \cdot 6$	$46 \cdot 0$
4	39.4	$37 \cdot 5$	$40 \cdot 5$	$4{ }^{\circ} \mathrm{O}$	$46 \cdot 6$	$50 \cdot 0$	52.7	53.2	52°	48.5	$45^{\circ} 6$	$4{ }^{0 \cdot 2}$	$45^{\circ} 6$
5	39.1	37.5	$40 \cdot 3$	$41 \cdot 1$	$46 \cdot 7$	$50 \cdot 6$	52.9	53.3	51.8	$48 \cdot 4$	$45^{\circ} 2$	40°	$45^{\circ} 6$
6	$38 \cdot 6$	37.6	$40 \cdot 5$	4.17	479	52.3	53.7	54°	51.9	48.9	45.2	$40 \cdot 1$	$46 \cdot 0$
7	$38 \cdot 6$	37.9	413	43.6	$50 \cdot 5$	55.3	$55^{\circ} \mathrm{O}$	56.0	53.4	49.9	45.5	$40 \cdot 5$	47.3
8	39.1	$38 \cdot 8$	$42 \cdot 6$	$46 \cdot 2$	53.8	58.7	56.9	58.8	$56 \cdot 2$	51.3	$46 \cdot 3$	$40^{\circ} 9$	$49 \cdot 1$
9	39.8	$40 \cdot 2$	$44 \cdot 7$	48.4	57.2	614	$58 \cdot 7$	61.4	59.6	53.1	47.3	$4{ }^{1} \cdot 3$	$51 \cdot 1$
10	$4{ }^{1 \cdot 1}$	$41^{1} 8$	$46 \cdot$	$50 \cdot 0$	59.4	63.5	$60 \cdot 1$	63.3	61.6	54°	$48 \cdot 7$	$42 \cdot 2$	52.7
11	$42 \cdot 3$	43^{2}	$47 \cdot 1$	$51 \cdot 1$	$60 \cdot 9$	$65^{\circ} 2$	617	65°	63.5	57°	50.4	$43^{\circ} \mathrm{O}$	54.2 50
Noon	$43 \cdot 6$	$44 \cdot 7$	$48 \cdot 3$	517	62.4	$66 \cdot 3$	${ }^{63} 3.1$	$66 \cdot 3$ 6.3	64.5 65.4	58.4 590	$52 \cdot 1$ $52 \cdot 7$	44.1 44.4	55.5 56.2
$13^{\text {b }}$	$44 \cdot 3$	$45 \cdot 5$	$49 \cdot$	52.5	62.9 6.9	$67 \cdot 1$ 67.8	63.9 6.7	67.3 68.0	65.4 6.3	59 58 58	$52 \cdot 7$ 52.4	44.4 44.3	56.2 56.3
14	44.3	$45 \cdot 4$	49.4	52.6	$62 \cdot 8$ 62.6	$67 \cdot 8$ 67.4	64.7 64	68.0 67.6	65.3 64.9	58.9 58.0	52.4 517	$44 \cdot 3$ 44.0	56.3 55
15	43.7	45^{1}	$49^{\circ} 2$	52.5 51.6	62.6 62.0		$64 \cdot 6$ $64 \cdot 1$	67.6 67%	64.9 63.8	$58 \cdot 0$ $56 \cdot 6$	5	44.2 43	55.9
16	$43^{\circ} \mathrm{O}$	44.5	$49^{\circ} \mathrm{O}$	51.6	62.0 60.9	$66 \cdot 7$ $65 \cdot 3$	64.1 63.2	67.0 65.5	63. 62	54.9	49.7	42.9	54.1
17	42.3	$43 \cdot 3$	$48^{\circ}{ }^{\circ}$	50\%6	60.9 59.4	$65 \cdot 3$ 63.7	63.2 62.3	$65 \cdot$ 63.8	62.8	53.5	$49 \cdot 1$	$42 \cdot 6$	$52 \cdot 8$
18	42.0	$42 \cdot 1$ 41.4	$4{ }^{46 \cdot 4}$	49.1 47	594 57	6I.3	61.0	$61 \cdot 7$	57.9	52.6	$48 \cdot 5$	$42 \cdot 0$	$51 \cdot 5$
20	40.9	$40 \cdot 8$	44.7	$46 \cdot 5$	54.7	$58 \cdot 8$	59.4	59.7	$56 \cdot 5$	519	$48 \cdot 2$	41.8	503
21	$40 \cdot 8$	$40 \cdot 3$	43.9	$45^{\circ} 6$	$52 \cdot 7$	$56 \cdot 7$	$58 \cdot 1$	58.2	55^{2}	51.2	47.9	41.7	$49^{\circ} 4$
22	$40 \cdot 6$	39.9	$43 \cdot 3$	$44^{\circ} 9$	51.2	55°	$56 \cdot 8$	57°	54.4	$50 \cdot 6$	$47 \cdot 6$	41.5	48.6
23	$40 \cdot 6$	39.7	$42 \cdot 9$	44.3	$50 \cdot 1$	53.8	55.7	$56 \cdot 1$	53.9	$50 \cdot 1$	47.4	$41^{1.2}$	48.0
24	$40 \cdot 4$	39.3	$42 \cdot 4$	$43 \cdot 7$	$49 \cdot 2$	$52 \cdot 8$	54.9	55.4	53.4	49^{6}	$47 \cdot 2$	$40^{\prime} 9$	$47 \cdot 4$
$\int^{0} \cdot-23^{\text {b }}$.	$4^{1 / 1}$	$40^{\prime} 9$	44.5	$46 \cdot 8$	$54 \cdot 8$	58.9	$58 \cdot 5$	60.0	$57 \cdot 7$	52.7	$48 \cdot 3$	41.9	50.5
$\sum_{\infty}^{0} \mid 1^{\text {b }} .24^{\text {b }}$.	41.1	$40 \cdot 9$	44^{6}	$46 \cdot 8$	$54 * 8$	$58 \cdot 9$	58.5	$60^{\circ} 0$	577	527	$48 \cdot 3$	41.9	50.5
$\underbrace{}_{\substack{\text { Number of pays } \\ \text { employed. }}}\}$	31	28	31	30	31	30	31	31	30	31	30	31	...

Monthly Mean Temperature of Evaporation at every Hour of the Day, as deduced from the Photographic Records.

Hour, Greenwich Civil Time.	1913.												Yearly
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
	$39^{\circ} 6$		$40^{\circ} 0$	41•5	$47 \cdot 5$	50\%2		53.5	$52 \cdot 6$	$48^{\circ} \cdot 9$	$45^{\circ} \cdot 6$	$3{ }^{\circ}$	$45^{\circ} \cdot 8$
Midnight	$39^{\circ} 6$	$37^{\circ} 6$	40°	41'5	$47 \cdot 5$	$50 \cdot 2$	53.3	53.5		$48 \cdot 9$	45.	39°	45.
$1^{\text {h }}$	39.2	$37 \cdot 3$	39.6	41'1	$46 \cdot 9$	$49^{\circ} 5$	52.6	52.9	52.3	$48 \cdot 6$	$45^{\circ} 2$	$39^{\circ} 0$	$45^{\circ} 4$
2	$38 \cdot 8$	$36 \cdot 7$	393	$40^{\circ} 5$	$46 \cdot 3$	49°	$52 \cdot 1$	52.4	$52 \cdot 2$	$48 \cdot 3$	44.9	$38 \cdot 9$	44.9
3	$38 \cdot 6$	$36 \cdot 4$	$39^{\prime} 1$	40°	$45^{\circ} 7$	$48 \cdot 6$	51.8	52.2	$5 \mathrm{I} \cdot 8$	$48^{\circ} \mathrm{O}$	$44^{\prime} 5$	$38 \cdot 7$	$44 \cdot 6$
4	$38 \cdot 4$	$36 \cdot 0$	$38 \cdot 8$	39.7	$45 \cdot 4$	$48 \cdot 5$	51.6	$52 \cdot 0$	5 I 4	$47^{\circ} 6$	44.2	$38 \cdot 3$	44.3
5	$38 \cdot 0$	$35 \cdot 7$	$38 \cdot 8$	$39 \cdot 7$	$45 \cdot 6$	$48 \cdot 9$	51.7	51.8	51.0	$47 \cdot 4$	$43 \cdot 8$	$38 \cdot 1$	44.2
6	$37 \cdot 5$	$35 \cdot 8$	$38 \cdot 9$	$40^{1} 1$	$46 \cdot 6$	$50 \cdot 2$	$52 \cdot 3$	52.2	$51 \cdot 2$	$47 \cdot 7$	$43 \cdot 7$	$38 \cdot 3$	$44^{\circ} 5$
7	$37 \cdot 7$	$36 \cdot 1$	39.4	41.5	$48 \cdot 3$	52.1	53.2	$53 \cdot 6$	$52 \cdot 3$	$48 \cdot 4$	$44^{\circ} \mathrm{O}$	$38 \cdot 6$	45.4
8	$38 \cdot 2$	$37 \cdot 0$	$40 \cdot 4$	$43 \cdot 2$	$50 \cdot 3$	54.2	54.3	55.4	54.4	$49^{\circ} 8$	44.7	38.9	$46 \cdot 7$
9	$38 \cdot 8$	$38 \cdot 3$	$42 \cdot 2$	44.7	52.1	$55 \cdot 6$	55.2	$57^{\circ} \mathrm{O}$	$56 \cdot 6$	$5 \mathrm{I} \cdot 3$	$45 \cdot 6$	$39 \cdot 4$	$48 \cdot 1$
10	39.9	$39 \cdot 3$	$43^{\circ} \mathrm{O}$	$45^{\circ} 6$	53.3	56.6	$56 \cdot 0$	$57 \cdot 8$	$57 \cdot 6$	52.2	$46 \cdot 6$	$40 \cdot 0$	49°
11	$40 \cdot 9$	$40 \cdot 2$	$43 \cdot 7$	$46 \cdot 1$	54.1	57.2	$56 \cdot 6$	$58 \cdot 3$	$58 \cdot 4$	53.4	$47 \cdot 7$	$40 \cdot 6$	$49 \cdot 8$
Nooll	417	$41 \cdot 0$	44.3	$46 \cdot 3$	54.4	$57 \cdot 8$	57.2	$58 \cdot 6$	$58 \cdot 8$	$54^{\circ} 2$	$48 \cdot 5$	$41 \cdot 3$	$50 \cdot 3$
$13^{\text {h }}$	$42 \cdot 1$	4193	447	$46 \cdot 7$	54.6	58.1	57.7	59^{11}	59.1	54.2	$48 \cdot 7$	41.4	$50 \cdot 6$
14	$42 \cdot 1$	$41 \cdot 3$	$44^{\circ} 9$	$46 \cdot 8$	54.6	$58 \cdot 4$	$58 \cdot 0$	59.5	$58 \cdot 9$	54.2	$48 \cdot 6$	$41 \cdot 1$	50.7
15	$41 \cdot 7$	413	$44^{\cdot 8}$	$46 \cdot 6$	54.5	58.3	$58 \cdot 1$	59.3	$58 \cdot 8$	53.7	$48 \cdot 3$	$40 \cdot 9$	$50 \cdot 5$
16	$41 \cdot 2$	41.0	44.7	$46 \cdot 0$	54.2	57.9	58.0	58.9	$58 \cdot 2$	53.2	$47^{\prime 8}$	$40 \cdot 6$	50.1
17	$40 \cdot 7$	$40 \cdot 4$	$44^{\circ} \mathrm{O}$	$45 \cdot 6$	53.6	57.2	$57 \cdot 8$	$58 \cdot 3$	$57 \cdot 2$	52.4	47.2	$40 \cdot 4$	49°
18	$40 \cdot 4$	$39^{\circ} 7$	$43^{\circ} 2$	$44 \cdot 8$	$52 \cdot 9$	56.3	57.6	$57 \cdot 6$	56.4	51.5	$46 \cdot 8$	$40 \cdot 3$	49°
19	$40 \cdot 0$	39^{2}	$42 \cdot 6$	44^{1}	51.8	$55 \cdot 2$	56.9	$57 \cdot 1$	55.5	50.9	$46 \cdot 5$	$39^{\circ} 8$	$48 \cdot 3$
20	$39 \cdot 7$	$38 \cdot 9$	$4^{\circ} \mathrm{O}$	$43 \cdot 5$	$50 \cdot 7$	54^{1}	$56 \cdot 1$	56.4	54.8	$50 \cdot 5$	$46 \cdot 2$	$39 \cdot 6$	47%
21	$39^{\circ} 6$	$38 \cdot 5$	41.4	$42 \cdot 9$	497	$52 \cdot 9$	55.4	55.5	$54^{\circ} \mathrm{O}$	$49 \cdot 9$	$46 \cdot 0$	$39^{\circ} 5$	$47 \cdot 1$
22	39.4	$38 \cdot 2$	$40 \cdot 7$	$42 \cdot 5$	$48 \cdot 8$	51.9	54.6	54.8	53.3	49.5	45.8	39.2	$46 \cdot 6$
23	39.5	$38 \cdot 0$	$40 \cdot 5$	$42 \cdot 1$	$48 \cdot 2$	5111	54°	54.3	52.9	$49^{\circ} \mathrm{I}$	$45 \cdot 8$ 45.6	$38 \cdot 9$ 38.6	$46 \cdot 2$ $45 \cdot 8$
24	39.4	37.7	$40 \cdot 2$	41•7	$47 \cdot 5$	50.4	53.4	53.6	52.5	$48 \cdot 7$	$45^{\circ} 6$	$38 \cdot 6$	$45 \cdot 8$
\% $\int 0^{\text {b }} .-23^{\text {b }}$.	$39^{\circ} 7$	$38 \cdot 6$	417	43.4	50.4	$53 \cdot 7$	$55^{\prime 1}$	$55^{\circ} 8$	55°	50.6	$4^{6 \cdot 1}$	39^{6}	47%
$\sum_{\ll 1}^{\infty} \quad \mathrm{I}^{\text {h }} .-24^{\mathrm{h}}$.	39^{7}	$38 \cdot 6$	417	43.4	$50 \cdot 4$	537	$55^{\prime} 1$	$55^{\circ} 8$	55°	50.6	$4^{6 \cdot 1}$	39^{6}	$47 \cdot 5$
$\underset{\substack{\text { Number of Days } \\ \text { employed. }}}{\substack{\text { che }}}$	31	28	31	30	31	30	31	31	30	31	30	31	\cdots

Monthly Mean Temperature of the Dew Point at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures.

Hour,GreenwichCivil Time.	1913.												YearlyMeans.
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
	$38^{\circ} \cdot 4$	$35^{\circ} 4$	$37^{\circ} \cdot 3$	$39^{\circ} \cdot 1$	$\stackrel{\circ}{\circ} \cdot 7$	$47^{\circ} \cdot 8$	$5 \stackrel{\circ}{1} 8$; $1 \cdot 8$	$5 \stackrel{\circ}{1} 7$	$47^{\circ} 9$	$4 \stackrel{\circ}{\circ} 9$	$3{ }^{\circ} \cdot 2$	$43^{\circ} 9$
$\mathrm{I}^{\text {Midnight }}$	38.4 37.9	35.4 35.2	$37 \cdot 3$ 36.9	$39^{\circ} 1$ 39.1	$45^{\circ} 7$ $45 \cdot 3$	$47 \cdot 8$ 47.2	51.8 51.2	518 51.2	517 514	47.9 47.6	43.9 43.7	36.4	$43 \cdot 9$ $43 \cdot 6$
2	37.6	$34^{\circ} 4$	$36 \cdot 6$	$38 \cdot 5$	$44^{\cdot 8}$	47°	50'9	50.7	515	$47 \cdot 3$	43.4	$36 \cdot 4$	$43 \cdot 3$
3	37.4	34.4	36.7	$38 \cdot 0$	$44^{\circ} 2$	$46 \cdot 8$	$50 \cdot 6$	$50 \cdot 8$	51.1	$46 \cdot 9$	$43^{\circ} \mathrm{O}$	$36 \cdot 3$	$43^{\circ} \mathrm{O}$
4	$37 \cdot 1$	33.9	$36 \cdot 6$	$38 \cdot 0$	$44^{1} 1$	$46 \cdot 9$	50.5	$50 \cdot 8$	$50 \cdot 8$	$46 \cdot 6$	$42 \cdot 6$	$35^{\circ} 8$	$42 \cdot 8$
5	$36 \cdot 6$	33.2	$36 \cdot 9$	37%	44.4	$47 \cdot 1$	$50 \cdot 5$	$50 \cdot 3$	$50 \cdot 2$	$46 \cdot 3$	$42 \cdot 2$	$35^{\circ} 6$	$42 \cdot 6$
6	$36 \cdot 0$	33.3	$36 \cdot 9$	$38 \cdot 1$	$45^{\circ} 2$	$48 \cdot 1$	50.9	$50 \cdot 4$	$50 \cdot 5$	$46 \cdot 4$	4199	$36 \cdot 0$	$42 \cdot 8$
7	$36 \cdot 5$	$33^{\circ} 7$	$37^{\circ} \mathrm{O}$	39°	$46 \cdot 0$	49°	51.5	513	51.2	$46 \cdot 8$	$42 \cdot 3$	$36 \cdot 2$	43.4
8	$37^{\circ} \mathrm{O}$	34.6	$37 \cdot 8$	$39^{\circ} 8$	$46 \cdot 9$	$50 \cdot 2$	5199	523	$52 \cdot 3$	$48 \cdot 3$	$42 \cdot 9$	36.4	44°
9	$37 \cdot 5$	$35^{\circ} 8$	$39^{\circ} 3$	$40 \cdot 7$	$47^{\circ} 4$	$50 \cdot 6$	$52 \cdot 1$	53.2	$54^{\circ} \mathrm{O}$	$49 \cdot 5$	$43 \cdot 7$	$37^{\circ} \mathrm{O}$	45^{1}
10	38.4	$36 \cdot 2$	$39 \cdot 6$	$41^{\circ} \mathrm{O}$	$48 \cdot 0$	$50 \cdot 8$	52.4	53.2	$54^{\circ} 2$	49.7	$44^{*} 4$	$37 \cdot 3$	$45 \cdot 4$
11	$39^{\circ} 2$	$36 \cdot 6$	$39^{\circ} 9$	$40 \cdot 9$	$48 \cdot 2$	$50 \cdot 6$	$52 \cdot 2$	$52 \cdot 8$	54^{1}	$50 \cdot 1$	$44^{\circ} 9$	$37 \cdot 7$	$45^{\prime} 6$
Noon	39.5	$36 \cdot 7$	$39^{\circ} 9$	$40 \cdot 8$	$47 \cdot 5$	50.9	52.2	52.4	54.0	$50 \cdot 4$	44^{-8}	$38 \cdot 0$	$45 \cdot 6$
$13^{\text {h }}$	39.5	$36 \cdot 5$	$40^{1} 1$	$40 \cdot 9$	$47 \cdot 5$	$50 \cdot 9$	52.6	$52 \cdot 6$	54°	$49^{\circ} 9$	44.7	37.9	45^{6}
14	39.5	$36 \cdot 6$	$40^{\prime \prime}$	$41 \cdot 0$	$47 \cdot 6$	51.0	52.4	$52 \cdot 8$	53.7	$50 \cdot 0$	$44^{\circ} 7$	$37 \cdot 4$	45^{6}
15	39.4	$36 \cdot 9$	$40^{\circ} 1$	$40 \cdot 7$	$47 \cdot 6$	51.1	$52 \cdot 7$	52.7	53.7	$49 \cdot 8$	44.9	37.3	45^{6}
16	39°	37°	$40 \cdot 1$	$40 \cdot 3$	$47 \cdot 5$	$50 \cdot 8$	$52 \cdot 9$	52.4	53.5	$50 \cdot 0$	447	$37 \cdot 5$	$45^{\circ} 5$
17	$38 \cdot 8$	37°	$39^{\cdot 6}$	$40 \cdot 4$	$47^{\circ} 2$	$50 \cdot 6$	53.3	52.4	53^{1} I	$50 \cdot 0$	$44^{\circ} 5$	37.4	$45^{\circ} 4$
18	$38 \cdot 4$	$36 \cdot 7$	39.4	$40 \cdot 2$	$47 \cdot 2$	50.1	$53 \cdot 6$	52.5	53.4	$49^{\circ} 5$	443	$37 \cdot 5$	45°
19	$38 \cdot 2$	$36 \cdot 5$	39.4	$40 \cdot 4$	$46 \cdot 9$	49.9	53.3	$53^{\circ} \mathrm{I}$	53.3	$49 \cdot 2$	44^{3}	$37 \cdot 1$	$45^{1} 1$
20	$38 \cdot 2$	$36 \cdot 5$	$38 \cdot 8$	$40^{\circ} \mathrm{I}$	$46 \cdot 9$	49.9	53.2	53.5	53.3	49^{1}	$44^{\circ} \mathrm{O}$	$36 \cdot 9$	45°
21	$38 \cdot 1$	$36 \cdot 2$	$38 \cdot 5$	$39 \cdot 8$	$46 \cdot 7$	$49^{\circ} 4$	$53^{\circ} \mathrm{O}$	53.1	$52 \cdot 8$	$48 \cdot 6$	43.9	$36 \cdot 8$	44.7
22	37.9	$36 \cdot 0$	$37 \cdot 6$	39.7	$46 \cdot 3$	$48 \cdot 9$	52.6	$52 \cdot 8$	52.2	$48 \cdot 4$	$43 \cdot 8$	$36 \cdot 3$	44.4
23	$38 \cdot 1$	$35 \cdot 8$	37.7	39.5	$46 \cdot 2$	$48 \cdot 5$	52.4	$52 \cdot 6$	51.9	$48 \cdot 0$	$44^{\circ} \mathrm{O}$	$36 \cdot 0$	$44^{.2}$
24	$38 \cdot 1$	$35 \cdot 6$	$37 \cdot 5$	39.4	457	$48 \cdot 0$	5199	519	$51 \cdot 6$	$47 \cdot 8$	$43 \cdot 8$	35%	$43^{\circ} 9$
$\infty^{\infty} \quad\left(0^{b} .-23^{h}\right.$.	38.1	$35 \cdot 6$	$38 \cdot 5$	397	46•5	$49^{\circ} 3$	52.1	$52 \cdot 2$	$52 \cdot 6$	$48 \cdot 6$	$43^{\cdot 8}$	$36 \cdot 8$	44*5
	$38 \cdot 1$	$35 \cdot 6$	$38 \cdot 5$	$39^{\circ} 8$	$46 \cdot 5$	$49^{*} 3$	$52 \cdot 1$	52.2	$52 \cdot 6$	$48 \cdot 6$	$43^{\cdot 8}$	$36 \cdot 8$	44%

Monthly Mean Degree of Humidity（Saturation＝100）at every Hour of the Day，as deduced by Glaisher＇s Tables from the corresponding Air and Evaporation Temperatures．

$\begin{gathered} \text { Hour, } \\ \text { Greennwich } \\ \text { Civil Time. } \end{gathered}$	1913.												YearlyMeaus．
	January．	February．	March．	April．	May．	June．	July．	August．	September．	October．	November．	December．	
Midnight	92	86	84	85	88	84	89	89	94	93	90	82	88
$\mathrm{I}^{\text {h }}$	92	87	84	86	89	85	90	88	94	93	90	83	88
2	93	86	83	88	90	87	92	88	95	94	90	85	89
3	93	87	85	88	90	88	92	90	96	93	90	85	90
4	92	87	87	90	94	89	93	92	96	94	89	85	91
5	91	85	88	89	92	89	93	90	94	93	89	85	90
6	91	85	88	88	91	86	90	87	95	92	89	86	89
7	93	85	85	84	85	80	88	85	92	90	88	85	87
8	93	85	84	79	77	74	83	79	88	90	89	85	84
9	92	85	81	75	70	68	79	75	83	87	88	85	81
10	91	82	79	72	66	63	75	70	77	83	85	84	77
11	89	78	77	68	63	59	72	64	72	77	82	82	74
Noon	85	73	73	66	58	58	68	62	69	75	77	78	70
$13^{\text {b }}$	83	71	71	65	57	56	67	59	67	72	75		
14	83	72	70	66	57	54	64	58		73	76	76	68
15	85	73	71	65	58	56	65	59	67	74	78	76	69
16	86	74	71	65	59	57	67	60	70	79	80	80	71
17	88	78	73	69	61	59	70	62	73	83	83	82	73
18	88	82	77	71	64	61	73	67	80	87	84	83	76
19	89	83	80	77	68	67	76	74	85	89	86	84	80
20	90	86	80	79	75	72	81	81	89	90	86	84	83
21	90	86	81	81	81	77	83	83	92	91	87	84	
22	90	86	80	83	84	80	86	86	92	92	88	83	86
23	91	86	82	83	87	82	89	88	93	93	89	82	87
24	92	87	84	85	88	84	89	89	94	94	89	82	88
$\int^{0} \cdot{ }^{\text {b }} \cdot-23^{\text {b }}$ ．	90	82	80	78	75	72	80	76	84	87	85	83	81
$\int_{1} \mathrm{I}^{\mathrm{h}} .24^{\text {b }}$ ．	90	82	80	78	75	72	80	76	84	87	85	83	81

Total Amount of Sunshine registered in each Hour of the Day in each Month，as derived from the Records of the Campbell－Stokes Self－Registering Instrument for the Year 1913.

Month， 19г3．	Registered Duration of Sunshine in the Hour ending																			
	in	\％	\star	¢	$\dot{\sigma}$	$\stackrel{\square}{\square}$	岳	高	\％	\pm	${ }_{5}^{\circ}$	官	$\stackrel{ \pm}{5}$	㐫	$\dot{\square}$	\％				
January	h \cdots	h \ldots	b \cdots	h	${ }^{\text {h }}$ 2．	h 7	${ }^{\text {¢ }}$	$\frac{h}{10} 5$	$\ln _{11}{ }^{n} \cdot 6$	$\begin{gathered} \mathrm{h} \\ 7 \cdot 3 \end{gathered}$	${ }_{6}{ }^{\text {h }}$	h l	h	n \cdots	n \cdots	n \cdots	h 54	$\stackrel{h}{\circ}$	0.211	18
February．．．．	\ldots	\ldots	\ldots	$2 \cdot 1$	$5 \cdot 1$	5.6	7.2	$7 \cdot 8$	$8 \cdot 1$	$7 \cdot 8$	$7 \cdot 1$	5.9	14	\ldots	\ldots	\ldots	$58 \cdot 1$	$277{ }^{1}$	0.210	26
March．	\ldots	\ldots	$0 \cdot 9$	$6 \cdot 3$	$8 \cdot 4$	$7 \cdot 1$	8.7	9.9	117	11.0	10.7	11.4	$5 \cdot 8$	$0 \cdot 4$	\ldots	\ldots	923	366.4	0.252	37
April	\ldots	$1 \cdot 2$	71	9.3	$10 \cdot 4$	10.5	$11^{\circ} \mathrm{O}$	10．2	12.7	12.3	12.9	10.2	$6 \cdot 8$	$5 \cdot 3$	$0 \cdot 1$	\ldots	120.0	413.8	$0 \cdot 290$	48
May ．	$0 \cdot 7$	$8 \cdot 4$	1122	13.7	14.8	14.4	15.6	17.5	16.6	$15^{\circ} \mathrm{O}$	$16 \cdot 2$	15.1	15.9	14.9	$11 \cdot 3$	0.8	202.1	481．8	$0 \cdot 419$	57
June．	$1 \cdot 6$	9.7	12.2	147	13.7	13.5	13.0	12.9	16.2	159	15.5	16.7	18.6	14.5	13.2	2.3	204.2	494.5	0.413	62
July ．．．．	$\bigcirc \cdot 3$	$1 \cdot 3$	$2 \cdot 8$	44	4.2	59	8.0	8.0	$9{ }^{\circ} \mathrm{O}$	11.2	97	7.9	6.5	$7 \cdot 4$	$7 \cdot 0$	$0 \cdot 9$	$94 \cdot 5$	$497 \cdot 5$	$0 \cdot 190$	60
August	\ldots	$0 \cdot 8$	$7 \cdot 2$	9.4	10＊9	11°	103	113	12.5	15.8	13.1	13.2	11.6	110	$4 \cdot 8$	．．．	142.9	$450 \cdot 4$	$0 \cdot 317$	52
September．	\ldots	\ldots	2.2	8.7	12.5	$14^{\circ} 8$	154	16.8	16.6	14.7	13.8	14.9	14°	$4{ }^{1}$	．．．	\ldots	148.5	378.8	$\bigcirc \cdot 392$	41
October	\ldots	\ldots	\ldots	3.4	$7 \cdot 6$	$9^{\circ} \mathrm{O}$	16.4	17.6	16.8	14.3	13.2	$9 \cdot 2$	$3 \cdot 1$	．．．	\cdots	\ldots	110.6	329.9	$0 \cdot 335$	30
November	\ldots	\ldots	\ldots	．．．	3.0	$6 \cdot 3$	8.4	13.5	14.3	12.5	$9 \cdot 1$	4.3	$0 \cdot 4$	\ldots	\ldots	\ldots	71.8	2654	$0 \cdot 271$	20
December．．	\ldots		\ldots		$0 \cdot 1$	2.0	4.5	54	77	47	$2 \cdot 6$	．．．	．．．	\cdots	\cdots	\ldots	27.0	244°	$0 \cdot 111$	16
For the Year	2.6	214	$43^{\circ} 6$	72.0	92.8	1076	127.0	1412	153．8	1425	$130 \cdot 1$	109.9	84＇I	$57 \cdot 6$	$36 \cdot 4$	4°	1326.6	$4458 \cdot 6$	$0 \cdot 298$	．．．

The hours are reckoned from apparent midnight．

$\begin{gathered} \text { Days } \\ \text { of the } \\ \text { Month. } \end{gathered}$	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.				$\begin{gathered} \text { Days } \\ \text { ofthe } \\ \text { ofthe } \\ \text { Month. } \end{gathered}$	Dry-Bulb Thermométers 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.			
	Maxi- mum.	$\begin{aligned} & \text { Mini. } \\ & \text { mum. } \end{aligned}$	$\mathrm{g}^{\text {h }}$	Noon.	${ }^{15}{ }^{\text {b }}$	$2 \mathrm{I}^{\text {b }}$	$9^{\text {a }}$	n.	${ }^{15}{ }^{\text {b }}$	$2 \mathrm{I}^{\text {b }}$		$\underset{\substack{\text { Maxi- } \\ \text { mum. }}}{ }$	$\begin{aligned} & \text { Mini. } \\ & \text { mum. } \end{aligned}$	$9^{\text {b }}$	Noon.	${ }_{15}{ }^{\text {b }}$	$2 \mathrm{r}^{\text {b }}$	$9^{\text {b }}$	Noon.	$\mathrm{rs}^{\text {h }}$	$2 \mathrm{x}^{\text {b }}$
January.											March.										
${ }_{\text {d }}$	47	$40^{\circ} \mathrm{I}$	$42 \cdot 5$	44.6	47°	4199	$40 \cdot 4$	$43 \cdot 2$	$45 \cdot 8$	41.1	${ }_{\text {d }}^{\text {d }}$	42	$34 \cdot 8$	39^{2}	$41^{\circ} 5$	41°	$36^{\circ} \cdot 5$	$35 \cdot 7$	37.6	36‥	$33^{\circ} 6$
2	48.7	$32 \cdot 1$	34.8	$47 \cdot 1$	45.3	41.5	34^{6}	44.4	$42 \cdot 8$	$4 \mathrm{I}^{\circ} \mathrm{O}$	2	52.4	$36 \cdot 2$	$44^{.6}$	$48 \cdot 6$	$50 \cdot 1$	44.6	$42 \cdot 7$	43.4	$44 \cdot 1$	42°
3	$48 \cdot 8$	37.3	$42 \cdot 6$	$47 \cdot 8$	$47 \cdot 8$	$48 \cdot 0$	$42 \cdot 2$	$46 \cdot 1$	$45 \cdot 6$	$46 \cdot 0$	3	53.0	$43 \cdot 6$	$50 \cdot 5$	512	523	49.8	$47^{\circ} 9$	$48 \cdot 8$	49.2	47.3
4	$50 \cdot 4$	$46 \cdot 0$	473	49.4	$48 \cdot 6$	$46 \cdot 7$	$46 \cdot$	47.3	45.8	45^{2}	4	54	38	48.6	52.2	$52 \cdot 0$	51.5	47°	49.9	49^{-8}	49.3
5	51.4 48.1	39	49°	$50 \cdot 6$	$50 \cdot 0$	39 44 6	$47 \cdot 6$	48.9 43.0	$46 \cdot 6$	38.0	5	$58 \cdot 3$	45	$50 \cdot 8$	55.3	55.	453	$46 \cdot 9$ 47	47×4	$48 \cdot 5$	43.0 46.7
6	40	${ }_{4}{ }^{3} 1$	$4{ }^{4} \cdot$	44.6	$4{ }^{4 \cdot 1}$	$4{ }^{4.6}$	407 457	$4{ }^{46} 9$	45°	41	7	59° 50	44.7 41	44.5	557 4	${ }^{5} 5^{\circ} \cdot$	$50 \cdot 2$ 42.	47.9 40.8	51-8	$4{ }^{49} 9$	$40^{\circ} \mathrm{O}$
8	$45^{\circ} 7$	$4{ }^{1 \cdot 1}$	419	43.4	$44^{\circ} 2$	45.4	$40 \cdot 8$	$42 \cdot \mathrm{I}$	$42 \cdot 5$	$4{ }^{\text {I }}$	8	$45 \cdot 7$	33.4	38.6	43.4	$40 \cdot 5$	$40 \cdot 0$	$35^{\circ} 7$	38.2	37.4	36.3
9	48.0	$41 \cdot 2$	$42 \cdot 9$	$45 \cdot 8$	$46 \cdot 2$	$4 \mathrm{I}^{18}$	42.4	44.7	$44 \cdot 6$	$4{ }^{1} \cdot$	9	$49 \cdot 3$	$33 \cdot 3$	42.9	$47 \cdot 7$	$47 \cdot 6$	$46 \cdot 6$	40.8	$43 \cdot 8$	$43 \cdot 7$	43.5
$1{ }^{\circ}$	$42 \cdot 0$	33.9	37-1	$36 \cdot 8$	$35^{\circ} 9$	$34 \cdot 6$	37.0	$36 \cdot 8$	35.8	$33 \cdot 9$	10	51.9	$46 \cdot 1$	$48 \cdot 2$	49.2	49.7	48.7	$46 \cdot 4$	48.0	$49 \cdot 2$	$47 \cdot 8$
11	$40 \cdot 4$	${ }^{3} 3 \cdot 1$	$33 \cdot 8$	$35 \cdot 8$	$36 \cdot 8$	$40 \cdot 4$	33.2	$35^{\circ} 8$	36•7	39.8	11	$56 \cdot 2$	44.4	$47^{\circ} 2$	51.3	53.8	453	$43^{\cdot 8}$	$47 \cdot 6$	$49 \cdot 3$	41°
12	43°	$34^{6} 6$	37.5	41^{6}	419	34.7	35.8	38.4	38.5	33.6	12	$55^{\circ} \mathrm{O}$	29°	44.4	515	51.6	$4{ }^{19} 9$	41^{-1}	$46 \cdot 4$	$47 \cdot 4$	414
13	36°	26.2	28.6	$30 \cdot 8$	35^{2}	34.6	27.7	$30 \cdot 7$	33.9	34°	13	55.7	$36 \cdot 1$	$38 \cdot 3$	$50 \cdot 1$	53.7	$45^{\circ} \mathrm{P}$	38.0	$46 \cdot 4$	48.4	$42 \cdot 5$
14	$42^{\circ} \mathrm{O}$	30.6	32.4	39.8	39^{6}	38.5	$32^{\circ} \mathrm{O}$	39°	38.8	37.4	14	54.3	44.7	$49^{\prime} 3$	52.8	51.6	469	$48 \cdot 6$	$49 \cdot 8$	$48 \cdot 6$	$45 \cdot 6$
15	$48 \cdot 1$	$37 \cdot 1$	$42^{2} 4$	47°	$45 \cdot 5$	$42 \cdot 6$	$41^{1} 6$	43°	$41^{\circ} 7$	$41 \cdot 8$	15	49.1	$37^{\circ} 6$	43°	$47 \cdot 8$	49°	$43 \cdot 6$	38.8	39.5	$40 \cdot 6$	
16	$46 \cdot 3$	$34^{1} 1$	$37 \cdot 6$	$45^{\circ} 7$	44.4	41.4	$36 \cdot 3$	42.2	41.9	$40 \cdot 6$	16	$47 \cdot 6$	39°	$4 \mathrm{I} \cdot 4$	$44^{8} 8$	$43^{\circ} 9$	39.3	38.0	$40^{\circ} 4$	$40 \cdot 4$ 37	$38 \cdot 8$
17	$45 \cdot 1$	37°	39^{6}	$42 \cdot 5$	42.9	37.4	$38 \cdot 8$	39^{8}	$40 \cdot 8$	$36 \cdot 8$	17	$46 \cdot 4$	35°	37°	$41^{1} 6$	$39^{\circ} 6$	$36 \cdot 4$	35.4	$37^{\circ} \mathrm{O}$	37-8	. 6
18	45.9	31.3	32.6	$44 \cdot 6$	$45 \cdot 5$	39^{-8}	32.5	$42^{\circ} \mathrm{O}$	$42 \cdot 6$	38.4	18	44.3		34.4	$36 \cdot 4$	$42 \cdot 6$	$34 \cdot 5$	31.2	327	5 8	- 0
19	45.9	32.1	$36 \cdot 5$	44.3	44.3	$39^{\circ} 6$	$35^{\circ} 8$	$4{ }^{2} 9$	43.3	38.8	19	52.2 56.0	34	47.5	$50 \cdot 8$ 52.8	51. 47.6	$44 \cdot 3$ 44.6	$46 \cdot 5$	44.7 4.7	42.4 45 4	$40 \cdot 5$ $42 \cdot 0$
20	$48 \cdot$ 42.	39.1 36.1	$42 \cdot 6$ 41 4	$45^{\prime} 5$ 417	44.5 $42 \cdot 3$	42 $40 \cdot 1$ 40	41.4 402	$43 \cdot 6$ $40 \cdot 6$	43.4 40.8	41.4 37.9	20	$56 \cdot 0$ 53.6	$41 \cdot 3$ 39.3	47.9 47 4	$52 \cdot 8$ 47 7	$47 \cdot 6$ 513	$44 \cdot 6$ $43 \cdot 6$	43.0 44^{6}	$45 \cdot 1$ 43.8	45.4 45%	$42 \cdot 0$ $41^{\prime 2}$
22	$40 \cdot 2$	32	32	$32 \cdot 8$	34.4	33°	31.6	$32 \cdot 6$	33.3	33°	22	$56 \cdot 8$	41.4	477	53.5	55^{2}	$46 \cdot 4$	$45 \cdot 5$	49.4	$50 \cdot 7$	42
23	$52^{\prime} 1$	33°	51.1	$51 \cdot 5$	$51 \cdot 6$	$48 \cdot 1$	$49 \cdot 1$	49°	48.6	453	23	518	$42^{\text {'I }}$	47.3	$46 \cdot 8$	483	$42 \cdot 8$	43.7	44.8	$46 \cdot 0$	$39^{\circ} 9$
24	5	$46 \cdot 1$	$48 \cdot$	$48 \cdot 7$	$49 \cdot 1$	50.4	45.4	$46 \cdot 4$	$46 \cdot 9$	$47 \cdot 8$	24	$46 \cdot 7$	$36 \cdot 0$	$41^{\prime 2}$	44.6	$45^{\circ} 9$	39.2	$3{ }^{3} 8$	$42 \cdot 7$	42.3	$37 \cdot 8$
25	$50 \cdot 8$	39.4	44.5	$45^{\circ} 7$	$43 \cdot 8$	$39 \cdot 6$ $32 \cdot 8$	$42 \cdot 8$	${ }^{42} 2$	41.8 36.8	37.8	25	$46 \cdot 7$	${ }^{29} 9^{\circ}$	39^{2}	48 8.8 8.	44.9 46.2	$40 \cdot 0$	36.6	41.8 43	$40 \cdot 7$ 4 4	$36 \cdot 5$
26	$43 \cdot 1$	28.3	31.5	$40 \cdot 7$	$41^{\circ} 5$	32.8	$31^{\circ} \mathrm{O}$	$37^{\circ} \mathrm{O}$	$36 \cdot 8$ 36.6	$1 \cdot 2$	26	50.3	35.3	${ }^{42}{ }^{2} 9$	48.8	$46 \cdot 2$ 53	$42 \cdot 3$ 41.3	$41 \cdot 2$ 4	$43 \cdot 9$ 44.2	41.4 46.7	41.4 40.4
27 28 2	$42 \cdot 3$ 44.3	28.1 34.6	33.7 39.6	41.3 41.5	38.9 43.0	$35 \cdot 6$ 41.1	$32 \cdot 9$ 39.2	$38 \cdot 2$ 41 4	36.6	33.8 40.5	27 28	55.1 52.9 5.	$40^{\circ} 2$ $39^{\circ} \mathrm{I}$	42.6	$47^{\circ} \mathrm{O}$ 46.6	53.8 51.2	$41 \cdot 3$ $4+7$	$41 \cdot 6$ 45^{\prime}	$44^{\prime} 2$ 45 1	$46 \cdot 7$ 47 1	40.4 41.8
29	44. ${ }^{\text {I }}$	$40 \cdot 2$	$4{ }^{1} 5$	43.5	$43 \cdot 6$	43°	$4{ }^{1} 4$	$43 \cdot 2$	$43 \cdot 5$	42.9	29	56.7	$38 \cdot 1$	$47 \cdot 6$	+7.8	53.9	$49 \cdot 8$	45.8	47.3	$51 \cdot 1$	45°
30	$46 \cdot 9$	4111	$42 \cdot 6$	43.9	$45 \cdot 5$	$46 \cdot 9$	423	43.5	44°	45^{8}	30	57.0	$46 \cdot 2$	48.6	$51 \cdot 5$	$51^{\circ} 9$	$49 \cdot 5$	$45^{\circ} 6$	47.8	47.3	$47 \cdot 5$
31	$50 \cdot 2$	36.1	$37 \cdot 8$	42^{2}	$42 \cdot 3$	$36 \cdot 7$	34^{8}	$37^{\circ} 2$	37.5	34.9	31	$49^{\circ} 8$	$40 \cdot 5$	$43 \cdot 8$	457	47×7	43^{1}	$42 \cdot 7$	44^{1}	$45 \cdot 4$	$42 \cdot 3$
Means	46	$36 \cdot 1$	39	$43 \cdot 6$	437	$40 \cdot 8$	38.8	$4{ }^{1} 7$	41.7	39.6	Means	52.	$38 \cdot 5$	44	$48 \cdot 3$	$9 \cdot$	43.	42	44.3		$41 \cdot 4$
February.											April.										
${ }_{1}^{\text {d }}$	44	$35^{\circ} 1$	39'I	$43 \cdot 8$	40.0	37.5	$38^{\circ} \cdot 1$	$41^{\circ} 7$	39*7	$37^{\circ} \mathrm{O}$	${ }_{\text {d }}$	$53^{\circ} \mathrm{O}$	$37^{\circ} 2$	$46^{\circ} \cdot 3$	$47^{\circ} 4$	$49^{\circ} 1$	$42 \cdot 4$	$43^{\circ} 8$	$43 \cdot 7$	$43^{\circ} 8$	414
2	$45 \cdot 8$	33.3	37.8	44.3	42.7	$44^{\circ} 6$	$35 \cdot 5$	$40 \cdot 8$	41.6	$42 \cdot 8$	2	55.2	33°	$47 \cdot 6$	$50^{\circ} 9$	53.1	$43 \cdot 3$	$44^{\text {I }}$	$45 \cdot 5$	47°	41.2
3	$52 \cdot 3$	44^{2}	$4{ }^{8.6}$	517	$50 \cdot 9$	50.2	45°	478	$47 \cdot 9$	$46 \cdot 4$	3	$55^{\circ} \mathrm{O}$	$36 \cdot 3$	497	$52 \cdot 5$	51.6	43.9	44.5	43.3	427	$42 \cdot 1$
4	55°	$46 \cdot 1$	49.4	53.2	53.1	$46 \cdot 9$	$44^{\circ} 9$	$47 \cdot 6$	$48 \cdot 1$	457	4	51.2	$40 \cdot 4$	43.7	48.2	50.6	$46 \cdot 2$	41.4	45°	$47^{\circ} 9$	$44 \cdot 7$
5	48.3	43.9	$46 \cdot 6$	48.0	$47^{\circ} \mathrm{I}$	45.3	45.3	45.2	43.4	$42 \cdot 8$	5	52.6	$42 \cdot 1$	44^{-8}	48.6	51.6	$45 \cdot 3$	43°	$44^{\circ} 9$	$47^{\circ} \mathrm{C}$	43.1 38.0
6	52.2	39.9	$46 \cdot 5$	$49^{\circ} 9$	49.9	$49^{\circ} 6$	45.6	$47 \cdot 6$	$46 \cdot 8$	$46 \cdot 8$	6	55°	41.5	$47 \cdot 5$	52.3	52.5	41.8	42.4	$44^{\circ} 4$	$45^{\circ} 7$	$38 \cdot$ 37
7	52.6	$44^{\circ} 4$	48.4	$52^{\circ} \mathrm{O}$	52.4	51°	47°	50.1	$49^{\prime 2}$	$49^{1} 1$	7	$51 \cdot 1$	39^{-8}	43.7	$47^{\circ} \cdot$	47.5	41.6	$39^{3} 9$	$40 \cdot 8$	$38 \cdot 9$	$37^{\circ} \mathrm{I}$ 39°
8	51.2	41^{1}	42.6	$46 \cdot 6$	$48 \cdot$	41.9	$38 \cdot 9$	$40 \cdot 8$	$40 \cdot 8$	$39^{\circ} 6$	8	51.3	$34^{\circ} 9$	43.3	43.8	49.8	$43 \cdot 8$ 39.8	39.5 38.8	$40 \cdot 0$ 40.1	44.8 40.9	39.9 36.7
9	52.0	414	$46 \cdot 9$	$49^{\circ} 6$	51.6	$48 \cdot 6$	45.5	$48 \cdot 3$	$50 \cdot 1$	$48 \cdot 1$	9	47°	39. ${ }^{\text {I }}$	$42 \cdot 1$	$44^{4.6}$	45.5	$39 \cdot 8$ 43.5	$38 \cdot 8$ 44.1	$40 \cdot 1$ $46 \cdot 1$	$40 \cdot 9$ 47.0	$36 \cdot 7$ 41
0	53.5	$41^{\prime 2}$	$44^{\circ} 7$	$49^{\circ} 9$	53.5 51.8	$42 \cdot 1$ 38.0	$42 \cdot 6$	$45 \cdot 3$	$47^{\circ} \circ$	38.7 378	10	49.4		45.9 39.6	48 39	$48 \cdot 6$ 35		44.1 35.8	$46 \cdot 1$ 374	$47^{4.0}$	41.4 41.6
11	$53^{\circ} 2$	32.1	$34^{\circ} 6$	$48 \cdot$	51.8 47.6	38.0 40.6	34.6 33.4	44° $40^{\circ} 2$	$46 \cdot 8$ 45	$37 \cdot 8$	11	$43 \cdot 7$ 44.1	34.1 33.9	$39 \cdot 6$ 39.5	39.5 40.0	$35 \cdot 7$ $40 \cdot 8$	$42 \cdot 8$ $37: 2$	35.8 33	37.4 33.7	$35^{\circ} 1$ 34.9	
13	$48 \cdot 0$ $42 \cdot$	$30 \cdot 2$ 34.4	$33 \cdot 4$ $35 \cdot 3$	$40 \cdot 3$ 37.2	47.6 $41^{\circ} \mathrm{O}$	$40 \cdot 6$ 36.9	33.4 $35 \cdot 3$	$40 \cdot 2$ 36.8	$45 \cdot 8$ $39 \cdot 7$	$40 \cdot 3$ $36 \cdot 4$	12	$44 \cdot 1$ 45.8	33.9 29.0	39.5 39	$40^{\circ} \mathrm{O}$	$40 \cdot 8$ 44.2	$37: 2$ 35	$33: 7$ 34%	33.7 36.7	34° 3	33.4 33.2
13	$42 \cdot 0$ $38 \cdot 1$	34.4 30.2	$35 \cdot 3$ 35.1	37.2 36.6	$41 \circ$ 37	$36 \cdot 9$ 37.7	35.3 350	$36 \cdot 8$ $36 \cdot 5$	$39 \cdot 7$ $37 \cdot 2$	$36 \cdot 4$ $37 \cdot 3$	13	45.8 48.6	29.0 $33^{\circ} 4$	39.5 $42 \cdot 6$	44.0 46.8	44.2 46.4	35:6	34.0 38.	36.7	37 ${ }^{\circ} \mathrm{C}$	$33 \cdot 2$ $43 \cdot 5$
14 15	$38 \cdot 1$ 39.8	30.2 354	35.1 37	$36 \cdot 6$ 379	$37 \cdot 7$ 37 19	37 38 38 37	$35 \cdot$ 36.8	$36 \cdot 5$ 37	37.2 377	$37 \cdot 3$ $38 \cdot 0$	14 15 15	48.6 52.6	33.4 42.8	$42 \cdot 6$ 50.2	$46 \cdot 8$ 50.6	$46 \cdot 4$ 51.1 1	$44^{\circ} 1$ 46.5 4	$38 \cdot 3$ $46 \cdot 0$	41.6 $46 \cdot 0$	41.4 45.9	$43 \cdot 5$ $43 \cdot 2$ 3
16	46°	33•1	35.4	44°	45°	37.7	34.4	39°	38.0	$34 \cdot 8$	16	57.9	43°	478	$51 \cdot 2$	$55 \cdot 8$	$43 \cdot 8$	$46 \cdot 8$	49°	$48 \cdot 1$	$39^{\circ} 9$
17	$4^{2} \cdot$	33°	$38 \cdot 2$	39.6	41.3	$33^{\circ} \mathrm{O}$	$36 \cdot 2$	37°	$37 \cdot 8$	31.8	17	55.9	31.2	47.4	51.5	51°	41.3	417	43.9	$46 \cdot 8$	37.8
18	38.4	$32 \cdot 1$	32.6	38.1	$35 \cdot 6$	$33 \cdot 7$	30.7	32.7	$30 \cdot 8$	$30 \cdot 5$	18	54.1	35.3	$48 \cdot 2$	513	$50 \cdot 9$	$48 \cdot 0$	44.8	$47^{\circ} 2$	47°	$47^{\circ} 2$
19	$40 \cdot 0$	28.9	32.7	37.8	38.7	$33^{\prime 2}$	29.8	$32 \cdot 3$	34°	$31 \cdot 1$	19	57.0	43.7	52.4	$55 \cdot 6$	$53 \cdot 8$	$43 \cdot 7$	47.5	$45^{\circ} 9$	45.2	41°
20	$36 \cdot 2$	31.1	33.6	34.3	$35^{\circ} 4$	33.6	30.8	32.0	31.8	$3{ }^{\circ} \mathrm{O}$	20	58.2	38°	48.4	52.4	57.3	$44^{\circ} 9$	$43^{\circ} 2$	$4+9$	$46 \cdot 1$	$40^{\circ} 9$
21	43.3	33°	38.6	$41^{\circ} 9$	42.0	$36^{\circ} \mathrm{I}$	35.2	$37 \cdot 1$	37.8	$34^{\circ} 9$	21	${ }_{6} 6.2$	43°	51.2	57.7	58.8	512	$50 \cdot 1$	54.	$53^{\circ} \mathrm{L}$	50.4 30.8
22	$42 \cdot 1$	29.7	37.5	$41 \cdot 1$	$40 \cdot 6$	$30 \cdot 4$	36	37°	35^{8}	293	22	${ }^{6} 4.2$	$48 \cdot 8$	52.3	60.8	63.3	53.2	51.4	56.0	57.0	$50 \cdot 8$ $42 \cdot 9$
23	$48 \cdot 3$	24^{2}	$36 \cdot 8$	$46 \cdot 4$	$47 \cdot 4$	32.5	$34^{\circ} \mathrm{O}$	38.5	$39 \cdot 4$	$31^{\circ} \mathrm{O}$	23	63.8	$\stackrel{417}{ }$	$56 \cdot 9$	62.6	61.7 64	46% 51%	51.3 47	52	49.7 54.8	42.9 471 41
24	$48 \cdot 6$	29.1	39.8	$48 \cdot 6$	$47 \cdot 6$	$42^{\circ} \mathrm{O}$	$36 \cdot 5$	$41^{\circ} 9$	41.4	37.7	24	67.2	33'1	49.5 50.8	63.9 53	64.6 54.0	510 $42 \cdot 5$	478	54.6 47	44.8	$47 \cdot 1$ 41.1
25 26	$49^{\circ} \mathrm{O}$	$36 \cdot 1$	$46 \cdot 6$	47.4 51.6	$45 \cdot 3$ $50 \cdot 1$	$40^{\circ} 4$ 43°	$41^{\circ} 9$ 44	$42 \cdot 6$ 47.2	$41 \cdot 2$ 45°	39° 41.8	25 26	59.0 $57^{\circ} \mathrm{C}$	$42 \cdot 1$ $39 \cdot 1$	508 51.3	53.9 54	54.0 52.6	42.5 54.3	$48 \cdot 8$ 47	47.9 49.6	46.7	411 $+8 \cdot 8$ 1
27	$52 \cdot$	$38 \cdot 1$	$43 \cdot 7$	49.7	47.8	$43^{\cdot 6}$	$42 \cdot 4$	$43 \cdot 8$	43°	$42 \cdot$	27	62.6	50.5	58.6	$58 \cdot 1$	57.6	56.6	53.4	53.4	$5+5$	51.9
28	44°	36.8	$38 \cdot 3$	41.8	$40 \cdot 9$	38.8	367	$37^{\circ} 9$	377	$36 \cdot 2$	28	$62 \cdot 8$	51°	54.6	$56 \cdot 9$	$60 \cdot 8$	51.1	33.	54.8	56.9	$48 \cdot 8$
											29	64.9	$42^{\circ} \mathrm{O}$	$60 \cdot 4$	$62 \cdot 6$	61.1 5	53.5	54.9	54.8	54.3	51.5
											30	58.7	$47 \cdot 8$	55°	54°	54.6	47°	$50 \cdot 3$	$49 *$	49	$47^{\prime 2}$
Means	$46 \cdot 8$	35^{6}	$40^{\circ} 2$	44.7	$45 \cdot 1$	$40 \cdot 3$	38.3	41°	413	$38 \cdot 5$	Means	55.3	39.5	48.4	51.7	52.5	$45 \cdot 6$	447	$46 \cdot 3$	$46 \cdot 6$	429

Readings of Thermometers on the Ordinary Stand in the Magnetic Pavilion Enclosure-continued. (The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at $2 \mathrm{I}^{\mathrm{h}}$.)																					
	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.				$\begin{gathered} \text { Dass } \\ \text { of the } \\ \text { ofoth. } \end{gathered}$	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.			
	$\underset{\substack{\text { Maxi- } \\ \text { mum. }}}{ }$	$\underset{\text { mini. }}{\substack{\text { mini. }}}$	$9^{\text {b }}$		$\mathrm{rs}^{\text {b }}$	$2 \mathrm{r}^{\text {h }}$	${ }^{\text {9 }}$		${ }_{15}{ }^{\text {b }}$	$2 \mathrm{r}^{\text {b }}$		$\underset{\substack{\text { Maxi- } \\ \text { mum. }}}{ }$	$\underset{\text { Mini- }}{\text { mum. }}$	$9^{\text {h }}$	oon.	${ }^{15}{ }^{\text {b }}$	$2 \mathrm{I}^{\text {h }}$	$9^{\text {b }}$	voon	${ }^{5} 5^{\text {b }}$	$23^{\text {h }}$
May.											July.										
${ }_{1}^{\text {a }}$	62		51.2		54.8	48	4			46°	${ }_{1}^{\text {a }}$	$70^{\circ} 0$				${ }^{\circ} 9$	I	, 3		2	6°
2	$6{ }^{1 \cdot 1}$	$3{ }^{4} \cdot 6$	$49 \cdot 3$	54°	57.6	$4{ }^{\circ}$	46	$47 \cdot 1$	$48 \cdot 6$	$44 \cdot 7$	2	72.1	51.1	60%	64.6	69°	58.7	55.7	56.2	58.9	$58 \cdot 1$
3	$60 \cdot 0$	$40 \cdot 1$	$52 \cdot 5$	57.5	55.4	$46 \cdot 5$	$46 \cdot 9$	49°	$48 \cdot 7$	$44^{\prime 8}$	3	68.9	54.3	57.8	617	65.4	$60 \cdot 3$	55.5	56.7	57.8	$56 \cdot 8$
4	53	$42 \cdot 2$	45°	473	52	47.3	$43 \cdot 4$	44.8	47.4	$44 \cdot 8$	4	68.9	53.2	$57 \cdot 6$	$63 \cdot 8$	$66 \cdot 8$	55°	557	$58 \cdot 8$	60°	54.9
5	62.6	45.7	52	57.7	57.6	$48 \cdot 1$	$49^{\circ} 4$	52.8	52.0	$45^{\circ} 1$	5	$66^{\circ} 9$	51.3	$58 \cdot 8$	$61 \cdot 2$	63.4 5.8	57.4	'6	54.4	-	$55 \cdot 6$
6	61.4	42.2	55	59.4	50	44.7	$51^{\circ} \mathrm{O}$	53.0	$48 \cdot 7$	41.4	6	$60 \cdot 1$	52	$55^{\circ} 4$	$58 \cdot 6$	$55^{\circ} 8$	52.9 53	53.7	$55^{5 \cdot 1}$	$\cdot 1$	- 8
7	59°	36.3	52	53.3	$55^{\circ} 9$	49.8	$47 \cdot 1$ $46 \cdot 5$	47.8 46.8	49.1 48.0	$47 \cdot 5$ 48.3	7	$66 \cdot 0$ 64.8	49.1 46.2	57.0 56.2	597 58 8	55° 63	$53 \cdot 8$ 53.3	$50 \cdot 2$	53.3 49.7	52.4 52.4	48.3 49.8
8	54°	44.7 48.2	51.3 51.8	52.6	515 53	503	$46 \cdot 5$ 49	$46 \cdot 8$ $50 \cdot 8$	48	$48 \cdot 3$ 48.7	8	$66 \cdot 8$ 69.2	$46 \cdot 2$ 47	56.2	58.7 61.6	$63 \cdot 1$ $62 \cdot 8$	53.3 55°	50.2 53.5	49.7 53	52.4	49.88
10	63.2	45.2	55	$60 \cdot 1$	$60 \cdot 8$	48.9	50.8	53.5	52.5	$46 \cdot 6$	10	66.2	53.8	57°	62.6	54.6	55.2	55.5	$57 \cdot 3$	$53 \cdot 8$	53.2
11	$65^{\circ} \mathrm{O}$	$4{ }^{\text {. }}$.	$55 \cdot 8$	61.4	$60 \cdot 7$	49.7	51.4	$56 \cdot 4$	53.5	$47 \cdot 9$	1	68.2	53.1	$61 \cdot 3$	66	$64^{\circ} 5$	597	57.2	594	58.3	58.4
12	$61^{\circ} \mathrm{O}$	$42 \cdot 8$	58.3	58.8	58.8	52.8	$53 \cdot 4$	53.7	52.5	51.0	12	75°	50	68.2	$70^{\circ} 4$	71.8	59.8	$60^{\circ} 9$	$61 \cdot 1$	61.6	$56 \cdot 2$
13	68.0	$50 \cdot 3$	570	$66 \cdot 2$	$65 \cdot 4$	$55^{\circ} \mathrm{O}$	54^{11}	56.3	$56 \cdot 3$	50_{4}	13	73.0	53°	61.6	$66 \cdot 9$	67.6	58.4	57.9	59°	$60 \cdot 5$	55.7
14	$64 \cdot 6$	$45 \cdot 4$	57.1	$62 \cdot 2$	$61 \cdot 7$	52.1	53.0	557	55°	$48 \cdot 4$	14	69.2	51.2	65°	$66 \cdot 8$	$6{ }^{4} 8$	$60 \cdot 6$	$60 \cdot 3$	$61 \cdot 3$	61.3	$60 \cdot 6$
15	${ }^{60 \cdot 1}$	$45^{\circ} \mathrm{I}$	49^{6}	56.6	$58 \cdot 8$	45.6	45.7	$49^{\circ} 9$	$51^{\circ} \mathrm{O}$	$42 \cdot 8$	15	61.6	53.1	53.8	58.9	$60 \cdot 8$	58.1	53.4	57.6	59.4 60.8	57.0
16	65°	$43^{\text {I }}$	$47 \cdot 3$	58.7	65°	51.4	$44^{\circ} 6$	52.3	56.0	$48 \cdot 2$	16	67°	55.3	63.8	63.2	65°	$60 \cdot 6$	59°	58.5	$60 \cdot 8$	$56 \cdot 9$
17	$70 \cdot 6$	39.4	55^{6}	673	69.5	$54^{\circ} 5$	49.4	514	$56 \cdot 8$	49.9	17	73.8	$52 \cdot 1$	$62 \cdot 1$	68.1	69.9	$63 \cdot 6$	59.2	615	$6 \mathrm{I} \cdot 8$	IT 1
18	60.0	44.6	53.2	55.7	$54 \cdot 6$	$47 \cdot 6$	$46 \cdot 3$	45.7	44.3	$42^{4}+$	18	69°	58.6	$60 \cdot 3$	65.8	$63 \cdot 8$	$61 \cdot 1$	59.5	$61 \cdot 6$	58.0	. 4
19	$60 \cdot 5$	$38 \cdot 3$	49	56.6	523	$48 \cdot 9$	43.5	46.6	$46 \cdot 8$	$43 \cdot 9$	19	64	52.9	58.6	$56 \cdot 8$	62.5	60°	55.4	56.4	58.4	6.6
20	65	37.1	52	553	63°	518	$50 \cdot 0$	52.7	$55^{\circ} 6$	493	20	69	$52 \cdot 6$	$58 \cdot 3$	64°	67°	58.4	52.9	54.5	-	51.4
21	66	$47 \cdot 1$	$56 \cdot 3$	61.8	61.5	52.4	$51 \cdot 3$	53°	53	$49 \cdot 4$	21	$65^{\circ} 9$	$48 \cdot 7$	59.4	58.9 $60 \cdot 0$	63. $62 \cdot$	59.6	53.4 53.8	53°	56.3	\bigcirc
22 23	$63^{\circ} \mathrm{O}$	$45 \cdot 6$	55.1	58.3	$57 \cdot 5$	52.6	483	49^{-1}	49	50'7	22	67°	53.3	4	60°	62° 55°	54.6 56.6	53.8 50.2	54.4 52	53.9	3
24	7	53	63.5	$70 \cdot 1$	71.6	62.2	$58 \cdot 3$	61.0	$6{ }^{1.9}$	57.4	24	${ }_{71}$	517	58.8	$67 \cdot 1$	$69^{\circ} 9$	59.7	54.8	$59 \cdot$	$60 \cdot 0$	56.5
25	$8 \mathrm{I} \cdot 2$	$50 \cdot 3$	71.2	$76 \cdot 2$	78.7	63.7	62.9	$64 \cdot 6$	65.4	597	25	703	$51 \cdot 1$	56.0	$66 \cdot 3$	$66 \cdot 6$	$56 \cdot 8$	$53 \cdot 8$	$58 \cdot 8$	593	54.4
26	83	52.2	74	80°	$79^{\circ} 8$	63.6	$66 \cdot 4$	66.9	67°	$60 \cdot 3$	26	66.0	53.1	57.5	60.0	61.3	58.9	54.4	$56 \cdot$	57°	57
27	$84^{\text {. }} 1$	53	71.2	${ }^{1} 9$	$77 \cdot 8$	$62 \cdot 3$	$65 \cdot 4$	$66 \cdot 9$	$65^{\circ} 6$	$60 \cdot 9$	27	62.5	$5{ }^{2 \cdot 1}$	$53 \cdot 7$	$56 \cdot 8$	60	58.7	52.8	54.8	57.8	57°
28	$80 \cdot 8$	51	69.5	$76 \cdot 3$	$77 \cdot 1$	63.6	58.8	63.4	$63 \cdot 8$	$59 \cdot 8$	28	74.2	53.5	55.5	$67 \cdot 7$	$72 \cdot 6$	$55^{\circ} 9$	54°		62.9	55°
29	81.4	57	69.6	$76 \cdot 3$	73.7	61.7	62.4	66.5	$64 \cdot 1$	$60^{\prime} 2$	29	73.0	$50^{\circ} \mathrm{I}$	62.0	69.1	69.5	57.3	58.2	$59^{\circ} 9$	62.0 57.6	55.5
$\begin{aligned} & 30 \\ & 31 \end{aligned}$	79.5 62.3	53.1 50.1	72.9	77.5 58.6	$75 \cdot 8$ 59.6	53.3 50.6	66°	$68 \cdot 8$ 519	65.7 52.1	48.7	30 31	64.6 75°	$53 \cdot 1$ 52.4	$\begin{aligned} & 60 \cdot 4 \\ & 60 \cdot 2 \end{aligned}$	61.8	$62 \cdot 2$	$56 \cdot 6$ $61 \cdot 3$	$56 \cdot 0$ 578	57.4 63.8	$\begin{aligned} & 57 \cdot 6 \\ & 63 \cdot 9 \end{aligned}$	53.4 57.8
Means	$66 \cdot 6$		57.2		62.6	52.7	$52 \cdot 1$		54.5	$9 \cdot 7$	Mean	$68 \cdot 2$			$63 \cdot 1$			55	57.2		554
June.											AUGUST.										
1	$66^{\circ} \mathrm{O}$	$42 \cdot 2$	61.6	$61 \cdot 5$	$61 \cdot 2$	51.6	54.9	55°	53.8	50°	1		54.9	$58^{\circ} 8$	62.8	70.0	$57^{\circ} 2$	$55^{\circ} 8$	57.8	$61 \cdot 5$	54.1
2	73°	$46 \cdot$	61.6	$70 \cdot 2$	69.3	54.2	$54 \cdot 3$	59.4	$57 \cdot 8$	$50 \cdot 5$	2	69.0	51.9	59.4	$61 \cdot 9$	68.8	55.3	55.3	$56 \cdot 5$	60.7	$53 \cdot 8$
3	$79^{\circ} 1$	$45 \cdot 2$	67.0	$70 \cdot 8$	$72 \cdot 9$	57.6	58.3	58.7	62.5	53.9	3	$75^{\circ} 2$	50.2	$61 \cdot 8$	$68 \cdot 2$	$72 \cdot 8$	$56 \cdot 3$	$56 \cdot 8$	58.7	$62^{\circ} 5$	54°
4	$71^{\circ} \mathrm{O}$	$50 \cdot 9$	$67 \cdot 1$	67.4	$66 \cdot$	58.5	$61 \cdot 3$	59.4	; 8.3	54-3	4	70.0	49°	61.2	643	$60 \cdot 6$	$56 \cdot 8$	57.1	59°	$56 \cdot 0$	52.2
5	$7{ }^{7} \cdot$	51	65.3	6.9	60°	52	$58 \cdot 1$	55	$56 \cdot 8$,	5	67.3	51.1	$56 \cdot 7$	62.4	64.6	52.4 54	48.9 53.8	$51^{\circ} 6$	53.2 54.6	49 48 48 8
6	66	49	53.8	$6_{1} \cdot 6$	57.6	52.9	$52 \cdot 8$	55.4	54.8	49°	6	$66 \cdot 2$	$48 \cdot 7$	$60 \cdot 6$	64.5	61.6	54.3	53.8	55°	54.6	$48 \cdot 8$
7	$70 \cdot 0$	$4{ }^{8 \cdot 1}$	54.6	63°	67.9	$55^{\prime} 1$	53°		$56 \cdot 8$	$50 \cdot 3$	7	${ }^{69} 97$	$46 \cdot 1$	59.6	$66 \cdot 2$ 6.2	59.3	52.8	52.4	54.1 56.3	53.2 56.0	52.3 51.2
8	68.5	$46 \cdot 4$	$58 \cdot 2$	$6_{1} \cdot 8$	$64 \cdot 1$	53.1	56.9	$58 \cdot 8$	$58 \cdot 8$	$47^{\circ} 4$	8	65.6 68.0	50°	58.3	63.2 6.7	63° 64°	$51 \cdot 9$ 54	55.4 53.8	56.3	56.0	51.2 52.0
9	68.0	43.1	57.3	63.7	64.4	52.6	507	$54^{\circ} \mathrm{O}$	55.3	$48 \cdot 4$	9	$68 \cdot 0$	$4{ }^{4} 4$	$56 \cdot 0$ 61.2	6.7 62.4	64.9 67.9	54.8 59.4	53.8 54.8	$55 \cdot 6$ 53.8	$55^{\circ} 5$ 56	52.0 557
10	68.9	51.2	$55^{\circ} 6$	$60 \cdot 6$	67.5	$56 \cdot 1$	53°	$56 \cdot 2$	59.9	51.1 49	10	$72 \cdot 1$ 74.6	49.3 55	61.2 61.6	62.4 $66 \cdot 1$	$67 \cdot 9$ 71.2	59.4 58.7	54.8 58.3	53.8 59.8	56.0	55.7 55
111	67.4	$48 \cdot 2$ $50 \cdot 2$	57.6	$61 \cdot 6$ $63 \cdot 3$	$66 \cdot 2$ 62.9	$56 \cdot 2$ 55.8 54	$50 \cdot 8$ 512	52.0 54.5	$55^{\circ} 4$	49.3 53.4	11	74.6 68.0	55° 51.1	61.6 58.4	$66 \cdot 1$ 63.7	$71 \cdot 2$ 654 6	$58 \cdot 7$ 52.8	$58 \cdot 3$ 57.2	598 57 57	$62 \cdot$ 58.1	55.5 52.0
13	64.0	50	59.6	63.3 $60 \cdot 1$	62.9 61.3	55.8 54.6	51.2 54.6	54.5 55.5	$55^{\circ} \mathrm{O}$	53.4 49.8	12	68.0 69.0	511 $52 \cdot 3$	60.8	66.9 66	60.3	$6{ }^{5} 1$	$55 \cdot 3$	57.2	57.6	$59 \cdot 1$
14	70.7	52	60.8	$66 \cdot 6$	67.6	54.3	54.9	57.8	58.2	52.1	14	72.7	$57 \cdot 1$	$6 \mathrm{r} \circ$	$67 \cdot 3$	$69 \cdot 2$	61°	55°	59°	58.4	59°
15	74°	$49^{\prime 1}$	67.6	$72 \cdot 1$	71.8	56.8	59°	$60 \cdot 1$	$56 \cdot 8$	54.3	15	$66 \cdot 8$	57.2	$60 \cdot 7$	63.4	64.5	$60 \cdot 2$	58.5	$58 \cdot 0$	58.8	57.9
16	82.0	47^{1}	$70 \cdot 8$	$80 \cdot 5$	81.6	61.0	62.8	65.2	$66 \cdot 8$	$59 \cdot 6$	16	75°	53.9	$65 \cdot 5$	68.7	$7{ }^{16}$	62.4	597	$60 \cdot 8$	598	59.7
17	$87 \cdot 1$	54	74°	81.2	$82^{\circ} 9$	$66 \cdot 3$	64.9	$69^{1} 1$	$70 \cdot 0$	61.8	17	72.9	51.7	$64 \cdot 6$	$70 \cdot 3$	$72 \cdot 3$	58.3	60°	1.4	6.8 56	56.7
18	$78 \cdot 1$	52.2	$65^{\circ} 1$	$70 \cdot 2$	$76 \cdot 8$	$62 \cdot 3$	58.8	61.8	$64 \cdot 8$	58.7	18	65.1	$55^{\circ} \mathrm{O}$	59°	62.5	$62 \cdot 3$	$56 \cdot 8$	54.2	55	56.4	53°
19	73°	55.2	$61 \cdot 6$	69.1	$68 \cdot 5$	57°	$53 \cdot 8$	$56 \cdot 9$	$56 \cdot 2$	$50 \cdot 8$	19	$62 \cdot 1$	53°	57°	$60 \cdot 7$ 6.6	60°	56.6	53.6	54	55.3	$54^{\circ} 4$
20	69°	49.9	57.2	62.2	59.4	51.6	53.3	$55 \cdot 1$	54.3	51.4	20	70°	54.1	57.5	64.6	$68 \cdot 7$	57.6	52°	54	57.7	54.0
21	67.3	$43 \cdot 8$	$62 \cdot 2$	63.6	$62 \cdot 3$	54.9	56.8	557	56.4	53.5	21	80°	49.2	66.6	$74 \cdot 6$	$76 \cdot 5$	6,	58.9 6×5	64.7	64.6	61.1 56.8
22	$78 \cdot 3$	47	68	$73^{\circ} \mathrm{O}$	$72 \cdot 6$	57.5	60.8	62.4	61.4	55.5	22	73°	$60 \cdot 0$ 57.3	$66 \cdot 3$ 60.4	60.8	$70 \cdot 5$ $68 \cdot 1$	61.6 57	$61 \cdot 5$ 59	64.7 59	64.6 60.5	56.8
23	66	52.5	58.7	62.6	61.5	55.1	54.8	$56 \cdot 6$	$56 \cdot 4$	52	23	$70 \cdot 4$	57.3	60.4 6.8	$60 \cdot 8$ $65 \cdot 2$	$68 \cdot 1$ 64.8	57.6 57	59.8 55.8		60.5 56	53.
24	64.1	$51 \cdot 1$	$56 \cdot 6$	59^{6}	$60^{\circ} 7$.	55.3	51.4	51.7	52.1	$49^{\circ} 8$	24	73.2 -6.5	$49^{\circ} 5$	$61 \cdot 8$ 64	$65 \cdot 2$ 69.8	$64 \cdot 8$ 72.2	$57 \cdot 1$ 57.6	55.8 56.6	$5{ }^{56}{ }^{\circ}$	$50 \cdot 4$	$53 \cdot 8$ 54.2
25 26	67.3 69.	49.3 53 ${ }^{\prime} \mathrm{I}$	$56 \cdot 3$ 62.2	$61 \cdot 3$ 63.6	$65 \cdot 0$ 65.6	57.5 6.7	52.6	55.4	57.8	$53 \cdot 8$	25 26	$76 \cdot 5$ $76 \cdot 4$ 75	45° 477	64.6 67.0	$69 \cdot 8$ 71.5	$72 \cdot 2$ 72.7	57.6 60.8	56.6 59.8	59° 60	$60 \cdot 4$ $62 \cdot 3$	54.2 56.7
27	68.2	547	;6.6	$62 \cdot 7$	63.3	$57 \cdot 6$	50.8	$54 \cdot 2$	$52 \cdot 2$	50.5	27	75.3	57.	62.0	71.2	$74 \cdot 8$	62.7	60.0	$62 \cdot 6$	$62 \cdot 7$	58.4
28	77.9	47.9	57	2	$75^{\circ} 5$	66.9	52.7	$60 \cdot 9$	64.	$60 \cdot 4$	28	79.2	$56 \cdot 2$	$67 \cdot 8$	$78 \cdot 6$	$77^{\circ} 9$	$63 \cdot 1$	$63 \cdot 7$	$66 \cdot 7$	63.7	59°
29	79°	$57 \% 2$	$67 \cdot 6$	$74 \cdot 8$	78.4	57.6	60.4	63.5	63.9	$53 \cdot 8$	29	714	53.3	64.2	64.3	$67^{\circ} 9$	61.5 63	$61^{\circ} \mathrm{O}$	63.1	65.4 66.4	$61 \cdot 1$ 6.3
30	$71^{\prime 2}$	49^{1}	$62 \cdot 8$	66.4	$67 \cdot 6$	57.6	$56 \cdot 2$		$60 \cdot 3$	$54 \cdot 8$	30 31	$74 . \circ$ 66.0	$\begin{aligned} & 55.1 \\ & 580 \end{aligned}$	62.5 60.6	$\begin{aligned} & 72.7 \\ & 60 \cdot 3 \end{aligned}$	$72 \cdot$ 60.6	63.6 58.0	59.7	67° 59.6	66.4 59.5	63.3 57.5
Means	71.4	$49 \cdot 5$	61.4	$66 \cdot 3$	67.4	56.7	53.6	57.8	$58 \cdot 3$	52.9	ean	71	52.4	61.4	$66 \cdot 3$	$67 \cdot 6$	58.2	57°	58.6	59.3	$55^{\circ} 5$

Readings of Thermometers on the Ordinary Stand in the Magnetic Pavilion Enclosure-concluded.
(The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at 21^{h}.)

	Dry-Butb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermoneter, 4 ft . above the Ground.				Days of the Month	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.			
Mo	Maxi- mum.	$\begin{aligned} & \text { Mini- } \\ & \text { mum. } \end{aligned}$	$9^{\text {b }}$	Noon.	$15^{\text {h }}$	$21^{\text {b }}$	$9^{\text {b }}$	Noon	$15^{\text {h }}$	$21^{\text {h }}$		Maxinum.	Minimum.	$9^{\text {b }}$	Noon.	r5 ${ }^{\text {h }}$	$2 \mathrm{I}^{\text {h }}$	$9^{\text {h }}$	Noon.	${ }^{15}$	$21^{\text {h }}$
SEPTEMBER.											November.										
1	$58 \cdot 7$	54.4	55.3	$57^{\circ} 6$	56•1	56°	$54: 8$	$55^{\circ} 6$	55.3	$55^{\circ} 4$	${ }^{\text {d }}$	$58^{\circ} \cdot 0$	$43^{\circ} \cdot 6$	$48^{\circ} 1$	54.9	$55^{\circ} 3$	$46^{\circ} 6$	$48^{\circ} \mathrm{O}$	51×5	51.1	45%
2	63.0	$55^{\circ} \mathrm{2}$	59°	60.5	61.4	$56 \cdot 6$	58.4	$59^{\circ} 6$	$60 \cdot 3$	56.0	2	59.2	$46 \cdot 2$	$55 \cdot 5$	$58 \cdot 0$	56.7	54.6	54.2	53.2	$52 \cdot 8$	51.8
3	$67 \cdot 8$	53.5	58.9	63.5	$65 \cdot 5$	61.2	56.4	59.3	$60 \cdot 6$	$59 \cdot 8$	3	56.3	$45^{1} 1$	$49 \cdot 6$	54.5	53.3	$49^{\circ} 8$	$45 \cdot 7$	$48 \cdot 4$	$48 \cdot 3$	$46 \cdot 8$
4	$68 \cdot 0$	59.4	$62 \cdot 3$	64.9	64.2	6I•9	$58 \cdot 8$	$60 \cdot 5$	$59 \cdot 8$	$60 \cdot 3$	4	56.7	$36 \cdot 1$	$40 \cdot 4$	$55^{\circ} 9$	$55 \cdot 6$	$50 \cdot 6$	$40 \cdot 3$	$50 \cdot 7$	$50 \cdot 9$	$4^{8 \cdot 0}$
5	$65 \cdot 1$	$59 \cdot 1$	62.0	63.7	59.5	59.5	$59 \cdot 0$	$60 \cdot 3$	$58 \cdot 9$	$58 \cdot 9$	5	$56 \cdot 1$	$44 \cdot 6$	$50 \cdot 9$	52.4	53.9	447	$49^{\circ} 8$	47.4	$47 \cdot 8$	42.7
6	$65 \cdot 5$	$56 \cdot 6$	59.7	62.8	$64^{\circ} \mathrm{O}$	57.	57.8	$59^{\circ} 4$	59.8	$54 \cdot 6$	6	$53^{\circ} \mathrm{O}$	$39^{\circ} \mathrm{I}$	$4^{6 \cdot 1}$	487	$48 \cdot 6$	$44^{\prime 2}$	44.6	$45^{\circ} \mathrm{I}$	45°	43.2
7	69.0	52.7	60.9	$65 \cdot 8$	$66 \cdot 2$	54.4	$56 \cdot 5$	58.0	58.4	$5 \mathrm{I} \cdot 3$	7	$5 \mathrm{I}^{1}$	$40 \cdot 1$	44°	$47 \cdot 8$	50.4	423	42.4	$44^{\circ} \mathrm{O}$	453	$40 \cdot 8$
8	69.8	50.7	$59^{\circ} 6$	$66 \cdot 2$	$68 \cdot 1$	$52 \cdot 3$	$55 \cdot 8$	58.4	$58 \cdot 6$	52.0	8	$54^{\circ} \mathrm{O}$	37.5	$47 *$	53.2	51.6	$44^{\circ} \mathrm{O}$	$47^{\circ} \mathrm{O}$	50.0	$45^{\circ} 2$	41.9
9	$67 \cdot 8$	$46 \cdot 2$	$57^{\circ} \mathrm{I}$	63.9	59.6	52.3	53.5	59°	$58 \cdot 6$	$50 \cdot 4$	9	55°	$36 \cdot$	$40 \cdot 5$	53.7	517	$49^{\circ} 6$	$40 \cdot 2$	$49 \cdot 9$	$49 \cdot 1$	$49 \cdot 3$
10	64.3	$45 \cdot 3$	$55^{\circ} \mathrm{I}$	61.4	6I.8	$49^{\circ} 2$	$50 \cdot 0$	53.4	54.4	$48 \cdot 4$	10	$56 \cdot 5$	474	53.9	$5 ; \cdot 8$	$54 \cdot 8$	5 I I	53.0	53.9	53.8	$5 \mathrm{I}^{\circ} \mathrm{O}$
11	71.1	47.9	$60 \cdot 8$	65°	$70 \cdot 1$	59.1	$56 \cdot 7$	59.8	$62 \cdot 8$	57.4	11	$59^{\circ} \mathrm{I}$	44^{1}	$50 \cdot 6$	57.5	57.2	54.3	50.4	$54^{\circ} 6$	53.7	514
12	71.0	$54 \cdot 8$	63.1	67.3	$66 \cdot 0$	54.8	59.9	61.4	$60 \cdot 2$	54^{1} I	12	$57^{\circ} \mathrm{O}$	$49 \cdot 7$	55.3	54.6	53.8	$49 \cdot 8$	52.3	51.3	51.4	48.9
13	71.6	$49^{\circ} 1$	$65 \cdot 0$	$68 \cdot 1$	$67 \cdot 8$	$56 \cdot 3$	$58 \cdot 8$	59^{11}	59.9	54.3	13	49.9	$41 \cdot 9$	$42 \cdot 8$	43.4	$46 \cdot 7$	$48 \cdot 6$	41.8	42.1	44.8	$46 \cdot 7$
14	$66 \cdot 3$	$48 \cdot 1$	$60 \cdot 6$	$63 \cdot 8$	63.3	$48 \cdot 4$	53.9	$54^{\circ} \mathrm{O}$	54.3	473	14	53.2	44*0	45.5	$53^{\circ} \mathrm{I}$	$49 \cdot 6$	44.4	$44^{\circ} 8$	$48 \cdot 8$	$43 \cdot 6$	41.8
15	64.2	$45^{\text {. }}$	6 I 7	$62 \cdot 8$	$60 \cdot 2$	$46 \cdot 7$	$55^{\text {¢ }}$ I	54.9	54.6	$46 \cdot 2$	15	51.8	$41^{1} 1$	43.6	$49^{\text {1 }}$	494	$47 \cdot 8$	41.4	43.6	44.7	$44^{\circ} 9$
16	$65 \cdot 8$	$43^{\circ} \mathrm{O}$	$60 \cdot 4$	$62 \cdot 6$	$60 \cdot 6$	$52 \cdot 5$	56.5	55°	55.6	51.4	16	53.8	43.9	$46 \cdot 8$	$52 \cdot 2$	52.7	518	44.4	$48 \cdot 0$	$48 \cdot 1$	$48 \cdot 0$
17	66.0	501	55.4	$59 \cdot 8$	$60 \cdot 3$	50.4	53.7	55.5	55.9	$50 \cdot 0$	17	59.5	51.1	55.5	58.3	$55 \cdot 8$	54.2	53.6	53.0	50.9	52.7
18	$65 \cdot 8$	$45 \cdot 3$	53.7	58.7	64.6	503	53.6	$56 \cdot 2$	$58 \cdot 7$	$50 \cdot 0$	18	$58 \cdot 6$	$47 \cdot 2$	54.9	57.3	54.5	$47 \cdot 6$	52.3	52.4	53.4	43.2
19	$70 \cdot 9$	$42 \cdot 1$	57.6	$66 \cdot 5$	$65 \cdot 8$	54.6	$55^{\circ} 8$	59.6	59.2	$53 \cdot 6$	19	50.1	$39^{\circ} 9$	41.6	$48 \cdot 6$	$47 \cdot 6$	$44 \cdot 7$	$38 \cdot 8$	43.6	42.9	419
20	$6 \mathrm{I} \cdot 2$	53.9	55.7	57.1	59.8	54.8	52.9	52.9	52.9	51.3	20	54.0	44.5	$50 \cdot 8$	53.0	52.6	52.3	$46 \cdot 6$	48.8	$49 \cdot 8$	51.0
21	$67 \cdot 0$	514	$56 \cdot 8$	62.7	64.6	53.3	$54 \cdot 9$	57.4	58.4	$53 \cdot 2$	21	54.2	$46 \cdot 6$	$52 \cdot 8$	$52 \cdot 7$	52.1	$45 \cdot 8$	50.0	$51 \cdot 3$	51.2	45.4
22	$66 \cdot 3$	$46 \cdot 0$	58.1	$63 \cdot 8$	$62 \cdot 8$	55.3	$56 \cdot 3$	57.8	57.2	54.5	22	47.5	$32 \cdot 7$	414	$45 \cdot 3$	45.4	$32 \cdot 8$	38.4	413	$40 \cdot 7$	$32 \cdot 6$
23	64.1	52.4	56.9	6I•I	$62 \cdot 7$	57.6	$56 \cdot 3$	$58 \cdot 8$	$58 \cdot 0$	56.0	23	$46 \cdot 0$	27.6	$33^{\circ} \mathrm{O}$	44.2	$44^{7} 7$	$44^{\prime} 7$	31.8	43.1	44.2	$44^{\circ} 3$
24	71.6	51.0	$63 \cdot 8$	$70 \cdot 5$	69°	59.6	59°	$60 \cdot 4$	$60 \cdot 2$	55.5	24	$50 \cdot 0$	$39^{\circ} 1$	44.6	$46 \cdot 6$	$46 \cdot 0$	$41 \cdot 2$	42.4	45.7	43.7	$39 \cdot 3$
25	$72 \cdot 5$	49.6	$60 \cdot 6$	$70 \cdot 0$	$70 \cdot 8$	57.8	$57 \cdot 1$	$63 \cdot 1$	63.4	57.8	25	51.5	38.2	$42 \cdot 1$	$49^{\cdot 1}$	$48 \cdot 8$	$50 \cdot 8$	$4 \mathrm{I} \cdot 1$	$45 \cdot 0$	45.4	$49^{\circ} 5$
26	77.4	55.3	64.2	72.8	74.5	$60 \cdot 7$	6 I 9	$66 \cdot 7$	$66 \cdot 1$	$60 \cdot 3$	26	55.5	$45^{\circ} \mathrm{I}$	51.1	53.6	53.9	45.7	$49^{\circ} 3$	$51 \cdot 3$	51.0	$4{ }^{1 \cdot 8}$
27	75.0	$56 \cdot 2$	$66 \cdot 6$	72.8	$73 \cdot 8$	$56 \cdot 2$	$62 \cdot 7$	65.4	$61 \cdot 0$	54.8	27	$5 \mathrm{I} \cdot 6$	$37 \cdot 2$	$41^{\circ} \mathrm{O}$	$46 \cdot 9$	$49^{\circ} 9$	50.4	39.2	44.5	47.8	49.7
28	$70 \cdot 9$	$50 \cdot 3$	$60 \cdot 6$	$68 \cdot 2$	69.3	54.7	5711	$62 \cdot 1$	$62 \cdot 6$	54.6	28	55.8	47.3	50.9	55.4	52.7	$47 \cdot 8$	49.6	52.8	$50 \cdot 8$	$46 \cdot 5$
29	69 6	$49^{\circ} 4$	57.6	67.5	67.4	56.2	57.5	61.4 57.3	$60 \cdot 0$	55.5 55.8	29	57.0	$42 \cdot 6$	$45 \cdot 5$	51.9	54.2	$50 \cdot 3$	44^{-8}	49.6	51.0	$48 \cdot 8$
30	67.8	$53^{\circ} \mathrm{I}$	58.4	$64 \cdot 2$	$66 \cdot 6$	$57 \cdot 6$	57.3	573	57.4	$55 \cdot 8$	30	54°	$50 \cdot 1$	517	$53 \cdot 8$	$52 \cdot 7$	52.2	50.2	50.4	49^{8}	49.4
Means	67.8	50.9	59.6	645	649	$55 \cdot 2$	$56 \cdot 6$	$58 \cdot 8$	$58 \cdot 8$	54°	Means	54.2	$42 \cdot 3$	473	52.1	517	479	$45 \cdot 6$	$48 \cdot 5$	$48 \cdot 3$	$46 \cdot$

$\begin{aligned} & \text { d } \\ & 1 \end{aligned}$	$66^{\circ} \cdot 6$	$54^{\circ} \mathrm{I}$	$60 \cdot 9$	$64 \stackrel{\circ}{7}$	$62 \cdot 9$	56°	$57^{\circ} 8$	$58^{\circ} \mathrm{C}$	57.4	$55^{\circ} \mathrm{O}$	${ }_{\text {d }}$	$52 \cdot 3$	$47^{\circ} \mathrm{F}$	5177	$49^{\circ} 9$	49.9	479	$49^{\circ} 6$	$49^{\circ} \mathrm{C}$	$48^{\circ} \mathrm{I}$	$44^{\circ} 8$
2	$66 \cdot 1$	54.3	6I*9	64.3	$62 \cdot 6$	56.	57.8	59\%	$59^{\circ} \mathrm{O}$	$55 \cdot 7$	2	53.2	46°	$47^{\circ} 2$	51.1	52.8	$50 \cdot 3$	$46 \cdot 9$	$49 \cdot 6$	$50 \cdot 5$	$46 \cdot 8$
3	67.0	$48 \cdot 1$	54.4	64.2	65.4	52.5	54.2	$58^{\circ} \mathrm{I}$	$58 \cdot 5$	519	3	53.4	$49^{\prime} 1$	$50 \cdot 8$	52.9	52.0	$52 \cdot 3$	47*3	$48 \cdot 8$	$49^{\circ} \mathrm{I}$	49°
4	$67 \cdot 3$	$48 \cdot 1$	54.6	61.8	$63 \cdot 1$	53.8	54.4	58.4	57.5	53.4	4	52.5	$36 \cdot 9$	$40 \cdot 3$	$42 \cdot 7$	43.2	$38 \cdot 7$	37.5	39°	37.9	$36 \cdot 4$
5	$6 \mathrm{I} \cdot 2$. 46.4	56.6	$59 \cdot 6$	$56 \cdot 8$	$52 \cdot 2$	$56 \cdot 1$	$56 \cdot 0$	$53 \cdot 8$	49°		$47 \cdot 6$	35°	44.9	44.5	41.8	377	$41 \cdot 8$	$42 \cdot 6$	$38 \cdot 8$	$36 \cdot 9$
6	63.2	$42 \cdot 7$	567	$63 \cdot 1$	$58 \cdot 2$	52.3	52.0	$55 \cdot 6$	52.7	50.3	6	$43^{\circ} 6$	$37 \cdot 1$	41.2	$42 \cdot 8$	$43 \cdot 2$	$40 \cdot 9$	39.4	$40 \cdot 5$	$40 \cdot 3$	$38 \cdot 8$
7	63.0	$48 \cdot 9$	54.0	57.1	62.4	53.1	53.6	56.1	56.5	$52 \cdot 0$	7	43°	$36 \cdot 9$	$38 \cdot 8$	41.4	41.6	$40 \cdot 8$	$37 \cdot 8$	39°	$38 \cdot 8$	39.8
8	$6 \mathrm{I} \cdot 4$	50\%7	54.6	57.8	56*9	53.5	53.4	54.9	53.7	51.7	8	54.5	$40 \cdot 5$	47×4	51.9	$52 \cdot 6$	$52 \cdot 1$	$46 \cdot 3$	49.4	$50 \cdot 0$	$50 \cdot 8$
9	6I.0	45^{\prime} I	$54^{\circ} \mathrm{I}$	$56 \cdot 6$	57.4	47.5	50.5	50.9	$50 \cdot 8$	$46 \cdot 1$	9	54.6	$46 \cdot 9$	$52 \cdot 8$	54.2	53.2	$48 \cdot 2$	51.1	$49 * 9$	49.8	$44^{\circ} 4$
10	$59 \cdot 8$	$42 \cdot 1$	52.3	$59^{\circ} 1$	$56 \cdot 0$	50.5	$48 \cdot 6$	51.8	$49 \cdot 8$	$47^{\circ} 0$	10	49°	$42 \cdot 1$	$45^{\prime \prime}$	47.7	$48 \cdot 6$	47.1	$42 \cdot 3$	44.4	$44^{8} 8$	$44^{\cdot 1}$
11	54°	$45 \cdot 0$	$50 \cdot 7$	53.2	51.8	$50 \cdot 3$	49.1	51.8	517	$50 \cdot 0$	11	$47 \cdot 3$	$38 \cdot 8$	$43 \cdot 7$	$46 \cdot 4$	$46 \cdot 4$	$44^{\circ} 6$	42°	$43 \cdot 4$	$42 \cdot 8$	$4{ }^{1} 7$
12	63.9	$46 \cdot 2$	49.2	59.2	$63 \cdot 6$	51.8	48.9	54.7	$57 \cdot 1$	51.6	12	54.5	$44 \cdot 1$	51.4	53.6	$52 \cdot 5$	47.9	$49^{\circ} \mathrm{O}$	51.4	$48 \cdot 0$	43.7 37.8
13	64.2	$44^{\circ} 1$	51.2	61-8	60.8	49.7	$50 \cdot 4$	58.7	$56 \cdot 9$	49.6	13	$48 \cdot 6$	$38 \cdot 6$	39^{-8}	44^{-8}	447	$39^{\circ} 8$	38.7	$40 \cdot 9$	$40 \cdot 0$	$37 \cdot 8$
14	61.8	$46 \cdot 0$	54.6	$60 \cdot 9$	$58 \cdot 7$	53.7	52.7	$55 \cdot 8$	$53 \cdot 8$	$5 \mathrm{I} \cdot 8$	14	$44 \cdot 6$	$38 \cdot$	39.6	43.0	$43 \cdot 2$	43.0	37.4	$40 \cdot 2$	$40 \cdot 2$	$40 \cdot 4$
15	58.0	53.2	54.8	$55^{\circ} 9$	57.2	53.8	$51 \cdot 3$	$50 \cdot 8$	51.9	$51 \cdot 1$	15	50.5	$41 \cdot 1$	$47 \cdot 2$	497	$50 \cdot 5$	$48 \cdot 1$	$46 \cdot 3$	$4^{\circ} \mathrm{O}$	$48 \cdot 3$	$45 \cdot 8$
16	62.4	$45^{\circ} 9$	54.1	$59^{\circ} 4$	$58 \cdot 7$	$45^{\circ} 9$	51.9	53.8	54.3	$45^{\circ} 9$	16	$49^{\prime} 2$	$44^{\circ} 2$	44.9	$46 \cdot 8$	$47 \cdot 1$	$46 \cdot 2$	41°	$4{ }^{1 \cdot 9}$	41.8	$4{ }^{1.8}$
17	$6 \mathrm{I} \cdot 2$	38.9	$49 \cdot 6$	57.9	59.3	$43 \cdot 7$	$49 \cdot 3$	53.0	$53 \cdot 1$	43.4	17	47-5	$44^{\circ} \mathrm{O}$	44.4	$46 \cdot 8$	$46 \cdot 6$	$44 \cdot 1$	42.4	44.5	$42 \cdot 6$	41.6
18	$63 \cdot 2$	$41 \cdot 2$	52.2	$59 \cdot 8$	$60 \cdot 1$ 51	47.6	$51 \cdot 1$	53.0	54.3	$46 \cdot 9$	18	$44 \cdot 8$	36.1	42.7	$43 \cdot 8$	$42 \cdot 6$	$36 \cdot 5$	41.4	41.4	38.7	$34^{\circ 8}$
19	6i•0	43.1	53.8	$58 \cdot 7$	$55 \cdot 6$	53.3	51.5	54.5	52.3	52.4	19	$42 \cdot 2$	32.1	$35^{\circ} 2$	$40 \cdot 2$	41.6	41.9	$32 \cdot 3$	37.9	39.8	$40 \cdot 4$
20	61.9	$53 \cdot 1$	58.6	$60 \cdot 1$	$58 \cdot 6$	57.1	55.6	55.7	55.6	$56 \cdot 5$	20	$+3.1$	$36 \cdot 8$	38.2	41.8	$41 \cdot 1$	$40 \cdot 8$	$36 \cdot 1$	38.7	$38 \cdot 0$	38.4
21	57\%	$46 \cdot 1$	51.6	$52 \cdot 6$	$49^{\circ} 8$	46.4	51.0	51.7	$46 \cdot 6$	$46 \cdot 0$	21	42.1	31.2	$40 \cdot 8$	41.8	$39 \cdot 7$	31.9	38.0	$38 \cdot 5$	367	31.5
22	59.2	$40 \cdot 5$	$48 \cdot 8$	56.6	55.2	41.8	$46 \cdot 5$	50.2	49.8	$41 \cdot 8$	22	38.5	$30 \cdot 8$	35.7	$36 \cdot 8$	$37 \cdot 3$ 39	$36 \cdot 1$ 37.5	34.0	34.5 38.6	35% 38.8	35° 36
23	53.4	$36 \cdot 1$	$43 \cdot 2$	$50 \cdot 4$	52.6	$43 \cdot 8$ 38.2	$43^{\circ} \mathrm{O}$	$48 \cdot 4$	47.8	$42 \cdot 8$	23	$40 \cdot 5$	31.3	$3{ }^{3} 7$	39.7	39.2	37.5	34.5	$38 \cdot 6$ 35.6	$38 \cdot 8$ 36.4	36.9 33.4
24	55.2	$38 \cdot 1$	42.0	$50 \cdot 9$	48.2	$38 \cdot 2$ $53 \cdot 1$	41.4 42.8	$48 \cdot 3$ 53	46	$38 \cdot 0$ 52.4	24	$40 \cdot 2$	$32 \cdot 1$	33.2	$38 \cdot 6$	$39^{\circ} 6$	$36 \cdot 5$	32.4 32.2	$35 \cdot 6$ 37.3	36.4 390	33.4 42.9
25	$60 \cdot 2$	$37 \cdot 1$	$42 \cdot 8$	57.6	58.1	53.1	42.8	53.7	54.6	52.4	25	$44^{\circ} 9$	$30 \cdot 2$	33.8	$40 \cdot 1$	41.8	44.7	32.2	37.3	39° 46.4	42.9
26	56.2	47.3	51.8	54.6	55.8	53.3	51.8	54.6	55.8 57.2	$52 \cdot 1$	26	$51^{\circ} \mathrm{O}$	44.2 38.2	47.9	$50 \cdot 2$ 4 1.2	$50 \cdot 6$ 39	$48 \cdot 6$ $39 \cdot 1$	44.8 38.3	$46 \cdot 1$ $36 \cdot 7$	46.4 $35 \cdot 8$	$46 \cdot 0$ $36 \cdot$
27	63.0	$48 \cdot 3$	55.4	$60 \cdot 2$	$60 \cdot 6$	$58 \cdot 2$	54.4	56.8	57.2	$55 \cdot 3$	27	49.4	$38 \cdot 2$	$40 \cdot 6$	41.2	39.9	39.1	$38 \cdot 3$	$36 \cdot 7$	$35^{\circ} 8$	36.0
28	64.0	$51 \cdot 1$	56.5	6I.0	$62 \cdot 0$	57.4	$55^{\circ} \mathrm{O}$	57.4	$57 \cdot 8$	53.4	28	$3{ }^{\circ} 7$	32.1	33.4	37.3	$35^{\circ} 6$	33.5	$32 \cdot 3$	34.9	$33^{\circ} \mathrm{O}$	32.7 32.8
29	64.2	50.6	59.6	$62 \cdot 6$	59.6 56.6	57.2 54.5	54.7 51.3	55.0	53.3 52.3	53.9 52.1	29 30	$36 \cdot 8$ 35.9	$30 \cdot 6$ $30 \cdot 2$	32.2 30.7	$34 \cdot 8$ 33.9	35.9 34.3	34.6 30.6	$30 \cdot 7$ 29.1	33.8 31.6	34.2 31.8	$32 \cdot 8$ 29.5
30	59.2 58.0	50.2	54.3 51.4	54.3 55.6	$56 \cdot 6$ 54.9	54.5 48.5	51.3 47.8	52.6 49.0	52.3 50.8	$52 \cdot 1$ 47.4	30 31	$35^{\circ} 9$ 37	30.2 28.1	30.7 29.8	33.9 35.5	34.3 35.2	30.6 32.2	29.1 28.4	31.6 32.3	31.8 32.3	29.5 29.4
31	58.0	$45^{\circ} 1$	51.4	$55^{\circ} 6$	54.9	$48 \cdot 5$	47×8	49°	50.8	$47 \cdot 4$	31	37°	28.1	29.8	$35 \cdot 5$	35.2	32.2	28.4	323	323	294
Means	6I•2	$46 \cdot 1$	53.1	58.4	58.0	512	51.3	54.2	53.7	$49^{\circ} 9$	Means	$46 \cdot 2$	37.8	$41 \cdot 3$	$44 \cdot 1$	44°	417	39.4	413	40.9	$39^{\circ} 5$

Excess of Mean Monthly Readings of Thermometers placed in a Stevenson's Screen above those of the corresponding Thermometers on the adjacent Ordinary Stand in the Magnetic Pavilion Enclosure in the Year igiu.
(The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at $2 \mathrm{I}^{\mathrm{h}}$.)

MONTH,i993.	Dry Bulb Thermometers, 4 ft . above the Ground.						Wet Bulb Thermometer, 4 ft. above the Ground.			
	Maximum.	Minimum.	$9^{\text {b }}$	Noon.	${ }_{15}{ }^{\text {b }}$	$21^{\text {b }}$	$9^{\text {b }}$	Noon.	$15^{\text {b }}$	$21^{\text {b }}$
	-	${ }^{\circ}$	\bigcirc	-	-	。	-	-	-	-
January	$0 \cdot 1$	$+0.6$	+0.3	$+0.2$	+0.3	+0.3	+ 0.2	$+0.1$	$+0.2$	+0.3
February.	- 0.4	+ 0.6	+ 0 I	$0 \cdot 0$	+ 0.2	+0.3	+ 0.2	$0 \cdot 0$	+ 0.2	+0.3
March.	- 0.8	+ 0.6	$0 \cdot 1$	- 0.1	$0 \cdot 0$	+0.3	+ 0 '1	+ 0^{1}	+ 0.1	+ 0.3
April.	1.2	+ 0.6	- 0.3	-0.3	-0.3	+0.3	00	$0 \cdot 0$	$0 \cdot 0$	+ 0.4
May.	$2 \cdot 2$	+ 0.8	-0.5	- 0.6	- 0.6	+ 0.5	-0.1	- 0.1	- 0.1	+ 0.6
June.	- 27	+ 0.9	-0.4	-0.7	-0.8	+ 0.5	-0.3	-0.4	-0.4	+ 0.2
July...	2.0	+0.5	- 0.5	-0.3	-0.3	+ 0.2	-0.4	-0.3	-0.2	+ $0 \cdot 1$
August.	- 1.8	+0.7	-0.3	0.2	-0.3	+ 0.4	-0.3	- 0.1	-0.2	+ 0.2
September	$1 \cdot 2$	+0.7	-0.2	-0.1	-0.1	+ 0.4	-0.1	-0.1	$0 \cdot 0$	+0.3
October.	-0.3	+0.7	+0.1	+ 0.2	+0.5	+0.3	+0.1	+ 0.1	+0.4	+0.3
November.	$0 \cdot 1$	+0.5	$0 \cdot 0$	+0.1	+0.3	+ 0.2	+ 0.2	+ 0.4	+0.5	+0.5
December	-0.2	+0.4	+ $0 \cdot 1$	+ 0.1	+ $0^{\circ} \mathrm{I}$	+0.3	+ 0.4	+ 0.4	+ 0.5	+ 0.4
Means.	$1 \cdot 1$	+ 0.6	-0.1	-0.1	- 0.1	+0.3	$\bigcirc \bigcirc$	$0 \cdot 0$	+ $0 \cdot 1$	$+0.3$

Amount of Rain Collected in each Month of the Year 1913.

$\begin{gathered} \text { MoNTH } \\ \text { ı9г3. } \end{gathered}$		Number of Rainy Days (oin'005 or over).	Monthly Amount of Raiu collected in each Gauge.								
		Selfregistering Gauge of Osler's Anemometer. No. 1	Second Gauge at Osler's \qquad No. 2 .	\qquad	On the roof of the Observatory. No. 4.	On the roof of the Photophic Thermompeter Shed. No. 5.	Gauges partly sunk in the ground.				
		In Magnetic Pavilion Enclosure.					In Observatory Grounds.	In Magnetic Enclosure.			
		No. 6.					No. ${ }^{\text {\% }}$	No. 8.			
January			21	in.	in. ${ }_{\text {I }} 570$	in.2.039	in. ${ }^{2.214}$	in.2.509	in.	in.	in.
		1.585		2.654					$2 \cdot 468$	$2 \cdot 616$	
February			11	0.388	0.433	0.638	0.704	0.782	$0 \cdot 812$	- 796	0.791
March..		18	I 036	0.853	I 637	1.827	2.250	2.423	$2 \cdot 305$	2.414	
April		20	I 124	1.020	1.572	1.858	2.071	2.229	$2 \cdot 128$	$2 \cdot 148$	
May		15	0.835	0.829	1.054	1.100	$1 \cdot 165$	1-157	1-172	$1 \cdot 142$	
June..		7	0.512	0.502	0.675	0.725	$0 \cdot 771$	0.733	$0 \cdot 771$	$0 \cdot 721$	
July..		13	1 383	1427	1923	2.052	$2 \cdot 118$	$2 \cdot 121$	$2 \cdot 106$	$2 \cdot 107$	
August.		11	1.133	1.138	1 383	1.558	1 598	1.669	1.610	1.660	
September		12	1.109	1.253	1.497	I 621	1.678	1.647	1.633	I 641	
October		13	$2 \cdot 556$	$2 \cdot 541$	$3 \cdot 033$	3.290	3.4502.605	3423	$3 \cdot 421$	3443	
November.		17	1737	1750		$2 \cdot 393$		2.694	2.646	$2 \cdot 756$	
December .		11	$0 \cdot 385$	$0 \cdot 329$	2.199 0.585	0.624	2.605 0.789	0.877	$0 \cdot 789$	$0 \cdot 857$	
Sums		169	13.783	$13 \cdot 645$	$18 \cdot 235$	19.966	21•786	$22 \cdot 439$	21.845	$22 \cdot 296$	
Height of receiving Surface	$\left\{\begin{array}{c} \text { above the } \\ \text { ground } \\ \text { above mean } \\ \text { sea level } \end{array}\right.$	$\} \ldots$	$\begin{aligned} & \text { ft. in. } \\ & 50.8 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 50.8 \end{aligned}$	ft. in. 38.4		fitin. ${ }_{\text {flo }} 10.0$	$\begin{aligned} & \text { ft. in. } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { fit. in. } \\ & \text { in. } \end{aligned}$	$\begin{aligned} & \text { ft. in. in. } \\ & \text { 1.0 } \end{aligned}$	
		$\} \ldots$	$\begin{gathered} \text { t.t. in. } \\ 205.6 \end{gathered}$	$\begin{gathered} \text { ft. } \\ 205.6 . \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { fr. in. } \\ & \text { I93. } \end{aligned}$	$\begin{array}{r} \text { nt. in. } \\ 176.4 \end{array}$		ft. ${ }_{\text {flo }} 149.6$	frt. 15. 155.3	$\begin{aligned} & \text { ft. in. } \\ & \text { in. } \end{aligned}$	

Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from the Records of Robinson's Anemometer.

Hour ending	1913.												$\begin{gathered} \text { Mean for } \\ \text { Hear } \\ \text { Year. } \end{gathered}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
${ }_{\text {I }}^{\text {h }}$	$\begin{aligned} & \text { Miles. } \\ & 10.8 \end{aligned}$	$\begin{gathered} \text { Miles. } \\ 12.9 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 15{ }^{\circ} 5 \end{gathered}$	Miles. 13.5	$\begin{array}{r} \text { Miles. } \\ 8.9 \end{array}$	$\begin{gathered} \text { Miles. } \\ \text { I } 0 \text {. } \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 8 \cdot{ }_{i}^{\prime} \end{gathered}$	Miles. 7ㅇ	$\begin{aligned} & \text { Miles. } \\ & 7: 6 \end{aligned}$	$\begin{array}{r} \text { Miles. } \\ 8.4 \end{array}$	$\begin{gathered} \text { Miles. } \\ 13 \cdot 1 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 14.5 \end{gathered}$	Miles. 109
2	$10 \cdot 6$	$12 \cdot 3$	${ }_{16} 1$	${ }_{13}{ }^{6}$	9.3	97	8.0	$7 \cdot 5$	$6 \cdot 9$	8.4	12.9	14°	10.8
3	10.7	12.0	16.4	13.4	9.3	$8 \cdot 7$	$8 \cdot 3$	$7 \cdot 3$	$7 \cdot 4$	$8 \cdot 4$	13.2	13.9	10.7
4	11.3	12\%2	${ }^{-164}$	13.5	$8 \cdot 8$	$9 \cdot 5$	$7 \cdot 8$	6.7	$7 \cdot 8$	$7 \cdot 6$	13.3	137	$10 \cdot 7$
5	114	116	15.8	12.3	8.9	$9 \cdot 3$	$8 \cdot 2$	6.9	$7 \cdot 4$	$6 \cdot 8$	12.6	13.7	$10 \cdot 4$
6	11.5	11.8	16.2	12.4	$8 \cdot 7$	$9 \cdot 8$	$8 \cdot 3$	$7 \cdot 0$	$7 \cdot 2$	$6 \cdot 8$	13.2	13.0	10.5
7	11.6	110	16.0	12.7	$8 \cdot 3$	$10 \cdot 5$	$8 \cdot 3$	$6 \cdot 8$	$7 \cdot 4$	$6 \cdot 8$	13.7	$13^{\circ} \mathrm{O}$	10.5
8	12.2	12.2	16.7	$14^{1.1}$	$9 \cdot 5$	115	$8 \cdot 9$	$8 \cdot 2$	77	$6 \cdot 6$	13.3	13.3	11.2
9	12.7	12.0	16.7	154	10.6	117	9.5	8.5	$8 \cdot 1$	$6 \cdot 9$	13.6	14^{11}	11.6
10	119	13.1	18.8	16.8	11.3	119	8.9	$8 \cdot 6$	$9 \cdot 2$	$7 \cdot 6$	14.2	14^{6}	12.2
11	12.3	14.8	194	16.8	11.7	12.6	$8 \cdot 7$	$9 \cdot 3$	10.0	8.4	149	15.3	129
Noon.	13.2	15.3	19.6	$17^{\prime 2}$	12.8	129	$9 \cdot 1$	9.9	10.7	$9 \cdot 4$	16.5	15%	13.5
$13^{\text {b }}$	13.9	$15^{\prime} 1$	19.7	17.6	14.4	13.8	9×9	9.7	10.5	9×4	173	$17 \cdot 1$	$14^{\circ} 0$
14	14.6	15.6	$19 \% 9$	18.4	14.5	14.2	104	10.5	$1{ }^{14} 4$	$9 \cdot 7$	17^{11}	17.4	14.5
15	$13 \cdot 8$	$15^{\circ} 1$	19.6	17.5	14.5	14°	11.0	$9 \cdot 9$	10.7	$9 \cdot 9$	15.6	16.5	$14^{\circ} \mathrm{O}$
16	13°	14.4	197	16.9	14.7	149	$10 \cdot 7$	9.9	$10 \cdot 1$	9.7	14.8	15.6	13.7
17	1299	13.6	18.3	$16 \cdot 8$	144	149	$10 \cdot 3$	$9 \cdot 8$	$9 \cdot 9$	$9 \cdot 0$	13.4	15.3	13.2
18	13.6	12.6	18.1	17.5	13.6	15.0	$10 \cdot 2$	9.5	$9 \cdot 4$	$9 \cdot 5$	13°	163	13°
19	13°	12.8	$16 \cdot 1$	15.8	12.6	14^{11}	9×4	9.0	$8 \cdot 2$	$9 \cdot 1$	133	15%	12.4
20	12.7	13^{1}	15.6	14.3	117	12.8	$8 \cdot 8$	$9 \cdot 1$	$8 \cdot 2$	$9 \cdot 5$	139	147	12.0
21	12.5	13.5	16.4	14.3	11.1	114	9.7	$8 \cdot 8$	$8 \cdot 5$	$9 \cdot 4$	13.8	15.5	12.1
22	12.9	12.7	16.1	13.5	10.4	$1{ }^{10}$	$9 \cdot 1$	7.7	$8 \cdot 2$	$9 \cdot 4$	13.4	154	11.6
23	12.2	129	154	13.5	9.4	$10 \cdot 5$	8.9	$7 \cdot 5$	$7 \cdot 8$	$9 \cdot 0$	13.0	15.5	113
Midnight.	II'4	123	15.8	13.3	93	$10^{\circ} 3$	$8 \cdot 7$	$7 \cdot 3$	$7 \cdot 6$	$8 \cdot 6$	13.2	14.8	11.1
Means	12.4	131	173	15°	11.2	11.9	$9 \cdot 1$	8.4	$8 \cdot 7$	$8 \cdot 5$	14°	149	12.0
Greatest (i)	37	42	51	36	29	35	24	24	23	25	33	42	...
Measures. (2)	29	32	38	28	23	27	20	20	19	21	26	32	\ldots

(1) Deduced from the motion of the cups by the formula $\mathrm{V}=3 v$;
(2) " " " " " " \quad "
where v is the hourly motion of the cups in miles. See Introduction.

Mean Electrical Potential of the Atmosphere, from Thomson's Electroneter, for each Civil Day.
(Each result is the mean of Twenty-four Hourly Ordinates from the Photographic Register. The scale employed is arbitrary : the sign + indicates positive potential.)

1913.												
Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }_{1}^{\text {d }}$	+ 616	+ 377	+ 859	+ 574	+ 669	+ 544	+720	+ 306	+ 92	+ 156	+ 359	+ 352
2	+ 665	$+685$	+ 556	+ 690	+ 738	+615	+723	+ 399	...	+ 80	+ 211	\ldots
3	+525	+ 535	+ 453	+ 408	$+332$	+ 598	$+768$	$+348$	\cdots	+213	+ 443	
4	+ 319	+ 608	+ 556	+ 388	+ 160	+ 591	+615	+ 250	\cdots	+ 231	$+510$	$+490$
5	+ 302	+ 688	+619	+ 569	+ 549	+ 556	+ 543	+ 557	\ldots	+ 238	$+407$	$+643$
6	+ 375	+652	+ 566	...	+679	+ 594	+ 435	+ 779	+ 100	+255	$+473$	+ 398
7	$+480$	+ 377	+ 775	$+780$	+ 739	+ 625	+ 706	+622	+ 168	+ 139	+ 656	+ 386
8	+ 458	+ 789	+1119	+1053	+ 354	+ 506	+1042	+ 385	+ 246	+ 74	+621	+ 182
9	+ 559	+ 414	$+850$	+1036	+ 545	$+706$	+ 574	+ 669	$+320$	$+305$	$+45^{1}$	+133
10	+ 583	+ 780	+ 529	+ 822	+ 466	+ 482	+ 438	\ldots	+ 518	+ 240	+ 96	+ 469
11	+ 77	+ 888	+ 712	+233	$+432$	+ 850	+ 722	\ldots	+ 263	+115	+ 152	+ 499
12	+ 907	+1017	+ 704	+ 968	+ 347	+829	+ 423	+ 441	+185	+ 132	+ 111	$+334$
13	+ 64	+ 959	+ 695	+ 952	+ 37 I	+ 566	+ 387	+ 408	+233	+ 128	+218	+615
14	+ 804	+ 908	+ 378	+ 490	+ 542	+300	+ 433	+ 560	+ 206	+ 190	...	$+585$
15	+ 328	+ 744	+ 808	+ 826	$+490$	+ 371	+ 297	+ 252	$+31^{\prime 8}$	+ 299	+ 494	$+316$
16	\ldots	+ 893	+212	+ 530	+ 558	+ 445	+ 355	+ 410	$+342$	+255	$+383$	+ 486
17	+713	+ 832	$+630$	+1109	+1042	$+518$	+ 318	+ 229	+284	+ 296	+213	+ 382
18	+ 905	+ 905	+1075	+ 675	+915	+ 519	+ 325	+469	+ 279	+ 302	+ 236	+ 505
19	+ 496	+1082	+ 687	+ 740	+1283	+ 795	+ 438	+ 572	$+300$	+ 204	+612	$+553$
20	$+407$	+1218	+919	...	\ldots	+ 834	+ 408	+ 654	+ 383	+ 95	+ 334	+ 605
21	+ 635	+1118	\ldots	+ 652	+ 572	+ 552	+ 224	+ 133	+ 178	+ 717
22	+ 795	+ 889	+250	+ 284	+ 932	+ 333	+ 542	+ 292	+ 210	+ 335	$+701$	+ 790
23	$+500$	+ 855	+ 460	+ 519	+ 680	+413	+ 556	+ 389	+ 170	$+436$	+581	$+317$
24	$+457$	+ 885	+ 655	+ 643	$+530$	+ 697	+ 333	+ 455	+ 167	+ 375	$+408$	$+870$
25	$+642$	+ 825	+ 578	+ 332	+ 244	+ 722	+ 389	+ 443	+ 155	+259	$+433$	$+826$
26	+ 947	+ 569	+521	+ 366	+ 226	+ 927	+ 394	+ 269	$+108$	+ 102	$+365$	+ 268
27	+927	$+815$	+ 605	+277	+ 419	+1017	+220	$+310$	+153	+ 106	$+472$	$+508$
28	+635	+985	+ 324	$+306$	+ 537	+ 890	+ 280	+ 273	+ 179	+ 98	+ 309	+ 749
29	$+570$		$+455$	+ 336	+ 505	$+485$	$+310$	+ 184	+ 190	+ 174	+ 359	+ 80;
30	+ 55^{2}		+ 439	+ 497	+ 542	+615	+ 357	+ 82	+ 197	+ 214	+ 232	+1032
31	+ 835		+ 717		+ 721		+ 324	+ 85		+ 406		+1225
Means	$+603$	$+796$	$+624$	$+608$	+ 571	+620	$+482$	$+402$	$+230$	+212	$+380$	$+553$

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, at every Hour of the Day.

(The results depend on the Photographic Register, using all days of complete record. The scale employed is arbitary : the sign + indicates positive potential.)

$\underset{\substack{\text { Greour } \\ \text { Civil Time. }}}{\substack{\text { Cive } \\ \text { Civer }}}$	1913.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{ }$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$+540$	+ 741	+630	+ 546	+ 506	$+622$	$+463$	+ 414	+ 222	+ 204	$+309$	+ 538	$+478$
$\mathbf{I}^{\text {h }}$	+ 523	+ 712	+ 541	+ 479	$+456$	+ 545	+ 425	+ 38 I	+ 196	+ 194	+ 304	+ 4^{81}	+ 436
2	$+503$	$+703$	+ 473	+ 477	$+444$	+ 498	$+368$	+ 339	+ 179	+ 187	+ 307	+ 428	+ 409
3	+ 457	+ 696	$+438$	+ 503	$+446$	$+482$	+ 360	+ 330	+ 168	+ 180	+ 285	+ 411	$+396$
4	+ 424	+ 695	+ 423	+ 527	+ 415	$+466$	+ 359	+ 324	+ 171	+ 164	+ 268	+ 4^{12}	+ 387
5	+ 456	+ 694	+ 423	$+55^{2}$	$+432$	$+45^{6}$	$+358$	+ 304	+ 166	+ 170	+ 286	+ 414	+ 393
6	+ 512	+ 686	+ 455	+610	+ 473	+ 534	+ 377	+ 317	+ 172	+ 186	$+321$	$+430$	$+423$
7	$+4^{81}$	+ 727	$+546$	+ 643	+ 535	$+605$	+ 398	+ 350	+ 177	$+184$	+ 335	+ 459	$+453$
8	+ 518	$+823$	+ 638	+ 660	+ 594	+ 645	+ 405	+ 369	+ 192	+ 189	+ 361	+ 513	$+492$
9	+ 610	+ 922	$+702$	+ 699	+651	+ 719	+ 488	$+43^{8}$	+ 222	$+182$	+ 402	+ 568	$+550$
10	+ 695	+ 948	+ 714	+ 723	+ 693	+ 774	$+608$	+ 494	+ 276	+ 247	+ 453	+ 604	+ 602
11	+ 748	$+900$	+ 678	+ 709	+ 660	+ 717	+619	+ 486	+ 256	+ 228	$+430$	+ 609	+ 587
Noon	+ 741	+814	+ 653	+ 665	+ 577	+ 658	+ 589	+ 454	+ 233	+ 198	$+430$	+621	+ 553
$13^{\text {h }}$	+ 692	+ 73 I	+618	+601	+ 547	$+596$	$+55^{2}$	$+400$	+ 227	+ 168	$+440$	+ 584	+ 513
14	+ 647	+685	+612	+ 567	$+539$	+ 567	$+503$	+ 377	+ 204	$+164$	$+411$	+ 564	+ 487
15	+ 628	$+725$	+ 634	+ 590	$+548$	+ 550	+ 474	$+382$	+ 207	+ 201	+ 417	+ 593	$+49^{6}$
16	+ 666	+ 806	+658	+ 635	+ 564	+ 55^{8}	+ 509	$+389$	+ 264	+ 247	+ 439	+617	+ 529
17	+ 709	$+887$	+ 709	$+663$	+632	+ 634	+ 530	$+405$	+ 304	+ 266	$+440$	+633	+ 568
18	+ 695	+ 916	+ 752	+619	$+683$	+ 677	+ 507	$+422$	+287	$+263$	$+456$	+631	$+576$
19	+ 664	+ 914	+ 746	+ 543	$+689$	+ 697	+ 524	+ 444	+278	$+265$	+426	+619	+ 567
20	+ 673	+ 887	$+730$	$+563$	+ 686	+ 702	+ 542	$+454$	+ 287	+ 270	+ 412	$+623$	+ 569
21	+ 645	$+853$	+ 734	+ 640	$+701$	+ 750	+ 574	$+462$	+ 300	+ 258	+ 432	+ 648	+ 583
22	+ 640	$+835$	+ 740	+ 701	+ 646	+ 746	+ 545	$+460$	+ 287	$+250$	+ 398	+ 642	+ 574
23	+ 594	+ 806	+ 718	+ 668	$+575$	$+676$	+ 494	$+442$	+ 255	+ 235	+ 359	+ 630	+ 538
24	+ 542	$+742$	+ 654	$+550$	$+508$	$+611$	+ 459	+ 402	+ 227	+ 211	+ 303	+ 599	+ 4^{84}
$0^{\text {h }} .-23^{\text {b }}$.	$+603$	$+796$	$+624$	$+608$	+ 571	$+620$	$+4^{82}$	$+402$	$+230$	$+212$	$+380$	$+553$	+ 507
$\bar{\Sigma}{ }_{1}{ }^{\text {b }} .-24^{\text {h }}$.	+603	$+796$	+ 625	$+608$	$+571$	+619	$+482$	+ 401	+ 23 I	+213	$+380$	$+556$	+ 507
$\left\{\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	30	28	30	27	29	30	31	29	26	31	29	29	\ldots

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day.
(The results depend on the Photographic Register, using all days on which the rainfall amounted to or exceeded $\mathrm{o}^{\text {in }}$.ozo.
The scale employed is arbitrary : the sign + indicates positive potential.)

$\begin{gathered} \text { Hour, } \\ \text { Hereenwich } \\ \text { Civil Time. } \end{gathered}$	1913.												$\xrightarrow{\text { Yearly }}$ Means.
	January.	February.	March.	Apriil.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	+ 572	+ 727	+ 536	+ 435	$+336$	+ 670	$+503$	$+325$	+ 228	+ 185	+ 233	+ 386	+ 428
$\mathbf{1 ~}^{\text {b }}$	+ 553	+ 686	+ 439	$+362$	+ 315	+ 564	+ 433	+ 292	+ 209	$+163$	+ 226	+ 316	+ 380
2	+ 520	+ 669	+ 374	+ 368	+ 371	+ 468	$+369$	+ 281	+ 200	+ 152	+ 199	+ 249	+ 352
3	+ 449	$+646$	+ 34 I	$+406$	$+426$	$+500$	+ 354	+ 274	+ 182	+ 138	+ 155	+ 243	+ 343
4	+ 406	+ 633	+312	+ 4^{22}	+ 344	$+480$	$+342$	+ 246	+ 183	+ 115	+ 131	+ 261	+ 323
5	+ 439	+ 572	+ 305	+ 448	+ 329	+ 218	+ 338	+ 200	$+172$	+130	+ 195	+ 252	$+300$
6	+510	+ 502	+ 342	+ 518	+ 346	+ 374	+ 357	+233	+ 181	+ 153	+239	+ 279	$+33^{6}$
7	+ 443	+ 537	$+460$	+ 563	+ 383	+ 478	+ 389	+ 296	+ 202	+ 154	+225	+ 286	+ 368
8	$+4^{62}$	+ 704	+ 554	+ 598	+ 414	+ 524	+ 415	+ 324	+ 219	+147	+ 236	+ 343	$+412$
9	+ 548	+ 8_{42}	+ 594	+631	+ 430	+612	+ 505	+ 392	+ 259	+ 145	+ 278	$+364$	$+467$
10	+ 628	+ 886	+ 579	+ 649	$+465$	$+712$	+ 644	+ $44{ }^{\circ}$	+ 319	$+220$	+ 299	$+382$	+ 519
11	+ 725	+ 804	+ 553	+ 643	+ 500	+632	+662	+ 418	+ 314	$+192$	+ 285	+ 398	+ 511
Noon	$+756$	+671	+ 585	+ 640	$+402$	+ 600	$+631$	+ 397	+ 288	+ 166	+ 283	+ 407	+ 485
$13^{\text {h }}$	+ 706	+ 532	+ 574	+ 575	+ 408	+ 586	+607	+ 340	+ 283	+ 133	+ 346	$+350$	$+453$
14	+ 648	+ 413	+ 572	+ 537	$+432$	+ 578	+ 522	$+310$	+ 260	+ 136	+ 340	+ 325	+ 423
15	+ 595	+ 443	+619	+564	+ 419	+ 410	+ 432	+ 294	+ 240	$+173$	+ 358	+ 350	+ 408
16	+601	+ 541	+ 658	+614	+ 448	+ 298	+ 524	+ 315	+ 319	+ 226	+ 399	+ 406	+ 446
17	+ 664	+ 630	+ 704	+632	+ 555	+ 538	+ 582	+ 336	+ 396	+ 235	+367	$+496$	+ 511
18	+ 663	+677	+ 718	+ 551	+ 634	+ 670	+ 525	+ 343	+ 319	+ 230	+ 379	+ 544	+ 521
19	+614	+ 688	+ 678	+ 410	+ 626	+800	+517	+ 377	+ 300	+ 230	+321	+ 495	+505
20	+650	$+667$	+ 641	$+428$	+ 574	+ 816	+ 541	+ 405	+ 343	+ 237	+ 343	+ 528	+ 514
21	+ 5^{82}	+ 643	+ 661	+ 544	+617	+ 900	+ 607	+ 383	+ 368	+ 227	+ 379	+ 547	+ 538
22	+ 599	+ 702	$+681$	+ 653	$+533$	+ 978	+621	+ 364	+ 360	+ 212	+ 346	+ 556	+ 550
23	+ 578	$+742$	+ 680	+ 636	+ 439	+ 860	+ 571	+ 334	+ 306	+ 198	+309	+ 563	+ 518
24	+ 551	+ 667	+638	+ 493	+ 388	+ 796	+ 549	+305	+ 271	+ 177	+ 232	+518	+ 465
$0^{\text {b }} .-23^{\text {b }}$.	$+580$	$+648$	$+548$	+ 534	$+44^{8}$	+ 594	$+500$	$+330$	+ 269	+179	+ 286	$+389$	$+442$
	+ 579	+ 646	+ 553	+ 537	$+450$	+ 600	+502	+ 329	+ 271	+ 179	+ 286	+ 394	+ 444
$\left\{\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	17	10	17	18	10	5	11	8	9	12	10	8	

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non-Rainy Days, at every Hour of the Day.
(The results depend on the Photographic Register, using only those days on which no rainfall was recorded. The scale employed is arbitrary: the sign + indicates positive potential.)

$\begin{gathered} \text { Hour } \\ \begin{array}{c} \text { Greonwich } \\ \text { Civil Time. } \end{array} \end{gathered}$	1913.												YearlyMeans.
	January.	February.	March.	April.	May.	Juut.	July.	August.	September.	October.	November.	December.	
Midnight	$+552$	+ 765	+815	+ 850	$+509$	+ 574	$+4^{61}$	+ 449	+ 219	$+248$	$+436$	$+584$	+ 539
$1^{\text {h }}$	+ 490	+ 738	$+733$	$+796$	+ 445	+ 507	+ 439	+ 420	+188	+ 237	$+433$	$+535$	$+497$
2	+ 466	+ 719	+657	+ 770	+ 417	$+470$	$+382$	$+360$	+ 172	+ 229	+ 435	+ 487	$+464$
3	+ 450	+ 716	+611	+ 780	+ 397	+ 451	$+369$	+351	+167	+225	$+4^{21}$	$+47 \mathrm{I}$	+ 451
4	$+446$	+ 730	$+593$	+ 829	+ 390	$+436$	+ 374	+ 354	168	+211	$+405$	$+463$	+ 45°
5	+ 480	+ 766	+ 597	+ 850	+ 428	+ 474	+ 379	$+346$	+ 168	+ 207	+ 409	+ 465	+ 464
6	+ 518	+ 796	+622	+ 897	+ 489	+ 535	+ 397	+ 352	+ 174	+215	$+44^{8}$	+ 476	+ 493
7	+ 537	$+84^{2}$	+ 670	+ 907	+ 559	+ 591	+419	+ 374	169	$+210$	$+478$	+ 515	+ 523
8	+601	+897	+ 760	+ 879	+ 629	+622	+410	+ 397	+ 181	+217	+ 501	+ 567	+ 555
9	$+689$	+ 975	+855	+ 904	+ 717	$+692$	+ 487	+ 474	+ 202	+211	+ 538	+ 636	+615
10	+ 747	$+992$	+ 905	+911	$+766$	+ 742	+ 597	+ 538	+ 249	+ 282	+ 608	+ 688	$+669$
11	+ 720	+ 966	+855	+ 864	+ 694	+ 696	+ 602	+ 532	+221	+271	+ 578	+ 705	+ 642
Noon	+68I	+ 899	+ 773	+ 749	$+646$	$+650$	+ 564	+ 498	+ 199	+235	+ 562	+ 712	+ 597
$13^{\text {h }}$	+614	+ 856	+713	+ 693	+ 592	+ 578	+ 52 I	+ 437	+ 193	+233	+ 544	+ 686	+ 555
14	+ 584	$+851$	+ 699	+ 677	+ 564	+ 542	+ 497	+ 4^{18}	+ 171	+ 226	+ 493	+ 668	+ 532
15	+ 649	+889	+682	+ 690	+ 555	$+542$	+ 508	+ 432	+ 187	+ 239	+ 463	+ 703	+ 545
16	+ 746	+ 959	+ 676	+ 713	+ 569	+ 559	+513	+ 429	+ 236	+ 277	+ 470	+ 728	+ 573
17	+ 763	$+1030$	+ 718	+ 761	+ 645	+ 596	+ 519	$+440$	+ 256	+302	+ 464	+ 731	+602
18	+ 742	+1057	+ 788	+ 800	+ 662	$+623$	+ 515	+ 456	+ 269	+ 295	+ 473	$+710$	$+616$
19	+ 709	+1051	+835	$+879$	$+6_{44}$	+ 626	+ 539	$+476$	+ 261	+ 295	+ 459	+ 709	+624
20	+ 686	+1017	+857	+ 904	+ 641	+621	$+550$	$+478$	+254	+ 301	$+410$	+ 691	+618
21	+ 695	$+978$	$+844$	+ 894	+ 647	+ 657	+ 553	+ 494	+ 266	+ 297	+ 415	+ 709	$+621$
22	+ 654	+917	+830	+ 849	+ 619	+ 655	+ 504	+ 493	+ 247	+ 291	+ 348	+ 698	+ 592
23	+ 586	+853	+ 778	$+761$	+ 571	+ 609	+ 443	+ 479	+229	+ 282	+ 306	+ 674	+ 548
24	+ 506	+798	+ 676	+ 669	+ 530	$+550$	$+393$	+ 437	+ 206	+ 255	+ 274	$+6+0$	+ 494
$0^{\text {b }} .-23^{\text {b }}$.	+617	+886	+ 744	+817	+ 575	+ 585	$+4^{81}$	+ 437	+210	$+251$	$+462$	$+625$	$+558$
$\sum \underbrace{\mathrm{h}} .-24^{\mathrm{h}}$.	+615	+ 887	+ 739	+ 809	$+576$	+ 584	$+478$	+ 436	+ 210	+ 252	+ 456	+ 628	+ 556
$\left\{\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	8	16	11	7	14	20	15	19	16	15	II	17	

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

OF

LUMINOUS METEORS.

1913.

The time is expressed in civil reckoning, commencing at midnight and counting from 0^{h} to $24^{\text {h }}$.

$\underset{\text { Month and Day, }}{\text { Mat }}$	Greenwich Civil Time.	Observer.	Brightness of Meteor in Star Magnitudes	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	Path of Meteor in the Sky.
August I	b m 8				s		-	
	-. 29. 35	D	2	Bluish-white	$0 \cdot 3$	None	20	$311+39$ to $292+27$
	-. 32. 13	1)	> I	White	0.5	Bright : 2.5 secs.	17	$47+53$ to $24+66$
	-. $34 \cdot 39$	DE \& S	1	White	0.7	Slight	15	$345+32$ to $330+25$
	-. 38.48	S	I	White	0.5	None	13	$310+33$ to $294+34$
	-. 41.5	D	1	White	0.5	None	15	$324+9$ to $321-6$
	1. 56.8	S	>1	Bluish-white	0.7	Bright : I sec.	10	$51+69$ to $78+73$
	1. 58.28	D	1	White	0.5	None	14	$26+46$ to $7+43$
	1. 59. 24	D	1	White	0.5	None	25	$353+35$ to $327+24$
	2. 3. 17	S	>1	Bright-blue	1.5	Brilliant: $\mathbf{2}$ sec.	17	$354+71$ to $320+59$
	2. 6. 32	D	I	White	0.5	Faint	24	$339+30$ to $311+33$
	2. 10. 50	S	2	Bluish-white	$1 \cdot 0$	None	40	$303+57$ to $282+19$
	2. 13. 37	D	2	White	0.7	None	25	$339+30$ to $315+18$
	2. 17. 15	D \& S	$>$ I	White	10	Faint: I sec.	39	$49+49$ to $2+29$
	2. 18. 10	D	2	White	0.2	None	10	$49+43$ to $35+42$
	2. 19. 3^{8}	D\&S	1	White	0.5	None	11	$326+47$ to $313+55$
	2. 20. 12	D	1	Bluish-white	0.5	None	32	$30+42$ to $350+33$
	2. 27.55	S	1	Bluish-white	0.7	None	14	$306+32$ to $290+37$
	2. 3 I. 26	U \& S	3	Bluish-white	$0 \cdot 3$	None	10	$50+47$ to $35+47$
	2. 42. 21	D \& S	3	Bluish-white	$0 \cdot 3$	None	15	$44+57$ to $15+60$
	2. 50.59	D	I	White	0.5	None	24	$48+44$ to $22+32$
	2. 51. 3	D	1	White	0.5	None	18	$353+47$ to $328+40$
	2. 58.41	S	>1	Bluish-white	0.2	None	22	$303+33$ to $288+17$
	3. 1. 17	D	1	Yellow	$0 \cdot 3$	Faint	20	$19+57$ to $50+49$
	3. 14. 37	S	2	Blue	$0 \cdot 1$	None	9	$333+63$ to $315+58$
	21. 4. 22	T	2	Yellow	$0 \cdot 3$	None	17	$311+46$ to $288+52$
	21. 10. 35	'T'	2	White	$0 \cdot 3$	None	20°	$285+53$ to $264+40$
	21. 30. 18	S	2	White	$0 \cdot 3$	None	22	$275+48$ to $282+27$
October 2	19. 40. 士	AC	> I	Bright green	<1.0	None	27	$240+86$ to $135+63$
November 13	23. 5. 37	D	2	White	$0 \cdot 5$	None	11	$123+33$ to $107+34$
	23. 23.40	D	2	White	$0 \cdot 3$	None	12	$146+65$ to $146+53$
	23.45.12	D	2	Bluish-white	0.5	None	14	$113+46$ to $92+57$
November 14		$\stackrel{D}{D \& S}$	>1	Reddish White	2.5 0.8	Bright: 2 secs. None	28	$170+62$ to $251+85$ $110+56$ to $65+65$
",	$\begin{array}{rrrr}\text { O. } & \text { 9. } & 57 \\ \text {-. 12. } & 6\end{array}$	D $\underset{S}{\&} \mathrm{~S}$	1	White Bluish-white	0.8 0.5	None None	23 28	$110+56$ to $198+73$
- ",	-. 14. 13	S	$>$ I	Yellow	0.8	Slight		$146+62$ to $153+62$
	-. 22. 27	D	>	White	$0 \cdot 5$	None	16	$131+27$ to $114+33$
	-. 32. 27	S	2	Blue	$0 \cdot 3$	None	13	$144+64$ to $174+72$
	-. 38. 28	D \& S	2	Yellow	$0 \cdot 3$	None	38	$128+85$ to $99+47$
	-. 59. 47	D \& S	2	White	0.5	None	12	$101+18$ to $90+12$
	1. 24.25	D	2	White	$0 \cdot 3$	None	15	$128+37$ to 111 +46
	I. 31. 14	S	2	White	0.5	None	16	$138+56$ to $113+67$
	1. 36.2	D \& S	2	Yellow	0.8	None	21	$125+53$ to $89+63$
	1. 37.27	D	1	White	0.5	Slight	18	$143+26$ to $122+32$
	1. 39.13	S	2	Bluish-white	0.5	None	31	$170+57$ to $105+72$
	1. 42.15	D	2	Bluish-white	0.4	Slight	15	$99+19$ to $84+16$
	I. 44.14	D	2	White	$0 \cdot 3$	None	20	$102+15$ to $83+9$
	2. 0. 25	D \& S	1	Bluish-white	$0 \cdot 5$	None	18	$98+56$ to $66+53$
The time is expressed in civil reckoning, commencing at midnight and counting from $0^{\text {h }}$ to $24^{\text {h }}$.								

