RESULTS

OF THE

Magatcical and Meteorologioal observations

made at

THE ROYAL OBSERVATORY, GREENWICH,

IN THE Year
1915

UNDER THE DIRECTION OF
Sir F. W. D Y S O N, M.A., LL.D., F.R.S., astronomer royal.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY, IN OBEDIENCE TO HIS MAJESTY'S COMMAND.

LONDON:
PRINTED UNDER THE AUTHORITY OF HIS MAJESTY'S STATIONERY OFFICE By Neill \& CO., Limited, 212 Causewayside, Edinblrgh.
1920.
[Crown Copyright Reserved.]

I N D E X.

INTRODUCTION. page
Personal Establishment and Arrangements Ei
General Description of the Buildings and Instruments Ei
New Magnetograph House E ii
Subjects of Observation E vii
Magnetic Instruments-
Declination Magnet for Absolute Determinations E viii
Absolute Horizontal Force Instrument Eix
Dip Inductor Eix
The New Declination Variometer Ex
The North Force Variometer Exi
Vertical Force Variometer Exiii
The Quartz-Thread Vertical Force Variometer Exv
Magnetic Reductions E xvii
Table of Magnetic Elements determined at Greenwich from 1841. E xx
Meteorological Instruments-
Standard Barometer Exxi
Рhotographic Barometer Exxi
The New Photographic Barometer Exxii
Dry and Wet Bulb Thermometers Exxiii
Photographic Dry and Wet Bulb Thermometers Exxiv
Radiation Thermometers Exxiv
Earth Thermometers Exxiv
Osler's Anemometer Exxv
Robinson's Anemometer Exxv
Rain-Gauges Exxvi
Elegtrometer Exxvii
Sunshine Recorder Exxvii
Meteorological Reductions Exxvii
RESULTS OF Magnetical and meteorological observations in tabular ARRANGEMENT :-
Results of Magnetical Observations E 1
Table I.-Mean Magnetic Declination West for each Civil Day E 2
Table II.-Mean Magnetic North Force for each Civil Day E 3
Table III.-Mean Vertical Magnetic Force for each Civil Day E 3
Table IV.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West E 4
Table V.-Diurnal Range of Declination on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers. E 4
Table VI.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Quiet Days in each Month E 5
Table VII.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Disturbed Days in each Month E 5
Table VIII.-Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force E 6
Table IX.-Diurnal Range of North Force on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers. E 6
Table X.-Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force from Hourly Ordinates, on Five Selected Quiet Days in each Month E 7
Table XI.-Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force from Hourly Ordinates, on Five Selected Disturbed Days in eacch Month E 7
Table XII.--Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force E 8
Table XIII.-Diurnal Range of Vertical Magnetic Force on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers E 8
Table XIV.--Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Quiet Days in each Month E 9
Table XV.—Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Disturbed Days in each Month E 9
Table XVI.-Mean Temperature for each Civil Day within the box inclosing the Vertical Force Magnet E 10
Table XVII.-Monthly and Annual Mean Temperature at each Hour of the Day within the box inclosing the Vertical Force Magnet E 10
Table XVIII.-Values of the Coefficients and Phase Angles in the Periodical Expression-

$$
\begin{aligned}
\mathrm{V}_{t}=m+ & a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+a_{3} \cos 3 t \\
& +b_{3} \sin 3 t+a_{4} \cos 4 t+b_{4} \sin 4 t \\
=m+ & c_{1} \sin \left(t+a_{1}\right)+c_{2} \sin \left(2 t+a_{2}\right)+c_{3} \sin \left(3 t+a_{3}\right) \\
& +c_{4} \sin \left(4 t+a_{4}\right) . \quad . \quad . \quad . \quad .
\end{aligned}
$$E 11

Table XIX. -Results of Determinations of the Absolute Value of Horizontal Magnetic Force in the Year 1915, from Observations made with the Gibson Instrument in the Magnetic Pavilion E 12
Table XX.- Results of Observations of Magnetic Dip made with the Dip Inductor in the Year 1915 E 13
Table XXI.-- Amual Summary of the Magnetic Elements E 13

INDEX.

RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS-continued. Page
Magnetic Disturbances E 15
Brief description of Magnetic Movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 20γ in Horizontal Force, or 12γ in Vertical Force, taken from the Photographic Register E 16
Plates I.-III., photo-lithographed from tracings of the Photographic Registers of Magnetic Disturbances.
Results of Meteorological Observations E 29
Daily Results of the Meteorological Observations E 30
Highest and Lowest Readings of the Barometer E 54
Highest and Lowest Readings of the Barometer for each Month E 54
Monthly Results of Meteorological Elements E 55
Monthly Mean Reading of the Barometer at every Hour of the Day E 56
Monthly Mean Temperature of the Air at every Hour of the Day E 56
Monthly Mean Temperature of Evaporation at every Hour of the Day E 57
Monthly Mean Temperature of the Dew-Point at every Hour of the Day E 57
Monthly Mean Degree of Humidity at every Hour of the Day E 58
Total Amount of Sunshine registered in each Hour of the Day in each Month E 58
Readings of Thermometers on the ordinary stand in the Magnetic Pavilion Enclosure E 59
Amount of Rain collected in each Month by the different gauges E 62
Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures as derived from the Records of Robinson's Anemometer E 62

ERRATA.

RESULTS OF METEOROLOGICAL OBSERVATIONS, 1901.
 p. (xl), col 3, May 1, for 29.909 read 29.934.
 Means ", 29.908 ", 29.909.
 p. (lix), col 2, „ 29.908 " 29.909.
 p. (lx), col 6, $\quad 22^{\text {h }},{ }^{29.906 ~} \quad$, 29.916.
 $23^{\text {h }}$, 29.907 ,, 29.916.
 Mean oh $-23^{\text {h }}, 29.908$,, 29.909.
 $1^{\text {h }}-24^{\mathrm{h}}, 29 \cdot 908$, 29.909.

RESULTS OF MAGNETICAL OBSERVATIONS, 1915.
p. E 7. Table X.-Heading, insert Quiet before Days.

Table XI.-Heading, insert Disturbed before Days.
p. E 9. Table XIV.-Heading, insert Quiet before Days.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS,

1915.

Introiduction.

In the present volume a brief account is given of the instruments and methods of reduction now in use. Fuller information, principally of a historical nature, may be found in the Introductions to the volumes for 1909 and previous years.

§ 1. Personal Establishment and Arrangements.

During the year 1915 the personal establishment in the Magnetical and Meteorological Department of the Royal Observatory consisted of Walter William Bryant, Superintendent, aided, till June 20, by one Junior Assistant, David J. R. Edney, and generally by four Computers. The Computers employed during the year were :-R. Walden, A. W. Hills, E. Leary, H. R. Wright, and three Belgian refugees-T. Van Dingenen, R. Dagonnier, and G. Brenez.

§ 2. General Description of the Buildings and Instruments of the Magnetical

 and Meteorological Observatory.For detailed historical information regarding the old buildings and instruments, reference should be made to the Introductions to earlier volumes of these observations.

The old instruments for photographic registration of changes in the atmospheric pressure, magnetic declination, and horizontal and vertical magnetic force, are situated in an underground chamber (known as the Magnet Basement); this chamber is kept at a nearly uniform temperature by means of gas stoves. The small variations of temperature are recorded on a Richard thermograph.

E ii Introduction to Greenwich Magnetical Observations, 1915.

In a wooden building (called the Magnet House) above this chamber are placed the standard barometer and a Thomson electrometer for photographic registration of the variations of atmospheric electricity. A platform erected above the roof of the Magnet House is used for nephoscope observations of cloud in connection with International Balloon Ascents.

Near the Magnet House are the earth thermometers, the photographic dry and wet-bulb thermometer apparatus, and a set of dry-bulb, wet-bulb, and maximum and minimum thermometers in a Stevenson screen.

The Magnet House is built of non-magnetic material, but during the years 1891-1898 considerable masses of iron were introduced into its neighbourhood by the building of certain additions to the Observatory. Hence the instruments which were formerly placed in the Magnet House, for absolute determinations of magnetic declination, dip, and horizontal force, were transferred to the Magnetic Pavilion. This building is constructed of non-magnetic materials, and stands in an enclosure in Greenwich Park, 350 yards to the east of the Observatory, on a site carefully chosen for its freedom from abnormal magnetic conditions. In the enclosure there are two sets of thermometers used for ordinary eye observations, thermometers for solar and terrestrial radiation, and two rain-gauges.

The anemometers, three rain-gauges, and the sunshine recorder are fixed above the roof of the Octagon Room (the ancient part of the Observatory).

The New Magnetograph House.-The new Magnetograph House stands 50 feet north-west of the Magnetic Pavilion in which the absolute magnetic observations are made. It is built above ground, in order to avoid the dampness to which underground chambers are liable. On the outside the building is 25 feet long by 22 feet wide, the short sides lying due north and south : the height up to the eaves is just under 14 feet. On the south side there is a small annexe 11 feet 4 inches long and 6 feet deep, under a continuation of the roof of the main portion of the building: this contains the entrance lobby and a small photographic dark room. The outer walls of the building are nearly 2 feet thick, consisting of a 12 -inch layer of hollow concrete, rough cast on the outside, then a 6 -inch layer of slag wool, and on the inner side a 4 -inch partition of the partly hollow fibrous plaster known as mack. The foundations and flooring are of concrete, in which is embedded a damp-proof course of thin sheet lead. The ceiling of the chamber consists of two layers of ${ }_{4}^{3}$-inch deal boarding, between which is a 6 -inch layer of slag wool. Above this there is a vacant place up to the rafters. The roof is
low pitched, and slopes upwards on all four sides of the building, but the ridge rafter (which is at a height of 20 feet above the ground) is 20 feet long, so that there are two small gable ends above the side portions of the roof. Louvre boarding over these ends permits free ventilation of the space between ceiling and rafters. The roof is covered all over with a layer of sheet zinc. The gutters and rain pipes are of lead. Throughout the construction of the building the greatest care was taken to ensure that no magnetic materials were used.

The recording instruments are situated in a small inner chamber which is 15 feet long, 12 feet wide, and 8 feet high. There are air spaces of 2 feet thickness between its floor and ceiling and the floor and ceiling respectively of the outer chamber, and there is a passage way, 2 feet 10 inches wide, all round. The walls and floor beams of the inner room are supported on small concrete piers ranged round the sides; and other piers, three for the instruments and two larger ones for the recording mechanisms, pass upwards through the floor to a height of 2 feet 6 inches and 2 feet 3 inches respectively within the instrument chamber. The walls of the latter are formed of slabs of mack, 4 inches thick; these are supported by timber framing along top and bottom, together with eight wooden pillars situated at the corners and in the middle of each side of the room. The floor and ceiling each contain a 6 -inch layer of slag wool enclosed between layers of deal boarding.

The building is entered by the south doorway of the annexe, which gives admission to a small lobby; from this a door on the right opens into the dark room, while two successive doors in front give access to the passage way round the inner room. The thickness of the outer walls of the building is such as to leave sufficient space between these latter two doors to enable the one to be shut before the other is opened, and this practice is followed by observers on entering or leaving the building. The inner chamber is entered from the passage way by a door on the west side, to which steps lead up from the floor at ground level.

The passage way is dimly lighted in the daytime by four small windows, each 1 foot square, just below the eaves. These are closed by three layers of plate glass 1 inch thick, with air spaces between : one sheet is red, so that photographic paper can be carried in the passage without cover. The developing room also has a red-glazed window, which can be covered up when necessary.

Air vents, which can be closed at will, pass through the outer walls and admit air from the outside into the passage way, and exhaust vents pass up from the

E iv Introduction to Greenwich Magnetical Observations, 1915.

latter and from inside the instrument chamber to the space below the rafters. In practice these vents are kept closed, since sufficient air for ventilation finds its way into and out of the building without their aid.

The thermal insulation provided by the special construction of the building greatly reduces the temperature changes within the instrument chamber, and thus lightens the task of the electric heating system by which the room is kept at a constant temperature. The temperature is controlled by a thermostat placed in the centre of the room, at the same level as the magnetic instruments. This actuates a relay which switches the electric current into or out of the heating circuits. The current used in the building, for lighting and heating, is alternating (110 volts, 50 alternations per second), and is therefore without effect upon the magnetic registration. The heating elements are 53 in number, of which 37 are mounted on the skirting board round the inner walls of the instrument chamber ; while the other 16 , mounted in pairs on small teak frames, rest at various places on the floor of the room. Each element consists of a suitably insulated lowtemperature non-magnetic metallic resistance strip consuming 25 watts. The heating circuit is divided into three sections, one or more of which can be cut out of the relay circuit, if desired, so that the delicacy of the thermal regulation can be suited to the season of the year.

Before the installation of the instruments and heating system, the north-south and east-west directions within the inner room were determined, and permanently indicated by marks on small porcelain tablets mounted on the four walls of the room. A theodolite was placed south of the entrance doorways leading into the passage, and the zero of its azimuth circle was obtained by observation of the sun. The direction of the meridian was then marked out within the room, the line of sight passing through a small hole which had been made for this purpose in the inner south wall. The perpendicular direction was then obtained by means of a theodolite within the room itself.

The centres of the three instrument piers are situated as follows: for the north force instrument, 2 feet south and 2 feet 6 inches east of the north-west angle of the room ; for the declination instrument, 5 feet 6 inches south and 5 feet east of the same angle; for the vertical force instrument, 2 feet north and 3 feet west of the south-east angle. These piers are octagonal in section, the distance between parallel sides being 18 inches. The two piers which support the recording mechanisms are rectangular in section, 3 feet 6 inches long by 1 foot 9 inches wide. They occupy the north-east and south-west angles of the room, their longer sides
being in the direction of the meridian. They are not solid throughout, pits being provided for the weights and pendulums of the driving clocks. These pits are closed on the outer side of the chamber only by removable wooden shutters, and the clocks can be wound up, and the pendulums set swinging, from the passage way, without entering the room. The recording drums can also be inserted and removed in the same way, through shuttered openings just above the piers. Through another such shutter a small telescope projects into the room, and enables the temperature to be read from the inside, from a thermometer attached to the north force instrument ; the scale can be illumined at will by a small shaded electric torch controlled by a switch outside the room. Thus the ordinary daily service of the instruments does not necessitate entry into the room.

Besides the three magnetographs already mentioned, the Magnetograph House contains the photographic and standard barometers. The former is mounted on the south wall of the instrument room, $5 \frac{1}{2}$ feet from the south-east corner of the room. As the mack partition is hardly substantial enough to carry much weight safely, the back is strengthened by stout boards screwed to and stretching between the wooden pillars in the angle and middle of the south wall. The barometer, and the shelf which supports its lever mechanism and optical parts, rest on a stout board bolted by brass bolts to the strengthening boards on the outer side of the wall. The standard barometer is situated in the passage way, being supported on a board screwed to the north-west corner pillar of the inner room.

The north force and declination instruments both record on the north-east drum, and the vertical force instrument and the barometer record on the other drum. Both drums are horizontal. The recording mechanisms, which were supplied by the Cambridge Scientific Instrument Co., consist each of a pendulum-and-weight driven clock, which rotates the drum through a two-speed gearing. The drums are 10 inches long and $5 \frac{1}{2}$ inches in diameter; their normal period of revolution is 30 hours, which can, however, be reduced to one-twelfth for the purpose of quick-speed runs. The ordinary time scale is 15 mm . to the hour. Each drum is enclosed in a teak box which is inserted and removed with the drum itself. The whole recording mechanism is covered by a large wooden casing, which keeps stray light from the drum and dust from the clockwork. The casing and drum box are pierced by slits of suitable size, and between the two slits there is an adjustable cylindrical lens which brings the registering beams of light to a point focus on the drum. By a system of movable mirrors it is possible to make

E vi Introduction to Greenwich Magnetical Observations, 1915.

eye observations of the motion of the beams, from the outside of the chamber. In practice this is not found to be required.

The light for photographic registration is supplied by straight filament tungsten lamps mounted vertically. One lamp suffices for the declination and north force instruments, and is situated on a shelf above the corresponding drum, and another lamp for the vertical force instrument and barometer. The time registration on the photographic sheets is provided for by two horizontal straight filament lamps mounted at suitable heights on the east and west walls of the chamber : each lamp illumines the whole length of the slit of the drum on the opposite wall, and the effect is to produce narrow dark hour lines right across the photographic records. These time lines are found very convenient in the process of measurement. The time lamps are illumined for a period of one second centred at each exact hour of Greenwich time. The current is switched on and off by a relay connected to the Mean Solar Clock in the Clock Room of the Observatory.

Owing to the iron involved in their construction, the relays which control the heating system and the time registration are placed in a box near the gate of the Magnetic Enclosure, at a distance of over 40 yards from the Magnetograph House. The only pieces of iron or steel inside the latter are in the clocks of the driving mechanism and in the photographic barometer mechanism; the total quantity is very small, consisting only of a few small parts for which the substitution of copper or brass would be unsatisfactory.

All the lamps for magnetic and time registration are shielded so as to throw light only towards the instruments or drums, and the room as a whole is usually very dimly illuminated. Ordinary white or ruby electric lamps are also provided in the instrument chamber, passage way, and developing room, for use when necessary.

The construction of the building and the installation of the heating system was completed in 1914. The new declination instrument was in use throughout 1915, and the north force instrument from March 1915. Records were continued with the old instruments for comparative purposes until 1916 September. In 1915 November a fault developed in the thermostat, and during 1916 the temperature of the room was subject to a gradual variation (the whole range during this period being $1^{\circ} \cdot 5 \mathrm{C}$.). After some modifications, the thermostat and relay were reinstalled in 1916 June. This thermostat was again replaced in 1918 June, having developed the same fault; but the performance of the present
thermostat has not been entirely satisfactory, the control temperature having again shown evidence of a slow secular change. The range in any one day is, however, too small to be measured by an ordinary thermometer.

The installation of the vertical force instrument has given considerable trouble. A quartz fibre instrument designed by Prof. W. Watson, and for a time used at the Eskdalemuir Observatory, was in experimental operation for some months during 1916. In September 1916 the quartz fibre was broken, and a second instrument was then tried. This was of the ordinary knife-edge type, and was loaned by Prof. W. Watson of the Imperial College of Science and Technology. After certain optical difficulties in connection with it had been overcome, a means of measuring the scale value was brought into operation, and it was found that the scale was far from uniform, apparently owing to some irregularity in the knife edges. The non-uniformity was such that the use of this instrument was abandoned, and the old vertical force magnetograph remained the standard instrument for the Observatory until the quartz fibre instrument, which was returned after repair in 1917 January, was adjusted and finally adopted as the standard in 1917 March.

The photographic barometer was transferred from the old to the new Magnetograph House on 1916 September 25. The change of arrangements necessitated the reconstruction of the optical parts and lever mechanism. For a time hourly readings of the standard barometer were taken throughout the day and night, while the new apparatus was being got into order. These were finally discontinued on 1917 March 28. The standard barometer was transferred to the new Magnetograph House on 1917 April 3.

The photographic wet and dry bulb thermometers were transferred to the Magnetic Enclosure on 1917 February 21, and after this date all the magnetic and meteorological photographic registers were developed in the dark room of the new Magnetograph House.

§ 3. Subjects of Observation in the year 1915.

The observations comprise determinations of absolute magnetic declination, horizontal force, and dip; continuous photographic record of the variations of declination, horizontal force, and vertical force ; eye observations of the ordinary meteorological instruments, including the barometer, dry and wet-bulb thermometers, radiation and earth thermometers ; continuous photographic record of

E viii Introduction to Greenwich Magnetical Observations, 1915.
the variations of the barometer, dry and wet-bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain ; registration of the duration of sunshine ; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud, special cloud observations in connection with the International Balloon ascents, and occasional phenomena.

Since 1885, Greenwich civil time, reckoning from midnight to midnight, and counting from 0 to 24 hours, has been employed throughout the magnetical and meteorological sections, except in regard to the sunshine registers (see p. E 58).

§ 4. Magnetic Instruments.

Declination Magnet for Absolute Determinations.-Since 1899 January 1, regular observations of declination have been made in the Magnetic Pavilion. The hollow cylindrical magnet Elliot No. 75 is used in conjunction with a telescope by Troughton and Simms, placed on a pier about 2 feet south of the magnet. The magnet is about 4 inches long, and at one end is an engraved glass scale for collimation. The telescope is 21 inches long, and the aperture of its object-glass is 2 inches ; its horizontal circle is 16.6 inches in diameter, divided to 5^{\prime} and read by verniers to 5 ". It has no vertical circle. The eye-piece has one fixed horizontal wire and one vertical wire, moved by a micrometer screw, the value of one revolution of which is $\mathbf{1}^{\prime} 34^{\prime \prime} \cdot 2$. The adopted collimation reading was $100^{\mathrm{r}} \cdot \mathbf{1 4 0}$.

The vertical axis of the telescope is adjusted by means of a fixed level, one division of which corresponds to $\mathbf{1}^{\prime \prime} \cdot 15$. The level correction for inequality of the pivots of the axis of the telescope was found in 1898 to be $-6^{\mathrm{div} .} 0$ or $-6^{\prime \prime} \cdot 9$.

Since 1913 September the magnet has been suspended by a tungsten fibre of 0.02 mm . diameter, and about 25 cm . length. The effect of 90° of torsion is to turn the magnet through about 4^{\prime}. The torsion is found to change little or not at all ; it is determined monthly, and a correction on this account is made when necessary. The collimation error is also determined monthly. This is done by observing the position of the magnet in its usual position with the scale direct, then with the scale reversed (by turning the magnet through 180° in its carrier, about the longitudinal axis), and again direct.

The reading of the azimuth circle corresponding to the astronomical meridian is determined by observations of Polaris, taken once a week whenever practicable.

Declination observations have been made at least thrice weekly throughout 1915.

Absolute Horizontal Force Instrument.--This instrument is of the Kew pattern, and rests on a slate slab in the Magnetic Pavilion. A full account of its construction and use is given in earlier volumes, and will not be repeated here.

Observations of the absolute horizontal magnetic force have been made twice weekly since 1915 February. Before 1912 February they were made twice monthly, and from 1912 February to 1915 February weekly. Observations of the moment of inertia of the deflecting magnet are made monthly.

Dip Inductor.-The dip inductor consists essentially of a coil of copper wire which can be rotated about an axis in its plane. The ends of the coil are connected to two brushes which press upon a fixed commutator disc. The electromotive force which arises, in general, upon rotation of the coil, is detected by means of a Broca mirror galvanometer with electric light and scale. This force vanishes only when the axis of rotation lies along the direction of the magnetic field in which the instrument is situated. The spindle of the coil is journalled in a ring which can be moved in azimuth and inclination, and the observation consists in adjusting the direction of this ring and spindle until no electromotive force is indicated by the galvanometer.

The observation is made in four positions ; after the first adjustment and circle readings have been made, the ring is reversed about a horizontal axis perpendicular to the spindle, and a second adjustment and readings are made : the instrument is then reversed in azimuth, and two similar observations are taken in the new position of the base. The two sets of double readings determine the magnetic dip and the circle reading corresponding to the vertical position of the spindle, after the application of corrections for level. For the latter purpose two levels are provided, resting on the base of the instrument, parallel and perpendicular to the horizontal axis of the ring. The two reversals eliminate any small errors arising from slight asymmetry in the instrument.

The two circles, for the measurement of inclination and azimuth, are each eight inches in diameter, and are read, by means of two screw micrometers in each case, to one second of arc. The levels on the base can likewise be read to one second.

Ex Introduction to Greenwich Magnetical Observations, 1915.

The driving gear is constructed so that the coil can be rotated by the observer while standing at a distance of six feet from the instrument. In order to minimise strain on the instrument, the tension of the driving cords upon the pulley attached to the coil spindle is exactly balanced by the thrust of a rod against a small knob at the centre of the upper plane surface of the pulley. The spindle has a driving pulley at each end, for use in the direct and reversed positions.

While rotating the coil the observer can also adjust the inclination and azimuth of the spindle; this is done by means of long rods, suitably supported, which, through the agency of flexible spiral-wire couplings, actuate the slow motions on the instrument. The galvanometer, lamp, and scale are enclosed in a wooden cupboard adjacent to the driving handle and slow motion rods. The scale is viewed through a conical tube projecting from this cupboard, so that the observation may be made in daylight. The coil is rotated and the spindle is simultaneously adjusted until the spot of light comes to rest in its normal position, after which the circles and levels are read.

The adjustment of the spindle is facilitated by the novel form of the commutator in this instrument. The fixed commutator dise is divided into four instead of two parts, and it is oriented so that two of the quadrants are in use during the two quarter-revolutions which are symmetrical about the meridianal positions of the coil. During these fractions of the revolution the electromotive force due to an azimuth error of the spindle is much greater than that due to a similar error in inclination (the latter force, moreover, is not of constant sign). During the remaining half of the revolution the reverse is the case. The two pairs of quadrants are connected to a switchboard near the driving handle, and the galvanometer can be switched into either circuit, thus receiving a rapidly intermittent current of generally constant sign during the rotation of the coil. This renders it possible to correct successively the inclination and azimuth errors of the spindle, and conduces to the speed and accuracy of the observations. The driving cord, thrust rod, and slow motion couplings can be quickly detached for the various reversals of the spindle, and the whole observation of dip and azimuth can be made in ten minutes.

The dip inductor has been adopted as the standard dip instrument from the beginning of 1914, and observations have generally been made thrice weekly since that time.

The New Declination Variometer. This instrument is a slight modification of the standard Cambridge pattern. It consists essentially of a magnet
and mirror suspended by a fine phosphor-bronze fibre 30 cm . long. The torsion head to which the top of the fibre is attached is adjusted so that there shall be no torsion in the mean position of the magnet. A quarter revolution of the torsion head deflects the magnet through 8^{\prime}.

The magnet consists of nine short pieces of steel 4.5 cm . long and of 1 mm . diameter, supported in an aluminium holder. The mounting of the movable mirror attached to this holder is also of aluminium. It can be turned relative to the magnet, so that the beam of light can be suitably adjusted in azimuth. The fixed mirror for base-line registration is situated beneath the magnet and mirror system. Both mirrors are of silvered glass, 2.5 cm . long and 1 cm . wide, and possess the necessary adjustments for tilt and orientation.

The frame of the instrument is of brass, apart from the magnet chamber, which has thick upper walls for purposes of damping. The remaining space round the magnet was afterwards further reduced by the insertion of copper blocks, which render the instrument almost dead-beat.

The instrument rests on three foot-screws, which provide adjustment for level. It is completely enclosed by a tall brass cylinder with lid, resting on the concrete pier; this protects the instrument from dust, draughts, and accidental displacements. The lens which focuses the beam of light passing from lamp to mirror and mirror to drum is mounted in the side of this cylinder, the mirror chamber of the instrument itself being closed by a plane glass window.

The distance from the mirrors to the centre of the slit of the drum box is such that the scale value at the middle of the photographic sheets is $0^{\prime} .585$ per millimetre; at the present time (1915-20) this angle represents $3 \cdot 17 \gamma$, in terms of force. Since the beam of light, when directed towards the centre of the slit, makes an angle $11^{\circ} 42^{\prime}$ with the normal to the drum, the scale value is not the same right across the sheet, the percentage difference of scale between the centre and edges being 0.5 . This is allowed for, when necessary, in measuring the photographic traces.

The photographic sheets are changed generally at about $11 \mathrm{a} . \mathrm{m}$. The time scale is 15 mm . per hour. The base-line value is determined from the absolute declination observations.

The North Force Variometer.-The general construction of this instrument resembles that of the declination variometer. The suspension is of quartz,

E xii Introduction to Greenwich Magnetical Observations, 1915.

however, 20 cm . long, and the magnet system contains a single magnet similar to those in the declination instrument. In other respects the magnet and mirror systems of the two instruments are identical.

The torsion head is adjusted so that the magnetic axis of the magnet system is kept in the (geographical) east-west direction. The angle between this direction and the line joining the mirror to the middle of the slit of the drum is $7^{\circ} 30^{\prime}$. The mirror was adjusted relative to the magnetic axis so that the angle between the latter and the normal to the mirror agreed with the above angle to within a few minutes of arc. The magnet can consequently be maintained in the right direction by keeping the beam of light directed towards the middle of the photographic sheet.

The above adjustment was made by taking the magnet and mirror system out of the instrument, suspending it freely so that its magnetic axis should lie along the known direction of the magnetic meridian, and determining the azimuth of the normal to the mirror by means of a telescope and lamp. The mirror was adjusted until the direction of the normal diverged from the magnetic meridian by approximately $7^{\circ} 30^{\prime}$ (actually it was 'left at $7^{\circ} 39^{\prime}$, as the adjustment could not readily be made exact).

The instrument is enclosed in a brass cylinder, in which is mounted the focussing lens, as in the case of the declination variometer. Through apertures in this casing also project two arms, one to the north and the other to the south of the instrument, to which they are attached. These are designed to support a deflecting magnet for the determination of the scale value of the variometer. The deflecting magnet is similar to those in the magnet system itself, but is cased in brass so as to be preserved from rust and made convenient for handling; its external diameter and length are 5 mm . and 7 cm . respectively. Deflections are made at two distances along both north and south arms, and in each position the magnet is used with its axis directed to the north and also to the south Thus eight deflections are involved in each determination of scale value. The deflected positions are recorded on the photographic sheet, and the measurement is performed subsequently. The two adopted distances of the deflecting magnet from the magnet system are 27 cm . and 32 cm . The deflecting forces at these two distances are determined monthly by deflecting the absolute horizontal force magnet in the same way; the moment of the latter being known, the angle of deflection enables the deflecting force to be calculated readily in absolute measure. It is found that the magnetic moment of the deflecting magnet is slowly diminishing; the
deflecting forces at the above two distances were 257.4γ and 156.6γ in the mean of 1915, and the present rates of diminution of their values are $4 \cdot 4 \gamma$ and 2.8γ per year.

The scale value determinations for the north force instrument are made once weekly (prior to 1916 August they were made less frequently). Since the instrument was installed the scale value has been found to be slowly diminishing. It has been treated as constant throughout each month, the difference from month to month being very small (less than 01γ per mm .). The adopted scale value for the month of 1916 January was 3.01γ per mm., and for 1917 January was 3.09γ per mm.

The base-line value of the instrument is determined by means of the absolute horizontal force observations, together with the absolute and photographic declination determinations. The base line is steadily changing (though at a decreasing rate), owing to the gradual diminution of the moment of the magnet system. The mean rate of change of base-line value during 1915 was 1.06γ, and the mean annual decrease in this rate of change is 0.15γ. The progressive change of base-line value is allowed for in the reductions.

The instrument is kept at a constant temperature, and therefore the records require no temperature correction in general. When the instrument was first set up, however, its temperature correction was determined by electrically heating the interior of the outer casing by heating coils wrapped round the outside of the latter. It was found that a rise of temperature through $t^{\circ} \mathrm{C}$. increased the base-line value of the instrument by $5 \cdot 7 t \gamma$, no term depending on t^{2} being involved. During the periods when the thermostat was out of order and under repair, the observations were corrected for temperature according to this determination.

Vertical Force Variometer.-The magnet used in this instrument is $1 \frac{1}{2}$ feet long, and lozenge-shaped, being broad at the centre and pointed at the ends. The steel knife-edge, which is 8 inches long, and passes through an aperture in the magnet, rests on two agate planes. The magnet is placed unsymmetrically on the knife edge, being nearer to its southern end. The axis of vibration was originally in the magnetic meridian, but is now a few degrees distant, on account of the secular change of declination.

- Two steel screw stalks, carrying adjustable screw weights, are attached to the magnet, one being vertical in order to vary the sensitiveness, the other horizontal

Exiv Introduction to Greenwich Magnetical Observations, 1915.

indorder to adjust the balance of the magnet, which should rest in a nearly horizontal position. The magnet and supporting frame are enclosed in a wooden box with suitable glass-covered apertures. The temperature within the box is indicated by a thermometer, the bulb of which projects well into the interior of the box.

The photographic arrangements are described in previous volumes. The cylinder carrying the photographic sheet is vertical, and also receives the record of the variations of barometric pressure. The time scale is the same as for the other magnetic registers.

The scale coefficient of the instrument is determined by the method of vibrations. When the magnet is approximately horizontal, and transverse to the magnetic meridian, the variation of the vertical force, in terms of the whole vertical force, which will produce a small angular motion θ (measured in radians) $=\operatorname{cotan}$ $\operatorname{dip} \times\left(\frac{T^{1}}{T}\right)^{2} \times \theta ; T$ and T^{1} are the times of vibration of the magnet in the vertical and horizontal planes respectively.

Observations of T are made once a week by means of the telescope and scale provided for eye readings of the position of the magnet. The mean of 48 observations made during 1915 gives the value $17^{8} 390$.

The time of vibration in the horizontal plane (T^{1}) is determined once every three years, as the observation requires the removal of the magnet from its box. The magnet, with all its attached parts, is suspended from a tripod, with its broad side horizontal. The arc of vibration is kept small. Observations on 1912 January l gave for the time of vibration in the horizontal plane $16^{8} \cdot 484$. This vaiue has been adopted for the year 1915 .

Since the distance between the concave mirror of the magnet and the surface of the cylinder is $100 \cdot 2$ inches, the length on the cylinder, in inches, which corresponds to a change of 0.01 part of the whole vertical force $=2 \times 100.2 \times \tan \operatorname{dip} \times$ $\left(\frac{T}{T^{1}}\right)^{2} \times 0.01$. Taking $T=17^{\mathrm{s}} 390, T^{1}=16^{\mathrm{s}} \cdot 484$, and $\operatorname{dip}=66^{\circ} 51^{\prime} 58^{\prime \prime}$, this length is found to be $5 \cdot 220$ inches. The cardboard scale, which is used for measuring the curves for the year, is constructed with this as unit.

The temperature in the magnet basement is subject to slow changes during the course of a year, and the vertical force records require correction on this
account. The correction is applied to the mean daily and the monthly mean hourly values, using the mean daily and monthly mean hourly values of the temperature as recorded on a Richard thermograph, corrected by comparison with reading of a thermometer with its bulb projecting into the magnet box itself.

The correction (which is constant over the normal temperature range) is $-9 \cdot 20 \gamma$ per 1° Fahrenheit.

The Quartz-Thread Vertical Force Variometer.--For a detailed description of this instrument reference may be made to the Philosophical Magazine, vol. vii., sixth series, p. 393, 1904. The base of the instrument consists of a metal casting with uprights at the two ends, carrying attachments for the ends of the quartz fibre which supports the magnet system. The latter consists of two magnets, 8 cms . long and 1 mm . in diameter, which are attached by small platinum stirrups to two rods of fused quartz; these are fused to a quartz plate, the upper surface of which is optically worked and platinised to form a plane mirror. The quartz rods are drawn out at their other ends into fibres of about 0.008 to 0.010 cm . diameter ; one of these is attached to a coiled quartz spring. The quartz spring and the other fibre are soldered to small brass rods fitting into clamps at the two ends of the metal base. The thread is under sufficient tension to stretch the spring through about two millimetres. A right-angled prism is supported in a frame above the mirror, so as to reflect the light in a horizontal direction ; a single lens placed in front of it focusses the light on the recording drum. The prism frame is adjustable in azimuth in order to enable the trace to be brought to any desired part of the sheet. An adjustable mirror beneath the quartz fibre and adjacent to the mirror of the magnet system serves to give a base line.

The sensitiveness of the instrument is varied by adjusting the centre of gravity of the movable system. For this purpose a small vertical quartz arm is fixed to one of the rods attached to the mirror and a small piece of brass can slide on this arm, being fixed into any desired position by means of a little shellac. The sensitiveness adopted until the end of 1919 was 3.6γ per mm. on the sheet. At the beginning of 1920 this was increased to 20γ per mm .

The variometer was not at first compensated for temperature changes and was found to possess a temperature coefficient of 25γ per $1^{\circ} \mathrm{C}$. The gradual change in the thermostat control temperature necessitated compensation; the

Exvi Introduction to Greenwich Magnetical Observations, 1915.

adjustment was made by means of a small stirrup sliding on one of the magnets, and the chamber was alternately heated and cooled until, with a range in temperature of $8^{\circ} \mathrm{C}$., there was no measurable displacement of the photographic trace.

Scale Value of Vertical Force Variometer.-The scale value of the instrument is determined by the method of deflections, which in this case are produced electro-magnetically. The deflecting coil consists of two equal parallel circular rings of wire separated by a distance equal to their own radii. The wire is laid in V -grooves on a vulcanised fibre framework which rests permanently on the instrument pier. The leads and connections between the two separate rings are laid side by side. With such an arrangement a very uniform magnetic field is produced at the centre of the coil, when an electric current circulates in the same direction round the two circles. The diameter of each circular turn of wire is 55.6 cm ., and the distance between their two centres is 27.7 cm . If x, ρ represent axial and radial co-ordinates, measured in cms. from the centre of the coil as origin, the value of the axial force magnetic force at (x, ρ), due to a current of strength A ampères, is-

$$
3370 \mathrm{~A}\left[1-0.0080 \frac{x^{2}-\frac{1}{\frac{1}{2}} \rho^{2}}{\mathrm{R}^{2}}-1.732 \frac{x^{4}-3 x^{2} \rho^{2}+\frac{3}{8} \rho^{4}}{\mathrm{R}^{4}}-\ldots\right]
$$

where R is 31.06 cms ., being the distance from the centre of the coil to a point on the circumference of either ring. The coil is placed so that its centre plane is horizontal, and with its centre as nearly as possible coincident with the vertical force magnets ; there is no horizontal magnetic field produced by the coil in the plane of the magnets, and the vertical force produced is constant to within 0.5 per cent. throughout the space occupied by the magnets. Within this limit of error, also, an inclination of the magnets to the horizontal even by several degrees would not affect the vertical force to which they would be subject; and the horizontal forces on them, besides being inappreciable, would have a force and not a couple resultant.

In this making scale value determinations, the current is supplied by a small portable battery, and is measured by an ammeter. The current strength used is 100 milliampères, which produces a deflecting force of 337γ, and a movement of the trace on the photographic sheets through about 92 mm . The scale value is found to be uniform across the sheets.

The scale value determinations are made weekly. The scale value was found to be constant. The adopted value is 3.66γ per mm .

The base line value is determined from the dip observations, in conjunction with the recorded values of north force and declination. It is at present slowly decreasing.

§ 5. Magnetic Reductions.

The results given in the magnetic section refer to the civil day, commencing at midnight.

Before the photographic records of magnetic declination, horizontal or north force, and vertical force are discussed, they are divided into two groups-one including all days on which the traces show no particular disturbance, and which, therefore, are suitable for the determination of diurnal inequality ; the other comprising days of unusual and violent disturbance, when the traces are so irregular that it appears impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are no days in the year 1915 which are classed as days of great disturbance. Days of lesser disturbance are March 21-22, April 7-8, June 17, September 22-23, October 15, October 23-24, November 5-6, and December 6-7. When two days are mentioned, it is to be understood that the reference is usually to one set of photographic sheets extending from noon to noon, and including the last half and the first half respectively of two consecutive civil days.

The mean ordinates for each complete form are measured by the aid of a transparent celluloid scale, and from the tables of these measures, for each calendar month, are obtained the mean monthly values for each hour of the day, and the mean daily value of the element for each day of the month. The daily mean is taken from the 24 mean ordinates. Tables I. to XV. contain the results for declination, north force, and vertical force. For each element the mean daily value and daily range are given for every day of the year, together with the monthly and annual mean diurnal inequalities for all days and for quiet and disturbed days (as selected by the International Committee). In the formation of diurnal inequalities it is unimportant whether a day omitted be a complete civil day, or the parts of two successive civil days making together a whole day, although in the latter case the results are not available for daily values. No days were omitted on account of great disturbance in the formation of these Tables.

Greenwice Magnetical and Meterological Observations, 1915.

E xviii Introduction to Greenwich Magnetical Observations, 1915.

By means of two stoves placed in the Basement, the temperature has been kept nearly constant throughout the year, the endeavour being to keep it as near to 67° as possible. The results in Tables III. and XII. to XV. are corrected for temperature, the corrections applied (which are mentioned in the description of the vertical force instrument) being founded on the daily and hourly values of temperature given in Tables XVI. and XVII., as mentioned on p . Exv .

The variations of declination are given in are and those of north force and vertical force in C.G.S. measure.

The magnetic diurnal inequalities of declination, north force, and vertical force, for each month and for the year, as given in Tables IV., VIII., and XII., have been treated by the method of harmonic analysis, and the results are given in Table XVIII.

In Table XIX. the absolute determinations of horizontal force are given, both as observed and also as reduced to the mean value for the month. The latter was effected by application of the difference between the north force ordinate at the time of observation and the mean value for the month, as obtained from the photographic register, taking into account also the change of declination.

As regards magnetic dip, the result of each observation of dip with the dip inductor is given in Table XX. ; these have not been reduced to the mean value for the month, but a correction has been applied on account of the diurnal variation of dip (as deduced from Tables VIII. and XII.) in forming the monthly mean values of dip given in Table XXI.

Table XXI. contains an annual summary of the magnetic elements, giving the mean monthly values, the monthly mean diurnal ranges, and sums of hourly deviations from mean.

In Tables VI., X., and XIV. are given mean diurnal inequalities of declination, horizontal force, and vertical force derived from five quiet days each month.

In Tables VII., XI., and XV. are given similar inequalities derived from five disturbed days each month, both sets of days being selected by the Internationl Committee.

Reduced copies of the magnetograms for certain disturbed days (mentioned on p. Exvii) have been printed in each volume since 1882. The list of these days since the year 1889 has been selected in concert with M. Mascart, or his successor M. Angot, so that the two Observatories of Val Joyeux (formerly of the Parc Saint Maur) and Greenwich should publish the magnetic registers for the same days of disturbance with a view to the comparison of the results. As far as possible the days of greater disturbance are those selected by the International Committee.

The plates are followed by a brief description of other significant magnetic motions (superposed on the ordinary diurnal movement) recorded during the year.

With regard to the plates, on each day three distinct registers are usually given, viz. : declination, north force, and vertical force ; the vertical force curves are affected, slightly as compared with the amount of motion on disturbed days, by the small recorded changes of temperature of the magnet. The recorded hourly temperatures are inserted on the plates, and the temperature-corrections of the magnet are given at page Exv . Briefly, an increase of temperature of $1^{\circ} \mathrm{F}$. throws the vertical force curve downward by about $9 \cdot 2 \gamma$.

At the foot of each plate, scales, in C.G.S. measure, are given for each of the magnetic registers.

The subjoined table gives the values of Magnetic Elements determined at the Royal Observatory, Greenwich :-

Exx Introduction to Greenwich Magnetical Observations, 1915.

Year.	Declination West.	Horizontal Force, \dagger C.G.S. Unit.	Dip. \ddagger	Year.	Declination West.	Horizontal Force, \dagger C.G.S. Unit.	Dip. \ddagger
1841	23.16 .2			1878	$18.49^{\prime} \cdot 3$	$0 \cdot 1802$	$67 \cdot 38^{\circ} \cdot 2$
1842	23.14 .6			1879	$18.40 \cdot 5$	O.1805	$67.37 \cdot 0$
1843	23.11 .7		69. $0 \cdot 6$	1880	18.32.6	-.1805	$67.35 \cdot 7$
1844	23.15.3		69.0.3	1881	$18.27 \cdot 1$	-11807	67.34.7
1845	$22.56 \cdot 7$		$68.57 \cdot 5$	1882	$18.22 \cdot 3$	- 1806	$67.34 \cdot 2$
1846	$22.49 \cdot 6$	0.1731	68.58.1	1883	$18.15 \cdot 0$	$0 \cdot 1812$	$67.31 \cdot 7$
1847	22.5 I•3	-.1736	$68.59 \cdot 0$	1884	18. $7 \cdot 6$	-1814	$67.29 \cdot 7$
1848	$22.5 \mathrm{I} \cdot 8$	-.1731	$68.54 \cdot 7$	1885	18. $1 \cdot 7$	-1817	$67.28 \cdot 0$
1849	$22.37 \cdot 8$	-1733	$68.51 \cdot 3$	1886	17.54 .5	$0 \cdot 1818$	67.27 .1
1850	22.23 .5	-. 1738	$68.46 \cdot 9$	1887	$17.49 \cdot 1$	0.1819	$67.26 \cdot 6$
1851	22.18.3	-1. 744	$68.40 \cdot 4$	1888	$17.40 \cdot 4$	-1822	$67.25 \cdot 6$
1852	22.17.9	-. 1745	$68.42 \cdot 7$	1889	17.34 .9	0.1823	$67.24 \cdot 3$
1853	22.10.1	$0 \cdot 1748$	$68.44 \cdot 6$	1890	$17.28 \cdot 6$	0.1825	67.23 .0
1854	22. $0 \cdot 8$	-. 1749	$68.47 \cdot 7$	1891	17.23 .4	$0 \cdot 1827$	67.21 .5
1855	21.48 .4	-1756	$68.44 \cdot 6$	1892	17.17.4	$0 \cdot 1829$	$67.20 \cdot 0$
1856	21.43 .5	-1759	$68.43 \cdot 5$	1893	17.11 .4	0.183 I	67.17 .9
1857	21.35.4	-1769	$68.31 \cdot 1$	1894	17. $4 \cdot 6$	$0 \cdot 183 \mathrm{I}$	$67.17 \cdot 4$
1858	$21.30 \cdot 3$	$0 \cdot 1762$	$68.28 \cdot 3$	1895	16.57.4	-.1834	67.16.1*
1859	21.23 .5	0.1761	$68.26 \cdot 9$	1896	16.51.7*	$0.1835 *$	67.15.1*
1860	21.14.3		$68.30 \cdot 1$	1897	16.45.8*	$0 \cdot 1838$	67.13.5*
		- 17773	$68.24 \cdot 6$	1898	16.39.2*	$0 \cdot 1840$	67.12.1
1861	21. $5 \cdot 5$	-1759	$68.15 \cdot 8$	1899	$16.34 \cdot 2$	$0 \cdot 1843$	$67.10 \cdot 5$
1862	$20.52 \cdot 6$	$0 \cdot 1763$	68. $9 \cdot 6$	1900	16.29 .0	- 1846	$67.8 \cdot 8$
1863	$20.45 \cdot 9$	-. 1764	68. $7 \cdot 0$	rgor	$16.26 \cdot 0$	$0 \cdot 1850$	$67 \cdot 6 \cdot 4$
1864		$0 \cdot 1767$	68. $4 \cdot 1$	1902	$16.22 \cdot 8$	$0 \cdot 1852$	67. $3 \cdot 8$
1865	$20.33 \cdot 9$	$0 \cdot 1767$	68. $2 \cdot 7$	1903	$16.19 \cdot 1$	0.1852 0.1854	67. I•2 $66.57 \cdot 6$
1866	$20.28 \cdot 0$	-1773	68. I•3	1904	$16.15 \cdot 0$	$0 \cdot 1854$	$66.57 \cdot 6$
1867	$20.20 \cdot 5$	-1777	$67.57 \cdot 2$	1905	16. $9 \cdot 9$	$0 \cdot 1854$	$66.56 \cdot 3$
1868	20.13.1	-1779	$67.56 \cdot 5$	1906	16. $3 \cdot 6$	$0 \cdot 1854$	$66.55 \cdot 6$
1869	20. $4 \cdot 1$	-.1782	$67.54 \cdot 8$	1907	$15.59 \cdot 8$ I 5.53 .5	$0 \cdot 1855$ $0 \cdot 1854$	
1870 1871	19.53 .0 19.41 .9	$0 \cdot 1784$ $0 \cdot 1786$	$67.52 \cdot 5$ $67.50 \cdot 3$	1908 1909	15.53 .5 15.47 .6	$0 \cdot 1854$ $0 \cdot 1854$	$66.56 \cdot 3$ $66.54 \cdot 1$
1871 1872	19.41 .9 19.36 .8	$0 \cdot 1786$	$67.50 \cdot 3$ $67.47 \cdot 8$	1909 1910	15.47 .6 15.41 .2	0.1854 $0 \cdot 1855$	$66.54 \cdot 1$ $66.52 \cdot 8$
1873	19.33 .4	-1. 793	$67 \cdot 45 \cdot 8$	1911	15.33 .0	-1855	$66.52 \cdot 1$
1874	$19.28 \cdot 9$	- 1 1797	$67 \cdot 43 \cdot 6$	1912	15.24 .3	-1855	$66.51 \cdot 8$
1875	$19.21 \cdot 2$	-1797	$67.42 \cdot 4$	1913	15.15 .2	-1853	$66.50 \cdot 5$
1876	19. $8 \cdot 3$	- 1799	$67.41 \cdot 0$	1914	15.6.3	$0 \cdot 1853$	$66.51 \cdot 2$
1877	$18.57 \cdot 2$	0.1800	$67 \cdot 39 \cdot 7$	1915	I $4.56 \cdot 5$	0.1851	$66.52 \cdot 0$

* Corrected for the effect of the iron in the new buildings (see p. E ii).
\dagger The values of the Horizontal Force from 1861 differ from those given in previous volumes, on account of the correction mentioned on p. Eiv, 1914 volume.
\ddagger These values of the dip differ slightly in some instances from those given in previous volumes, on account of the correction mentioned on p . $\mathrm{E} \mathbf{v}, 1912$ volume.

In 1861 the new Unifilar Apparatus for absolute Horizontal Force and the Airy Dip-Circle were introduced, both sets of apparatus being used in that year. In 1864 the excavation of the Magnetic Basement caused the suspension of complete Declination Observations. From 1914 the Dip was determined with the Inductor.

§ 6. Meteorological Instruments.

Standard Barometer.-The standard barometer, mounted in 1840 on the southern wall of the western arm of the Upper Magnet Room, is Newman No. 64. Its tube is $0^{\text {in. }} .565$ in diameter, and the depression of the mercury due to capillary action is $0^{\text {in. }} .002$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{\text {in. }} .05$, subdivided by vernier to $0^{\text {in. }} \cdot 002$. The height of the barometer above the mean level of the sea is $\mathbf{1 5 9}$ feet.

The barometer is read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Each reading is corrected by application of an index-correction, and reduced to the temperature 32°. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

Photographic Barometer.-The barometric record is made on the same cylinder as is used for magnetic vertical force. A siphon barometer fixed to the northern wall of the Magnet Basement is employed, the bore of the upper and lower extremities of the tube being about $\mathbf{l} \cdot \mathbf{l}$ inch, and that of the intermediate portion 0.3 inch. A metallic plunger, floating on the mercury in the shorter arm of the siphon, is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of aluminium, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet. A base line is traced on the sheet, and the record is interrupted at each hour by the clock, and occasionally by the observer, in the same way as for the magnetic registers. The length of the time scale is also the same.

The barometric scale, determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer, is such that one inch of barometric movement is equivalent to $4^{\text {in. }} 16$ on the paper.

E xxii Introduction to Greenwich Magnetical Observations, 1915.

The base lines on the barometric sheets are determined from the observations of the standard barometer. Hourly measurements are made from the sheets as in the case of the magnetic registers. As the diurnal change of temperature in the Basement is very small, no appreciable differential effect is produced on the photographic register by the expansion of the column of mercury.

The New Photographic Barometer.-In consequence of the use of a horizontal drum for the new vertical force instpument, it became necessary to modify the lever mechanism of the photographic barometer on its removal to the Magnetograph House in 1916. On account of the optical magnification associated with a moving mirror at some distance from the instrument, the new mechanism had to be such as would reduce the motion of the plunger to a smaller amount at the end of the lever which carried the mirror. In the actual arrangement two levers are used, the one connected to the arm of the plunger resting in the free surface of the mercury, being 12 inches long from plunger to pivot. A pin with a rounded conical point is screwed into this lever at a distance of 1 inch from the pivot. On this pin rests the plane under-surface of a shorter lever, which is 4 inches long from its pivots to this pin, and is set at right angles to the first lever. Both levers are approximately horizontal in their mean position. On the short lever is mounted the moving mirror of the instrument. This mirror is 2.5 cm . long and 1 cm . wide, and is mounted horizontally in a suitable frame attached to the lever, just above its pivots. The first lever lies east and west, so that the axis about which the mirror turns is in the same direction. The motion of the beam of light is transformed so as to be horizontal by a fixed right-angled prism supported above the mirror. A lens of suitable focus is mounted in a vertical plane in front of the prism, and brings the beam of light from the straight filament lamp, which also illuminates the vertical force variometer, to a focus on the drum. A base-line mirror, similar to the moving mirror, is mounted in a vertical plane behind the lower half of this lens. Provision is made for all necessary adjustments of level and azimuth and tilt of the base line and moving beams of light.

The barometer is mounted on the south wall of the instrument chamber, at a distance of 3 feet from the vertical force instrument. The levers and optical parts are screwed to a brass plate supported on a small shelf by the side of the barometer. The instrument is 12 feet from the recording drum, and consequently the scale value of the record is 3 cm . on the sheet for 1 cm . change of height of the mercury column of the standard barometer. In the photographic barometer both arms are, near the surface of the mercury, of the same bore, so that the plunger moves through only half the change of height of the standard barometer.

The photographic sheets being 24 cm . wide, the whole range of barometric motion can be included without changing the zero, as was formerly necessary, when the scale value was 4 to 1 in place of 3 to l as now.

The metal parts of the instrument are all of brass or aluminium, except the cast-iron plunger disc (which is 24 mm . in diameter and 4 mm . thick) and four small ${ }^{\circ}$ pivot screws, which are of steel. These are sufficiently far from the vertical force instrument to ensure that they do not affect its records. The weight of the plunger and lever mechanism is relieved by a balance weight on the far side of the pivot, so that the plunger rests on the mercury surface without appreciably depressing it. There is some evidence of a slight difference of behaviour according to whether the barometer is rising or falling.

The scale value of the instrument is actually determined experimentally by comparison with the readings of the standard photographic barometer. Readings of the latter are taken four times daily, and from them the base-line value of the barometer is adopted, having regard to the tendency referred to in the preceding paragraph.

Dry- and Wet-Bulb Thermometers.-The standard dry- and wet-bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. This, together with details of the thermometers and the corrections applicable to them, may be found fully described in the volumes for 1912 and previous years.

Since 1899 January 4 this stand has stood in an open position in the Magnetic Pavilion enclosure.

The corrections to be applied to the thermometers in ordinary use are determined, usually once each year for the whole extent of scale actually employed, by observations at 32° in pounded ice and by comparison with the standard thermometer No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society.

The dry-bulb thermometer used throughout the year was Negretti and Zambra, No. 45354. The correction $-0^{\circ} \cdot 4$ has been applied to the readings of this thermometer. The wet-bulb thermometer used throughout the year was Negretti and Zambra, No. 94737. The correction $-0^{\circ} .2$ has been applied to the readings of this thermometer.

Exxiv Introduction to Greenwich Magnetical Observations, 1915.
The dry- and wet-bulb thermometers are read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noor), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Readings of the maximum and minimum thermometers are taken at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{n} every day. Those of the dry- and wet-bulb thermometers are employed to correct the indications of the photographic dry- and wetbulb thermometers.

Рhotographic Dry-Bulb and Wet-Bulb Thermometers.-The apparatus which has been in use since 1887 was designed by Sir W. H. M. Christie, and from 1899 to 1917 stood in the same position in the Magnet Ground. It is placed in a shed, 8 feet square, standing upon posts about 8 feet high, and open to the north. The apparatus is screened from the direct rays of the sun, without impeding the circulation of the air. The recording mechanism is similar in general plan to that already described in connection with the magnetometers in the Magnet Basement, the illumination being by gaslight. The traces consist of broad bands, due to the free passage of light to the drum, above the mercury column in the dry-bulb, and through an air-bubble in that of the wet-bulb, crossed by fine lines caused by the shadows of the graduations on the thermometer tubes. The two traces fall on the same part of the cylinder as regards time scale. The stems of the thermometers are placed close together, each being covered by a vertical metal plate having a fine vertical slit, so that light passes through only at such parts of the bore of the tube as do not contain mercury. Further details of the thermometers and recording arrangements may be found in the volume for 1912. The scale value of the records is approximately 10° per inch.

Radiation Thermometers.-These thermometers are placed in the Magnetic Pavilion enclosure, in an open position about 50 feet south-west of the building. The thermometer for solar radiation is a self-registering mercurial maximum thermometer on Negretti and Zambra's principle, with its bulb blackened, and the thermometer enclosed in a glass sphere from which the air has been exhausted. The thermometer employed was Negretti and Zambra, No. 165157. The thermometer for radiation to the sky was a self-registering spirit minimum thermometer, Negretti and Zambra, No. 140216. The thermometers are laid on short grass and freely exposed to the sky ; they require no correction for index-error.

Earth Thermometers.-These four thermometers, the bulbs of which are sunk to depths of $25 \cdot 6,12 \cdot 8,6 \cdot 4$, and $3 \cdot 2$ feet below the surface, are fully described in earlier volumes. The shortest thermometer is read daily at noon, the readings being given (subject to an unknown small index correction) in the daily results. The other thermometers are read weekly on Monday at noon, but the results are
not published, as the daily readings previously printed for many years seem to offer all the information which these thermometers are likely to afford. A discussion by Professor Everett of the observations up to 1859 was given in an appendix to the volume for 1860 .

Osler's Anemometer.-This self-registering anemometer, devised by A. Follett Osler, for continuous registration of the direction and pressure of the wind and of the amount of rain, is fixed above the north-western turret of the ancient part of the observatory. The direction of the wind is registered by means of a large vane ($9^{\text {tr. }} 2^{\text {in. }}$ in length), connected by gearing with a rack-work carrying a pencil ; the latter marks on a flat horizontally moving sheet of paper. The vane is 25 feet above the roof of the Octagon Room, 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board.

A circular pressure plate with an area of 192 square inches is attached two feet below the vane; moving with the latter, it is always kept directed against the wind. A light wind causes the plate to compress slender springs, the motion being registered on the horizontal sheet by a pencil connected with the plate by a flexible brass chain, which is always in tension. Higher wind pressures bring stiffer springs into play behind the plate, and the two sets of springs are adjusted by screws and clamps so as to afford fixed scales on the sheet, the scale for light winds being double that for heavy winds. The scale is determined experimentally in lbs. per square foot from time to time.

The recording sheet is changed daily at noon. The time scale, ordinarily the same as that of the magnetic registers, can be increased 24 -fold by altering the gearing.

A self-registering rain gauge of peculiar construction forms part of the apparatus; this is described under the heading "Rain Gauges" in previous volumes.

Robinson's Anemometer.-This instrument, for registration of the horizontal movement of the air, is mounted above the roof of the Octagon Room. It was brought into use in 1866, and is of smaller size than that now usual, the four

Greenwich Magnetical and Meteorological Observations, 1915.

E xxvi Introduction to Greenwich Meterological Observations, 1915.

hemispherical cups being 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The cups are 21 feet above the roof of the Octagon Room, 56 feet above the adjacent ground, and 211 feet above the mean level of the sea. A motion of the recording pencil through 1 inch corresponds to horizontal motion of the air through 100 miles. The time scale is the same as for the magnetic registers, and the sheet is changed daily at noon.

In preceding volumes the values of wind velocity V given in the tables are three times the actual velocity v of the cups. From some tests of the Browning instrument, made by Mr. W. H. Dines at Hersham in 1889, on his whirling machine, it would appear that the relation between V and v is more correctly given by

$$
\mathrm{V}=4 \cdot 0+2 \cdot 0 v
$$

and that the instrument fails to record wind velocities less than 4 miles per hour. The values of the wind velocity given by the formula $\mathrm{V}=3 v$ would thus be too high when V exceeds 12. Since the two formulæ agree, however, for $V=12$, the mean values of the wind velocity (which seldom differ much from 12) will be approximately correct in either case ; therefore, for the sake of continuity and simplicity, the formula ${ }^{\circ} \mathrm{V}=3 v$ will continue to be used. In this volume, however, the greatest hourly measures (p. E 62) are given according to both formulæ, and the least hourly measures omitted.

Rain Gauges.-During the year 1915 three rain gauges were employed, placed at different elevations above the ground, for which see page $\mathbf{E} 62$ of the Meteorological Results.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The apparatus is fully described in earlier volumes.

Gauges Nos. 2 and 3 are no longer read, and Nos. 4, 5, and 7 have been removed.

Gauge No. 6 is an 8 -inch circular gauge placed with the receiving surface 5 inches above the ground in the Magnetic Pavilion enclosure, about 10 feet northwest of the thermometer stand. No. 8 is a new gauge of the same diameter, but of the modified Snowdon pattern adopted by the Meteorological Office, having its receiving surface 1 foot above the ground. It was brought into use 1908 January l, being fixed SW by W from No. 6 with a clear space of 6 feet between the rims.

No. 6 is the Standard gauge, No. 8 is used as a check on the readings of No. 6. No. 6 is read daily, usually at $9^{h}, 15^{h}$, and 21^{h} Greenwich civil time, and No. 8 at 9^{h} only as a rule.

The present height of the Standard gauge above mean sea-level is 5 feet 9 inches less than in its old position in the Observatory Grounds, before its removal to the Pavilion Enclosure.

The gauges are also read at midnight on the last day of each calendar month.

Electrometer.-The electric potential of the atmosphere is measured by means of a Thomson self-recording quadrant electrometer, made by White, of Glasgow. It is situated in the Upper Magnet Room, in connection with Lord Kelvin's water-dropping apparatus, and with the usual arrangements for photographic registration. The time scale is the same as for the magnetic registers, the hourly break of trace being made by the driving-clock itself.

Sunshine Recorder.-The instrument in use is of the Campbell-Stokes pattern, with 4 -inch glass globe. The recorded durations are those of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud, or is very near the horizon. The hourly results relate to apparent time.

Until 1896 the instrument was placed above the Magnetic Observatory, since when it has been situated on the stage, above the Octagon Room, which carries the Robinson Anemometer, about 50 feet above the ground. The glass globe formerly used was replaced in 1897 by a new one presented in 1881 by the late Mr. Campbell, as the records from 1894-1896 showed a notable falling off, pointed out by Mr. Marriott, due to deterioration of the glass of the old globe.

§ 7. Meteorological Reductions.

The results given in the Meteorological Section refer to the civil day, commencing at midnight.

All results in regard to atmospheric pressure, temperature of the air and of evaporation with deductions therefrom, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye observation of the ordinary maximum and minimum thermometers at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} (civil reckoning), reference being made, however, to the photo-

Exxviii Introduction to Greenwich Meteorological Observations, 1915
graphic register when necessary to obtain the values corresponding to the civil day from midnight to midnight. The hourly readings for the elements mentioned are measured direct from the photographic curves, and reduced so as to be based fundamentally, both as regards scale and zero, on the readings of the standard barometer and dry- and wet-bulb thermometers.

The barometer results are not reduced to sea-level, neither are they corrected for the effect of gravity, by reduction to the latitude of 45°.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and of evaporation by use of Glaisher's Hygrometrical Tables. The table of factors for this purpose may be found in the Introductions for 1910 and previous years.

In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pages E 57 and E 58) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages E 56 and E 57).

The excess of the mean temperature of the air on each day above the average of 65 years, given in the "Daily Results of the Meteorological Observations," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the daily means deduced from the observations for the sixty-five years 1841-1905. In this series the mean daily temperature from 1841 to 1847 depends usually on 12 observations daily, in 1848 on 6 observations daily, and from 1849 to 1905 on 24 hourly readings from the photographic record. The smoothed numbers are given in Table VII., Reduction of the Greenwich Meteorological Observations, Part IV., and also in the Introduction for 1910.

The daily register of rain contained in column 16 is that recorded by the gauge No. 6, whose receiving surface is 5 inches above the ground. This gauge is read at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} Greenwich civil time. The continuous record of Osler's self-registering gauge shows whether the amounts measured at 9^{n} are to be placed to the same, or to the preceding civil day; and in cases in which rain fell both before and after midnight, also gives the means of ascertaining the proper proportion of the 9^{h} amount which should be placed to each civil day. The number of days of rain given in the footnotes, and in the abstract tables, pages E 55 and E 62, is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded $0^{\text {in.. }} 005$.

The indications of atmospheric electricity are derived from Thomson's Electrometer.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration. The "Mean of 24 Hourly Measures" was in former years the mean of 24 measures of pressure taken at each hour ; but commencing with 1887 January 1, it is the mean of measures, each one of which is the average pressure during the hour of which the nominal hour is the middle point.

The mean amount of cloud given in the footnotes on the right-hand pages E 31 to E 53 , and in the abstract table, page E 55 , is the mean found from observations made at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), 15^{h}, and 21^{h} of each civil day.

For understanding the divisions of time under the headings "Clouds and Weather" and "Electricity," the following remarks are necessary:-In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to $6^{\text {b }}$, and those following it to the interval from $6^{\text {b }}$ to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity, the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).

As regards the notation for clouds and weather, the following are the symbols which denote actual phenomena :-

Exxx Introduction to Greenwich Meteorological Observations; 1915.
The following are qualifying symbols used in conjunction with the above :-

c, continued	li, light	so, solar
fq, frequent	lu, lunar	st, strong
fr, frozen	m, misty	th, thin
gt, great	oc, occasional	tk, thick
ho, hoar	p-cl, partially cloudy	v,
hy, variable		
heavy	slt, slight	vv, very variable

These symbols are used in combination: thus c-hy-r denotes continued heavy rain; t-sm, thunderstorm; p-cl, partially cloudy; m-r, misty rain; and so on. In regard to clouds, cl is omitted when the type is specified : thus ci-cu denotes cirrocumulus clouds.

Howard's nomenclature is used for clouds, and the figure indicates the proportion of sky covered by cloud, an overcast sky being represented by 10 .

The following is the notation employed for electricity :-

N, negative	m, moderate	s,	strong
P, positive	w, weak	v,	variable
ss, very strong	ww, very weak	vv,	very variable

Zero potential is indicated by 0 , and a dash (-) indicates accidental failure of the apparatus.
F. W. DYSON.

Royal Observatory, Greenwich, 1920 April 15.

ROYAL OBSERVATORY, GREENWICH. -

RESULTS

OF

MAGNETICAL OBSERVATIONS,

1915.

Table I.-Mean Magnetic Declination West for each Civil Day.
(Each result is the mean of 2_{4} hourly ordinates from the photographic registers.)

Nonth.	Januarr.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	I ${ }^{\circ}$	14°										
d I	$62 \cdot 6$	60.8	$60 \cdot 7$	$60 \cdot 1$	57:6	57:0	$56 \cdot 1$	$55^{\prime} 9$	$54 \stackrel{\circ}{\circ}$	54.2	$54 \cdot 3$	52.6
2	$62 \cdot 1$	$6 \mathrm{I} \cdot 2$	$60 \cdot 8$	$60 \cdot 8$	$57 \cdot 2$	$57 \cdot 6$	$56 \cdot 0$	$55 \cdot 8$	$54 \cdot 3$	53.7	$52 \cdot 7$	$52 \cdot 3$
;	$61 \cdot 9$	$60 \cdot 8$	$60 \cdot 9$	$59 \cdot 5$	$58 \cdot 7$	$57 \cdot 0$	$56 \cdot 1$	54.3	$54 \cdot 2$	$54 \cdot 0$	$52 \cdot 5$	$51 \cdot 9$
t	$62 \cdot 2$	$6 \mathrm{I} \cdot 3$	$61 \cdot 3$	$59 \cdot 2$	$58 \cdot 8$	$56 \cdot 8$	$55 \cdot 7$	$54 \cdot 6$	54^{-2}	$53 \cdot 5$	$52 \cdot 6$	$52 \cdot \mathrm{I}$
5	$62 \cdot 1$	61.0	$60 \cdot 7$	59.7	59.4	57.0	$55 \cdot 7$	$54 \cdot 3$	54.4	53.7	$52 \cdot 4$	$52 \cdot 2$
6	$61 \cdot 6$	$6 \mathrm{I} \cdot 4$	$6 \mathrm{I} \cdot 7$	$59 \cdot 6$	58.6	$57 \cdot 2$	$56 \cdot 1$	$55 \cdot 6$	$53 \cdot 6$	$53 \cdot 1$	53.7	$52 \cdot 0$
7	61.4	$60 \cdot 9$	60.5	$59 \cdot 1$	$58 \cdot 2$	57.0	$56 \cdot 0$	53.0	$54 \cdot 1$	$53 \cdot 2$	52.4	$52 \cdot 4$
s	$61 \cdot 3$	$62 \cdot 0$	$60 \cdot 0$	$59 \cdot 8$	385	38.8	$55 \cdot 8$	$54 \cdot 1$	$54 \cdot 0$	53.8	$52 \cdot 7$	$52 \cdot 1$
9	6 H	$60 \cdot 9$	$60 \cdot 6$	$59 \cdot 1$	$59 \cdot 0$	575	$55 \cdot 2$	544	$54 \cdot 1$	53.7	52.4	$5 \mathrm{I} \cdot 6$
10	615	6I•I	$60 \cdot 8$	59.4	$58 \cdot 3$	57.0	$56 \cdot 3$	$54 \cdot 1$	$53 \cdot 2$	$52 \cdot 3$	53.5	$52 \cdot 2$
I I	$6 \mathrm{~F} \cdot 2$	$60 \cdot 5$	$6 \mathrm{I} \cdot 7$	$59 \cdot 2$	$58 \cdot 6$	$57 \cdot 6$	54%	$55 \cdot 1$	$5+0$	53.8	$52 \cdot 6$	$51 \cdot 7$
12	6ı1	$60 \cdot 5$	6I.0	59.3	59.0	573	559	$55 \cdot 3$	$53 \cdot 8$	$53 \cdot 9$	$52 \cdot 6$	$51 \cdot 1$
13	60.7	$60 \cdot 6$	61.0	$59 \cdot 7$	58.7	54.9	55.8	$55 \cdot 2$	$54 \cdot 8$	53.5	52.5	$52 \cdot 2$
If	61.2	$60 \cdot 7$	$60 \cdot 9$	$59 \cdot 3$	$58 \cdot 5$;6.2	$56 \cdot 1$	$54 \cdot 3$	53.8	54.5	$52 \cdot 7$	52.3
15	$60 \cdot 8$	$6 \mathrm{I} \cdot 2$	$61 \cdot 0$	$58 \cdot 9$	58.2	$56 \cdot 8$	55.1	55.0	54.0	$5 \mathrm{I} \cdot 8$	52.0	5 I 7
16	$6 \mathrm{I} \cdot \mathrm{I}$	60.6	$60 \cdot 3$	$59 \cdot 1$	57.8	$57 \cdot 4$	$55 \cdot 7$	55.0	$53 \cdot 9$	$51 \cdot 4$	$53 \cdot 3$	52.6
17	61.0	$60 \cdot 6$	60.2	58.8	58.6	579	$55 \cdot 3$	54.7	$53 \cdot 6$	52.8	$54 \cdot 1$	5 I 5
18	$6 \mathrm{I} \cdot 0$	$60 \cdot 3$	61.4	59.4	$57 \cdot 6$	$55 \cdot 8$	55.4	53.9	$52 \cdot 9$	$52 \cdot 9$	52.5	$5 \mathrm{I} \cdot 8$
19	60. 8	60.9	$60 \cdot 0$	58.8	$58 \cdot 2$	$56 \cdot 5$	$55 \cdot 1$	54.0	$52 \cdot 9$	$53 \cdot 1$	$53 \cdot 1$	$52 \cdot \mathrm{I}$
20	$6 \mathrm{I}+$	59.6	61.5	$59 \cdot 2$	$57 \cdot 2$	56.4	$55 \cdot 0$	$54 \cdot 1$	53.0	$54 \cdot 1$	$52 \cdot 1$	51-8
21	61.0	59.9	59.4	58.8	$57 \cdot 1$	57.0	$54 \cdot 8$	54.4	$53 \cdot 6$	52.4	$51 \cdot 7$	$51 \cdot 9$
22	6 F 5	59.8	$60 \cdot 5$	57%	58.0	57:1	$55 \cdot 2$	53.5	53.4	$51 \cdot 6$	$52 \cdot 4$	$5 \mathrm{I} \cdot 8$
23	$6 \mathrm{I} \cdot 0$	$59 \cdot 7$	$6 \mathrm{I} \cdot \mathrm{I}$	58.0	$58 \cdot 2$	56.8	$54 \cdot 8$	543	535	$54 \cdot 1$	$52 \cdot 2$	$52 \cdot 3$
${ }^{2}+$	$6 \mathrm{I}+$	59.6	$59 \cdot 6$	$59 \cdot 2$	$57 \cdot 1$	56.9	$55 \cdot 0$	53.8	53.5	$5 \mathrm{I} \cdot 2$	$52 \cdot 5$	$5 \mathrm{I} \cdot 8$
25	60.6	$60 \cdot+$	$59 \cdot 5$	$58 \cdot 7$	574	$57 \cdot 1$	$54 \cdot 6$	$53 \cdot 6$	53.9	$53 \cdot 2$	53.0	51.7
26	60.7	$59 \cdot 7$	$59 \cdot 7$	59.6	$57 \cdot 6$	56.3	55.4	52.4	$52 \cdot 3$	$53 \cdot 2$	$52 \cdot 3$	$5 \mathrm{I} \cdot 6$
27	6I. 2	59.9	$59 \cdot 7$	58.8	59.9	$56 \cdot 1$	$55 \cdot 6$	54.0	53.9	$5 \mathrm{I} \cdot 7$	$52 \cdot 6$	$5 \mathrm{I} \cdot 2$
2X	60.5	60.5	60.4	58.3	57.0	$56 \cdot 3$	$55 \cdot 3$	$54 \cdot 6$	$5^{2 \cdot 0}$	$51 \cdot 8$	$52 \cdot 5$	$5 \mathrm{I} \cdot 4$
29	60.8		60.0	58.7	$56 \cdot 9$	56.6	$55 \cdot 3$	54.9	$52 \cdot 7$	$53 \cdot 2$	$52 \cdot 5$	$5 \mathrm{I} \cdot 6$
30	$60 \cdot 3$		59.8	58.8	$56 \cdot 9$	$56 \cdot 2$	56.0	54.4	$54 \cdot 6$	53.0	52.4	$5 \mathrm{I} \cdot 8$
31	$6,1 \cdot 2$		60.0		$56 \cdot 8$		54%	54.2		$52 \cdot 6$		$5 \mathrm{I} \cdot \mathrm{I}$
Means	6 I $\cdot 2$	$60 \cdot 6$	60.5	$59 \cdot 1$	$58 \cdot 0$	56.9	$55 \cdot 5$	$54 \cdot 4$	$53 \cdot 7$	$53 \cdot 1$	$52 \cdot 7$	51.9

Table II.-Mean Magnetic North Force for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic registers, expressed in C.G.S. units. The values are corrected for Temperature.)

1915.												
Day of	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
1	863γ	886γ	879γ	888γ	897γ	${ }^{881} \gamma$	887γ	878%	887γ	889γ	855γ	896γ
2	877	899	883	887	890	882	883	87 I	889	897	869	898
3	880	894	895	889	888	882	879	873	892	900	872	894
4	882	896	893	887	890	892	877	87 I	890	903	868	894
5	873	887	886	886	891	900	88 I	871	891	898	884	898
6	88 I	887	893	891	892	895	886	877	890	876	842	866
7	889	892	885	897	892	903	881	872	889	870	842	868
8	888	885	869	894	896	899	890	868	891	904	850	879
9	884	881	872	889	898	891	889	867	896	899	880	884
${ }^{10}$	881	876	877	892	900	893	885	87 I	892	902	897	892
11	889	877	881	896	898	895	880	879	888	891	898	875
12	888	884	885	893	893	890	874	879	891	899	905	875
13	888	878	886	897	900	880	882	883	890	901	900	882
14	894	880	884	896	900	885	880	888	886	892	884	874
15	897	879	887	893	897	890	884	890	888	847	865	865
16	893	$88+$	888	880	899	892	886	896	884	878	87 I	878
17	887	888	884	885	891	842	889	897	871	879	849	883
18	884	893	888	892	894	84^{2}	891	894	876	878	878	890
19	889	885	883	886	896	858	890	892	879	871	872	889
20	895	885	886	883	895	865	890	890	883	870	879	890
21	897	881	882	887	895	875	894	895	888	88.1	880	894
22	887	886	875	889	889	875	893	892	881	871	88 I	894
23	882	873	878	887	888	872	888	889	876	865	883	889
24	884	865	880	889	894	876	890	889	876	862	885	891
25	88 I	872	882	893	891	883	893	896	879	846	887	889
26	880	866	882	883	896	883	882	878	880	868	895	884
27	88 I	876	887	890	884	882	880	876	875	878	896	885
28	883	880	887	889	877	885	${ }^{876}$	879	878	880	890	886
29	887 888		890 886	892 897	884 887	881 882		878 879	883 880	886	890	888
30 31	888 887		886 885	897	887 889	882	878 880	879 884	880	894 884	893	887 889
Means	885	883	884	890	893	882	884	881	885	883	871	885

Table III.-Mean Vertical Magnetic Force for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic registers, expressed in C.G.S. units. The values are corrected for Temperature:)

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table IV.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West
(The results in each month are diminished by the smallest hourly value.)

1915.													
$\begin{gathered} \text { Hour, } \\ \text { Greenwich } \\ \text { Civil Time. } \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	$0 \cdot 7$	0.6	I. 6	$1 \cdot 9$	$2 \cdot 8$	$3 \cdot 5$	4.0	$2^{\prime} \cdot 9$	0.7	$0 \cdot 3$	$\stackrel{1}{1} \cdot 0$	0.7	0.85
	$0 \cdot 7$	$0 \cdot 9$	2.0	$2 \cdot 3$	$3 \cdot 2$	$3 \cdot 3$	$3 \cdot t$	$2 \cdot 4$	0.9	$0 \cdot 5$	I.7	0.9	0.97
2	$1 \cdot 0$	$0 \cdot 9$	1.8	$2 \cdot 1$	$2 \cdot 9$	$3 \cdot 2$	$3 \cdot 4$	$2 \cdot 7$	0.5	I. 5	$2 \cdot 5$	I. 2	I•10
3	0.9	I- I	$2 \cdot 1$	$2 \cdot 1$	$2 \cdot 3$	3.1	$3 \cdot 1$	$2 \cdot 4$	0.9	I. 8	$2 \cdot 4$	I•3	I.08
4	0.8	1.0	1.7	I• 8	I. 8	2.I	$2 \cdot 1$	I. 8	0.7	$2 \cdot 4$	$2 \cdot 2$	I-4	$0 \cdot 77$
5	0.8	0.9	$2 \cdot 0$	I-5	0.9	$0 \cdot 9$	$0 \cdot 7$	0.9	0.5	$2 \cdot 9$	$2 \cdot 9$	$1 \cdot 4$	$0 \cdot 48$
6	0.9	$1 \cdot 0$	1.7	I. 0	0. 5	$0 \cdot 7$	$0 \cdot 0$	0.2	$0 \cdot 3$	$2 \cdot 6$	$3 \cdot 2$	1.5	0.23
7	I-I	$1 \cdot 1$	0.8	0.4	$0 \cdot 0$	$0 \cdot 0$	0.2	0.0	$0 \cdot 0$	1.7	$3 \cdot 6$	I. 6	0.00
8	$1 \cdot 3$	1.8	0.0	$0 \cdot 0$	$0 \cdot 3$	$0 \cdot 6$	0.7	0.5	0.0	$0 \cdot 9$	$3 \cdot 8$	I. 7	0.09
9	I. 8	$2 \cdot 6$	$1 \cdot 2$	$0 \cdot 7$	$1 \cdot 7$	$2 \cdot 0$	$2 \cdot 4$	$2 \cdot 5$	I. 5	1.5	$4 \cdot 0$	$2 \cdot 3$	I•14
10	$2 \cdot 7$	$3 \cdot 8$	$4 \cdot 1$	$3 \cdot 0$	$4 \cdot 4$	$5 \cdot 2$	$5 \cdot 2$	$5 \cdot 4$	$4 \cdot 0$	$3 \cdot 8$	$5 \cdot 0$	3.1	$3 \cdot 26$
11	$3 \cdot 6$	$5 \cdot 1$	$6 \cdot 5$	$6 \cdot 4$	$7 \cdot 2$	$8 \cdot 2$	$8 \cdot 6$	$8 \cdot 3$	$6 \cdot 9$	$6 \cdot 9$	$6 \cdot 7$	$3 \cdot 8$	$5 \cdot 64$
Noon	+.1	$5 \cdot 4$	$8 \cdot 5$	$9 \cdot 2$	$9 \cdot 2$	$10 \cdot 1$	$10 \cdot 9$.	$10 \cdot 7$	$8 \cdot 6$	$8 \cdot 2$	7.1	$4 \cdot 6$	$7 \cdot 17$
$13^{\text {h }}$	$3 \cdot 7$	$5 \cdot 2$	$9 \cdot 0$	10.4	$9 \cdot 7$	II•I	11.6	II $\cdot \mathrm{I}$	$8 \cdot 7$	$8 \cdot 7$	$6 \cdot 7$	$4 \cdot 4$	$7 \cdot 48$
14	$2 \cdot 6$	$+5$	$8 \cdot 2$	$9 \cdot 7$	$8 \cdot 9$	10.6	$10 \cdot 9$	10.I	$7 \cdot 5$	$7 \cdot 7$	$6 \cdot 0$	$3 \cdot 8$	$6 \cdot 66$
15	$2 \cdot 4$	$3 \cdot 4$	$7 \cdot 0$	$8 \cdot 3$	$7 \cdot 7$	$9 \cdot 6$	$9 \cdot 5$	$8 \cdot 1$	$5 \cdot 4$	$5 \cdot 9$	$5 \cdot 4$	$3 \cdot 5$	$5 \cdot 47$
16	$2 \cdot 5$	$2 \cdot 8$	$4 \cdot 7$	$6 \cdot 8$	$6 \cdot 5$	$8 \cdot 3$	$7 \cdot 8$	$6 \cdot 3$	$3 \cdot 2$	$4 \cdot 3$	4.0	$2 \cdot 7$	4-11
17	$1 \cdot 9$	I•9	+0	5•1	$5 \cdot 4$	$6 \cdot 3$	$6 \cdot 2$	$4 \cdot 9$	$2 \cdot 5$	$2 \cdot 7$	$3 \cdot 2$	$2 \cdot 3$	$2 \cdot 99$
18	$1 \cdot 5$	$1 \cdot 7$	$3 \cdot 2$	$3 \cdot 7$	$4 \cdot 3$	$5 \cdot 7$	$5 \cdot 3$	$4 \cdot 2$	I-9	1.4	$2 \cdot 5$	I. 4	$2 \cdot 19$
19	0.8	1.8	$2 \cdot 7$	$3 \cdot 2$	$4 \cdot 0$	$5 \cdot 1$	$5 \cdot 1$	$3 \cdot 8$	I•9	I. 5	$1 \cdot 0$	I-2	I. 80
20	0.6	0.9	2.0	$2 \cdot 7$	$3 \cdot 5$	$5 \cdot 0$	$4 \cdot 8$	3.9	I-I	1.0	0.6	0.4	I. 33
21	0.2	$0 \cdot 0$	$1 \cdot 3$	$2 \cdot 6$	$3 \cdot 4$	$4 \cdot 9$	$4 \cdot 6$	$3 \cdot 7$	$0 \cdot 5$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot \mathrm{I}$	0.94
22	0.0	0.8	0.8	$2 \cdot 4$	$2 \cdot 9$	$+4$	$4 \cdot 5$	$3 \cdot 4$	$0 \cdot 4$	$0 \cdot 0$	$0 \cdot 0$	0.0	0.79
23	0.4	0.8	0.7	$2 \cdot 1$	$3 \cdot 1$	$3 \cdot 7$	$4 \cdot 4$	$3 \cdot 1$	0.7	O.I	0.8	0.2	0.80
Means	$\mathrm{I}^{\prime} \cdot 54$	$2^{\prime} \cdot 08$	$3^{\prime} \cdot 23$	$3^{\prime} \cdot 73$	$4^{\prime} \cdot 03$	$4^{\prime} \cdot 89$	$+^{\prime} \cdot 98$	$4^{\prime} \cdot 30$	$2^{\prime} \cdot 47$	$2^{\prime} \cdot 85$	$3^{\prime} \cdot 19$	$\mathrm{I}^{\prime} \cdot 90$	$2^{\prime} \cdot 39$

Table V.--Diurnal Range of Declination, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers.

1915.												
Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d												
I	$8 \cdot 2$	$8 \cdot 0$	$7 \cdot 3$	$12 \cdot 1$	$17 \cdot 6$	7.6	11.9	15.7	II•9	$9 \cdot 5$	$24 \cdot 6$	3.4
2	$3 \cdot 7$	3.8	$7 \cdot 2$	13.5	$17 \cdot 7$	$7 \cdot 7$	$9 \cdot 2$	12.4	11.0	$7 \cdot 4$	$10 \cdot 2$	$4 \cdot 6$
3	$4 \cdot 1$	$2 \cdot 7$	$5 \cdot 3$	13.1	$10 \cdot 0$	$10 \cdot 2$	II.O	11.6	9.4	II. 3	$5 \cdot 9$	$5 \cdot 3$
4	$3 \cdot 2$	$4 \cdot 9$	$7 \cdot 3$	12.0	IO.I	$9 \cdot 6$	$7 \cdot 2$	$10 \cdot 4$	11.6	II.4	$5 \cdot 4$	$3 \cdot 7$
5	$7 \cdot 7$	$9 \cdot 0$	$7 \cdot 8$	13.5	$9 \cdot 0$	$8 \cdot 3$	10.5	12.7	13.8	$8 \cdot 0$	II•I	$3 \cdot 8$
6	$6 \cdot 3$	$7 \cdot 6$	$6 \cdot 5$	$9 \cdot 9$	$8 \cdot 0$	$10 \cdot 0$	II.3	12.5	$9 \cdot 8$	$8 \cdot 8$	29.8	30.4
7	$7 \cdot 1$	$3 \cdot 3$	19.2	$10 \cdot 1$	$9 \cdot 3$	$10 \cdot 5$	$10 \cdot 3$	15.6	10.8	II 4	$10 \cdot 1$	$9 \cdot 8$
8	$7 \cdot 0$	10.0	18.0	$15 \cdot 1$	II.O	I 1.7	10.7	12.5	II.O	$9 \cdot 5$	$9 \cdot 3$	$6 \cdot 8$
9	$2 \cdot 8$	13.5	13.9	$9 \cdot 3$	II. 3	$8 \cdot 5$	13.1	12.2	$9 \cdot 8$	9.1	$9 \cdot 0$	$7 \cdot 2$
10	$2 \cdot 9$	3.9	$9 \cdot 4$	$9 \cdot 5$	$9 \cdot 5$	$9 \cdot 6$	12.8	15.5	10.7	19.8	$7 \cdot 3$	$2 \cdot 2$
II	$3 \cdot 5$	$3 \cdot 3$	$7 \cdot 3$	$7 \cdot 3$	$7 \cdot 0$	11.6	$12 \cdot 3$	12.8	$9 \cdot 7$	12.8	$10 \cdot 2$	$6 \cdot 4$
12	$8 \cdot 2$	$4 \cdot 4$	$6 \cdot 9$	$9 \cdot 8$	$7 \cdot 9$	$20 \cdot 2$	12.2	11.5	II•I	$9 \cdot 4$	$5 \cdot 6$	$7 \cdot 3$
13	$6 \cdot 0$	3. I	8.0	$8 \cdot 5$	I $3 \cdot 9$	21.0	14.4	$9 \cdot 9$	13.5	$9 \cdot 3$	$4 \cdot 9$	3.1
14	$7 \cdot 3$	$3 \cdot 7$	8.6	12.I	13.4	$9 \cdot 8$	13.9	11.6	$9 \cdot 8$	$22 \cdot 3$	3.1	$9 \cdot 6$
15	$5 \cdot 5$	4.0	$10 \cdot 0$	16.4	13.0	11.3	$12 \cdot 3$	12.4	10.9	$24 \cdot 3$	$15 \cdot 5$	$12 \cdot 1$
16	$3 \cdot 5$	2.8	$13 \cdot 1$	15.0	14.2	$15 \cdot 1$	12.7	$12 \cdot 3$	13.0	$12 \cdot 1$	23.8	$4 \cdot 0$
17	$4 \cdot 6$	$5 \cdot 4$	15.4	10.2	II. 5	$32 \cdot 2$	12.1	$12 \cdot 1$	17.5	$7 \cdot 7$	14.6	$4 \cdot 3$
18	$3 \cdot 4$	5•I	10.6	10.8	$9 \cdot 3$	$17 \cdot 2$	$15 \cdot 6$	12.7	$8 \cdot 4$	$8 \cdot 9$	$24 \cdot 7$	3.0
19	$2 \cdot 4$	11.5	15.9	12.6	10.9	$9 \cdot 5$	I I $\cdot 8$	13.3	$8 \cdot 6$	$20 \cdot 0$	$7 \cdot 9$	$5 \cdot 9$
20	$3 \cdot 5$	17.3	14.9	$6 \cdot 3$	10.5	11.8	I2.5	10.8	$8 \cdot 8$	13.9	11.1	3.6
21	$2 \cdot 7$	$10 \cdot 7$	17.6	14.0	10.4	13.9	12.9	11.2	$9 \cdot 7$	$12 \cdot 2$	$8 \cdot 4$	$2 \cdot 8$
22	$5 \cdot 5$	$15 \cdot 5$	II. 3	20.0	10.9	15.5	$13 \cdot 3$	$12 \cdot 0$	15.8	18.0	$9 \cdot 8$	$4 \cdot 6$
23	$3 \cdot 3$	13.7	11.7	$18 \cdot 3$	9.0	10.7	II.2	13.4	17.8	$26 \cdot 0$	$3 \cdot 6$	$6 \cdot 9$
24	5-1	11.6	$12 \cdot 1$	8.6	$9 \cdot 8$	12.8	12.0	$9 \cdot 9$	$9 \cdot 5$	$18 \cdot 3$	$4 \cdot 5$	$3 \cdot 9$
25	$9 \cdot 1$	$7 \cdot 4$	11.6	$10 \cdot 0$	10.7	12.3	10.3	14.3	$10 \cdot 7$	15.9	$5 \cdot 3$	$5 \cdot 3$
26	$9 \cdot 0$	$12 \cdot 3$	12.5	$15 \cdot 9$	$9 \cdot 8$	10.1	14.4	14.2	14.8	10.6	$4 \cdot 7$	$10 \cdot 1$
27	$7 \cdot 6$	$7 \cdot 9$	$9 \cdot 9$	$9 \cdot 7$	7.1	$10 \cdot 2$	15.0	13.8	10.0	$10 \cdot 9$	$7 \cdot 5$	$7 \cdot 9$
28	$6 \cdot 7$	$5 \cdot 7$	12.0	12.4	11.4	12.5	14.1	10.1	18.8	$7 \cdot 5$	$9 \cdot 8$	4-1
29	$3 \cdot 5$		11.9	$12 \cdot 6$	10.6	11.6	$17 \cdot 1$	12.8	13.8	$6 \cdot 9$	3.0	$5 \cdot 5$
30	$5 \cdot 3$		14.5	14.3	8.9	II.9	13.8	II 18	13.7	$6 \cdot 0$	$3 \cdot 7$	$5 \cdot 6$
31	4.I		10.2		I2.1		1 1.2	$9 \cdot 3$		10.4		$5 \cdot 3$
Meams	$5 \cdot 3$	$7^{\prime} \cdot 6$	$1 \mathrm{I}^{\prime} \cdot 2$	$12^{\prime} \cdot 1$	$10^{\prime} \cdot 8$	$12^{\prime} \cdot 5$	$12{ }^{\prime} \cdot 4$	I2 $2^{\prime} \cdot 4$	I I ${ }^{\prime} \cdot 9$	$12^{\prime} \cdot 6$	$10^{\prime} \cdot 1$	$6^{\prime} \cdot 4$
The mean of the twelve monthly values is $10^{\prime} .44$.												

Table VI.-Monthly and Annual Mean Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Quiet Days, in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected by the International Committee for comparison with results at other Observatories. The results in each case are diminished by the smallest hourly value. The days included are :-

	January $2,3,18,19,31$.February $7,1,14,16,17$.March $2,3,14,15,28$.			April 10, 11, 12, 13, 28. May $7,8,11,28,29$. June 3, 4, 10, 20, 30 .			$\begin{aligned} & \text { Suly } \\ & \text { August } \\ & \text { A } \end{aligned} \frac{15,16,17,2+.}{5,14,15,24} \text {. }$			October 2, 5, 9, 18, 29. November 3, 4, 14, 29, 30 . December $1,5,18,21,22$.			
1915.													
Hour, Greenwich Civil Time.	January.	February.	March.	April.	May.	June.	July.	August.	1 September.	Octaber.	November.	December.	$\begin{aligned} & \text { For the } \\ & \text { Year. } \end{aligned}$
Midn.	$0 \cdot 6$	0.5	$3 \cdot 0$	$3 \cdot 9$	$4 \cdot 5$	$4 \cdot 7$	$3 \cdot 6$	3.7	$3 \cdot 2$	$2 \cdot 2$	0.1	0.4	2.27
	0.7	0.6	$3 \cdot 3$	$3 \cdot 7$	$4 \cdot 2$	$4 \cdot 8$	3.0	3.6	$2 \cdot 9$	$2 \cdot 8$	0.0	0.5	2.25
2	0.7	0.6	$2 \cdot 8$	$3 \cdot 2$	$3 \cdot 7$	$4 \cdot 7$	$2 \cdot 8$	$3 \cdot 3$	$2 \cdot 8$	$2 \cdot 7$	$0 \cdot 1$	0.8	2.09
3	0.8	0.7	$2 \cdot 5$	$2 \cdot 9$	$3 \cdot 2$	$4 \cdot 3$	$2 \cdot 7$	$2 \cdot 8$	$2 \cdot 6$	$2 \cdot 6$	0.1	0.8	I.91
4	0.7	0.6	$2 \cdot 1$	2.0	$2 \cdot 5$	$3 \cdot \mathrm{I}$	$1 \cdot 9$	$1 \cdot 9$	$2 \cdot 3$	$2 \cdot 4$	0.0	0.8	1.43
5	$0 \cdot 5$	0.4	$2 \cdot 4$	I. 8	I. 4	$2 \cdot \mathrm{I}$	$0 \cdot 5$	I•1	I. 6	$2 \cdot 2$	0.0	0.7	0.97
6	$0 \cdot 2$	O.I	I. 8	I. 3	0.6	I. 0	$0 \cdot 0$	$0 \cdot 5$	0.7	I-9	$0 \cdot \mathrm{I}$	0.5	$0 \cdot 47$
7	$0 \cdot \mathrm{I}$	0.2	$0 \cdot 9$	0.4	0.0	0.2	$0 \cdot 3$	$0 \cdot 0$	0.0	I-I	0.2	$0 \cdot 4$	0.06
8	$0 \cdot 1$	$0 \cdot 5$	$0 \cdot 0$	0.0	$0 \cdot 3$	0.0	0.7	0.4	0.4	$0 \cdot 0$	0.2	$0 \cdot 5$	0.00
9	0.7	$1 \cdot 0$	I-I	$0 \cdot 3$	2.1	1-3	I. 8	2.1	2.8	$0 \cdot 4$	0.6	1.0	I.OI
10	1.5	$2 \cdot 2$	$3 \cdot 5$	2.5	$4 \cdot 9$	$4 \cdot 3$	+3	$4 \cdot 8$	$5 \cdot 7$	$3 \cdot 0$	I. 6	I. 8	3.08
1 I	$2 \cdot 7$	3.0	$6 \cdot 3$	$5 \cdot 6$	$7 \cdot 7$	$8 \cdot 0$	$7 \cdot 6$	$7 \cdot 6$	$8 \cdot 0$	$6 \cdot 1$	$2 \cdot 7$	$2 \cdot 6$	$5 \cdot 40$
Noon	$3 \cdot 3$	$3 \cdot 2$	$8 \cdot 2$	$8 \cdot \mathrm{I}$	$9 \cdot 4$	$9 \cdot 8$	$9 \cdot 7$	10.0	$9 \cdot 5$	$7 \cdot 6$	$3 \cdot 2$	3.1	$6 \cdot 83$
$13{ }^{\text {h }}$	$2 \cdot 9$	$2 \cdot 9$	$8 \cdot 6$	$9 \cdot 3$	$9 \cdot 8$	10.3	$10 \cdot 1$	10.9	$9 \cdot 0$	8.1	$3 \cdot 2$	$2 \cdot 8$	7.07
14	1-9	$2 \cdot 2$	$7 \cdot 9$	$8 \cdot 4$	$8 \cdot 9$	$10 \cdot 1$	$9 \cdot 6$	$10 \cdot 5$	$7 \cdot 3$	$7 \cdot 0$	$2 \cdot 9$	2.0	$6 \cdot 30$
15	$1 \cdot 5$	1.6	$6 \cdot 6$	$6 \cdot 8$	$7 \cdot 3$	$8 \cdot 9$	$8 \cdot 6$	$8 \cdot 9$	$5 \cdot 5$	$5 \cdot 7$	$2 \cdot 3$	I. 6	5-18
16	1.4	I.5	$4 \cdot 8$	$5 \cdot 5$	$6 \cdot 0$	$7 \cdot 7$	$7 \cdot 4$	$7 \cdot 0$	$+4$	+ 5	2.2	$1 \cdot+$	$4 \cdot 23$
17	1.3	1.4	$4 \cdot 4$	$4 \cdot 6$	$5 \cdot 0$	$6 \cdot 9$	$6 \cdot 2$	$5 \cdot 7$	$4 \cdot 3$	$+\cdot 1$	1.5	I. 2	$3 \cdot 63$
18	1.0	I•I	$4 \cdot 1$	$3 \cdot 7$	4.7	6.I	$5 \cdot 5$	4.7	$+2$	$3 \cdot 7$	$1 \cdot 4$	1.0	$3 \cdot 18$
19	0.7	0.7	$3 \cdot 8$	$3 \cdot 6$	$4 \cdot 5$	$5 \cdot 3$	$5 \cdot 2$	$4 \cdot 5$	$4 \cdot 3$	$3 \cdot 4$	I-I	0.7	2.89
20	0.4	$0 \cdot 3$	$3 \cdot 4$	$3 \cdot 6$	$4 \cdot 5$	$5 \cdot 2$	$5 \cdot 0$	4.5	$4 \cdot 0$	$3 \cdot 1$	0.8	0.5	2.68
21	$0 \cdot 2$	$\bigcirc \cdot \mathrm{I}$	3.1	$3 \cdot 8$	$4 \cdot 6$	$5 \cdot 4$	$4 \cdot 9$	$4 \cdot 4$	$3 \cdot 7$	$2 \cdot 7$	$0 \cdot 3$	$0 \cdot 3$	$2 \cdot 53$
22	$0 \cdot 0$	$0 \cdot \mathrm{I}$	$3 \cdot 0$	$3 \cdot 7$	$4 \cdot 7$	$5 \cdot 1$	$4 \cdot 7$	$4 \cdot 2$	3.4	$2 \cdot 6$	- I	0.2	$2 \cdot 39$
23	$0 \cdot 2$	0.0	$3 \cdot 0$	$3 \cdot 6$	$4 \cdot 5$	$5 \cdot 1$	$4^{\cdot 2}$	$3 \cdot 9$	$2 \cdot 9$	$2 \cdot 3$	O.I	0.0	$2 \cdot 23$
Means	I'.00	r'06	$3^{\prime} \cdot 78$	$3^{\prime} \cdot 85$	$4^{\prime} \cdot 54$	$5^{\prime} \cdot 18$	$4^{\prime} \cdot 60$	$4^{\prime} \cdot 63$	$3^{\prime} \cdot 98$	$3^{\prime} \cdot 43$	$\mathrm{I}^{\prime} \cdot 03$	$\mathrm{I}^{\prime} \cdot 07$	$2^{\prime} \cdot 92$

Table VII.-Monthly and Annual Diurnal Inequalities of Magnetic Declination West from Hourly Ordinates, on Five Selected Disturbed Days in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on five disturbed days in each month, selected by"the International Committee for comparison with results at other Observatories. The results in each case are diminished by the smallest hourly value. The days included are :-

	January I, 5, 25, 26, 27. February 8, 19, 20, 23, 24. March 7, 8, 20, 21, 22.			April 7, 8, 15, 22, 26. May 1, 2, 16, 17, 26. June 12, 13, 17, 18, 22.			$\begin{array}{llll} \text { July } & 2, & 6, & 9,11,27 . \\ \text { August } & 2, & 7,26,27,29 . \\ \text { September } & 22, & 23,24, & 28,29 . \end{array}$			October 15, 19, 23, 24, 25. November 1, 5, 6, 16, 17. December 6, 7, 15, 16, 26.			
1915.													
Hour, Greenwich Civil TTime.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	$\begin{aligned} & \text { For the } \\ & \text { Year. } \end{aligned}$
Midn.	I.6	0.0	$2 \cdot 8$	I. I	I. I	$\underline{1} \cdot 8$	1.8	$1 \cdot 3$	$1 \cdot 2$	0.8	0.0	$3 \cdot 3$	0.00
$\mathrm{I}^{\text {h }}$	I. 8	$1 \cdot 4$	$4 \cdot 4$	$2 \cdot 1$	$2 \cdot 1$	1.9	1.9	0.4	$3 \cdot 0$	I. 6	I $\cdot 6$	$3 \cdot 8$	$0 \cdot 77$
2	$2 \cdot 2$	1.4	$4 \cdot 3$	I. 4	1.7	$2 \cdot 8$	$2 \cdot 8$	I.7	$2 \cdot 3$	$5 \cdot 6$	$4 \cdot 1$	3.9	1.45
3	0.7	I. 5	+.6	I. 6	I•I	3.4	$2 \cdot 1$	$3 \cdot 1$	$+^{2}$	$5 \cdot 2$	$3 \cdot 3$	$4 \cdot 9$	I. 58
$+$	$0 \cdot 9$	$2 \cdot 1$	$4 \cdot 9$	$1 \cdot 2$	1-2	$3 \cdot 2$	1.2	$3 \cdot 6$	$2 \cdot 3$	$6 \cdot 8$	$2 \cdot 8$	+4	1.48
5	I I I	I. 8	$5 \cdot 0$	0.9	0.0	$0 \cdot 3$	$0 \cdot 2$	$2 \cdot 2$	$3 \cdot 8$	$9 \cdot 8$	$6 \cdot 8$	$4 \cdot 3$	1.62
6	$2 \cdot 0$	$2 \cdot 2$	$6 \cdot 2$	$0 \cdot 3$	0.6	$0 \cdot 2$	$0 \cdot 0$	$0 \cdot 6$	+.8	$10 \cdot 2$	$7 \cdot 6$	$5 \cdot 1$	I.92
7	$2 \cdot 8$	$2 \cdot 4$	+7	0.0	$0 \cdot 5$	$0 \cdot 0$	1.2	$0 \cdot 0$	$5 \cdot 2$	$9 \cdot 5$	$7 \cdot 4$	$4 \cdot 8$	I-81
8	3.8	3.1	$3 \cdot 2$	0.0	I. 6	1.6	0.8	I. 3	$4 \cdot 8$	$8 \cdot 9$	$9 \cdot 2$	$4 \cdot 7$	$2 \cdot 18$
9	+ 5	$4 \cdot 5$	$5 \cdot \mathrm{I}$	0.5	3.1	$3 \cdot 9$	$2 \cdot 3$	$3 \cdot 6$	$5 \cdot 7$	$8 \cdot 6$	$9 \cdot 2$	$5 \cdot 2$	$3 \cdot 28$
10	$5 \cdot 3$	$6 \cdot 4$	$7 \cdot 7$	I. I	$6 \cdot 0$	$9 \cdot 8$	$+7$	$6 \cdot 4$	$6 \cdot 8$	10.0	$9 \cdot 3$	$6 \cdot 0$	$5 \cdot 23$
1 I	$5 \cdot 7$	$8 \cdot 7$	10.0	$6 \cdot 3$	$8 \cdot 5$	12.9	$7 \cdot 9$	$9 \cdot 4$	$9 \cdot 0$	13.6	13.3	$7 \cdot 0$	$7 \cdot 96$
Noon	$6 \cdot 2$	$9 \cdot \mathrm{I}$	12.2	$9 \cdot 7$	$10 \cdot+$	15.4	$10 \cdot 5$	11.5	$10 \cdot 2$	13.8	14.2	$9 \cdot 2$	$9 \cdot 63$
$13^{\text {h }}$	$6 \cdot 0$	8.8	11.9	11.7	10.8	17.5	11.0	11.6	10.9	$15 \cdot 3$	13.3	$9 \cdot 3$	10.11
14	$3 \cdot 7$	$8 \cdot 1$	11.7	11. 6	IO. I	$15 \cdot 2$	$10 \cdot 7$	10.9	$9 \cdot 8$	13.4	$12 \cdot 3$	$8 \cdot 4$	9.07
15	+ - 1	$7 \cdot 0$	II. 6	$10 \cdot 3$	$9 \cdot 5$	1.40	$9 \cdot 3$	$8 \cdot 3$	$7 \cdot 0$	$8 \cdot 8$	12.7	$9 \cdot 2$	7.92
16	+. 1	$5 \cdot 8$	$8 \cdot 0$	$8 \cdot 5$	$8 \cdot 6$	12.9	$8 \cdot 0$	$6 \cdot 4$	+ 1	$5 \cdot 9$	$9 \cdot 2$	$4 \cdot 9$	$5 \cdot 80$
17	$2 \cdot 0$	$2 \cdot 1$	$7 \cdot 9$	7.1	$7 \cdot 3$	$6 \cdot 9$	$5 \cdot+$	$5 \cdot 3$	$3 \cdot 9$	$2 \cdot 2$	$6 \cdot \mathrm{I}$	$4 \cdot 6$	$3 \cdot 67$
18	$2 \cdot 3$	$3 \cdot 2$	+ 5	+ 2	$+7$	$7 \cdot 7$	$t \cdot+$	4.0	I. 2	$0 \cdot 0$	$3 \cdot 9$	0.9	$2 \cdot 02$
19	0.4	$3 \cdot 9$	$+\cdot 2$	$3 \cdot 2$	$3 \cdot 6$	$6 \cdot 5$	$+2$	$2 \cdot 0$	$3 \cdot 4$	I.4	0.6	$1 \cdot 3$	1.49
20	0.0	$2 \cdot 3$	$2 \cdot 2$	$0 \cdot 1$	$2 \cdot 6$	$6 \cdot 7$	+ 5	$2 \cdot 7$	I-2	$2 \cdot 3$	I. I	0.7	$0 \cdot 80$
2 I	$0 \cdot 1$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 4$	I.9	$6 \cdot 5$	$2 \cdot 9$	3.1	$0 \cdot 3$	$2 \cdot 2$	0.2	0.0	0.07
22	$1 \cdot 0$	$2 \cdot 2$	$0 \cdot 3$	0.6	$1 \cdot 7$	$5 \cdot 2$	$3 \cdot 1$	+.0	0.0	$2 \cdot 4$	0.4	$0 \cdot 0$	$0 \cdot 34$
23	$1 \cdot 4$	2•I	1.7	I. 8	$2 \cdot 0$	$2 \cdot 4$	+ I	$3 \cdot 0$	I. 2	$2 \cdot 2$	I•5	$1 \cdot 4$	$0 \cdot 67$
Means	$2 \cdot 64$	$3 \cdot 75$	$5 \cdot 80$	$3 \cdot 57$	4.20	$6 \cdot 61$	$+38$	$4 \cdot 4$	$+43$	$6 \cdot 69$	$6 \cdot 25$	$4 \cdot 47$	$3 \cdot 37$

Table VIII.-Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force.
(The results in each month are diminished by the smallest hourly values.)

Table IX.-Diurnal Range of North Force, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers.
(The results are corrected for Temperature and are expressed in C.G.S. units.)

1915.												
(lay	Januars.	February.	March.	April.	May.	Jane.	July.	August.	September.	October.	November.	December,
d												
I	82γ	24γ	33γ	37γ	49γ	$4^{1} \gamma$	47γ	55γ	26γ	53γ	100γ	II γ
2	13	33	24	56	62	41	76	74	37	31	24	16
3	16	17	29	59	52	42	66	67	35	43	28	19
$+$	22	$3+$	23	45	53	35	29	46	38	23	37	15
5	68	40	31	49	35	30	39	46	43	27	7 I	15
6	21	20	30	43	30	39	66	72	45	29	18	108
7	$4{ }^{\text {I }}$	23	51	57	36	5 I	37	66	43	49	32	52
8	$+^{2}$	43	77	68	25	64	40	55	47	24	58	28
9	2?	4^{8}	73	27	- 23	4^{8}	40	36	44	33	39	16
10	37	13	50	27	31	36	64	66	43	28	5 I	22
1 I	18	24	48	30	3 I	34	67	47	37	50	37	25
12	35	28	31	27	33	60	57	42	37	34	48	17
13	28	15	36	27	29	93	51	42	40	40	44	10
14	19	18	52	32	50	55	61	43	38	77	19	48
15	16	21	35	31	49	41	54	40	51	109	32	65
16	19	23	65	48	61	46	49	51	47	40	85	34
17	13	22	70	55	77	312	42	68	67	49	99	29
18	26	27	34	66	32	72	47	48	30	51	68	15
19	23	33	65	64	4^{6}	42	39	59	31	68	50	23
20	$2+$	57	63	44	45	52	38	42	42	104	72	10
21	21	5 I	69	48	47	61	51	39	32	66	52	13
22	28	5t	54	62	36	67	38	30	52	50	45	14
23	15	49	80	75	34	56	37	43	81	95	23	21
24	38	81	45	33	36	63	43	41	67	67	28	18
25	9'	76	49	32	38	57	40	4^{6}	50	94	33	21
26	34	60	59	87	37	57	47	79	67	57	21	65
27	38	27	32	27	- 49	45	54	72	58	45	26	30
28	18	17	42	32	3 I	47	54	45	74	29	45	19
29	33		56	36	29	63	87	73	81	34	20	19
30	19		59	32	20	43	58	43	76	29	19	22
31	2t)		34		26		37	32		27		30
Means	$30 \cdot 8$	34.9	$48 \cdot 4$	$45 \cdot 2$	$39 \cdot 7$	$59 \cdot 8$	$50 \cdot 2$	$5 \mathrm{I} \cdot 9$	$48 \cdot 6$	$50 \cdot 2$	44. 1	$27 \cdot 4$

Table X.-Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force from Hourly Ordinates, on Five Selected Days, in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on fue quiet days in each month, selected by the International Committee for comparison with results of other Observatories. The results in each case are diminished by the smallest hourly value. The days included are :-

January 2, 3, 18, 19, 31.	April 10, 11, 12, 13, 28.	July $4,15,16,17,24$.	October 2, 5, 9, 18, 29.
February 7, 11, 14, 16, 17.	May 7, 8, $\mathrm{I}_{1}, 28,29$.	August 5, 13, 14, 15, 24.	November 3, 4, 14, 29, 30.
March 2, 3, 14, 15, 28.	June 3, 4, 10, 20, 30.	September 7, 8, 18 19, 20.	December 1, 5, 18, $21,22$.

	Jauary.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	${ }_{\text {corer }}^{\substack{\text { For the } \\ \text { Year. }}}$
Midn.	8γ	15γ	28γ	23γ	23γ	22γ	33γ	34γ	$3^{1} \gamma$	28γ	15γ	5γ	20.9γ
$\mathrm{I}^{\text {l }}$	9	14	29	23	22	20	30	33	30	29	13	5	20.2
2	9	14	29	23	21	21	30	33	30	27	13	5	20.
3	10	$1+$	29	22	22	22	32	33	29	28	15	7	20.7
4	11	15	30	23	22	25	35	34	29	29	17	9	22.0
5	14	17	31	23	23	26	35	34	27	31	17	${ }^{10}$	22.8
6	15	16	29	25	21	23	30	31	23	30	17	1 I	21.4
7	16	16	29	25	17	17	22	24	18	29	16	Io	18.7
8	13	13	26	21	11		13	15	11	23	13	4	13.1
9	6	7	15	12	5	-	6		4	13	8	1	6.0
10	1	+		5	\bigcirc	14	-	2	-	+	1	1	1.6
11	-	-	-	I	-	13	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0.0
Noon	2	-	4	-	-	14	4	1	5	2	3	\bigcirc	1.7
$13^{\text {h }}$	${ }_{1}$	+	11	5	2	21	10	4	12	7	6	3	$6 \cdot 8$
14	14	8	17	9	8	28	18	9	19	10	7	5	11.5
15	12	9	23	15	11	34	26	18	24	16	10	6	15.8
16	${ }_{1}$	9	26	19	15	$4{ }^{2}$	32	26	26	20	12	7	19.2
17	13	8	26	21	20	49	38	32	28	25	13	10	22.4
18	13	13	28	22	${ }^{2}+$	51	37	37	32	28	15	10	$24 \cdot 6$
19	14	16	31	23	27	51	38	39	34	29	15	10	26.0
20	14	15	31	23	26	50	38	39	35	30	16	10	$26 \cdot 1$
21	13	16	33	25	26	47	35	38	36	30	19	9	$26 \cdot 0$
22	13	16	35	25	26	47	34	36	37	30	18	8	$25 \cdot 4$
23	1 I	17	33	25	25	45	35	35	36	29	17	7	$25 \cdot 1$
Means	$10 \cdot 5$	$11 \cdot 5$	24.0	18.3	$16 \cdot 5$	28.7	$25 \cdot 5$	$24 \cdot 8$	23.2	22.0	12.3	6.4	17.4

Table XI.-Monthly and Annual Mean Diurnal Inequalities of Magnetic North Force from Hourly Ordinates, on Five Selected Days in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic register, on five disturbed days in each month, selected by the International Committee for comparison with results of other Observatories. The results in each case are diminished by the smallest hourly value. The days included are :-

January 1, 5, 25, 26, 27.February 8, 19, 20, 23, 24.March $7,8,20,21,22$.				April 7, 8, 15, 22, 26. May 1, 2, 16, 17, 27. June 12, 13, 17, 18, 22.		July 2, 6, $9,11,27$. August 2, 7, $26,27,29$. September 22, 23, 24, 28, 29.				October $15,19,23,24,25$. November 1, (December $6,7,15,16,26$.			
1915.													
Hour, Greenwich (ivil Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	Novembe	December.	$\xrightarrow{\text { For the }}$ Year.
Midn.	30γ	39γ	36γ	36γ	39γ	89γ	47γ	$6 \mathrm{I} \gamma$	44γ	59γ	$+5 \gamma$	$3{ }^{1} \gamma$	43.0γ
$I^{\text {h }}$	32	34	33	35	38	95	44	53	50		65	3 I	44^{2}
2	30	35	38	35	37	85	4^{2}	55	43	52	61	33	$42 \cdot 2$
3	40	31	38	34	35	85	$4{ }^{1}$	52	4^{2}	51	58	33	$41 \cdot 7$
4	42	34	4	37	36	81	40	43	4^{8}	+9	62	38	$42 \cdot 6$
5	43	34	36	38	40	86	37	47	+5	+9	56	${ }^{2}$	$42 \cdot 8$
6	36	36	31	$4{ }^{1}$	28	81	28	39	27	38	49	42	$36 \cdot 4$
7	31	33	34	38	22	58	29	31	19	32	34	38	$30 \cdot 0$
8	24	22	24	34	15	36	$2+$	13	12	21	26	31	20.2
9	19	20	8	18	5	26	13	1	3	14	26	23	II.4
10	8	5	2	I	2	\bigcirc	4	\bigcirc	3	5	23	21	$2 \cdot 9$
II	\bigcirc	-	2	0	-	14	t	t	\bigcirc	\bigcirc	\bigcirc	16	0.0
Noon			o	5	\bigcirc	9		6	5	5	2	2	$0 \cdot 3$
$13^{\text {h }}$	${ }_{5}$	13	5	6	4	17	\bigcirc	16	9	5	6	o	$3 \cdot 9$
14	7	15	19	13	12	57	16	21	14	9	14	5	13.5
15	If	1.9	22	20	22	64	22	31	21	17	17	4	19.4
16	+	17	$2+$	32	27	79	3 I	+0	29	14	24	14	$24 \cdot 6$
17	12	22	25	33	37	95	43	46	30	18	36	12	$30 \cdot 8$
18	15	2 I	28	3 I	40	89	42	51	39	30	29	10	$32 \cdot 1$
19	22	28	33	35	37	81	38	56	35	21	+5	13	$33 \cdot 7$
20	28	32	46	$4{ }^{1}$	${ }^{0}$	76	37	54	40	27	${ }_{6}{ }^{2}$	22	$37 \cdot 1$
2 I	35	$\underline{1}$		34	35	$7+$	37	4^{8}	50	36	61	27	$39 \cdot 5$
22	26	32	36	35	38	76	32	51	45	36	54 46	34	$37 \cdot 9$
23	27	30	37	37	32	92	27	48	38	22	46	30	$35 \cdot 5$
Means	$22 \cdot 2$	$2+8$	$26 \cdot 4$	27.9	$25 \cdot 9$	64.4	$28 \cdot 3$	$36 \cdot 1$	28.8	27.9	$36 \cdot 7$	23.0	$27 \cdot 7$

Table XII.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force.
(The results are expressed in C.G.S. units and in each case are diminished by the smallest hourly value.)

1915.													
$\begin{aligned} & \text { Hour } \\ & \text { Greorvich } \\ & \text { Civil Timer. } \end{aligned}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	$+\gamma$	5γ	8γ	20γ	$2 \mathrm{I} \gamma$	$1+\gamma$	16%	10γ	9γ	4γ	3γ	4γ	$9 \cdot 0 \gamma$
	3	5	7	20	20	13	15	9	8	2	2	3	$8 \cdot 1$
2	3	4	7	21	19	12	16	9	8	1	I	I	$7 \cdot 7$
3	3	5	8	22	21	13	16	10	7	1	1	1	$8 \cdot 2$
$+$	4	6	9	22	23	14	18	13	7	3	2	2	$9 \cdot 4$
5	4	7	9	23	23	14	18	15	7	3	4	3	$10 \cdot 0$
6	4	7	I I	22	22	14	17	16	9	4	2	2	10.0
7	3	4	I I	2 I	18	12	14	14	7	4	\bigcirc	-	$8 \cdot 2$
8	I	3	I I	18	16	11	13		6	6	4	3	$7 \cdot 8$
9	2	2	7	14	10	7	10	9	5	4	3	2	$5 \cdot 4$
10	1	0	3	9	4	3	6	5	I	I	3	3	$2 \cdot 4$
II	\bigcirc	\bigcirc	\bigcirc	2	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	5	3	0.0
Noon	-	2	\bigcirc	-	1	2	0	\bigcirc	1	I	8	3	0.7
$13^{\text {h }}$	3	4	3	6	8	8	5	5	5	5	12	8	$5 \cdot 2$
14	5	6	7	13	14	16	12	12	11	1 I	15	7	$9 \cdot 9$
15	$+$	8	13	19	19	20	18	18	15	17	17	7	13.8
16	$+$	10	17	23	24	30	23	23	20	22	17	7	17.5
17	5	12	18	28	28	32	26	23	18	19	16	8	$18 \cdot 6$
18	4	13	17	29	30	29	26	19	16	17	15	10	17.9
19		12	16	29	30		${ }^{2} 4$	18	15	15	14	9	$16 \cdot 9$
20	$+$	11	14	29	27	25	21	16	13	11	11	6	14.8
21	3	10	11	27	25	22	19	15	1 I	9	8	7	13.1
22	2	8	IO	25	23	21	18	13	10	8	4	6	11.5
23	3	6	9	23	23	18	17	12	9	5	3	4	$10 \cdot 2$
Means	$3 \cdot 0$	$6 \cdot 3$	$9 \cdot 4$	19.4	$18 \cdot 7$	15.7	$15 \cdot 3$	12.3	9•I	$7 \cdot 2$	$7 \cdot 1$	$4 \cdot 5$	$9 \cdot 8$

Table Xili.-Diurnal Range of Vertical Magnetic Force, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Рhotographic Registers.
(The results are corrected for Temperature and expressed in C.G.S. units.)

May dif	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d												
1	+4 γ	30γ	17γ	33γ	51γ	21%	29γ	33γ	26γ	28γ	78γ	10γ
2	II	39	17	57	55	27	63	41	32	6	23	16
3	9	9	16	35	32	33	30	47	21	10	21	18
4	14	21	21	53	33	16	25	23	24	11	28	9
5	31	14	21	29	27	25	20	23	25	16	74	23
6	12	15	18	15	37	18	33	39	17	21	104	115
7	33	3	34	28	27	19	12	57	26	26	22	22
8	16	51	50	28	27	33	20	26	20	20	28	16
9	5	4^{8}	18	18	25	21	43	19	18	18	21	26
10	II	12	23	26	23	27	35	39	24	20	20	18
II	7	14	23	21	33	24	26	33	25	24	24	18
12	23	15	17	28	22	48	36	46	22	11	20	4
13	22	27	17	19	44	31	31	24	36	20	10	14
14	17	15	19	26	30	25	38	26	18	71	5	28
15	7	29	15	39	38	30	30	28	19	109	18	38
16	9	18	20	50	4^{8}	4 I	30	22	27	56	102	17
17	14	20	38	17	4^{2}	303	24	34	35	22	60	17
18	II	9	25	20	35	59	32	28	17	9	6 I	11
19		41	32	34	34	23	33	20	22	55		15
20	26	27	55	50	3^{8}	30	31	26	15	28	29	9
21	6	23	63	50	36	32	28	28	20	37	31	11
22	7	17	51	50	35	51	35	2 I	74	52	27	10
23	12	40	30	35	35	27	25	21	53	93	19	17
24	14	22	31	30	31	23	15	25	38	95	19	8
25	34	14	40	38	54	30	34	22	23	101	1 I	19
26	18		17	91		36	32	93	43		15	26
27	2 I	17	21	38	58	29	50	34	32	21	16	21
28	10	22	24	34	34	33	48	29	39	13	28	7
29	14		17	39	4°	38	23	46	58	29	18	14
30	13		28	49	$3{ }^{8}$	23	28	33	50	16	12	19
31	16		25		26		29	22		21		19
Means	$16 \cdot 1$	23.0	$27 \cdot 2$	$36 \cdot 0$	$36 \cdot 5$	39.2	$31 \cdot 2$	$32 \cdot 5$	$30 \cdot 0$	35.5	$32 \cdot 9$	19.8

The mean of the twelve monthly values is $30^{\circ} \circ \gamma$.

Table XIV.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Days, in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic registers, on five quiet days in each month, selected by the International Committee for comparison with results al other Observatories. The results in each case are diminished by the smallest hourly value. The days included are :-

	January 2, 3, 18, 19, 3 I. February 7, 11, 14, 16, 17. March 2, 3, 14, 15, 28.			April 10, 11, 12, $13,28$. May 7, 8, 11, 28, 29. June 3, 4, 10, 20, 30.						$\begin{aligned} & \text { October } 2,5,9,18,29 . \\ & \text { November 3, 4, } 14,29,30 . \\ & \text { December } 1,5,18,21,22 . \end{aligned}$			
1915.													
	Janary.	February.	March.	April.	мay.	June.	July.	August.	September.	October.	November.	December.	$\underset{\substack{\text { For the } \\ \text { Year. }}}{\text { cen }}$
Midn.	13γ	20γ	29γ	34γ	53γ	19γ	16γ	30γ	29γ	30γ	20γ		
$\mathrm{I}^{\text {h }}$	8	17	21	32	50	20	15	30	29	26	19		20.3
2	${ }_{1}$	15	18	29	36	19	15	28	27	25	15	$+$	17.7
3	11	15	17	28	33	18	16	27	25	22	15	2	16.6
4	9	16	17	25	33	16	17	26	24	20	12	2	15.6
5	9	17	17	23	28	16	18	25	22	18	10	1	14.5
6	7	17	17	20	25	14	15	23	20	9	6	-	11.9
7	6	14	19	18	18	14	12	19	15	11	1	-	$9 \cdot 7$
8	4	14	20	17	24	11	8	17		13	4	1	$9 \cdot 3$
	4	13	15	7	17	9	7	10	2	8	1	3	$5 \cdot 5$
10	2	10	10	7	4	5	2	4	6	-	-	6	$2 \cdot 2$
11	-	5	1	2	-	\bigcirc	\bigcirc	-	8	2	4	8	$0 \cdot 0$
Noon	-	1	-	-	4	5	2	3	-	5	6	5	$0 \cdot 1$
$13^{\text {h }}$	4	-	4	5	11	9	6	8	7	11	7	10	$4 \cdot 3$
14	7	4	11	14	24	15	10	17	15	19	9	10	10.4
15	9	6	18	23	31	18	13	22	16	25	12	12	14.6
16	10	5	22	30	34	24	18	25	19	29	14	13	17.8
17	13	4	20	32	36	28	19	26	19	26	15	14	18.5
18	10	8	20	35	37	31	21	24	20	28	18	13	19.6
19	8	6	21	36	36	31	20	24	21	29	18	12	19.4
20	8	6	20	35	38	34	19	23	22	29	19	11	$19 \cdot 5$
21	9	8	19	36	36	28	19	23	22	32	21	14	19.7
22	9	10	20	37	36	31	21	24	23	32	20	16	20.7
23	11	12	23	36	35	30	21	22	22	33	23	14	$2 \mathrm{I} \cdot 0$
Means	$7 \cdot 6$	$10 \cdot 2$	16.6	23.4	28.3	18.5	13.7	20.0	17.6	$20 \cdot 1$	12.0	$7 \cdot 7$	13.8

Table XV.-Monthly and Annual Mean Diurnal Inequalities of Vertical Magnetic Force from Hourly Ordinates, on Five Selected Disturbed Days, in each Month.
Each result is the mean of the corresponding hourly ordinates from the photographic registers, of five disturbed days in each month, selected by the International Committee for comparison with results at other Observatories. The results in each case are diminished by the smallest hourly value. The days included are :-

	January 1, 5, 25, 26, 27.$\begin{aligned} & \text { February 8, } \\ & \text { March } \\ & \text { 19, 20, 23, } \\ & \text { 7, }\end{aligned}$ 8, 20, 21, 22.			$\begin{aligned} & \text { April } 7,8,15,22,26 . \\ & \text { May 1, 2, 16, 17, } 27 . \\ & \text { June 12, 13, 17, } 18,22 . \end{aligned}$			$\begin{array}{lrrrr} \text { July } & 2, & 6, & 9,11,27 . \\ \text { August } & 2, & 7, & 26,27,29 . \\ \text { September } & 22, & 23, & 24, & 28, \\ \hline \end{array}$						
I915.													
$\begin{gathered} \text { Hour } \\ \text { Greenw } \\ \text { Civil Time. } \\ \hline \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	$\begin{aligned} & \text { For the } \\ & \text { Year. } \end{aligned}$
Midn.	17γ	35γ	34γ	${ }^{2} 4 \gamma$	12γ	63γ	$+\gamma$	34γ	33γ	62γ	$3+\gamma$		
$\mathrm{I}^{\text {h }}$	19	27	38	28	19	67	22	38	39	63	$3+\gamma$ 34	24	$31 \cdot 6$
2	26	31	45	29	26	74	28	37	43	69	44	27	$36 \cdot 7$
3	29	35	44	32	27	77	32	38	4^{8}	76	51	29	$39 \cdot 9$
4	30	34	46	32	29	78	34	37	46	74	52	32	$40 \cdot 7$
5	29	32	46	34	33	84	34	32	45	74	49	31	$40 \cdot 3$
6	29	3 I	4^{6}	36	35	79	33	29	44	74	52	33	$40 \cdot 2$
7	27	34	48	40	39	89	36	30	+5	73	52	33	$42 \cdot 2$
8	28	34	45	38	37	88	33	31	43	67	+5	3 I	$40 \cdot 1$
9	3 I	40	48	43	43	96	33	32	42	65	$+3$	33	$42 \cdot 3$
10	28	42	51	46	50	93	35	31	4 I	64	4 I	32	$42 \cdot 9$
II	27	40	52	45	54	84	37	33	${ }^{1}$	55	34	28	$40 \cdot 9$
Noon	22	33	47	46	+5	72	34	32	38	$+8$	21	28	$35 \cdot 6$
$13^{\text {h }}$	16	29	39	37	34	57	27	26	29	35	13	19	$26 \cdot 8$
14	8	25	32	29	26	38	20	16	22	21	3	16	I $8 \cdot 1$
15	7	16	19	22	19	32	14	7	13	12	\bigcirc	9	$10 \cdot 9$
16	4	12	9	13	11	-	7	I	\bigcirc	\bigcirc	\bigcirc	7	$2 \cdot 1$
17	\bigcirc	6	4	t	4	3	1	\bigcirc	7	3	2	5	$0 \cdot 0$
18	6	-	\bigcirc	1	\bigcirc	25	-	2	10	15	3	15	$3 \cdot 2$
19	10	6	5	-	1	30	3	4	13	23	0	-	+7
20	14	10	13	5	8	35	10	12	17	$3+$	9	6	11.2
21	9	15	20	9	13	38	14	14	21	$+5$	13	8	15.0
22	17	17	27	1 I	20	45	17	19	25	$+6$	25	11	$20 \cdot 1$
23	15	19	29	30	23	59	17	24	29	45	31	17	$24 \cdot 9$
Means	$18 \cdot 7$	$25 \cdot 1$	$32 \cdot 8$	$26 \cdot 4$	$25 \cdot 3$	$58 \cdot 6$	2 I 9	$23 \cdot 3$	$30 \cdot 6$	$47 \cdot 6$	$27 \cdot 1$	$20 \cdot 7$	$53 \cdot 2$

Table XVI-Mean Temperature for each Civil Day within the box inclosing the Vertical Force Magnet.

1915.												
Day of	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }^{\text {a }}$	$6{ }^{\circ} \cdot 6$	$6{ }^{\circ} \cdot 2$	$66^{\circ} 9$	$6{ }^{\circ} \cdot 7$	$6{ }^{\circ} \cdot 2$	$6 \% \cdot 6$	$6{ }^{\circ} \cdot 5$	$67^{\circ} \cdot 7$	$66^{\circ} 6$	$6{ }^{\circ} \cdot 6$	$67 \cdot 3$	68.6
2	$66 \cdot 8$	$67 \cdot 4$	$66 \cdot 9$	$67 \cdot 2$	$65 \cdot 9$	67.7	$66 \cdot 9$	$67 \cdot 1$	$66 \cdot 4$	$67 \cdot 3$	67.7	68.4
3	$66 \cdot 8$	$66 \cdot 7$	67.7	67.0	$66 \cdot 6$	$67 \cdot 4$	68.8	67.0	67.5	$67 \cdot 7$	67.7	$67 \cdot 9$
$+$	$66 \cdot 5$	$67 \cdot 4$	$66 \cdot 8$	68.4	$67 \cdot 1$	$67 \cdot 3$	68.8	67.9	$67 \cdot 9$	67.7	$67 \cdot 5$	$67 \cdot 6$
5	$67 \cdot 1$	$66 \cdot 9$	67.1	$66 \cdot 7$	$67 \cdot 8$	$68 \cdot 5$	68.5	$67 \cdot 4$	$67 \cdot 3$	67.4	$67 \cdot 1$	68.3
6	67.0	$66 \cdot+$	67.0	$66 \cdot 9$	$67 \cdot 6$	68.0	$67 \cdot 9$	68.0	$67 \cdot 8$	$67 \cdot 4$	$66 \cdot 4$	$67 \cdot 8$
7	$67 \cdot 3$	$67 \cdot 3$	68.0	$66 \cdot 5$	$68 \cdot \mathrm{I}$	$67 \cdot 6$	$67 \cdot 2$	$67 \cdot 6$	$66 \cdot 9$	$67 \cdot 4$	$66 \cdot 1$	$67 \cdot 9$
	$66 \cdot 1$	$66 \cdot 4$	$67 \cdot 5$	66.4	67.0	$69 \cdot 2$	$66 \cdot 4$	67.4	$66 \cdot 6$	$67 \cdot \mathrm{I}$	$66 \cdot 5$	$68 \cdot 1$
9	$67 \cdot 1$	$67 \cdot 6$	$66 \cdot 7$	$66 \cdot 1$	$66 \cdot 5$	68.4	$67 \cdot 2$	$67 \cdot 8$	67.2	$68 \cdot 1$	67.4	$68 \cdot 1$
10	$67 \cdot 3$	$66 \cdot 7$	$67 \cdot \mathrm{I}$	$68 \cdot 3$	$67 \cdot 6$	$67 \cdot 3$	$66 \cdot 7$	68.8	$66 \cdot 9$	$68 \cdot 3$	$66 \cdot$	$67 \cdot 1$
1 I	$66 \cdot 9$	$67 \cdot 2$	68.6	$66 \cdot 8$	67.4	$66 \cdot 8$	67.2	$69 \cdot 4$	67.0	$67 \cdot 5$	$64 \cdot 7$	$67 \cdot 7$
12	$66 \cdot 8$	$67 \cdot+$	$67 \cdot 6$	$66 \cdot 9$	$66 \cdot 9$	67.2	$66 \cdot 4$	68.6	$64 \cdot 9$	68.1	$65 \cdot 1$	$65 \cdot 1$
13	$66 \cdot 7$	$67 \cdot+$	$67 \cdot 1$	$66 \cdot 8$	$66 \cdot 5$	66.8	67.8	67.5	66.6	$67 \cdot 3$	$64 \cdot 6$	$65 \cdot 2$
14	$66 \cdot 5$	$66 \cdot 9$	$67 \cdot 9$	67.8	$66 \cdot 8$	$67 \cdot 6$	67.0	$66 \cdot 8$	$66 \cdot 6$	$67 \cdot 4$	62.2	67.4
15	$66 \cdot 8$	$66 \cdot 4$	$67 \cdot 1$	$66 \cdot 3$	67.9	$66 \cdot 9$	67.0	$66 \cdot+$	67.4	$67 \cdot 4$	$56 \cdot 5$	68.1
16	$66 \cdot 2$	67.7	$66 \cdot 8$	$67 \cdot 6$	$67 \cdot 6$	$67 \cdot 5$	$66 \cdot 8$	$66 \cdot 8$	$67 \cdot 8$	$66 \cdot 9$	59.8	$67 \cdot 2$
17	$66 \cdot 9$	68.4	$67 \cdot 1$	67.1	$67 \cdot 8$		67.2	$66 \cdot 6$	67.9	$67 \cdot 4$	$60 \cdot 4$	67.5
18	66.7	$66 \cdot 7$	$66 \cdot 9$	$57 \cdot 1$	$66 \cdot 0$	$66 \cdot 6$	66.7	$66 \cdot 8$	67.4	67.0	59.8	67.7
19	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 2$	67.0	67.2	$66 \cdot 6$	67.4	$66 \cdot 2$	$66 \cdot 3$	$67 \cdot 1$	61.6	$67 \cdot 6$
20	$67 \cdot 3$	67.0	$67 \cdot 2$	$66 \cdot 1$	$66 \cdot 9$	68.2	$67 \cdot 8$	$66 \cdot 7$	$66 \cdot 9$	$67 \cdot 4$	67.7	66.6
21	$66 \cdot 8$	$66 \cdot 3$	$67 \cdot 2$	$66 \cdot 6$	$68 \cdot \mathrm{I}$	$67 \cdot 4$	$67 \cdot 8$	$66 \cdot 3$	$67 \cdot 2$	$67 \cdot 6$	68.4	67.7
22	$66 \cdot 1$	$66 \cdot 7$	$67 \cdot 4$	67.4	$66 \cdot 3$	$67 \cdot 1$	$67 \cdot 3$	$66 \cdot 2$	$67 \cdot 6$	$67 \cdot 2$	67.9	$67 \cdot 6$
23	$6 \% \cdot+$	$66 \cdot 6$	$68 \cdot 3$	$66 \cdot 1$	$66 \cdot+$	67.0	$67 \cdot 4$	$67 \cdot 2$	67.7	$67 \cdot 7$	$67 \cdot 2$	67.0
24	$66 \cdot+$	$66 \cdot 9$	$67 \cdot 9$	$66 \cdot 3$	$66 \cdot 0$	67.6	$67 \cdot 1$	$66 \cdot 9$	$66 \cdot 8$	67.7	67.7	$67 \cdot 9$
25	$66 \cdot 8$	$67 \cdot 1$	67.0	$67 \cdot 2$	67.9	$67 \cdot 1$	66.7	$67 \cdot \mathrm{I}$	$66 \cdot 1$	68.0	$66 \cdot 8$	67.0
26	$66 \cdot+$	67.0	$66 \cdot 8$	67.3	$66 \cdot 8$	$67 \cdot 1$	66.5	$67 \cdot 0$	$67 \cdot 4$	$67 \cdot 3$	$66 \cdot 8$	68.4
27	$66 \cdot 5$	67.3	56.6	66.6	66.5	67.5	$66 \cdot 9$	$67 \cdot 2$	$67 \cdot 5$	$67 \cdot 8$	$66 \cdot 2$	$67 \cdot 3$
28	$66 \cdot 6$	$66 \cdot 9$	$66 \cdot 2$	$67 \cdot 1$	67.4	66.0	$66 \cdot 7$	$67 \cdot 2$	67.0	$67 \cdot 3$	$66 \cdot 3$	$67 \cdot 5$
29	$66 \cdot 7$		$67 \cdot 1$	$66 \cdot 9$	67.4	67.6	67.7	$66 \cdot 7$	67.9	$67 \cdot 3$	$66 \cdot 3$	$66 \cdot 2$
30	$67 \cdot 1$		$67 \cdot 1$	$67 \cdot 3$	$66 \cdot 3$	$66 \cdot 6$	67.3	65.4	$67 \cdot 8$	$67 \cdot 2$	$68 \cdot 5$	67.3
31	$66 \cdot 9$		$66 \cdot 1$		$67 \cdot 3$		$67 \cdot 8$	$67 \cdot 1$		$68 \cdot 1$		$68 \cdot 7$
Means	66.71	67.03	$67 \cdot 16$	$66 \cdot 98$	67.06	67.35	$67 \cdot 31$	67.20	67.09	$67 \cdot 45$	65.47	67.50

Table XVII.-Monthly and Annual Mean Temperature at each Hour of the Day within the box inclosing the Vertical Force Magnet.

1915.													
Hour. Rireenwi.t. Civil Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	$67 \cdot 1$	$67 \cdot 4$	$6{ }^{\circ} \cdot 6$	$67 \cdot 4$	$67^{\circ} \cdot 4$	67.6	$6{ }^{\circ} \cdot 5$	$68 \cdot 5$	$6{ }^{\circ} \cdot 4$	67.7	$6{ }^{\circ} \cdot 9$	$67^{\circ} 7$	$67^{\circ} 44$
	$66 \cdot 9$	67.2	67.4	$67 \cdot 3$	$67 \cdot 2$	67.5	$67 \cdot 4$	$68 \cdot 4$	$67 \cdot 3$	$67 \cdot 6$	$65 \cdot 8$	$67 \cdot 7$	$67 \cdot 29$
2	$66 \cdot 7$	$67 \cdot 1$	$67 \cdot 2$	$67 \cdot 0$	$67 \cdot 1$	$67 \cdot 7$	$67 \cdot 4$	$68 \cdot 3$	$67 \cdot 2$	$67 \cdot 5$	$65 \cdot 7$	$67 \cdot 6$	$67 \cdot 19$
3	66.6	67.0	$67 \cdot 1$	$66 \cdot 8$	$66 \cdot 9$	$67 \cdot 3$	$67 \cdot 3$	68.2	$67 \cdot 1$	$67 \cdot 4$	$65 \cdot 6$	$67 \cdot 6$	67.08
4	$66 \cdot 5$	$66 \cdot 9$	$67 \cdot 0$	66.7	$66 \cdot 8$	$67 \cdot 3$	$67 \cdot 3$	68.1	$67 \cdot 0$	$67 \cdot 3$	$65 \cdot 4$	$67 \cdot 5$	67.07
5	$66 \cdot 5$	$66 \cdot 9$	$66 \cdot 9$	$66 \cdot 5$	66.7	67.2	$67 \cdot 2$	$68 \cdot 0$	67.0	$67 \cdot 2$	$65 \cdot 3$	$67 \cdot 3$	67.00
6	66.7	$6,6.8$	$66 \cdot 8$	66.4	$66 \cdot 6$	67.2	$67 \cdot 2$	$67 \cdot 9$	$66 \cdot 8$	$67 \cdot 1$	$65 \cdot 2$	$67 \cdot 3$	$66 \cdot 82$
7	66.5	$66 \cdot 8$	$66 \cdot 8$	$66 \cdot 3$	$66 \cdot 5$	$67 \cdot 1$	$67 \cdot 2$	67.9	$66 \cdot 7$	$67 \cdot 0$	$65 \cdot 1$	$67 \cdot 3$	$66 \cdot 76$
8	$66 .+$	66.9	66.9	$66 \cdot 3$	$66 \cdot 5$	67.0	$67 \cdot 2$	$67 \cdot 8$	$66 \cdot 6$	$67 \cdot 0$	65.0	67.3	$66 \cdot 74$
9	$66 \cdot 3$	$66 \cdot 8$	$66 \cdot 8$	$66 \cdot 2$	66.5	67.0	$67 \cdot 2$	$67 \cdot 7$	$66 \cdot 5$	$66 \cdot 9$	64.9	$67 \cdot 3$	$66 \cdot 69$
10	$66 \cdot 3$	$6,6 \cdot 8$	6.6 .8	$66 \cdot 4$	66.6	$67 \cdot 1$	$67 \cdot 2$	$67 \cdot 8$	$66 \cdot 6$	$67 \cdot 0$	64.9	$67 \cdot 3$	$66 \cdot 74$
II	66.3	$6,6 \cdot 8$	$66 \cdot 8$	66.7	66.7	$67 \cdot 1$	$67 \cdot 2$	68.0	$66 \cdot 7$	$67 \cdot 2$	64.9	$67 \cdot 4$	$66 \cdot 74$
Noon	$6,6.3$	66.8	$66 \cdot 9$	$66 \cdot 9$	$66 \cdot 9$	$67 \cdot 2$	$67 \cdot 3$	68.0	$66 \cdot 9$	$67 \cdot 5$	65.0	67.4	$66 \cdot 94$
$13^{\text {h }}$	$6,6.5$	$66 \cdot 9$	67.0	67.0	67.0	$67 \cdot 3$	$67 \cdot 2$	68.1	67.0	$67 \cdot 7$	$65 \cdot 1$	67.4	67.02
14	$66 \cdot 7$	$67 \cdot 1$	$67 \cdot 2$	$67 \cdot 2$	$67 \cdot 1$	$67 \cdot 3$	67.2	$68 \cdot 2$	$67 \cdot 1$	$67 \cdot 7$	$65 \cdot 2$	$67 \cdot 5$	$67 \cdot 13$
15	66.8	$67 \cdot 1$	$67 \cdot 3$	$67 \cdot 2$	$67 \cdot 2$	$67 \cdot 3$	$67 \cdot 3$	$68 \cdot 2$	$67 \cdot 2$	$67 \cdot 7$	$65 \cdot 3$	67.6	67.18
16	$6,6 \cdot 9$	$67 \cdot 1$	$67 \cdot 3$	$67 \cdot 3$	$67 \cdot 3$	$67 \cdot 4$	$67 \cdot 3$	$68 \cdot 3$	$67 \cdot 3$	$67 \cdot 7$	$65 \cdot 5$	$67 \cdot 6$	$67 \cdot 25$
17	67.0	67.0	$67 \cdot 3$	$67 \cdot 3$	67.4	67.5	$67 \cdot 3$	$68 \cdot 3$	$67 \cdot 3$	$67 \cdot 7$	$65 \cdot 6$	$67 \cdot 6$	$67 \cdot 29$
18	$66 \cdot 9$	$67 \cdot 1$	67.4	67.4	67.4	$67 \cdot 5$	$67 \cdot 3$	$68 \cdot 4$	$67 \cdot 3$	$67 \cdot 7$	$65 \cdot 7$	$67 \cdot 6$	$67 \cdot 32$
19	$66 \cdot 9$	$67 \cdot 2$	67.5	$67 \cdot 5$	$67 \cdot 3$	$67 \cdot 4$	$67 \cdot 4$	68.4	67.4	$67 \cdot 7$	$65 \cdot 7$	$67 \cdot 7$	$67 \cdot 34$
20	67.0	$67 \cdot 2$	67.5	$67 \cdot 6$	$67 \cdot 3$	$67 \cdot+$	$67 \cdot 4$	$68 \cdot 4$	$67 \cdot 4$	$67 \cdot 7$	$65 \cdot 8$	$67 \cdot 7$	$67 \cdot 36$
21	67.0	$67 \cdot 1$	$67 \cdot 6$	67.6	$67 \cdot 3$	$67 \cdot 5$	$67 \cdot 4$	$68 \cdot 5$	$67 \cdot 4$	$67 \cdot 7$	$65 \cdot 9$	$67 \cdot 7$	67.41
22	$67 \cdot 1$	$6,7 \cdot 2$	67.6	67.6	$6,7 \cdot 4$	67.5	$67 \cdot 5$	$68 \cdot 4$	$67 \cdot 4$	$67 \cdot 7$	$65 \cdot 9$	$67 \cdot 8$	$67 \cdot 43$
23	$67 \cdot 2$	$6.7 \cdot 3$	67.6	67.6	67.4	$67 \cdot 5$	6.7 .5	$68 \cdot+$	$67 \cdot 4$	67.7	$65 \cdot 9$	$67 \cdot 8$	67.44

Table XVIII.-Values of the Coefficients and Phase Angles in the Periodical Expression.

$$
\mathrm{V}_{\mathrm{t}}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+a_{3} \cos 3 t+b_{3} \sin 3 t+a_{4} \cos 4 t+b_{4} \sin 4 t
$$

$$
=m+c_{1} \sin \left(t+a_{1}\right)+c_{2} \sin \left(2 t+a_{2}\right)+c_{3} \sin \left(3 t+a_{3}\right)+c_{4} \sin \left(4 t+a_{4}\right),
$$

in which t represents the time from the middle of the hour commencing at Greenwich mean midnight converted into arc at the rate of 15° to each hour, and V_{t} the annual or monthly mean hourly value of the magnetic element at time t, as given in Tables II., VI., and X. The coefficients, a, b, c, are given in units of $1 \gamma\left(0 \cdot 00001\right.$ C.G.S. unit) for N.F. and V.F. and in minutes of $\operatorname{arc}\left(\mathrm{I}^{\prime}=5 \cdot 39 \gamma\right)$ for declination.
If the inequalities are expressed relative to time reckoned from apparent midnight, the new phase angles, $a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}$, may be obtained from $\alpha_{1}, a_{2}, \alpha_{3}, a_{4}$ by adding respectively $a, 2 a, 3 a, 4 \alpha$, the value of α for each month being as follows :-

Jan. $+2^{\circ} \cdot 19^{\prime}$.	Apr. $+0^{\circ} \cdot 4^{\prime}$.	July $+1^{\circ} \cdot 21^{\prime}$.	Oct. - $3^{\circ} \cdot 28^{\prime}$.
Feb. $+3^{\circ} \cdot 29^{\prime}$.	May - $0^{\circ} \cdot 52^{\prime}$.	Aug. $+0^{\circ} .59^{\prime}$.	Nov. - $3^{\circ} \cdot 77^{\prime}$.
Mar. $+2^{\circ} \cdot 12^{\prime}$.	June $+0^{\circ} \cdot 4^{\prime}$.	Sept. - $\mathrm{I}^{\circ} \cdot 1 \mathrm{I}^{\prime}$.	Dec. -- $1^{\circ} \cdot 6^{\prime}$.

Month, 1915.	a_{1}	b_{1}	a_{2}	b_{2}	a_{3}	b_{3}	a_{4}	b_{4}	c_{1}	α_{1}	c_{2}	α_{2}	c_{3}	α_{3}	c_{4}	α_{4}
	Declination West.															
January.	-1.40	-0.13	+0.52	+0.32	-0.18	+ 0.21	+0.2	--0.06	1.41	264.7	0.61	$58 \cdot 4$	0.28		0.23	$10^{\circ} 5 \cdot 3$
February.	- I.98	-0.27	+0.88	+0.30	-0.38	+0.13	+o.18	0.00	$2 \cdot 00$	$262 \cdot 2$	0.93	71.2	$0 \cdot 40$	$288 \cdot 9$	$0 \cdot 18$	90.0
March .	-2.63	- $\mathrm{I} \cdot 2.5$	+1.33	+ I.50	-0.96	-0.27	+0.47	+0.14	2.91	244.6	$2 \cdot 00$	$41 \cdot 6$	I.00	$254 \cdot 3$	0.49	$73 \cdot 4$
April.	-2.56	-2.15	+1.57	+ I 78	-0.85	-0.68	+0.30	+0.12	$3 \cdot 34$	230.0	$2 \cdot 37$	$41 \cdot 4$	I. 09	$231 \cdot 3$	0.32	$68 \cdot 2$
May.	-2.22	-2.23	+1.82	+ 1.26	-0.79	-0.12	+0.24	$+0.02$	$3 \cdot 15$	224.9	$2 \cdot 21$	$55 \cdot 3$	0.80	261.4	0.24	$85 \cdot 2$
June.	-2.43	-2.95	+1.94	+ $\mathrm{I} \cdot 32$	-0.90	-0.24	-0.02	-0.01	$3 \cdot 82$	219.5	$2 \cdot 35$	$55 \cdot 8$	0.93	$255 \cdot 1$	0.02	243.4
July.	-2.49	-2.86	+2.30	+ I 127	-0.89	-0.25	$+0.08$	$+0.04$	$3 \cdot 79$	221.0	2.63	$6 \mathrm{I} \cdot \mathrm{I}$	0.92	254.3	0.09	63.4
August.	-2.76	-2.24	$+2.25$	+ I .08	- I-10	-0.27	+0.12	$+0.03$	$3 \cdot 55$	$230 \cdot 1$	$2 \cdot 50$	$64 \cdot 4$	I-13	$256 \cdot 2$	$0 \cdot 12$	$76 \cdot 0$
September	-2.93	-I.09	+1.79	$+0.95$	-1.04	-0.22	$+0.46$	+0.12	$3 \cdot 13$	$249 \cdot 6$	2.03	$62 \cdot 0$	I. 06	$258 \cdot 1$	0.48	$75 \cdot 4$
October.	-2.98	-0.3	+1.09	+1.43	- 1.07	-0.57	+0.40	+0.03	3.00	$264 \cdot 1$	I. 80	$37 \cdot 3$	I. 21	$242 \cdot 0$	0.40	$85 \cdot 7$
November	-2.66	$+0.47$	+0.70	$+0.77$	-0.17	$+0.03$	$+0.25$	+0.08	$2 \cdot 70$	$280 \cdot 0$	1.04	$42 \cdot 3$	$0 \cdot 17$	280.0	0.26	$72 \cdot 3$
Decembe	- 1.70	-0.01	+0.48	$+0.57$	-0.19	+0.07	+0.15	$+0.02$	1.70	$270 \cdot 0$	0.75	$40 \cdot 1$	0.20	$290 \cdot 2$	- 15	$82 \cdot 4$
For the Year	-2.39	- $\mathrm{I} \cdot 25$	+ I. 39	+1.04	--0.7	-0.18	+0.	$+0.04$	2.70	$242 \cdot 4$	1.72	53.2	0.73	$255 \cdot 8$	0.24	$80 \cdot 5$
	North Force.															
Sanuary.	$+4.9$	+ 2.2	-4.0	- 0.3	+ $\mathrm{O} \cdot \mathrm{I}$	- 1.5	+ 0.2	+ III	$5 \cdot 4$	$65 \cdot 8$	$4 \cdot 0$	265.7	I 5	$176 \cdot 2$	I•I	$10 \cdot 3$
February	+ 7.5	+ 1.6	- 4.1	- 0.6	+ I•I	- $\mathrm{I} \cdot 8$	0	+ I.I	$7 \cdot 7$	$78 \cdot 0$	$4 \cdot 1$	261.7	$2 \cdot 1$	$148 \cdot 6$	I•I	$360 \cdot 0$
March	$+14.3$	- I.8	- $6 \cdot 7$	+ 1.4	+ $2 \cdot 2$	- 3.5	-0.5	+ 1.3	14.4	$97 \cdot 2$	$6 \cdot 8$	281.8	4-1	147.8	1.4	$339 \cdot 0$
April	+ 12.6	- I.1	- $7 \cdot 8$	-0.3	+ 3.4	- 1.7	+ 0.3	+ 0.6	$12 \cdot 6$	95.0	$7 \cdot 8$	$267 \cdot 8$	$3 \cdot 8$	11 $6 \cdot 6$	0.7	$26 \cdot 6$
May.	+11.5	- 5.5	- $6 \cdot 2$	+ 1.5	+ 0.5	- 0.6	+0.7	-0.5	12.7	115.6	$6 \cdot 4$	283.6	0.8	$140 \cdot 2$	0.9	125.5
June.	$+16 \cdot 7$	- $7 \cdot 2$	- 9.2	+ 4.2	+ 1.0	- I.6	+ I	- 0.3	$18 \cdot 2$	113.3	10.I	294.5	1.9	148.0	1.4	$102 \cdot 1$
July.	$+14.3$	-6.4	- 8.2	+ 3.2	+ 0.4	- 2.0	$+0.6$	+ 0.4	$15 \cdot 7$	$114 \cdot 1$	$8 \cdot 8$	$29 \mathrm{I} \cdot 3$	$2 \cdot$	168.7	0.7	$56 \cdot 3$
August.	+17.3	- $6 \cdot 5$	-7.2	+ 2.7	0.0	- 1.8	+ 0.8	+ $0 \cdot 1$	$18 \cdot 5$	110.6	$7 \cdot 7$	290.6	1.8	$180 \cdot 0$	0.8	82.9
Septembe	+16.5		-- 5.3	+ 2.7	-0.3	- 2.0	+ 0.	+0.4	$16 \cdot 9$	102.6	$5 \cdot 9$	297.0	$2 \cdot 0$	$188 \cdot 5$	0.6	$45 \cdot 0$
October.	+14.1	+ 1.0	-4.8	+ 0.4	+ 1.2	- 3.0	+ 0.8	+ 0.9	14.1	$85 \cdot 9$	$4 \cdot 8$	$274 \cdot 8$	$3 \cdot 2$	$158 \cdot 2$	I-2	41.6
November		$1-0.7$		0.0	-0.3		-0.3	$\div 0.2$	II 5	93.5	4.4	$270 \cdot 0$	$2 \cdot 3$	187%	0.4	$303 \cdot 7$
December	+ +	+ 1	-3.0	- 0.6	- 0.1	- $\mathrm{I} \cdot 8$	+ 0.2	-0.6	$4 \cdot 8$	$66 \cdot 6$	$3 \cdot 1$	258.7	I. 8	183.2	0.6	161.6
For the Year.	$+$	$1-2$	-6.0	$\underline{+1 \cdot I}$	+ 0.8	$-\mathrm{I} \cdot 9$	$+0$	+0.4		100.1	$6 \cdot 1$	$280 \cdot 6$	2•I	156.9	0.6	$39 \cdot 9$
	Vertical Force.															
January		-0.7		$+0.0$			0		0.9	139.4	I-3	315.0	$0 \cdot 5$	143.1	0.2	$360 \cdot 0$
February	+ 1.8	- $3 \cdot 6$	- 3.0	$+0.6$	- 0.1	-0.5	+ 0.3	0.0	$4 \cdot 0$	153%	$3 \cdot 1$	$28 \mathrm{I} \cdot 3$	$0 \cdot 5$	191.3	0.3	$90 \cdot 0$
March	+ 1.9	-3.3	- $5 \cdot 2$	+ $0 \cdot+$	+ $2 \cdot 1$	-0.1	-0.5	+ O.I	$3 \cdot 8$	$150 \cdot 1$	$5 \cdot 2$	$27+4$	$2 \cdot 1$	$92 \cdot 7$	$0 \cdot 5$	281.3
April.	+ 7.6	-3.6	-7.2	-0.1	$+\mathrm{I} \cdot 8$	-0.3	- $\mathrm{I} \cdot$	+ 0.1	$8 \cdot 4$	$115 \cdot 3$	$7 \cdot 2$	269.2	1.8	99.5	$1 \cdot 3$	$274 \cdot 4$
May.	$+7.8$	$-+5$	- 7.2	+ 1.5	+ 1.5	-- 0.9	- 0.1	+0.1 +0.3	$9 \cdot 0$	120.0	$7 \cdot 4$	28.1.8	I.7	121.0	$0 \cdot 3$	$3+1 \cdot 6$
June	$+{ }^{+} \cdot 2$	- 8.6	- 6.7	+ $\mathrm{I} \cdot 6$	+ $2 \cdot 2$	-0.7	- 0.6	- 0.6	$9 \cdot 6$	$15+0$	$6 \cdot 9$	283.4	$2 \cdot 3$	107.7	0.8	225.0
July.	+ 5.2	- +3	-6.5	+ $\mathrm{I} \cdot 6$	+ $2 \cdot 1$	+ 0.1	-- 0.7	-0.4	$6 \cdot 7$	129.6	$6 \cdot 7$	$283 \cdot 8$	$2 \cdot 1$	$87 \cdot 3$	0.8	299.7
August.	+2.0	--3.7	- 6.3	+ 1.5	+ 2.6	--1.3	- 0.0	-0.6	$4 \cdot 2$	$151 \cdot 6$	$6 \cdot 5$	$283 .+$	$2 \cdot 9$	$116 \cdot 6$	I•I	303.6
September.	+1.6	$5 \cdot 0$	-3.7	+ 2.0	+ $2 \cdot 2$	- 0.5	-0. 0	+0.1	$5 \cdot 2$	162.3 188.8	$4 \cdot 2$	298.4	$2 \cdot 3$	102.8	$0 \cdot 5$	281.3
October.	- 1.1	-7.1	- 4	+ 1.7	$+2.5$	--0.5	- 0.8	-0. 0	$7 \cdot 2$	188.8	+5	288.0	$2 \cdot 5$	101.3	0.9	$243 \cdot+$
November		-6.8	- I. 8	+ 2.0	+ 0.1			+0.4	$7 \cdot 6$	205.9	2.7 0.6	318.0	$0 \cdot 3$	161.6	0.4	$346 \cdot 0$
December	$\cdots 0 \cdot 5$	-3.5	-0.6	$+0.1$	-0.2	- 0.3	$+0.3$	$+0.1$	$3 \cdot 5$	188.1	0.6	$279{ }^{\circ} 5$	0.4	213.7	$0 \cdot 3$? 1.6
For the Year	$+2$	$-+6$	+	$+\mathrm{I} \cdot \mathrm{I}$	$1+1+$	-0.5	-0.	-0.1	$5 \cdot 1$	153•1	+6	$28+1$	I $\cdot 5$	108.0	$0 \cdot 4$	261.9

Table XiX.-Results of Determinations of the Absolute Value of Horizontal Magnetic Force in the Year 1915, from Observations made with the Gibson Instrument in the Magnetic Pavilion.

The initials B, E, and J are those of Messrs. Bryant, Edney, and Jones.

$\begin{aligned} & \text { Greenwich } \\ & \text { Oivil Time, } \end{aligned}$ 1915	Magnetic	Observer.	$\begin{gathered} \text { Greenwich } \\ \text { Civil Time, } \\ \text { I995. } \end{gathered}$	Magnetic	Observer.	$\begin{gathered} \text { Greenwich } \\ \text { Crivilime } \\ \text { Cg95. } \end{gathered}$	Magnetic	Observer.	Greenwich Civil Time 1915.	Magnetic Dip.	Observer.
	6\%. 5i'5	J			L	$\begin{array}{ccc}\text { d } & h \\ \text { 2I. } & 12\end{array}$	66. $51 \cdot 2$	J	d h 20. 15 23	66. $52 \cdot 0$	B
	66. $53 \cdot \mathrm{I}$	E	10. 13	66. 50.6	J	24. 13	66. $51 \mathrm{I} \cdot \mathrm{I}$	B	23. 13	66. $56 \cdot 5$	B
	66. 51 -3	B	12. 13	66. 50.6	B	27. 12	66. $52 \cdot 7$	J	25. 12	66. $53 \cdot 3$	J
	66. $51 \cdot 8$	J	15.12	66. $51 \cdot 2$	E	29. 13	66. $52 \cdot 4$	B	27.15	66. $54 \cdot 1$	B
	66. $50 \cdot 5$	B	17. 13	66. $52 \cdot 7$	J	31. 12	66. $51 \cdot 3$	B	30. 15	66. $54 \cdot 3$	B
	66. $50 \cdot 7$	E	19. 12	66. $52 \cdot 8$	E						
	66. $51 \cdot 3$	J	21. 13	66. $51 \cdot 5$	B	Aug. 3. 12	66. $54 \cdot 4$	J	Oct. 2. 13	66. $52 \cdot 8$	J
	66. $51 \cdot 3$	J	24. 12	66. 50.9	J	5. 13	66. $53 \cdot \mathrm{I}$	B	4. 12	66. 52.0	B
	66. $50 \cdot 9$	E	26. 12	66. $52 \cdot 4$	E	7.12	66. $52 \cdot 9$	J	7. 15	66. $52 \cdot \mathrm{I}$	B
	66. $50 \cdot 2$	B	28. II	66. $51 \cdot 0$	B	9. 14	66. $51 \cdot 5$	J	9. 13	66. 51.7	J
	66. $51 \cdot 2$	B				11. 12	66. $52 \cdot 7$	J	II. 13	66. $52 \cdot 9$	B
	66. $50 \cdot 6$	E	May 1. 13	66. $49 \cdot 3$	J	$\begin{array}{lll}13 . & 15 \\ 14 & 15 \\ 16 .\end{array}$	66. $51 \cdot 2$	J	14. II	66. $53 \cdot \mathrm{I}$	B
	66. $50 \cdot 5$	J	3. 12	66. $51 \cdot 7$	B		66. $51 \cdot 9$	J	16. 13	66. $52 \cdot 5$	J
	66. 50.8	B		66. $66.51 \cdot 3$ 66. 0.6	$\stackrel{\mathrm{E}}{\mathrm{J}}$	16. 13 17. 12	66. $\begin{aligned} & \text { 1 } 1 \cdot 6 \\ & 66.52 \cdot 4\end{aligned}$	$\stackrel{\text { B }}{ }$		66. $54 \cdot \mathrm{I}$	B ${ }_{\text {B }}$
	66. 51.0	J	10. 12	66. $49 \cdot 8$	B	19. II	66. 51.7	B	23. 12	66. 53.8	J
	66. $51 \cdot 2$	J	13.12	66. $50 \cdot 3$	E	19. 11	66. 51.5	B	25. 13	66. 55.9	B
	66. $51 \cdot 1$	J	15.13	66. 51.0	J	19. II	66. $52 \cdot 4$	B	27.12	66. $54 \cdot 8$	B
	66. $50 \cdot 5$	J	17.12	66. $53 \cdot 4$	E	19. 12	66. $52 \cdot 2$	B	30. 12	66. $52 \cdot 2$	J
	66. 51.0	J	19. 16	66. $49 \cdot 4$	J	19. 12	66. $52 \cdot 2$	B			
	66. $51 \cdot 3$	E	22. 12	66. $51 \cdot 1$	B	19. 12	66. $52 \cdot 9$	B	Nov. 1. 15	66. $56 \cdot 2$	B
	66. 51-1	J	25. 13	66. $49 \cdot 9$	E	19. 13	66. $52 \cdot 4$	B	2. 13	66. $53 \cdot 0$	B
	66. 5	B	27. II	66. $50 \cdot 9$	B	19. 13	66. $52 \cdot 9$	B	4. 12	66. $52 \cdot 9$	B
	66. $51 \cdot 9$	E	29. 12	66. $50 \cdot 6$	E	20. II	66. 51.8	J	7. 12	66. 48.9	J
	66. $50 \cdot 6$	J	31. 13	66. $49 \cdot 6$	B	20	66. $51 \cdot 8$	J	8. 13	66. $54 \cdot 0$	B
	66. $51 \cdot 1$	B				20	66. $50 \cdot 7$	J	II. I 3	66. $52 \cdot 7$	B
	66. 51-4	E	June 3. II	66. $50 \cdot 9$	E	20. 13	66. 51.0	J	13.12	66. 52.6	J
	66. $51 \cdot 4$	J	5. II	66. $50 \cdot 3$	J	20. 13	66. $51 \cdot 3$	J	15.15	66. $52 \cdot 2$	B
	66. $51 \cdot \mathrm{I}$	B	7. 13	65. $50 \cdot 5$	B	20. I3	66. 51.7	J	17. 15	66. $56 \cdot 0$	B
	66. $52 \cdot 2$	E	10. II	66. $51 \cdot 1$	E	21. 12	66. $50 \cdot 6$	J	20. 13	66. $53 \cdot 6$	J
	66. $51 \cdot 2$	J	12. 12	66. 51.4	J	21. 12	66. $50 \cdot 6$	J	22. 13	66. $53 \cdot 8$	B
			14. 13	66. $51 \cdot 5$	E	21. 12	66. $49 \cdot 9$	J	25.15	66. $50 \cdot 8$	B
	66. $50 \cdot 8$	B	16. 12	66. $52 \cdot 0$	J	2 I .12	66. $49 \cdot 3$	J	27. 13	66. $52 \cdot 5$	J
	66. $50 \cdot 9$	E	19. 12	66. $54 \cdot 7$	E	21. 13	66. $49 \cdot 3$	J	29. 13	66. 517	B
	61. 51.7	J	21. 13	66. $53 \cdot 9$	B	21. 13	66. $49 \cdot 2$	J			
	66. 54.0	B	24. Io	66. $54 \cdot 5$	B	23. 13	66. 51.0	B	Dec. 2. 13	66. $51 \cdot 4$	B
	66. $53 \cdot 7$	E	26. 12	66. $52 \cdot \mathrm{I}$	J	25. 13	66. 51.6	J	4. II	66. $49 \cdot 2$	J
	66. 51.2	J	29. 12	66. $52 \cdot 9$	J	28. 12	66. 53.5	B	6. 13	66. $54 \cdot 2$	B
	66. $51 \cdot 8$	B				30. 13	66. $53 \cdot 5$	B	9. 12	66. $52 \cdot 2$	J
	66. 51.0	E	July 1. 13	66. 52.2	B				II. 13	66. $52 \cdot 0$	J
	66. $51 \cdot 4$	J	3. 12	66. $53 \cdot 6$	J	Sept. 1. 12	65. $51 \cdot 9$	B	13. 16	66. 51-I	B
	66. $53 \cdot 5$	B	5. 13	66. $52 \cdot 4$	B	4. 12	$66 \quad 52 \cdot 3$	B	16. 13	66. $53 \cdot 9$	B
	66. $52 \cdot 7$	B	8. 13	66. 51 I 2	B	6. 13	66. $52 \cdot 7$	B	18. 12	66. $51 \cdot 6$	J
	66. 50.7	,	10. 13	66. 51.0	J	9. 12	66. $52 \cdot 5$	B	20. 13	66. $51 \cdot 2$	B
	66. 50.6	B	12. 13	66. $54 \cdot 1$	B	II. 12	66. $53 \cdot \mathrm{I}$	B	2 I .12	66. $50 \cdot 8$	J
	66. $5^{\text {I } \cdot 8}$	E	15. 12	66. $52 \cdot 6$	B	13. 11	66. 5 1.6	J	28. 12	66. $52 \cdot 4$	J
			17. 12	66. 51.7	J	15. 13	66. 52.6	J	30. 13	66. $51 \cdot 1$	B
$\begin{array}{ll} \text { Apr. } \\ 6 . \\ 6.10 \end{array}$	66. $52 \cdot 7$ 66. $52 \cdot 4$	J	19. 13	66. $51 \cdot 3$	B	18. 13	66. $52 \cdot 3$	B	31. 13	66.51.8	B

The initials B, E, and J are those of Messrs. Bryant, Edney, and Jones.
Table XXI.-Annual Summary of the Magnetic Elements.

Month, 1915.	Mean Value of				Monthly Mean Diurnal Range of			Sum of Hourly Deviations from Mean of		
	Westerly $\begin{gathered}\text { Weclination. }\end{gathered}$	$\begin{aligned} & \text { North } \\ & \text { lorce } \\ & \text { C.G.S. } \end{aligned}$	Vertical Force C.G.S.	Dip.	Declination.	North Force.	Vertical Force.	Declinatiou.	North Force	Vertical Force.
January	15. ${ }^{\circ} \mathrm{I} \cdot 2$	- 17885	-43316	66. $51 \cdot 1$	$4^{\prime} \cdot 1$	17γ	5γ	$22 \cdot 6$	$\mathrm{IO}_{4} \gamma$	25γ
February	15.0.6	-17883	-43301	66. $51 \cdot 3$	$5 \cdot 4$	20	13	$32 \cdot 4$	136	70°
March . .	15. $0 \cdot 5$	-17884	-43333	66. $5 \mathrm{I} \cdot 8$	9.0	37	18	$52 \cdot 0$	233	90
April	14. 59.1	-17890	-43314	66. $5 \mathrm{I} \cdot 8$	10.4	33	29	$59 \cdot 4$	221	151
May.	14. $58 \cdot 0$	-17893	-43301	66. $50 \cdot 6$	$9 \cdot 7$	32	30	54.0	211	155
June	14. $56 \cdot 9$	- 17882	-43303	66. $52 \cdot 2$	II. 1	47	32	$62 \cdot 9$	310	167
July.	14. $55 \cdot 5$	-17884	-43309	66. $52 \cdot 1$	11.6	40	26	$62 \cdot 8$	260	128
August.	14. 54.4	-17881	-43310	66. $51 \cdot 7$	11.1	43	23	$60 \cdot 9$	302	110
September	14. $53 \cdot 7$	-17885	-43335	66. $53 \cdot \mathrm{I}$	$8 \cdot 7$	38	20	$52 \cdot 3$ $51 \cdot 5$	270	94
October. .	14. $53 \cdot 1$	- 17883	-43331	66. $53 \cdot 1$	$8 \cdot 7$ 7.1	33	22	51.5 40.8	231	127
November	14. $52 \cdot 7$	-17871	+43320 +43300	66. 66. $562 \cdot 9$	$7 \cdot 1$ $4 \cdot 6$	30 15	17	$40 \cdot 8$ $35 \cdot 7$	188 85	124 61
December	14. $51 \cdot 9$	-17885	-43300	66. $5 \mathrm{I} \cdot 8$	$4 \cdot 6$	15	10	$35 \cdot 7$	85	61
The Year	14. $56 \cdot 5$	$\cdot 17884$	43314	66. $52 \cdot 0$	$8 \cdot 46$	$32 \cdot 1$	$20 \cdot 4$	$48 \cdot 94$	212.6	$108 \cdot 5$

ROYAL OBSERVATORY, GREENWICH.

MAGNETIC DISTURBANCES.

1915.

Magnetic Disturbances in Declination, Horizontal or North Force, and Vertical Force, recorded at the Royal Observatory, Greenwich, in the Year 1915.

The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 20γ in Horizontal or North Force, or 12γ in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in Horizontal, North, and Vertical Force are expressed in C. G. S. units. When any one of the three elements is not specifically mentioned, it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated. The change from Horizontal Force to North Force was made on March 3.

The term "wave" is used to indicate a movement in one direction and return; "double wave" a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movements in the same direction ; " oscillations " a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase, and $-a$ decrease of the magnetic element. In the case of oscillations the sign \pm denotes positive and negative movements of generally equal extent.

Magnetic movements which do not admit of brief description in this way are exhibited on accompanying plates.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from 0 to 24).
1915.

January $\quad I^{d} 2^{\frac{1}{2}}$ h to $3 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. $\quad 1 \frac{1}{2}^{\mathrm{h}}$ to 1^{h} Irregular double wave in Dec., with peaks at $\mathrm{I}^{\frac{1}{4} \mathrm{~h}}\left(+7^{\prime}\right)$ and $143^{\frac{3}{4}}\left(-4^{\prime}\right) .13^{\mathrm{h}}$ to 15^{h} Wave in H.F. $(-45) .15 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to ${ }^{1} \frac{1}{2}^{\frac{1}{\mathrm{~h}}}$ Long flat-topped wave in H.F. $(-20) . \quad 12^{\mathrm{h}}$ to 2^{h} Wave in V.F. $(+35)$.
 Oscillations in Dec. 14^{h} to 15^{h} Wave in H.F., with nett increase $(-50,+80) 14^{\mathrm{h}}$ to $15 \frac{1}{2} \mathrm{~h}$ Double wave in Dec. $\left(+3^{\prime},-10^{\prime}\right)$. ${ }^{15 \frac{1}{2} \mathrm{~h}}$ to 22^{h} Three waves in H.F. (- $40,-35,-25$). $15 \frac{1 \mathrm{~h}^{\mathrm{h}}}{}$ to 20^{h} Irregular double wave in Dec. $\left(-3^{\prime},+4^{\prime}\right)$. 20^{h} to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. 12^{h} to 15^{h} Increase in V.F. $(+25)$.
$6^{\mathrm{d}} 0^{\mathrm{h}}$ to 1^{h} Wave in Dec. $\left(+6^{\prime}\right)$ and in H.F. $(+15)$. $0 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ to $0 \frac{3 \mathrm{~h}}{\mathrm{~h}}$ Decrease in V.F. $(-12) . \quad 1^{\mathrm{h}}$ to 3^{h} Wave in Dec. $\left(-4^{\prime}\right)$.
$7^{\mathrm{d}} 0^{\mathrm{h}}$ to $22^{\frac{1}{\mathrm{~h}}}$ Wave in Dec. $\left(+3^{\prime}\right)$ and in H.F. $(+20)$. 0^{h} to 2^{h} Decrease in V.F. $(-15) . \quad 4^{\mathrm{h}}$ to 7^{h} Double wave in H.F. $(-20,+20)$. $12 \frac{1}{2} \mathrm{~h}$ to $132^{\frac{1}{h}}$ Increase in V.F. $(+12) . \quad 13^{\mathrm{h}}$ to 14^{h} Wave in H.F. (-25) and decrease in Dec. $\left(-3^{\prime}\right)$.
$8^{\mathrm{d}} 4^{\text {h }}$ to $10^{\text {h }}$ Wave in H.F. $(+20)$. 10^{h} to $15^{\text {h }}$ Wave in Dec. $\left(+5^{\prime}\right)$. $19^{\text {h }}$ to $20^{\text {h }}$ Wave in Dec. $\left(-5^{\prime}\right)$ and in H.F. $(+20)$.
$9^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $16^{\frac{1}{2}}$ Wave in Dec. $\left(-3^{\prime}\right)$, with slow rise and rapid fall, and in H.F. (-20).
$12^{\mathrm{d}} 12^{\mathrm{h}}$ to 20^{h} Steady rise in H.F. $(+20)$. 20^{h} to $22 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Decrease in H.F. $(-60) . \quad 22 \frac{1_{2}^{\mathrm{h}}}{}$ to $22 \frac{3}{4} \mathrm{~h}^{\mathrm{h}}$ Increase in H.F. $(+35)$, diminishing again through 20γ to $23^{\frac{1}{4} \text { h }}$, with further rise from $o^{\text {h }}$ to $0 \frac{1}{2}^{\text {h }}(+35)$ and
 $23_{4}^{\mathrm{h}}, 0 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}\left(-6^{\prime},-7^{\prime},-4^{\prime},-7^{\prime}\right)$ and minima at $22^{\mathrm{h}}, 23^{\mathrm{h}}, 24^{\mathrm{h}}\left(-5^{\prime},-2^{\prime},-3^{\prime}\right)$. 20^{h} to 24^{h} Increase in V.F. (+ 19).
 is from 25γ to 20γ less than the normal. $13^{\mathrm{d}} 20^{\mathrm{h}}$ to $14^{\mathrm{d}} 6^{\mathrm{h}}$ Wave in V.F. (+15) with maximum at about $14^{\mathrm{d}} 1^{\mathrm{h}}$. $13^{\mathrm{d}} 2 \mathrm{I}_{2^{\mathrm{h}}}$ to $14^{\mathrm{d}} 7^{\mathrm{h}}$ Dec. oscillating below the normal, with maximum departures at $22^{\mathrm{h}}, 22 \frac{1 \mathrm{~h}}{4}, 23 \frac{1 \mathrm{~h}}{2}, 0^{\mathrm{h}}, 0 \frac{3 \mathrm{~h}}{4}, 2^{\mathrm{h}}, 2 \frac{3 \mathrm{~h}}{4}, 3 \frac{3 \mathrm{~h}}{} \mathrm{~h}\left(-5^{\prime},-4^{\prime},-4^{\prime},-4^{\prime},-7^{\prime},-4^{\prime},-4^{\prime},-2^{\prime}\right)$, and minimum departures at $22^{\frac{1}{4} \mathrm{~h}}, 23^{\frac{1}{4} \mathrm{~h}}, 23^{\frac{3 \mathrm{~h}}{4}}, 0 \frac{1 \mathrm{~h}}{4}, 1 \frac{1}{2}^{\frac{1}{2}}, 24^{\frac{1}{\mathrm{~h}}}, 3^{\frac{1 \mathrm{~h}}{}}\left(-2^{\prime},-1^{\prime},-2^{\prime},-3^{\prime}, 0^{\prime},-2^{\prime},-1^{\prime}\right)$.
$14^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}}$ to $22 \frac{1}{2} \mathrm{~h}$ Wave in H.F. $(+30)$ and oscillatory decrease in Dec. $\left(-4^{\prime}\right)$.
$17^{\mathrm{d}}{ }^{18 \frac{3 \mathrm{~h}}{4}}$ to 20^{h} Wave in H.F. $(-25) 19^{\mathrm{h}}$ to $20 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ Wave in Dec. $\left(-6^{\prime}\right) .20 \frac{1}{2}^{\mathrm{h}}$ to $2^{11_{2}}{ }^{\mathrm{h}}$ Decrease in V.F. (-13).
$20^{d} 10^{\mathrm{h}}$ to 13^{h} Loss of register in H.F. and V.F. 13^{h} to 22^{h} Steady increase of V.F. (+44). $192^{\frac{1}{\mathrm{~h}}}$ to 21^{h} Wave in H.F. (-20), in Dec. small.
$24^{\mathrm{d}} \mathrm{I} 4^{\mathrm{h}}$ to 18^{h} Wave in Dec. $\left(+4^{\prime}\right)$ and in H.F. (-20).
1915.
$25^{\mathrm{d}} 2^{\mathrm{h}}$ to 5^{h} Double wave in Dec. $\left(+5^{\prime},-9^{\prime}\right.$), the second wave lasting two hours and having a sharp peak $\left(-3^{\prime}\right)$ outstanding from the wave crest ; also double wave in H.F. $(-20,+45)$ with sharp double wave superposed on second crest. $2 \frac{1}{2}^{\mathrm{h}}$ to $3^{\frac{1}{4} \mathrm{~h}}$ Decrease in V.F. (- 12). 5^{h} to II^{h} Increase in Dec. $\left(+5^{\prime}\right)$ with superposed waves ($-4^{\prime},-3^{\prime}$) from $8 \frac{1 \mathrm{~h}}{}$ h to 10^{h}, , $\mathrm{o}^{\text {h }}$ to $11^{\mathrm{h}} .7^{\mathrm{h}}$ to $8 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. (-25). 11^{h} to 12^{h} Wave in H.F. (-25). $14 \frac{3 \mathrm{~h}}{4}$ to $15 \frac{3 \mathrm{~h}}{}{ }^{2}$ Wave in H.F. $(-20) .15 \frac{33^{4}}{4}$ to $18 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. (-60). $16 \frac{1}{2}$ h to 18^{h} Wave in Dec. $\left(-6^{\prime}\right)$. 19^{h} to $233^{\frac{1 \mathrm{~h}}{}}$ Triple wave in H.F., the initial and final waves being smali ($-20,-20$), and the central wave (+75) steep in rising, oscillatory in falling ; also irregular wave in Dec. (-12^{\prime}) with five subsidiary peaks on its sides. $15^{\text {h }}$ to 22^{h} Double-crested wave in V.F. $(+17,+18)$.
26d. $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to $20 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-11^{\prime}\right)$. 19^{h} to $19 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. $(+30)$. $19 \frac{3 \mathrm{~h}}{4}$ to $21 \frac{1 \mathrm{l}}{2} \mathrm{~h}$ Wave in H.F. (-25).
$27^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to 3^{h} Irregular double waves in Dec. $\left(+3^{\prime},-2^{\prime}\right)$ and in H.F. $(-15,+25)$. $\mathrm{I}_{2}^{\mathrm{h}}$ to 2^{h} Decrease in V.F. (-12).
$28^{\mathrm{d}}{ }^{1} 7^{\frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}}$ to 19^{h} Wave in Dec. $\left(-3^{\prime}\right)$. 22^{h} to $23^{\frac{1}{2} \mathrm{~h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$29^{\mathrm{d}} 14^{\mathrm{h}}$ to 18^{h} Wave in H.F. (-25). $20 \frac{1}{4}^{\mathrm{h}}$ to 22^{h} Wave in H.F. $(+20)$.
$3^{0^{d}} \frac{1}{2 h}$ to $2 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 2 \frac{1}{2}^{\frac{1 \mathrm{~h}}{}}$ to $23^{\frac{1}{2} \mathrm{~h}}$ Double-crested wave in Dec. $\left(-3^{\prime},-3^{\prime}\right)$ and in H.F. $(+18,+10)$.
 to $22 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ Wave in Dec. ($-1 \mathrm{I}^{\prime}$) with subsidiary peak $\left(-5^{\prime}\right)$ at 22^{h}, after the main peak at $2 \frac{1}{4} \mathrm{~h}$.
$2^{\mathrm{d}} 5^{\mathrm{h}}$ to $7^{\frac{1}{2} \mathrm{~h}}$ Wave in H.F. $(+20)$ and two small waves in Dec. $\left(+2^{\prime},+3^{\prime}\right)$.
$5^{\mathrm{d}} \circ^{\mathrm{h}}$ to 7^{h} Quadruple wave in H.F. $(+20,-15,+20,-15)$. o ${ }^{\mathrm{h}}$ to 2^{h} Double wave in Dec. $\left(+3^{\prime},-3^{\prime}\right)$. $0 \frac{1}{4}$ to $2 \frac{1}{4}$ Decrease in V.F. $(-12) .2^{h}$ to 3^{h} Wave in Dec. $\left(-3^{\prime}\right)$. 4^{h} to 7^{h} Double wave in Dec. $\left(-3^{\prime},+3^{\prime}\right)$. 11^{h} to 15^{h} Wave in H.F. (-25). 12^{h} to 13^{h} Wave in Dec. $\left(+3^{\prime}\right)$ followed by decrease $\left(-3^{\prime}\right)$ till 6^{h}.
$6^{\mathrm{d}}{ }^{17 \frac{1}{2}^{\mathrm{h}}}$ to ${ }^{19 \frac{1}{2}^{\mathrm{h}}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
 latory ($\pm 2^{\prime}$) decrease in Dec. $\left(-9^{\prime}\right)$ continued further $\left(-4^{\prime}\right)$ till $9^{d} 2^{\text {h }}$, with superposed wave $\left(+8^{\prime}\right)$ from $8^{d}{ }^{\frac{2}{2} \frac{3}{4}}$ to $9^{d} I^{h}$. Steady increase in V.F. $(+60)$ from $8^{d} I^{\text {h }}$ to $I^{\text {h }}$, followed by small decrease (-8) to 23^{h}, and further decrease (-18) to $22 \frac{3 \mathrm{~h}}{4}$.
$9^{d} 2^{\mathrm{h}}$ to $4^{\frac{1}{4} \mathrm{~h}}$ Increase in Dec. $\left(+7^{\prime}\right.$), followed by decrease (-3^{\prime}) to $4^{\frac{1}{2} \mathrm{~h}}$, and further increase ($+10^{\prime}$) to 14^{h}. $\quad 3^{\mathrm{h}}$ to 1^{h} Gradual increase in V.F. $(+25) . \quad 14^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Decrease in Dec. (-10^{\prime}) with superposed waves from 15^{h} to $17^{\mathrm{h}}\left(-4^{\prime}\right)$ and 17^{h} to $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}\left(-4^{\prime}\right)$. 15^{h} to 17^{h} Wave in V.F. (+15). 21^{h} to $233^{\frac{1}{\mathrm{~h}}}$ Irregular waves in Dec. $\left(-3^{\prime},-5^{\prime},+2^{\prime},-1^{\prime},+2^{\prime}\right)$ and in H.F. $(+20,+30,+20)$. $21^{\frac{1}{2}}$ h to 24^{h} Wave in V.F. (-12) with nett decrease (-18).
$12^{\mathrm{d}} 8^{\mathrm{h}}$ to $9 \frac{1}{2}^{\mathrm{h}}$, and 1^{h} to I^{h}, Waves in Dec. $\left(+3^{\prime},+3^{\prime}\right)$.
$13^{\mathrm{d}}{ }^{17 \frac{1 \mathrm{~h}}{4}}$ to 18^{h} Wave in Dec. $\left(-2^{\prime}\right)$ and in H.F. (-20).
$15^{\mathrm{d}} 14^{\frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}}$ to $16 \frac{1}{2} \mathrm{~h}$ Wave in H.F. (-20).

 in Dec., with superposed waves ($-2^{\prime},-4^{\prime}$). $22 \frac{12^{\mathrm{h}}}{}$ to 24^{h} Wave in Dec. $\left(+19^{\prime}\right)^{2}$ with nett decrease $\left(-7^{\prime}\right)$, followed by increase ($+18^{\prime}$) - oscillatory ($\pm \mathrm{I}^{\prime}$) to $20^{\mathrm{d}} 5^{\mathrm{h}},-$ until $20^{\mathrm{d}}{ }_{11} \mathrm{I}^{\mathrm{h}}$. $19^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Increase in V.F. $(+28)$, further increase $(+21)$ to $17 \frac{11}{4}$, decrease (-10) to $22 \frac{11}{2}$, further decrease (-25) to $23 \frac{1 \mathrm{~h}}{4}$, increase $(+8)$ to $23 \frac{3 \mathrm{~h}}{4}$, decrease $(-2 \mathrm{I})$ to $20^{\mathrm{d}} 3^{\mathrm{h}}$, Increase $(+19)$ to $20^{\mathrm{d}} 7^{\mathrm{h}}$.
$20^{\mathrm{d}} 1^{\mathrm{h}}$ to 14^{h} Increase in H.F. $(+25)$. 14^{h} to 15^{h} Wave in H.F. (-25). 14^{h} to $16 \frac{1}{2} \mathrm{~h}$ Decrease in Dec. $\left(-7^{\prime}\right) . \quad 21^{\frac{1}{4} h}$ to $23^{\text {h }}$ Wave in Dec. $\left(-10^{\prime}\right)$, with steep rise, and small subsidiary peak near its close $\left(-3^{\prime}\right)$; double wave in H.F. $(+40,-30)$ with nett decrease (-15).
$2 \mathrm{I}^{\mathrm{h}} \mathrm{II}^{\mathrm{d}}$ to $\mathrm{I} 3^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$ and in H.F. (-30). $144^{\frac{1}{2}}$ to $15 \frac{1}{2} \mathrm{~h}$ Wave in H.F. (-20) and decrease in Dec. $\left(-5^{\prime}\right)$. $17^{1 \frac{1}{2}}$ h to $19^{\text {h }}$ Wave in Dec. $\left(-9^{\prime}\right)$ with foot-wave at commencement (-2^{\prime}), and double wave in H.F. $(-15,+25)$. 12^{h} to $1^{16 \mathrm{~h}}$ Increase in V.F. $(+27)$.
$22^{\mathrm{d}} 19 \frac{3 \mathrm{~h}}{4}$ to $22 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ Decrease in H.F. (-55) with superposed double wave $(-20,+15)$; large wave in Dec. $\left(-16^{\prime}\right) . \quad 22 \frac{1}{2} \mathrm{~h}$ to 23^{h} Decrease in V.F. (-12). $22^{\mathrm{d}} 22 \frac{1^{\mathrm{h}}}{}$ to $23^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Wave in H.F. with two peaks $(+65,+30) . \quad 22^{\mathrm{d}} 22 \frac{1 \mathrm{~h}}{}$ to $23^{\mathrm{d}} \mathrm{I}^{\frac{1}{2} \mathrm{~h}}$ Wave in Dec. $\left(-10^{\prime}\right)$ steeply rising, with reversed wave $\left(+3^{\prime}\right)$ on otherwise level peak (23^{h} to I^{h}), and nett decrease (-3^{\prime}).

 18^{h} Wave in H.F. (-35). $17 \frac{11^{\mathrm{h}}}{}$ to 19^{h} Wave in Dec. (-12) with steep rise and subsidiary peak on the falling side. 18^{h} to $19 \frac{1 \mathrm{~h}^{\mathrm{h}}}{}$ Wave in H.F. (-25) followed till 22^{h} by oscillatory increase $(+25)$. 22^{h} to 23^{h} Wave in H.F. $(+25) . \quad 23^{\mathrm{d}} 19^{\mathrm{h}}$ to $24^{\mathrm{d}} 33^{\frac{1}{2} \mathrm{~h}}$ Steady decrease in V.F. (-35).
1915.

February $24^{\mathrm{d}} 2 \frac{3 \mathrm{~h}}{4}$ to 4^{h} Wave in H.F. (-20). $3 \frac{3 \mathrm{~h}}{4}$ to 5^{h} Wave in Dec. $\left(+4^{\prime}\right) .7^{\mathrm{h}}$ to $7^{\frac{1}{2} \mathrm{~h}}$ Decrease in H.F. (-20). $9^{\frac{1}{4} h}$ to 10^{h} Decrease in H.F. (-40). 12^{h} to 13^{h} Wave in H.F. (-20). 16^{h} to $17^{\frac{1}{2} \mathrm{~h}}$ Wave in H.F. $(-25) . \quad 16 \frac{1}{2} \mathrm{~h}$ to $18 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right)$. $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to $19 \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(-5^{\prime}\right)$. $18 \frac{3 \mathrm{~h}}{4}$ to $19 \frac{1}{4} \mathrm{~h}$ Increase in H.F. $(+55)$. 19^{h} to 22^{h} Decrease in V.F. $(-25) . \quad 19 \frac{1}{4}^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Three waves in H.F. $(-25,-20,-25)$; oscillatory decrease in Dec. $\left(-8^{\prime}\right) .2 I^{\text {h }}$ to $24^{\text {h }}$ Oscillatory decrease in H.F. (-50) and increase in Dec. $\left(+7^{\prime}\right)$.
$25^{\mathrm{d}} 2 \frac{3 \mathrm{~h}}{4}$ to 4^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $9 \frac{1}{2} \mathrm{~h}$ to $10 \frac{1}{2} \mathrm{~h}$ Wave in H.F. (-30). $12 \frac{3}{4}$ h to $13 \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(+3^{\prime}\right)$. I^{h} to $2 I^{h}$ Irregular wave in V.F. $(+15) . \quad 15 \frac{1}{2}$ h to $16 \frac{1}{2} \mathrm{~h}$ Wave in H.F. (-30) ; decrease in Dec. (-4^{\prime}). I9 $\frac{1}{2} \mathrm{~h}$ to $2 \mathrm{I} \frac{1 \mathrm{~h}}{2}$ Wave in H.F. $(+45)$ with steep rise and intermitted fall; two waves in Dec. $\left(-3^{\prime},-3^{\prime}\right)$. $26^{\mathrm{d}} 4^{\mathrm{h}}$ to 6^{h} Wave in H.F. (-20). $\quad 11_{2}^{\frac{1 \mathrm{~h}}{2}}$ to 15^{h} Wave in Dec. $\left(+5^{\prime}\right)$. $\quad 16 \frac{1 \mathrm{~h}}{4}$ to $17 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. (-45). $16 \frac{1}{2} \mathrm{~h}$ to $17 \frac{3}{4} \mathrm{~h}$ Wave in Dec. $\left(-9^{\prime}\right)$. $18 \frac{1}{2} \mathrm{~h}$ to $19 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right) .{ }_{21}{ }^{\mathrm{h}}$ to 23^{h} Wave in H.F. $(+20) . \quad 2 \frac{1}{2}^{\frac{1}{h}}$ to $23 \frac{1}{2} \mathrm{~h}$ Flat-crested wave in Dec. $\left(-4^{\prime}\right) . \quad 26^{\mathrm{d}} 233^{\frac{1}{\mathrm{~h}}}$ to $27^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Wave in Dec. (- $\left.3^{\prime}\right)$. $28^{\mathrm{d}} 22 \frac{1}{2} \mathrm{~h}$ to $23 \frac{1}{2} \mathrm{~h}$ Wave in H.F. $(+20)$ and in Dec. $\left(-3^{\prime}\right)$.

March $\quad I^{d}{ }_{I 2} \frac{1}{2}^{\mathrm{h}}$ to I^{h} Loss of register in H.F. and Dec.
$4^{\text {d }}$ From this point the description is of the records from the new North Force (N.F.) and Declination magnetographs.
$5^{\mathrm{d}} 2^{\mathrm{h}}$ to 3^{h} Wave in N.F. $(+25) . \quad 2^{\mathrm{h}}$ to $2 \frac{1}{2} \mathrm{~h}$ Decrease in Dec. $\left(-5^{\prime}\right)$.
$6^{\mathrm{d}}{ }_{1} 5^{\mathrm{h}}{ }_{2} 5^{\mathrm{m}} .7$ Sudden reversal of twitch in N.F. $(-5,+25)$; also in Dec. $\left(-\mathrm{I}^{\prime},+3^{\prime}\right)$. Slow recovery of N.F. (at 20^{h}).
$7^{d} 3^{h}$ to 4^{h} Wave in Dec. $\left(+3^{\prime}\right)$. 6^{h} to 7^{h} Wave in Dec. $\left(+6^{\prime}\right)$. $19 \frac{1}{4} \mathrm{~h}$ to $2 \mathrm{I}_{\frac{3}{4}}{ }^{\mathrm{h}}$ Decrease in N.F. (-47). 20^{h} to $2 \mathrm{I}^{\mathrm{h}}$ Decrease in Dec. $\left(-8^{\prime}\right)$; slight rise $\left(+3^{\prime}\right)$ to $21 \frac{3}{4} \mathrm{~h} .2^{\mathrm{h}}$ to 23^{h} Wave in V.F. (+15). $21 \frac{1}{2} \mathrm{~h}$ to $22 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(+30) .7^{\mathrm{d}} 22 \frac{3 \mathrm{~h}}{4}$ to $8^{\mathrm{d}} \mathrm{I}_{\frac{1}{4} \mathrm{~h}}$ Wave in H.F. $(+55)$ with rapid rise and oscillatory fall ; wave in Dec. (-I 3^{\prime}) with rapid irregular rise. 23^{h} to $23 \frac{1}{2} \mathrm{~h}$ Decrease in V.F. (-I6).
$8^{\mathrm{d}} \mathrm{I}_{\frac{1}{2} \mathrm{~h}}$ to $4 \frac{3}{4} \mathrm{~h}$ Irregular wave in N.F. $(+30)$. $\quad \frac{3 \mathrm{~h}}{4}$ to $2 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+7^{\prime}\right) .2^{2 \mathrm{~h}}$ to $2 \frac{1}{2} \mathrm{~h}$ Decrease in V.F. (-I7) followed by increase $(+35)$ to $8^{\mathrm{h}} . \quad 2 \frac{1}{2} \mathrm{~h}$ to 4^{h} Increase in Dec. $\left(+5^{\prime}\right)$. 8^{h} to $9 \frac{1}{2} \mathrm{~h}$ Decrease in N.F. (-55). 8^{h} to 10^{h} Increase in Dec. $\left(+9^{\prime}\right)$. 10^{h} to 12^{h} Increase in Dec. $\left(+4^{\prime}\right)$. $\quad 12 \frac{1}{2} \mathrm{~h}$ to $16 \frac{1}{2} \mathrm{~h}$ Wave in N.F. $(+55)$, followed by increase $(+50)$ to 17^{h}. 14^{h} to 17^{h} Increase in V.F. $\left(+25^{2}\right)$. $1_{5}{ }^{\mathrm{h}}$ to 20^{h} Irregular decrease in Dec. (-13^{\prime}) ; increase $\left(+4^{\prime}\right)$ to $21 \frac{1 \mathrm{~h}}{} \mathrm{~h}$. 18^{h} to $18 \frac{1}{2} \mathrm{~h}$ Wave in N.F. (-20). 20^{h} to 23^{h} Double wave in N.F. $(-25,+20) .2 \mathrm{I}^{\frac{1}{2} \mathrm{~h}}$ to ${ }_{2} \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(-7^{\prime}\right)$. $8^{\mathrm{d}} 23^{\mathrm{h}}$ to
 decrease in V.F. (-50).
$9^{d} I_{2}^{\frac{1}{2}}$ to $3 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right)$; decrease $\left(-4^{\prime}\right)$ to 4^{h}, increase $\left(+6^{\prime}\right)$ to 5^{h}, decrease $\left(-7^{\prime}\right)$ to $5 \frac{3 \mathrm{~h}}{4}$. $3 \frac{1}{2} \mathrm{~h}$ to $5 \frac{1}{2} \mathrm{~h}$ Double wave in N.F. $\left(+_{15},-10\right)$; irregular decrease (-75) till $11 \frac{1}{2} \mathrm{~h}$; increase $(+50)$ to $14 \frac{1}{2} \mathrm{~h}$, and, more slowly $(+30)$, to $2 \frac{3}{4} \mathrm{~h}$. $5 \frac{1}{2} \mathrm{~h}$ to 9^{h} Increase (+20) in V.F. $9 \frac{1}{2} \mathrm{~h}$ to $\mathrm{I} 2 \frac{1}{4} \mathrm{~h}$ Increase in Dec. $\left(+I^{\prime}\right)$. $\quad 12 \frac{1}{4} \mathrm{~h}$ to $20 \frac{3}{4} \mathrm{~h}$ Decrease in Dec. $\left(-9^{\prime}\right)$ and, further $\left(-8^{\prime}\right)$, to $21 \frac{1}{2} \mathrm{~h}$.
$1^{\circ}{ }^{d} 3 \frac{1}{4} \mathrm{~h}$ to $4 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+7^{\prime}\right)$ and in N.F. $(-25) .3 \frac{3 \mathrm{~h}}{4}$ to $4 \frac{1}{2} \mathrm{~h}$ Decrease in V.F. $(-13) .21 \frac{1}{2} \mathrm{~h}$ to $22 \frac{1}{2} \mathrm{~h}$ Wave in N.F. $(+35)$.
I $2^{\mathrm{d}}{ }^{\mathrm{I}} 5^{\frac{1}{2} \mathrm{~h}}$ to $20 \frac{3 \mathrm{~h}}{4}$ Loss of register in V.F.
${ }_{1} 3^{\mathrm{d}} 0 \frac{1}{2} \mathrm{~h}$ to 2^{h} Wave in N.F. $(+20)$.
$16^{\mathrm{d}} 2^{\mathrm{h}}$ to $2 \frac{3 \mathrm{4}}{4}, 2 \frac{3}{4} \mathrm{~h}$ to 5^{h} Waves in Dec. $\left(+3^{\prime},+5^{\prime}\right) . \quad 21^{\frac{1}{2}}$ to $23 \frac{1}{2} \mathrm{~h}$ Flat-crested wave in Dec. (-6^{\prime}). $\quad 23^{\mathrm{h}}$ to $23 \frac{1}{2}^{\frac{1 \mathrm{~h}}{}}$ Wave in N.F. $(+25)$. 23^{h} to 24^{h} Decrease in V.F. (-24), further decrease (-9) to I^{d} $\circ \frac{3}{4} \mathrm{~h}$, and increase $(+14)$ to $1 \frac{1 \mathrm{~h}}{4}$. $16^{d} 23 \frac{1}{2} \mathrm{~h}$ to $17^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Wave in N.F. $(+75)$. $16^{\mathrm{d}} 23 \frac{1}{2} \mathrm{~h}$ to $17^{\mathrm{d}} 3^{\mathrm{h}}$ Wave in Dec., with two peaks ($-9^{\prime},-I^{\prime}$) at 0^{h} and I^{h}, and intervening minimum (-6^{\prime}) at $0 \frac{1}{2}$ h .
$18^{\mathrm{d}} 17^{\frac{1}{2} \mathrm{~h}}$ to 19^{h} Wave in N.F. (-25) following upon many rapid small oscillations.
$19^{\mathrm{d}} 2^{\mathrm{h}}$ to 4^{h} Wave in Dec. $\left(+6^{\prime}\right)$; decrease in V.F. (-18). 13^{h} to 22^{h} Wave in V.F. $(+20) . \quad 18 \frac{1}{2} \mathrm{~h}$ to 20^{h} Wave in Dec. $\left(-3^{\prime}\right) . \quad 2 I_{2}^{1 \mathrm{~h}}$ to $23^{\frac{1}{4} \mathrm{~h}}$ Wave in Dec. $\left(-8^{\prime}\right)$ with subsidiary peak on rising branch, and wave in N.F. $\left(+4^{\circ}\right)$ with steep rise and slow fall.
$20^{\mathrm{d}} 4 \frac{1}{2}^{\mathrm{h}}$ to 7^{h} Irregular wave in N.F. $(-30) . \quad 4^{\frac{1}{2} \mathrm{~h}}$ to 8^{h} Wave in Dec. $\left(+10^{\prime}\right)$. $\quad 12^{\mathrm{h}}$ to 18^{h} Increase in V.F. $(+47)$, and further increase $(+14)$ to $18 \frac{11^{2}}{}$. Decrease (-41) to 22^{h}. 13^{h} to 16^{h} Oscillatory increase $(+35)$ in N.F., decreasing (-40) to $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}$. 18^{h} to $199^{\frac{1}{4}} \mathrm{~h}$ Wave in Dec. (- 13^{\prime}) with nett decrease $\left(-3^{\prime}\right) .18 \frac{1}{2} \mathrm{~h}$ Papid increase in N.F. $(+45)$, and decrease (-18) to $19^{\mathrm{h}} .20^{\mathrm{h}}$ to 23^{h} Waves in Dec. (-15^{\prime}) and N.F. $(+65)$, with peaks at $20 \frac{1}{2} \mathrm{~h}$, and slow oscillatory fall.
 Plate I.
$2_{2}{ }^{\mathrm{d}} 12^{\mathrm{h}}$ to 24^{h} Wave in V.F. $\left(+4^{\circ}\right.$) with maximum at $16 \frac{3}{4} \mathrm{~h}$. I^{h} to ${ }^{\mathrm{h}} 3^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Irregular movements in N.F. and Dec. Initial decrease (-15) in N.F., to $16 \frac{1}{4} \mathrm{~h}$; principal waves in N.F. from $16 \frac{1}{4} \mathrm{~h}$ to $17 \frac{1}{2} \mathrm{~h}(+40)$, and $18 \frac{1}{2}^{\mathrm{h}}$ to $19^{\frac{1}{2} h}(+45)$; five small positive waves from $2 \mathrm{I}^{\mathrm{h}}$ to 24^{h}. In Dec. the principal waves were from $16 \frac{1}{4} \mathrm{~h}$ to $17 \frac{1}{2}^{\mathrm{h}}\left(-10^{\prime}\right)$, $17 \frac{1}{2} \mathrm{~h}$ to 20^{h} (-10), with nett decrease (-11^{\prime}) from 16^{h} to 23^{h}; and double-crested wave $\left(+9^{\prime},+11^{\prime}\right)$, with nett increase $\left(+5^{\prime}\right)$, from 23^{h} to $23^{\text {d }}{ }^{\mathrm{h}}$.
1915.

March
$23^{\mathrm{d}} 8^{\mathrm{h}}$ to 10^{h} Decrease in N.F. (-70), with slow recovery $(+70)$ till 21^{h}. $99^{\frac{3 \mathrm{~h}}{}}$ to $10^{\frac{1}{4} \mathrm{~h}}$ Increase in Dec. $\left(+7^{\prime}\right) . \quad 2 \mathrm{I}^{\mathrm{h}}$ to 24^{h} Irregular wave in N.F. with three peaks $(+30,+50,+40)$. $\quad 21^{\frac{1}{2}}$ to 22^{h} Decreass in V.F. $\left(-17\right.$). $\quad 21 \frac{3}{4} \mathrm{~h}$ to 24^{h} Irregular wave in Dec. $\left(-8^{\prime}\right)$.
$24^{\mathrm{d}} 0^{\mathrm{h}}$ to $1 \frac{1 \mathrm{~h}}{4}$ Wave in N.F. $(+20)$. 6^{h} to $7 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+3^{\prime}\right)$. $6 \frac{1}{2} \mathrm{~h}$ to 9^{h} Wave in N.F. $(+20)$. I9 9^{h} to $20 \frac{3}{4} \mathrm{~h}$ Wave in Dec. $\left(-5^{\prime}\right) . \quad 2 \mathrm{I}_{2}{ }^{\mathrm{h}}$ to 23^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$25^{\mathrm{d}} \mathrm{I}_{2}^{\mathrm{h}}$ to 4^{h} Double wave in Dec. $\left(-6^{\prime},+4^{\prime}\right) . \quad 2 \frac{3}{4} \mathrm{~h}$ to 4^{h} Wave in N.F. (-35). $3^{\frac{1}{2} \mathrm{~h}}$ to 4^{h} Decrease in V.F. (-I3). $9^{\text {h }}$ to $9 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Decrease in N.F. (-30). 11^{h} to 12^{h} Decrease in N.F. (-20), increase (+20) to $12 \frac{1 \mathrm{~h}}{} \mathrm{~h}$, and further oscillatory increase $(+35)$ to 24^{h}. $16 \frac{1}{2} \mathrm{~h}$ to 19^{h} Wave in Dec. (-5^{\prime}) with nett decrease (-4^{\prime}). $\quad 25^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $26^{\mathrm{d}} \circ \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+5^{\prime}\right)$.
$26^{\mathrm{d}} \circ \frac{1}{2} \mathrm{~h}$ to $2 \frac{1}{2} \mathrm{~h}$ Wave in N.F. $(+40)$. oh to $\circ \frac{3}{4} \mathrm{~h}$ Decrease in V.F. (-23). $19 \frac{1}{2} \mathrm{~h}$ to $20 \frac{1}{2} \mathrm{~h}$ Double wave in N.F. $\left(-{ }^{1} 5,+15\right)$, wave in Dec. $\left(-5^{\prime}\right)$.
$27^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}}$ to $22 \frac{1_{2}}{} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$29^{\mathrm{d}} 23^{\mathrm{h}}$ to 24^{h} Wave in Dec. $\left(-7^{\prime}\right)$ and in N.F. $(+35)$.
$30^{\mathrm{d}} 3 \frac{1 \mathrm{~h}}{4}$ to $4 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+6^{\prime}\right)$. $3 \frac{1}{4} \mathrm{~h}$ to $4 \frac{1}{4} \mathrm{~h}$ Wave in N.F. $(-20) . \quad 8 \frac{3}{4} \mathrm{~h}$ to 1^{h} Wave in N.F. (-20). $30^{d} 20 \frac{1}{2} \mathrm{~h}$ to $3 \mathrm{I}^{\mathrm{d}} \mathrm{I}_{\frac{3}{4}} \mathrm{~h}$ Long irregular wave in Dec. $\left(-6^{\prime}\right)$.

April
 in N.F. $2^{\text {d }} 23^{\text {h }}$ to $3^{\text {d }} 0^{\frac{1}{4} h}$ Wave in N.F. $(+25)$. $2^{\text {d }} 23^{\text {h }}$ to $3^{d} o^{\text {h }}$ Wave in Dec. $\left(-4^{\prime}\right)$ with nett decrease (-3^{\prime}).
$3^{\mathrm{d}} 0^{\mathrm{h}}$ to $0 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$. $4 \frac{1 \mathrm{~h}}{4}$ to 6^{h} Wave in Dec. $\left(+5^{\prime}\right)$ and in N.F. $(-20) 17 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to $18 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ Wave in N.F. $(-25) . \quad 17 \frac{1}{2}^{\mathrm{h}}$ to 19^{h} Wave in Dec. $\left(-7^{\prime}\right) .23^{\mathrm{h}}$ to $23 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(+25) . \quad 3^{\mathrm{d}}{ }^{20 \mathrm{~h}}$ to $4^{\mathrm{d}} \mathrm{II}^{\mathrm{h}}$ Loss of register in V.F.
$6^{\mathrm{d}} 23 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Rapid decrease (-20) in N.F., with rapid partial recovery (+10).
$7^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $8^{\mathrm{d}} 18^{\mathrm{h}}$. See Plate I.
$8^{\text {d }} 19 \frac{1 \mathrm{4}}{4}$ to $19 \frac{3 \mathrm{~h}}{4}, 20 \frac{1 \mathrm{~h}}{2}$ to $2 \mathrm{I}^{\mathrm{h}}$ Sharp peaks in N.F. with oscillatory decrease $(+25,+20)$. Oscillatory motion in N.F. and Dec. ceases about $9^{\text {d }} \circ^{\text {h }}$.
$12^{d} 21 \frac{1}{2}$ to $13^{d} 9^{\mathrm{h}}$ Loss of register in V.F.
$15^{\mathrm{d}}{ }^{15}{ }^{\mathrm{h}}$ to 24^{h} Four irregular peaks in N.F. at $16 \frac{3 \mathrm{~h}}{4}(+45), 19^{\mathrm{h}}(+40)$. $21 \frac{1}{2} \mathrm{~h}(+30), 23^{\mathrm{h}}(+40)$; decrease in Dec. $\left(-7^{\prime}\right)$ till $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}$, and further $\left(-9^{\prime}\right)$ to $23 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ with superposed waves having peaks at $19^{\mathrm{h}}\left(-4^{\prime}\right)$, $20 \frac{1}{4} \mathrm{~h}\left(-3^{\prime}\right), 21^{\frac{3}{4} \mathrm{~h}}\left(-5^{\prime}\right)$, and $23^{\mathrm{h}}\left(-7^{\prime}\right)$, followed (from $23 \frac{1}{2} \mathrm{~h}$ to $1^{6^{\mathrm{d}}} \mathrm{I}^{\mathrm{h}}$) by increase $\left(+5^{\prime}\right)$.
$16^{\mathrm{d}} 16 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-7^{\prime}\right)$ with nett decrease $\left(-4^{\prime}\right)$. $16 \frac{3 \mathrm{~h}}{4}$ to 18^{h} Wave in N.F. $(+55) . \quad 20^{\mathrm{h}}$ to 22^{h} Decrease in V.F. (-30). $2 \mathrm{r}^{\mathrm{h}}$ to $22 \frac{1 \mathrm{l}}{4}$ Wave in N.F. with subsidiary peak on descending

$17^{\mathrm{d}} 18 \frac{1 \mathrm{~h}}{4}$ to $18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in N.F. $\left(+{ }_{17}\right)$ with steep rise.
$18^{\mathrm{d}} 0^{\mathrm{h}}$ to 9^{h} Activity in N.F. and Dec. 3^{h} to $4_{\frac{1}{2} \mathrm{~h}}$ Wave in N.F. (-25). $33^{\frac{1}{2} \mathrm{~h}}$ to $4^{\frac{1}{2} \mathrm{~h}}$ Wave in Dec. $\left(+5^{\prime}\right)$; Decrease in V.F. (-18). $\quad 7^{\mathrm{h}}$ to 9^{h} Wave in Dec. $\left(+5^{\prime}\right) . \quad 2 \mathrm{I}^{\mathrm{h}}$ to 23^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$19^{\mathrm{d}} 0^{\mathrm{h}}$ to $20^{\mathrm{d}} 4^{\mathrm{h}}$ Activity in Dec. and N.F. Increase in N.F. (+100) from $13 \frac{1 \mathrm{~h}}{2}$ to $17 \frac{3 \mathrm{~h}}{4}$, decrease (-60) to $21 \frac{1 \mathrm{~h}}{2}$, increase $(+50)$ to $20^{\text {d }} \circ \frac{1 \mathrm{~h}}{2}$, and decrease $\left(-50\right.$) to $1 \frac{3 \mathrm{~h}}{4}$, with superposed oscillations. Ir-

 (-12). $21^{d} 23^{\mathrm{h}}$ to $22^{\mathrm{d}} \mathrm{I}_{2}{ }^{\mathrm{h}}$ Wave in Dec. (-9^{\prime}).
$220^{\text {d }} \frac{1}{4}^{\mathrm{h}}$ to 3^{h} Wave in N.F. $(+20)$. $\mathrm{I}_{\frac{1}{2}}{ }^{\mathrm{h}}$ to 3^{h} Decrease in Dec. $\left(-7^{\prime}\right)$ and partial recovery $\left(+2^{\prime}\right)$. $\quad I^{\mathrm{h}}$ to $18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Increase in V.F. $(+50)$, and decrease (most rapid at $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ and $22 \frac{3 \mathrm{~B}}{\mathrm{~h}}$) to $23^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}(-45) . \quad 22^{\mathrm{d}} 13^{\mathrm{h}}$ to $23^{\mathrm{d}} 2^{\mathrm{h}}$ Activity in N.F.; V.F., and Dec. Irregular oscillatory (± 20) increase in N.F. from $\mathrm{I}_{3}{ }^{\mathrm{h}}$ to $20^{\mathrm{h}}(+80)$, followed by sharp decrease (-50) to $20 \frac{1 \mathrm{~h}}{4}$, a small wave $(+15,-25)$ to $20 \frac{3}{4}$ h , and from $22 \frac{11}{2}$ to 23^{h} a sharp peak $\left(+50,-30\right.$) ; increase $(+40)$ to $22^{\mathrm{d}} 0 \frac{1}{4}$ h , constant till r^{h}, and decrease (-65) to $2^{\text {h }}$. In Dec. the principal movements are a sharp decrease (-15^{\prime}) from $19 \frac{1}{2}$ h to $20^{\text {h }}$, increasing $\left(+15^{\prime}\right)$ to $22 \frac{3 \mathrm{~h}}{}$ with superposed waves $\left(-7,-4^{\prime}\right)$ at $20 \frac{3 \mathrm{~h}}{4}$ and $21 \frac{1}{2} \mathrm{~h}$; and a large wave (-15^{\prime}) from $22^{\mathrm{d}} 23 \frac{1^{\mathrm{h}}}{}{ }^{\text {to }} 23_{3}^{\mathrm{d}} 2^{\mathrm{h}}$, with peak at I^{h}.
$25^{\mathrm{d}} 19 \frac{1}{4}^{\mathrm{h}}$ to $20 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$ and in N.F. $(+20)$.
 decrease (-45) from $6 \frac{1}{2}$ h to $7 \frac{1}{2}$, and further increase $(+35)$ to $8^{\text {h }}$, followed by decrease (-100) to $10 \frac{1}{2} \mathrm{~h}$. 12^{h} to 20^{h} Large wave in Dec. ($+9^{\prime}$) with superposed oscillations ($\pm 3^{\prime}, 4^{\prime}$) from 16^{h} to 20^{h}. 13^{h} to ${ }^{18 \frac{1 \mathrm{~h}}{4}}$ Increase in V.F. $(+95)$, decrease (-45) to 21^{h}, and further decrease (-70) till $27^{\mathrm{d}}{ }_{12}{ }^{\mathrm{h}}$ 。 14^{h} to $2 \mathrm{I}^{\mathrm{h}}$ Slow increase in N.F. $(+35)$ with superposed oscillations (± 20) from $5 \frac{1}{2}$ h to $2 \mathrm{I}^{\mathrm{h}}$.

[^0]June $\quad 7^{d}{ }^{20 \frac{12}{4}}$ Sudden decrease and subsequent increase in N.F. $(-7,+40)$, subsiding (-30) until $20 \frac{3}{4}$, ; small twitch in Dec.
$8^{\mathrm{d}} 10 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $17 \frac{1}{2} \mathrm{~h}$ Loss of register in V.F. $12 \frac{1 \mathrm{~h}}{2}$ to $15 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Quadruple wave in N.F. $(-20,+20,-20,+20)$, followed by increase $(+50)$ to $19^{\frac{1}{2}}$.
$12^{\text {d }} 4^{\frac{1}{4} h}$ to $4^{\frac{1}{2} h}$ Wave in Dec. $\left(-5^{\prime}\right)$, small movement in N.F. $7^{\text {h }}$ to $9^{\frac{1}{2} h}$ Wave in N.F. (-35); small oscillations in Dec. 13^{h} to 23^{h} Oscillations in N.F., and oscillatory decrease in Dec. (-15^{\prime}); wave in V.F. $(+30)$, with nett decrease $(-15) .23^{\mathrm{h}}$ to $23^{\frac{1}{2} \mathrm{~h}}$ Decrease in V.F. (-15) and Dec. $\left(-10^{\prime}\right)$, and further decrease in Dec. (-3') to 24^{h}.
$13^{\mathrm{d}} 0^{\mathrm{h}}$ to 5^{h} increase in Dec. $\left(+16^{\prime}\right)$, with superposed waves $\left(-5^{\prime},-4^{\prime}\right)$ from 2^{h} to 3^{h} and 4^{h} to 5^{h}; decrease in V.F. (-20); irregular movements (± 20) in N.F. 5^{h} to 6^{h} Decrease in Dec. $\left(-9^{\prime}\right)$, increase in N.F. $(+30)$. $6 \frac{1}{2}^{\mathrm{h}}$ to $10 \frac{12^{\mathrm{h}}}{}$ N.F. decreasing (-85). $10 \frac{1}{2} \mathrm{~h}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Increase in N.F. $(+90)$, with superposed wave (-25) from $14 \frac{1}{2} \mathrm{~h}$ to 17^{h}. 19^{h} to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-8^{\prime}\right)$. $19 \frac{11^{\mathrm{h}}}{}$ to ${ }^{2} \mathrm{I}^{\mathrm{h}}$ Wave in N.F. $(+20) .1_{3}{ }^{\text {d }} 233^{\frac{1 \mathrm{~h}}{}}$ to $14^{\mathrm{d}} 2^{\mathrm{h}}$ Wave in Dec. $\left(+5^{\prime}\right)$ and in N.F., the latter with two peaks (-20, - 35).
$14^{\mathrm{d}} 2 \frac{1}{2} \mathrm{~h}$ to 5^{h} Wave in Dec. $\left(+7^{\text {f }}\right.$), and wave in N.F. $(-30) 5^{\mathrm{h}}$ to 6^{h} Decrease (-25) in N.F.

I915.
June
 to $16 \frac{1 \mathrm{~h}}{} \mathrm{~h}$; Dec. and V.F. little affected. $16 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ to $17 \frac{1 \mathrm{~h}}{} \mathrm{~h}, 17 \frac{1 \mathrm{~h}}{2}$ to $18 \frac{1}{4} \mathrm{~h}$ Waves in N.F. $(-30,-20)$. Traces subsequently quiet until $17^{d}{ }^{\frac{3}{4} h}$.
$17^{\mathrm{d}} \mathbf{I}^{\mathrm{h}}$ to $\mathbf{1 8}^{\mathrm{d}} \mathbf{I}^{\mathrm{h}}$. See Plate I.
 with rapid rise and fall, and nearly level, oscillatory crest. Oscillatory decrease in N.F. (-7) from $3 \frac{1}{2}^{\mathrm{h}}$ to 9^{h}. Oscillations in Dec. die out at about 8^{h}.
$21^{\mathrm{d}}{ }^{1} 5^{\frac{1 \mathrm{~h}}{4}}$ Sudden increase in N.F. $(+45)$ and Dec. $\left(+4^{\prime}\right)$, subsiding gradually to $17^{\mathrm{h}} . \quad 17^{\mathrm{h}}$ to 19^{h} Wave in N.F. $(+30)$. Oscillations in N.F. and Dec. until $22^{d} 3 \frac{1}{2}$.
$22^{\mathrm{d}} 33^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ to $5 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ Wave in Dec. $\left(+3^{\prime}\right)$ and double wave in N.F. $(-20,+20) .64_{4}^{\mathrm{h}}$ to 7^{h} Three rapid waves in N.F. $(-15,-15,-25)$. $6 \frac{1}{2}^{\mathrm{h}}$ to $7^{\mathrm{h}}, 7^{\mathrm{h}}$ to 8^{h}, waves in Dec. $\left(+3^{\prime},+4^{\prime}\right)$ with sharp peak at $7^{\frac{3 \mathrm{~h}}{} \mathrm{~h}}$ $\left(+4^{\prime}\right)$, and also $\left(+7^{\prime}\right)$ from 8^{h} to $8 \frac{12^{\mathrm{h}}}{}$. $18 \frac{14^{\mathrm{h}}}{}$ to $19 \frac{1 \mathrm{l}}{4}$ W Wave in Dec. $\left(-7^{\prime}\right)$, in N.F. $(+30)$ and in V.F. $(+10) .23^{\mathrm{h}}$ to 24^{h} Decrease in V.F. $(-16) .222^{\mathrm{d}}$ to $23^{\mathrm{d}} \mathrm{O}_{2}^{1 \mathrm{~h}}$ Wave in Dec. $\left(+6^{\prime}\right)$, and in N.F. $(+35)$.
$24^{\mathrm{d}} 2 \mathrm{I}_{\frac{1}{2} \mathrm{~h}}$ Sudden increase in N.F. $(+30)$ and Dec. $\left(+2^{\prime}\right)$.
$25^{\mathrm{d}} 3 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ to $4 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+3^{\prime}\right)$, and increase in N.F. $(+25)$. $133^{\frac{3 \mathrm{~h}}{4}}$ to 5^{h} Wave in Dec. $\left(+4^{\prime}\right)$, and double wave in N.F. $(+15,-15)$.
$26^{\mathrm{d}} 18^{\mathrm{h}}$ to 22^{h} Wave in N.F. (+35), with superposed oscillations (± 10) on crest. $26^{\mathrm{d}} 233^{\frac{1 \mathrm{~h}}{}}$ to $27^{\mathrm{d}} 0 \frac{1 \mathrm{~L}}{} \mathrm{~h}$ Wave in N.F. $(+20) . \quad 26^{\mathrm{d}} 23^{\frac{1}{2} \mathrm{~h}}$ to $27^{\mathrm{d}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$.
$27^{\mathrm{d}} \mathrm{O}^{\frac{1}{2} \mathrm{~h}}$. to $\mathrm{I}^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ Wave in N.F. $(+20)$.
$29^{\mathrm{d}} 0^{\mathrm{h}}$ to $2 \frac{1 \mathrm{~h}}{4}$ Double wave in N.F. $(+10,-10)$. 0^{h} to 1^{h} Decrease in V.F. (-12). $0 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $I_{2}^{\frac{1}{2}}$ Wave in Dec. (-4^{\prime}). 10^{h} to 14^{h} Wave in V.F. (-20). $11 \frac{1}{2}^{\frac{\mathrm{h}}{}}$ to $12 \frac{1}{2} \mathrm{~h}$ Wave in N.F. $(-20) .17^{\frac{3 \mathrm{~h}}{4}}$ to $19 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(+20)$. $22 \frac{3 \mathrm{3h}}{4}$ to $23 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$.

July $\quad I^{d} 22 \frac{1}{2}$ h to $22 \frac{3 \mathrm{~h}}{4}$ Sudden rise and partial recovery, in N.F. $(+20,-10)$.
$2^{\mathrm{d}} \circ^{\mathrm{h}}$ to $8 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in V.F. (-33) with nett decrease (-15). $0_{4}^{\frac{1 \mathrm{~h}}{4}}$ to $0_{\frac{1}{2} \mathrm{~h}}$ Sharp increase in N.F. $(+30)$; irregular decrease (-4°) to $1 \frac{1}{2} \mathrm{~h}$; $1 \frac{1}{2} \mathrm{~h}$ to $3 \frac{2}{2}^{\frac{1 \mathrm{~h}}{}}$ Wave in N.F. $(+20)$ with nett decrease (-25), and superposed double wave $(+15,-10)$, from $2 \frac{1 \mathrm{~h}}{4}$ to $2 \frac{3 \mathrm{~h}}{4} ; 4^{\mathrm{h}}$ to $6 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(+35)$. $0 \frac{1 \mathrm{~h}}{4}$ to I^{h} Decrease in Dec. $\left(-7^{\prime}\right)$; increase $\left(+5^{\prime}\right)$ to $3 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$, with superposed waves $\left(+3^{\prime},+4^{\prime}\right)$ from I^{h} to $2 \frac{1 \mathrm{~h}}{4}$, $2 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 3^{h}. $3 \frac{1}{2}^{\mathrm{h}}$ to $4^{\frac{1}{4} \mathrm{~h}}$ Wave in Dec. $\left(+6^{\prime}\right)$. $5^{\frac{1}{2} \mathrm{~h}}$ to 7^{h} Wave in Dec. $\left(-7^{\prime}\right)$. 14^{h} to ${ }^{1} \frac{1}{2}^{\mathrm{h}}$ Triple wave in N.F. $(+25,-20,+30)$; small movement in Dec.; enlarged diurnal motion in V.F.
$3^{\mathrm{d}} 10^{\mathrm{h}}$ to 22^{h} Oscillations in N.F. about the normal curve. $20 \frac{1}{2} \mathrm{~h}$ to 22^{h} Double-crested wave in Dec. ($-4^{\prime},-3^{\prime}$).
$5^{\mathrm{d}} 20 \frac{3 \mathrm{~h}}{4}$ Sudden increase in N.F. $(+20)$, decreasing (-15) to $2 \mathrm{I}^{\mathrm{h}}$.
$6^{\mathrm{d}}{ }^{\frac{3 \mathrm{~h}}{4}}$ Sudden increase in N.F. $(+10)$. $5 \frac{1 \mathrm{~h}}{4}$ to 6^{h} Decrease in N.F. $(-20) .6 \frac{1 \mathrm{~h}}{2}$ Sudden increase (+10) in N.F., and sharp oscillation in Dec. $(-1,+2)$, followed by further sharp oscillations in Dec. $6 \frac{1}{2}$ h to $9 \frac{1}{4} \frac{1 \mathrm{~h}}{}$ Wave in N.F. with peak at $8 \frac{1 \mathrm{Ih}}{4}(+40)$. $8 \frac{1 \mathrm{~h}}{4}$ to $8 \frac{1}{2} \frac{1 \mathrm{~h}}{}, 8 \frac{1}{2} \mathrm{~h}$ to $9 \frac{1 \mathrm{~h}}{4}$ Waves in Dec. $\left(-3^{\prime},-5^{\prime}\right)$. ${ }^{12 \frac{1}{2} \mathrm{~h}}$ to $13 \frac{1 \mathrm{~h}}{4}$ Wave in N.F. $(-20) .14^{\mathrm{h}}$ to 16^{h} Oscillations in N.F. ($\pm \mathrm{io}$).
 Wave in N.F. $(+20)$ and in Dec. $\left(-7^{\prime}\right)$.
9^{d} oh $^{\text {h }}$ to 5^{h} Wave in V.F. $(-13) .1_{2}^{\mathrm{h}}$ to 3^{h} Wave in Dec. $\left(-5^{\prime}\right)$. $4^{\frac{3 \mathrm{~h}}{4}}$ to 6^{h} Wave in Dec. $\left(+4^{\prime}\right)$, followed by oscillations until 9^{h}. 12^{h} to 16^{h} Oscillations (± 12) in N.F. 15^{h} to 22^{h} Wave in V.F. $(+17) . \quad 16 \frac{1 \mathrm{~h}}{4}$ to 17^{h} Wave in N.F. $\left(+{ }_{2} 5\right)$. 17^{h} to $18 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(+30) . \quad 19^{\text {h }}$ to 20^{h} Wave in Dec. (-3^{\prime}). $2 \mathrm{I}^{\mathrm{h}}$ to 23^{h} Triple-crested wave in Dec., with peaks at $2 \mathrm{I}_{2}^{\frac{1 \mathrm{~h}}{}\left(-9^{\prime}\right), 21^{\frac{3}{4} \mathrm{~h}}\left(-7^{\prime}\right), 22 \frac{1}{2} \mathrm{~h}}$ $\left(-6^{\prime}\right) . \quad 21 \frac{11}{4}$ h to $21 \frac{3 \mathrm{~h}}{4}, 21 \frac{3}{4} \mathrm{~h}$ to $22 \frac{11}{4} \mathrm{~h}$ Waves in N.F. $(+30,+25)$.
 to II $^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$1 I^{\mathrm{d}} 3 \frac{1}{2}^{\frac{\mathrm{h}}{2}}$ to 5^{h} Double wave in N.F. $(-20,+15)$. $3 \frac{3 \mathrm{~h}}{4}$ to $4^{\frac{1}{4} \mathrm{~h}}$ Wave in Dec. $\left(+5^{\prime}\right) .4^{\frac{1}{2} \mathrm{~h}}$ to $5^{\frac{1}{4} \mathrm{~h}}$ Wave
 $21 \frac{1}{2}$ h to $22 \frac{3 \mathrm{hh}}{4}$ Double-crested wave in N.F. $(+25)$. $11^{\mathrm{d}} 23^{\mathrm{h}}$ to $1^{\mathrm{d}} 5^{\mathrm{h}}$ Slow movements in Dec. $\left(+5^{\prime},-7^{\prime},+7^{\prime},-8^{\prime}\right)$.
 in N.F. $(+20)$.
 to $23^{\mathrm{h}^{4}}$ Wave in Dec. $\left(-6^{\prime}\right)$.
$23^{\mathrm{d}}{ }^{\frac{33 \mathrm{~h}}{4}}$ to $3 \frac{1 \mathrm{~h}}{4} \mathrm{~W}$ Wave in Dec. $\left(+3^{\prime}\right)$ and in H.F. $(-15) . \quad 15^{\mathrm{h}}$ to ${ }^{1} 7 \frac{1}{2} \mathrm{~h}$ Wave in N.F. $(+20)$ with peak at $16 \frac{1}{2} \mathrm{~h}$. $25^{\mathrm{d}} 10 \frac{1 \mathrm{~h}}{2}$ to ${ }^{13} \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Oscillations in N.F. and Dec.
$26^{\mathrm{d}} 2 \frac{1}{2} \mathrm{~h}$ to $4^{\frac{1}{2} \mathrm{~h}}$ Wave in Dec. $\left(-5^{\prime}\right)$. $10 \frac{1 \mathrm{l}}{4}$ to 1^{h} Wave in N.F. $(-20) . \quad 17^{\mathrm{h}}$ to $19 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ Wave in N.F. $(+30)$. $1^{8} 8^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$ with peak at 19^{h}. $26^{\mathrm{d}} 22^{\frac{1}{2} \mathrm{~h}}$ to $27^{\mathrm{d}} 0^{\frac{3}{4} \mathrm{~h}}$ Wave in Dec. $\left(-5^{\prime}\right)$.

I915.
$27^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $3 \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(+12^{\prime}\right)$ with sharp decline. 2^{h} to $3 \frac{1}{4} \mathrm{~h}$ Wave in N.F. (-20). $\quad 2 \frac{3}{4} \mathrm{~h}$ to $4 \frac{1}{2} \mathrm{~h}$ Wave in V.F. (-12). $7^{\text {h }}$ to $8 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$ and in N.F. (-15). 12^{h} to 21^{h} Irregular movements about normal, in N.F. and, to a smaller extent, in Dec.; the successive changes in N.F. between I^{h}, $12 \frac{1}{2} \mathrm{~h}, 12 \frac{3 \mathrm{~h}}{4}, 13 \frac{1 \mathrm{~h}}{} \mathrm{~h}, 14 \frac{1}{4}, 15^{\mathrm{h}}, 15 \frac{1}{4} \mathrm{~h}, 16^{\mathrm{h}}, 17^{\mathrm{h}}$ being $-25,+25,-30,+40,-25,+45,-15,+20$. $27^{2}{ }_{2} \frac{3}{4} \frac{h}{h}$ to $28^{d}{ }_{\frac{1}{4} h}$ Wave in Dec. ($+3^{\prime}$).
$29^{\mathrm{d}} 18^{\mathrm{h}}$ to 20^{h} Triple-peaked wave in N.F. $(+15,+25,+20) .20^{\mathrm{h}}$ to $2 \mathrm{I}_{2} \frac{1 \mathrm{~h}}{} \mathrm{~W}$ Wave in Dec. (- 12^{\prime}) and in N.F. N.F. $(+50)$.
$30^{\mathrm{d}} \circ \frac{1 \mathrm{~h}}{4}$ to $1 \frac{1}{4} \mathrm{~h}$ Double wave in N.F. $(+10,-10) . \quad 0 \frac{1 \mathrm{~h}}{4}$ to $1 \frac{1}{2} \mathrm{~h}$ Double wave in Dec. $\left(-2^{\prime},+2^{\prime}\right) . \quad 22 \frac{1}{2} \mathrm{~h}$ to $23 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 22 \frac{1}{2}^{\mathrm{h}}$ to 24^{h} Wave in N.F. $(+25)$.
$3 I^{d} I \frac{3}{4}$ h to 14^{h} Wave in V.F. (-12).

 in N.F. $(+20)$.
$2^{\mathrm{d}} \mathrm{I}_{\frac{1}{2}}{ }^{\mathrm{h}}$ to $2 \frac{11}{4} \mathrm{~h}^{\mathrm{h}}$ Wave in N.F. (-20). Further movements in N.F. $(-35,+40,-50,+15)$ between 3^{h}
 (-30). $1^{\text {h }}$ to $20^{\text {h }}$ Wave in Dec. $\left(-6^{\prime}\right)$. $19{ }^{\frac{1}{4} \mathrm{~h}}$ to $20 \frac{1 \mathrm{~h}}{4}$ Wave in N.F. $(+30)$. $22 \frac{1}{2} \mathrm{~h}$ to 24^{h} Two waves in Dec. $\left(-5^{\prime},-8^{\prime}\right)$ and double wave in N.F. $(-25,+25)$.
$3^{\mathrm{d}} 2^{\mathrm{h}}$ to 4^{h} Wave in Dec. $\left(+7^{\prime}\right)$ and in N.F. $(-40) . \quad 2 \mathrm{I}^{\frac{1}{2} \mathrm{~h}}$ to 23^{h} Wave in N.F. $(+30)$; small in Dec.
$4^{\mathrm{d}} \frac{3}{4}^{\frac{3}{4}}$ to $3 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right) .7^{\mathrm{h}}$ to $8 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$ and in N.F. $(+20) . \quad 10^{\mathrm{h}}$ to 1^{h} Loss of register in V.F.
$6^{\mathrm{d}} 21^{\frac{1}{4} \mathrm{~h}}$ to 22^{h} Double wave in N.F. $(+18,-25)$, first portion double-crested. $6 \mathrm{~d} 23^{\mathrm{h}}$ to $7^{\mathrm{d}} 0 \frac{3 \mathrm{~h}}{4}$ Two equal waves in N.F. $(+30,+30)$. $6^{\mathrm{d}} 23^{\mathrm{h}}$ to $7^{\mathrm{d}}{ }^{\frac{1}{2} \mathrm{~h}}$ Double wave in Dec. $\left(+5^{\prime},-7^{\prime}\right) . \quad 6 \mathrm{~d}^{2} 3^{\mathrm{h}}$ to $7^{\mathrm{d}} 7^{\mathrm{h}}$ Wave in V.F. (-55), with peak at $8 \frac{1 \mathrm{~h}}{4}$.
$7^{\mathrm{d}} \circ \frac{1_{2}^{\mathrm{h}}}{}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec., with peaks at I^{h} and $2^{\mathrm{h}}\left(-5^{\prime},-6^{\prime}\right)$. $0 \frac{3 \mathrm{~h}}{4}$ to 4^{h} Wave in N.F. $\left(+4^{0}\right)$. $2 \frac{1}{2} \mathrm{~h}$ to $4 \frac{1}{2}$ D Double wave in Dec. $\left(+9^{\prime},-7^{\prime}\right)$. 17^{h} to $17^{\frac{1}{2} \mathrm{~h}}$ Wave in N.F. $(+25)$, with preliminary movement like that of a sudden storm commencement, also in Dec. $\left(-1^{\prime},+2^{\prime}\right)$. $18 \frac{1 \mathrm{~h}}{}{ }^{\frac{h}{h}}$ to $20 \frac{1 \mathrm{~h}}{2}$ Movement in N.F., with sharp rise $(+20)$ and rapid decline at end $(-30,+10)$.
$8^{d} o^{\mathrm{h}}$ to $\circ_{4}^{3 \mathrm{~h}}$ Rise in Dec. $\left(+4^{\prime}\right)$, rapid decrease to $1 \frac{1 \mathrm{~h}}{4}\left(-10^{\prime}\right)$, and irregular increase $\left(+8^{\prime}\right)$ to 4^{h}. $\circ^{\frac{1}{2} \mathrm{~h}}$ to $2^{h} W^{4}$ ave in N.F. (+30) followed till 3^{h} by three smaller waves. $0^{\frac{1}{2}}$ to 1^{h} Decrease in V.F. (-15). $19 \frac{3}{4}^{\frac{3}{4}}$ to $20 \frac{1}{2}$ h Wave in N.F. $(+20)$ with rapid rise.
$9^{\mathrm{d}} 0^{\mathrm{h}}$ to $I_{\frac{1}{2}}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$1^{d} 3^{\frac{1}{4} \mathrm{~h}}$ to 6^{h} Wave in Dec. $\left(-6^{\prime}\right)$. 22^{h} to 23^{h} Wave in Dec. $\left(-5^{\prime}\right)$.
${ }_{11}{ }^{\mathrm{d}}{ }^{2} \frac{3 \mathrm{~h}}{4}$ Unusual displacement of N.F. $(+9)$, V.F. $(+4)$, and. Dec. $\left(-o^{\prime} \cdot 9\right)$ curves, a reverse displacement occurring at $3^{\frac{1}{4}}$, both movements being rapid ; probably local, perhaps of artificial origin. The V.F. and N.F. instruments are four yards apart.
$16^{\mathrm{d}} 13^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ to 14^{h} Wave in Dec. $\left(+3^{\prime}\right)$ and N.F. (-10) with sharp rise.
$17^{\mathrm{d}} 5^{\mathrm{h}}$ to 8^{b} Wave in Dec. $\left(+5^{\prime}\right)$; decrease in V.F. (-14). 6^{h} to 9^{h} Wave in N.F. $(+20)$. $10 \frac{1_{2} \mathrm{~h}}{}$ to ${ }_{10}{ }_{3}^{3 \mathrm{~h}}$ Increase in N.F. $(+16)$ and in Dec. $\left(+3^{\prime}\right)$. Movements in N.F. $(-45,+30,-35,+20,+55)$ between $10 \frac{3 \mathrm{~h}}{4}, 11 \frac{1 \mathrm{~h}}{4}, 13 \frac{1 \mathrm{~h}}{2}, 14 \frac{1 \mathrm{~h}}{}, 15^{\mathrm{h}}, 20^{\mathrm{h}}$. 20^{h} to $20 \frac{1 \mathrm{lh}}{4}$ Wave in N.F. $(+20)$.
$18^{\mathrm{d}} 2^{\mathrm{h}}$ to 34^{h} Wave in Dec. $\left(-3^{\prime}\right) . \quad 20^{\mathrm{h}}$ to 22^{h} Double wave in Dec. $\left(+2^{\prime},-3^{\prime}\right)$.
$19^{11} 6^{\mathrm{h}}$ Sudden movement in N.F. and Dec., as at the commencement of a storm. Increase in N.F. $(+17)$ to $6 \frac{1}{2} \mathrm{~h}$, followed by decrease (-55) to 10^{h}. $7 \frac{1}{4}^{\mathrm{h}}$ to $7 \frac{3}{4}^{\frac{3 \mathrm{~h}}{}}$ Rapid double wave in Dec. $\left(+4^{\prime},-4^{\prime}\right)$.

$22^{\mathrm{d}} 3^{h}$ to 5^{h} Wave in Dec. $\left(+4^{\prime}\right)$. 16^{h} to $16 \frac{1 \mathrm{~h}}{4}$ Increase in N.F. $(+20)$, partial decrease (-10) to $16 \frac{1}{2} \mathrm{~h}$, and further decrease (-15) from $18 \frac{3}{4}$ h to $19^{h} .22^{d} 23 \frac{1}{2}^{\frac{1 \mathrm{~h}}{}}$ to $23^{d} \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(+5^{\prime}\right)$.
$25^{\mathrm{d}} 15 \frac{1 \mathrm{~h}}{}$ h to $16 \frac{1}{2} \mathrm{~h}$ Wave in N.F. (-20), $25^{\mathrm{d}} 22^{\mathrm{h}}$ to $26^{\mathrm{d}} \circ \frac{12}{2} \mathrm{~h}$ Decrease (-35) and oscillatory increase (+65) in N.F. Movements in Dec. $\left(-10^{\prime},+7^{\prime},-7^{\prime}\right)$ between $21 \frac{1 \mathrm{~h}}{2}, 22 \frac{3 \mathrm{~h}}{4}, 23 \frac{1 \mathrm{~h}}{4}, 24^{\mathrm{h}}$. Wave in V.F. beginning at 23^{h} : minimum (-55) at $0 \frac{3 \mathrm{~h}}{4}$.
260 Movements in N.F. $(-75,+55,-55,+45,-75)$ between $0 \frac{1 \mathrm{~h}}{2}, 1 \frac{1}{4} \mathrm{~h}, 1 \frac{3 \mathrm{~h}}{4}, 3 \frac{3 \mathrm{~h}}{4}, 4 \frac{1 \mathrm{~h}}{4}, 9 \frac{1}{2} \mathrm{~h}$. on to $0 \frac{3 \mathrm{~h}}{4}$ Increase in Der. ($+{ }^{1} 0^{\prime}$), with superposed wave $\left(+4^{\prime}\right)$ from oh to $0 \frac{1 h^{h}}{}$. ${ }^{\text {oh }}$ to $0 \frac{1}{2}$ h Sharp oscillations on slope of V.F. wave extending from $25^{-d} 23^{\mathrm{h}}$ to $26^{\mathrm{d}} 8^{\mathrm{h}}$. $1_{4}^{\frac{1 \mathrm{~h}}{}}$ to 2^{h} Decrease (-16^{\prime}) and increase $\left(-I^{\prime}\right)$ in Dec.; wavy increase ($+14^{\prime}$) from $2^{\text {h }}$ to 4^{h}, decreasing (-14^{\prime}) to 5^{h}. $\quad \mathrm{I}_{2}^{\mathrm{h}}$ to 2^{h} Increase in V.F. $(+20)$, continued $(+12)$ to t^{h}; slight decrease (-9) near 4^{h}, increase resumed at $4^{\frac{1}{4}}$. 5^{h} to 7^{h} Wave in Dec. $\left(+6^{\prime}\right)$ with small oscillations superposed. $26^{\mathrm{d}} 14^{\mathrm{h}}$ to $27^{\mathrm{d}} 1^{\mathrm{h}}$ Wave in V.F. $(+40)$. $18_{4}^{3 \mathrm{~h}}$ to $192^{\frac{1}{\mathrm{~h}}}$ Wave in Dec. $\left(-3^{\prime}\right)$. 20^{h} to 24^{h} Irregular movements $\left(\pm 2^{\prime}, 3^{\prime}\right)$ in Dec.
$27^{\mathrm{d}} 3^{\frac{3 \mathrm{~h}}{}}$ to 6^{h} Wave in Dec. $\left(+7^{\prime}\right)$ and in N.F. $(-30) . \quad 13^{\mathrm{h}}$ to ${ }^{20 \frac{1}{2}^{\mathrm{h}}}$ Oscillatory (± 15) increase in N.F. $(+60)$. $18^{8 \mathrm{~h}}$ to $183^{3 \mathrm{~h}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $19 \frac{1}{2}^{\mathrm{h}}$ to 21^{h} Double-crested wave in Dec. $\left(-4^{\prime}\right)$.
1915.

August

$29^{\mathrm{d}} \mathrm{I} 2^{\mathrm{h}}$ to $\mathrm{I} 4^{\mathrm{h}}$ Wave in N.F. $(-40) . \quad 15^{\frac{1 \mathrm{~h}}{}}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right)$. $18 \frac{1}{2}^{\mathrm{h}}$ to 20^{h} Double wave in N.F. $(-25,+30)$, second portion having two equal crests. ${ }^{18 \frac{3 \mathrm{~h}}{4}}$ to $1^{19}{ }^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ Wave in Dec. (-7^{\prime}), followed by two smaller waves. 22^{h} to 23^{h} Double-crested waves in Dec. $\left(+7^{\prime},+2^{\prime}\right)$ and in N.F. $(+40,+25)$. 12^{h} to $22 \frac{1_{2}}{\mathrm{~h}}$ Wave in V.F. (+40), last part, 22^{h} to $22 \frac{1_{2}^{\mathrm{h}}}{}$, being steep (-20).
 Wave in Dec. $\left(-4^{\prime}\right)$.
$3 \mathrm{I}^{\mathrm{d}} \mathrm{I}^{\frac{1 \mathrm{~h}}{}}$ to 4^{h} Wave in Dec. $\left(+4^{\prime}\right)$.

September $5^{\mathrm{d}} 14^{\mathrm{h}}$ to 15^{h} Wave in N.F. $(+20)$.
$6^{\mathrm{d}} 21^{\mathrm{h}}$ to 23^{h} Wave in Dec. $\left(-4^{\prime}\right)$. $2 \mathrm{I}^{\mathrm{h}}$ to $23^{\frac{1}{4} \mathrm{~h}}$ Double wave in N.F. $(+15,-10)$.
$8^{\mathrm{d}} 22^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ to $9^{\mathrm{d}} 9 \frac{1}{2}^{\mathrm{h}}$ Loss of register in V.F.
$9^{d} 18^{h}$ to $18 \frac{3}{4} \frac{h}{h}$ Wave in N.F. (一 12).
$\mathrm{r}^{\mathrm{d}} 0_{2}^{\frac{1 \mathrm{~h}}{}}$ to I^{h} Fluctuations in N.F. $1 \frac{1 \mathrm{~h}}{2 \mathrm{~h}}$ to $3 \frac{1 \mathrm{~h}}{4}$ Triple-crested wave in N.F. $(+18) .6 \frac{3 \mathrm{~h}}{4}$ to $7 \frac{1 \mathrm{~h}}{2 \mathrm{~h}}$ Flatcrested wave in Dec. $\left(+3^{\prime}\right) . \quad 8 \frac{1}{4}$ h to $9^{\text {h }}$ Wave in N.F. (-12).
$12^{\mathrm{d}} 0^{\frac{1}{4} \mathrm{~h}}$ to $13^{\mathrm{d}} 1 \mathrm{I}_{\frac{3}{4} \mathrm{~h}}$ Loss of register in V.F.
 wave in Dec. (- 3^{\prime}).
${ }_{1} 3^{d} 2_{2}^{\frac{1}{2} h}$ to $3 \frac{1}{2} h$ Flat-crested wave in Dec. ($+3^{\prime}$), steep at commencement and with small sharp fluctuations superposed till 3^{h}. 16^{h} to 18^{h} Triple wave in N.F. $(-18,+15,-18) .20 \frac{3 \mathrm{~h}}{4}$ to $22 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 13^{\mathrm{d}} 23^{\mathrm{h}}$ to $14^{\mathrm{d}} \mathrm{o}_{2}^{\mathrm{Lh}}$ Wave in Dec. $\left(+4^{\prime}\right)$.
$15^{\mathrm{d}}{ }^{2 \frac{3 \mathrm{~h}}{} \mathrm{~h}}$ to 5^{h} Wave in Dec. $\left(+5^{\prime}\right)$.
$1^{6 \mathrm{~d}} 13 \frac{1 \mathrm{~h}}{4}$ to $14 \frac{1}{2}^{\mathrm{h}}$ Wave in N.F. $(+24)$. 16^{h} to 17^{h} Wave in Dec. (-8^{\prime}) double wave in N.F. $(-10,+18)$, the second portion flat-crested. $16^{\mathrm{d}} 23^{\mathrm{h}}$ to $17^{\mathrm{d}} 0^{\frac{1}{4} \mathrm{~h}}$ Wave in N.F. $(+23)$. $16^{d} 23^{\frac{1}{2}}$ to $17^{\mathrm{d}} 0^{\frac{1}{2} \mathrm{~h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$17^{\mathrm{d}} \circ \frac{1 \mathrm{~L}}{\mathrm{~h}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Two successive waves in N.F. $\left(+16,+17\right.$). $\circ \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 3^{h} Two successive waves in Dec. $\left(-5^{\prime}\right.$, -5^{\prime}). $9 \frac{1 \mathrm{~h}}{4}$ to $\mathrm{I}_{2} \frac{1 \mathrm{~h}}{\mathrm{~h}}$ Irregular wave in N.F. (-30), followed till 14^{h} by a sharper wave (-40). I^{h} to 13^{h} Irregular wave in Dec. $\left(+4^{\prime}\right)$.

$22^{d} 4^{\text {h }}$ to $23^{d} 14^{\text {h }}$. See Plate II.
$23^{\mathrm{d}} 5^{\mathrm{h}}$ to 16^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $\mathrm{I}^{1 \frac{1}{4} \mathrm{~h}}$ to $16 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ Wave in N.F. $(-40) .17^{\mathrm{h}}$ to 188^{h} Wave in N.F. (+27). $17 \frac{3}{4}^{\frac{3 \mathrm{~h}}{2}}$ to $19 \frac{11}{4}^{\mathrm{h}}$ Sharp wave in Dec. $\left(-19^{\prime}\right)$. 18^{h} to $18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Sharp decrease and increase in N.F. (-15 , +105), followed till 19^{h} by slower decrease (-55). $22 \frac{3 \mathrm{~h}}{4}$ to $23 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right) .22 \frac{1 \mathrm{~h}}{4}$ to $23 \frac{1 \mathrm{~h}}{4}$ Sharp wave in N.F. $(+50)$.
$24^{\mathrm{d}} 2^{\mathrm{h}}$ to 4^{h} Waves in Dec. $\left(+8^{\prime}\right)$ and N.F. $(-20) .2^{\frac{1}{2}}$ to 3^{h} Decrease in V.F. (-15). $6 \frac{1}{2} \frac{\mathrm{~h}}{}$ to $^{\frac{1}{2} \mathrm{~h}}$ Wave
 to 18^{h} Sharp wave in Dec. (-10^{\prime}). $17 \frac{1}{2}^{h}$ to $18 \frac{1}{2} h$ Wave in N.F. $(+53)$, steep at commencement. $2 \mathrm{I}^{\mathrm{h}}$
 in N.F. $(+57$).
$25^{\mathrm{d}} 7^{\mathrm{h}}$ to $8 \frac{1}{4} \mathrm{~h}$ Wave in N.F. (-21). Io $\frac{3 \mathrm{~h}}{4}$ to $12 \frac{3 \mathrm{~h}}{4} \mathrm{~W}$ Wave in Dec. $\left(+4^{\mathrm{f}}\right) . \quad 16^{\mathrm{h}}$ to $17^{\frac{1}{4} \mathrm{~h}}$ Wave in N.F. (-20). $16 \frac{3 \mathrm{~h}}{}$ to $17 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. (-4^{\prime}). 19 ${ }^{\frac{1}{2} \mathrm{~h}}$ to $20 \frac{1 \mathrm{~h}}{2}$ Waves in Dec. $\left(-7^{\prime}\right)$ and N.F. $(+35) . \quad 22 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 23^{h} Double-crested wave in Dec. $\left(+5^{\prime}\right) . \quad 22 \frac{1}{2}^{\mathrm{h}}$ to $23 \frac{1}{2}^{\frac{\mathrm{h}}{}}$ Double wave in N.F. $(-16,+30)$.
$26^{\mathrm{d}} \circ \frac{1_{2}}{}{ }^{\mathrm{h}}$ to 2^{h} Wave in Dec. $\left(+4^{\prime}\right)$. $3^{\frac{3}{4} \mathrm{~h}}$ to 5^{h} Wave in Dec. $\left(+7^{\prime}\right)$. 4^{h} to $22 \frac{1}{2} \mathrm{~h}$ Slow wave in V.F. $(+35)$. 17^{h} to $18 \frac{14}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-10^{\prime}\right)$, double wave in N.F. $(-17,+30)$, the second portion double-
 Wave in Dec. $\left(-6^{\prime}\right)$, followed till $23 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ by an irregular wave (-7^{\prime}).
$27^{\mathrm{d}} 5^{\frac{1}{2} \mathrm{~h}}$ to 8^{h} Slow waves in Dec. $\left(+6^{\prime}\right)$ and N.F. (-28). $11 \frac{3 \mathrm{~h}}{4}$ to 1^{h} h Sharp increase in Dec. $\left(+5^{\prime}\right)$. $\quad 12^{\mathrm{h}}$ to 14^{h} Wave in N.F. $(-20) .14^{\mathrm{h}}$ to 188^{h} Slow wave in V.F. $(+18)$. $15^{\frac{3 \mathrm{~h}}{}}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-7^{\prime}\right)$. $15 \frac{3}{4}^{\frac{3}{h}}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Sharp increase in N.F. (+55) followed till $16 \frac{3}{4}^{\mathrm{h}}$ by slower partial return (-15^{\prime}).
$28^{\mathrm{d}} \circ^{\frac{3 \mathrm{~h}}{4}}$ to $2 \frac{3 \mathrm{~h}}{4}$ Flat-crested wave in Dec. $\left(+4^{\prime}\right)$. 1^{h} to 4^{h} Slow increase in V.F. $(-2 \mathrm{I}) .{ }^{1} 4 \frac{1}{2} \mathrm{~h}$ to $16 \frac{1}{4} \mathrm{~h}$ Double wave in N.F. $(-15,+15)$. $144^{\frac{3}{4}}$ to $16 \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right)$. 19^{h} to $21^{\frac{1}{4} \mathrm{~h}}$ Double wave in Dec. $\left(+5^{\prime},-6^{\prime}\right)$, followed till $22 \frac{1}{4} \mathrm{~h}$ by a wave $\left(-3^{\prime}\right)$. 19^{h} to 23^{h} Irregular decrease in V.F. (-30). $20 \frac{3 \mathrm{~h}}{4}$ to 2 I $\frac{1 \mathrm{~h}}{2}$ Wave in N.F. $(+26)$. $22 \frac{1}{2} \mathrm{~h}$ to $23 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. (-25). $28^{\mathrm{d}} 22 \frac{1}{2} \mathrm{~h}$ to $29^{\mathrm{d}} 4^{\mathrm{h}}$ Irregular quadruple wave in Dec. $\left(-8^{\prime},+6^{\prime},-6^{\prime},+1 I^{\prime}\right)$, the first two portions flat-crested, the last sharp. $28^{\mathrm{d}} 23^{\frac{3 \mathrm{~h}}{\mathrm{~h}}}$ to $29^{\mathrm{d}} 2^{\mathrm{h}}$ Decrease in V.F. $\left(-4^{2}\right)$.
1915.

September $29^{\text {d }} 0 \frac{1}{2} \mathrm{~h}$ to $3 \frac{3 \mathrm{~h}}{4}$ Irregular triple wave in N.F. $(-27,+26,-50) .2^{\mathrm{h}}$ to $3 \frac{3 \mathrm{~h}}{4}$ Wave in V.F. (+ Io) followed till $7 \frac{1}{4} \mathrm{~h}$ by an increase $(+34)$. $4^{\frac{3 \mathrm{~h}}{4}}$ to 6^{h} Wave in Dec. $\left(+4^{\prime}\right)$. $10 \frac{1}{2} \mathrm{~h}$ to 13^{h} Wave in N.F. (-30). $14 \frac{3 \mathrm{~h}}{}{ }^{\frac{1}{4}}$ to $5^{\frac{1}{2} \mathrm{~h}}$ Decrease in Dec. $\left(-8^{\prime}\right)$. 15^{h} to $15 \frac{1}{2} \mathrm{~h}$ Sharp decrease and increase in N.F. (-10, +30). $20 \frac{1}{2} \mathrm{~h}$ to $2 \mathrm{I} \frac{1}{2} \mathrm{~h}$ Waves in Dec. $\left(-6^{\prime}\right)$ and N.F. $(+33)$. $29^{\mathrm{d}} 23 \frac{1 \mathrm{~h}}{4}$ to $30^{\mathrm{d}} \mathrm{o} \frac{1}{2} \mathrm{~h}$ Waves in Dec. $\left(+6^{\prime}\right)$ and N.F. $(+15)$.
$30^{\mathrm{d}} \frac{1}{2} \frac{\mathrm{~h}}{2}$ to $2 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+4^{\prime}\right) . \quad 2^{\mathrm{h}}$ to 6^{h} Decrease in V.F. (-33). $3 \frac{3 \mathrm{~h}}{4}$ to $5 \frac{1 \mathrm{~h}}{4}$ Wave in N.F. (-42). $4^{\frac{1}{2} \mathrm{~h}}$ to $5 \frac{1 \mathrm{~h}}{4} \mathrm{~h}$ Wave in Dec. $\left(+3^{\prime}\right)$. $6 \frac{1}{2} \mathrm{~h}$ to $7 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+4^{\prime}\right)$. $9 \frac{1 \mathrm{~h}}{4}$ h to II h Wave in N.F. (-25). $14 \frac{1}{2} \mathrm{~h}$ to 16^{h} Wave in N.F. (-20). 17^{h} to $17 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(-23) . \quad 20 \frac{1}{2} \mathrm{~h}$ to $22 \frac{1}{2} \mathrm{~h}$, Two successive waves in N.F. $(+20,+35) . \quad 20 \frac{3}{4}$ h to 23^{h} Three successive waves in Dec. $\left(-3^{\prime},-9^{\prime},-3^{\prime}\right)$.

October
$1^{d} 22 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $23 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$3^{d} 22 \frac{1}{4} \mathrm{~h}$ to $22 \frac{1}{2} \mathrm{~h}$ Sharp increase in Dec. $\left(-5^{\prime}\right) . \quad 22 \frac{1}{4} \mathrm{~h}$ to $23 \frac{1}{4} \mathrm{~h}$ Wave in N.F. $(+27)$.
$4^{\mathrm{d}} 2 \mathrm{I} \frac{1 \mathrm{~h}}{4}$ to $22 \frac{1}{2} \mathrm{~h}$ Flat-crested wave in Dec. $\left(-3^{\prime}\right)$.
$7^{\mathrm{d}} 22^{\mathrm{h}}$ to $23 \frac{1}{4} \mathrm{~h}$ Waves in Dec. $\left(-7^{\prime}\right)$ and N.F. $(+22)$.
$10^{d} 1_{2} \frac{1 \mathrm{~h}}{}$ to 2^{h} Sharp wave in Dec. $\left(+6^{\prime}\right)$, increase in N.F. $(+20)$ and decrease in V.F. (-11). 16^{h} Very sharp increase in N.F. $(+20) . \quad 20 \frac{1}{4} \mathrm{~h}$ to $22 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-17^{\prime}\right) . \quad 20 \frac{1}{2} \mathrm{~h}$ to 22^{h} Wave in N.F. $(+35)$ steep at commencement.
II ${ }^{\mathrm{d}} 2 \mathrm{I}^{\frac{1}{2}}$ to $23 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-5^{\prime}\right)$.
$13^{\mathrm{d}} 23^{\mathrm{h}}$ to 24^{h} Wave in N.F. $(+20)$.
$14^{d} 13^{h}$ to 23^{h} Irregular slow wave in V.F. $(++5)$. $13 \frac{3}{4} \mathrm{~h}$ Very sharp increase in Dec. $\left(+4^{\prime}\right)$ and N.F. $(+\mathrm{I} 2) . \quad \mathrm{I} 4^{\frac{1}{2} \mathrm{~h}}$ to $14^{\frac{1}{2} \mathrm{~h}}$ Decrease in N.F. $(-20) . \quad 15^{\mathrm{h}}$ to $16^{\frac{1}{4} \mathrm{~h}}$ Irregular sharp triple-crested wave in Dec. $\left(+7^{\prime}\right.$), followed till $16 \frac{3}{4} \mathrm{~h}$ by a decrease (-7^{\prime}). $\quad 15^{\mathrm{h}}$ to 18^{h} Irregular wave in N.F. (-50) with sharp superposed oscillations, followed till 20^{h} by two successive waves ($-33,-30$). 18^{h} to 20^{h} Two successive waves in Dec. $\left(-6^{\prime},-3^{\prime}\right) . \quad 2 I^{\mathrm{h}}$ to $22 \frac{1}{2} \mathrm{~h}$ Sharp wave in Dec. $\left(-12^{\prime}\right)$. $21 \frac{1}{2} \mathrm{~h}$ to $22 \frac{1}{2} \mathrm{~h}$ Wave in N.F. $(+25)$.
$15^{\mathrm{d}} 2^{\mathrm{h}}$ to $16^{\mathrm{d}} 2^{\mathrm{h}}$. See Plate II.
$16^{\mathrm{d}} 2^{\mathrm{h}}$ to $3 \frac{1}{2} \mathrm{~h}$ Triple wave in Dec. $\left(+3^{\prime},-2^{\prime}\right.$, $\left.+3^{\prime}\right)$, the middle portion double-crested: double wave in
 $23 \frac{3}{4} \mathrm{~h}$ Wave in N.F. $(+43)$ with sharp superposed wave (-20) from $22 \frac{3}{4} \mathrm{~h}$ to 23^{h}.
$17^{d} 0^{\text {h }}$ to $0 \frac{3 \mathrm{~h}}{4}$ Irregular wave in Dec. $\left(+3^{\prime}\right)$, small sharp waves in N.F. $3 \frac{3 \mathrm{~h}}{4}$ to $5 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. ($+10^{\prime}$). 4^{h} to $6 \frac{1}{4} \mathrm{~h}$ Wave in N.F. $(+24) .4^{\mathrm{h}}$ to 7^{h} Wave in V.F. (-12).
$19^{d} 11 \frac{1}{2} h$ to $12 \frac{3}{4}$ h Double-crested wave in Dec. $\left(+6^{\prime}\right)$, followed till $13 \frac{3}{4}$ h by a wave $\left(+6^{\prime}\right)$, the last portion very steep. $13 \frac{3}{4} \mathrm{~h}$ to $17 \frac{1}{4} \mathrm{~h}$ Three successive waves in N.F. $(+40,+39,+21)$, followed till $18 \frac{3}{4} \mathrm{~h}$ by an irregular triple wave $(+24,-16,+20) .14^{\mathrm{h}}$ to 16^{h} Increase in V.F. $(+35) .{ }^{1} 5 \frac{1}{2} \mathrm{~h}$ to $17 \frac{3}{4} \mathrm{~h}$ Three successive irregular waves in Dec. $\left(-8^{\prime},-5^{\prime},-6^{\prime}\right)$. $17^{\text {h }}$ to $20^{\text {h }}$ Irregular wave in V.F. $(+22)$. $18^{\text {h }}$ to $18 \frac{1 \mathrm{~h}}{4}$ Sharp decrease in Dec. (-14^{\prime}), followed till 19^{h} by serrated partial return $\left(+6^{\prime}\right)$. 19^{h} to $19 \frac{1}{2} \mathrm{~h}$ Very sharp decrease and increase in Dec. $\left(-18^{\prime},+9^{\prime}\right)$. $19 \frac{11 \mathrm{~h}}{4}$ Very sharp increase in N.F. $(+53)$, followed till $2 \frac{1}{2}^{\frac{1}{h}}$ by an irregular wave $(-43) .20^{\mathrm{h}}$ to $2 \frac{1}{2}^{\frac{1}{h}}$ Irregular truncated wave in Dec. ($+5^{\prime}$). $\left.{ }^{19}\right)^{d} 23 \frac{1}{4} \mathrm{~h}$ to $20^{d^{2}}{ }^{\text {h }}$ Two successive waves in Dec. $\left(+3^{\prime},+3^{\prime}\right)$.
$2^{\mathrm{d}} 4_{2}^{\mathrm{T}}$ to 7^{h} Waves in Dec. $\left(+\mathrm{II}^{\prime}\right)$ and N.F. $(-37) .8^{\mathrm{h}}$ to $8 \frac{1}{2} \mathrm{~h}$ Rapid decrease in N.F. (-35), continued till $12 \frac{1}{2} \mathrm{~h}$ by a truncated wave (-65) with superposed fluctuations. $10 \frac{1}{2} \mathrm{~h}$ to $12 \frac{1 \mathrm{~h}}{4}$ Truncated wave in Dec. $\left(-5^{\prime}\right)$ with serrated crest. 14^{h} to $14^{\frac{1}{2} \mathrm{~h}}$ Decrease in Dec. $\left(-5^{\prime}\right)$. 14^{h} to 15^{h} Wave in N.F. (-24). $17^{3 \mathrm{~h}}$ to 19^{h} Sharp wave in Dec. (-10'). 18^{h} to 20^{h} Wave in N.F. $(+35) .22^{\mathrm{h}}$ to 23^{h} Wave in N.F. $(+26) .22 \frac{3}{4}$ to $23 \frac{3}{4}$ h Wave in Dec. $\left(-4^{\prime}\right)$.
$2 \mathrm{I}^{\mathrm{d}} \mathrm{O}_{4}^{\frac{1}{\mathrm{~h}}}$ to $3^{1 \mathrm{~h}}$ Irregular double-crested wave in Dec. (-9^{\prime}). $2^{\frac{3}{4} \mathrm{~h}}$ to $4^{\frac{3 \mathrm{~h}}{} \mathrm{~h}}$ Double-crested wave in N.F. (-27). 5^{h} to $6 \frac{1}{4} \mathrm{~h}$ Wave in Dec. (- 3^{\prime}). $\quad 5 \frac{1}{2} \mathrm{~h}$ to $6 \frac{3}{4} \mathrm{~h}$ Wave in N.F. (-29). $9 \frac{1}{2} \mathrm{~h}$ to $I^{\mathrm{h}} \mathrm{h}^{\mathrm{h}}$ Wave in N.F. (-30). $11 \frac{3 \mathrm{~h}}{4}$ to $12 \frac{3}{4} \mathrm{~h}$ Two successive waves in Dec. $\left(+4^{\prime},+3^{\prime}\right)$. 20^{h} to $2 \mathrm{I}_{4}^{\frac{1}{4} \mathrm{~h}}$ Sharp waves in Dec. (- I 2^{\prime}) and N.F. $(+70)$.
$22^{\mathrm{d}} \mathrm{I}_{4}^{1 \mathrm{~h}}$ to 2^{h} Wave in Dec. $\left(+3^{\prime}\right)$. II $\frac{1}{2} \mathrm{~h}$ to $\mathrm{I} 3 \frac{1}{2} \mathrm{~h}$ Double-crested wave in N.F. (-20). $12 \frac{1}{4}$ h to $\mathrm{I} 3 \frac{1}{2}{ }^{\mathrm{h}}$ Serrated wave in Dec. $\left(\frac{1}{3} 3^{\prime}\right)$. I $3^{1 \mathrm{~h}}$ to 20^{h} Slow irregular wave in V.F. $(-+28)$. ${ }^{1} 7 \frac{1}{2}^{\mathrm{h}}$ to 18^{h} Wave in Dec. $\left(-4^{\prime}\right)$. $17_{2}^{1 \mathrm{~h}}$ to 18^{h} Wave in N.F. $(+20) . \quad 18 \frac{1 \mathrm{~h}}{4}$ to 20^{h} Wave in Dec. $\left(-9^{\prime}\right) . \quad 18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 20^{h} Wave in N.F. $(+37) . \quad 20 \frac{1}{2} \mathrm{~h}$ to $2 \mathrm{I} \frac{1}{2} \mathrm{~h}$ Wave in N.F. $(+30)$, followed till $23 \frac{1 \mathrm{~h}}{4}$ by a triple wave $(+20,-20$, +20). $21^{\text {h }}$ to $22 \frac{3}{4} h^{2}$ Double wave in Dec. $\left(-4^{\prime},+13^{\prime}\right)$, the second portion very sharp. $22^{d} 23 \frac{3 \mathrm{~h}}{4}$ to $23^{d} \circ \frac{3}{4} \mathrm{~h}$ Wave in N.F. $(+36)$.
$23^{\mathrm{d}} \mathrm{O}^{\text {h }}$ to $\frac{3}{4} \mathrm{~h}$ Truncated wave in Dec. $\left(-6^{\prime}\right)$. $o^{\text {h }}$ to $0 \frac{1}{4} \mathrm{~h}$ Decrease in V.F. (-15). $\quad 1 \frac{1}{2} \mathrm{~h}$ to $2 \frac{3}{4} \mathrm{~h}$ Wave in N.F. $(-50) . \quad 2^{\mathrm{h}}$ to $3 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+15^{\prime}\right) . \quad 2 \frac{1}{2} \mathrm{~h}$ to 4^{h} Wave in V.F. $(-16) . \quad 5 \frac{3}{4} \mathrm{~h}$ to $8 \frac{1}{2} \mathrm{~h}$ Irregular wave in Dec. $\left(+10^{\prime}\right) . \quad 5 \frac{3}{4} \mathrm{~h}$ to $7 \frac{1}{2} \mathrm{~h}$ Wave in N.F. (-35), followed till 8 h by a decrease (-25).
$23^{d} 12^{\text {h }}$ to $24^{d} 12^{h}$. See Plate II.
1915.

October $\quad 24^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $14^{\frac{3}{4} \mathrm{~h}}$ Irregular decrease in Dec. (-8^{\prime}), followed till $15^{\frac{1}{4} \mathrm{~h}}$ by a wave $\left(+4^{\prime}\right)$. $\quad 15^{\mathrm{h}}$ to 16^{h} Wave in N.F. $(+20)$. $16^{\text {h }}$ to 17^{h} Wave in Dec. (-5^{\prime}), followed till $17 \frac{3}{4} \mathrm{~h}$ by a sharper wave (-6^{\prime}), again followed till 18^{h} by a very sharp wave (-16'). $16 \frac{3 \mathrm{~h}}{4}$ to $17 \frac{1}{4} \mathrm{~h}$ Irregular decrease in N.F. (- 30), followed till $17 \frac{3}{4} \mathrm{~h}$ by a sharp truncated wave $(+25)$. $17 \frac{3 \mathrm{~h}}{4}$ to 18^{h} Very sharp increase in N.F. (+ 107) , followed till $18 \frac{1}{4} \mathrm{~h}$ by a sharp decrease (-53), and till $18 \frac{3}{4} \mathrm{~h}$ by a slower decrease (-20). 188^{h} to $18 \frac{1}{2} \mathrm{~h}$ Decrease in V.F. (-14). I9 $\frac{1 \mathrm{~h}}{4}$ to $20 \frac{1}{2} \mathrm{~h}$ Irregular double wave in Dec. (-4^{\prime}, $+5^{\prime}$), the second movement very sharp, followed till $2 I^{h}$ by a wave ($+3^{\prime}$). $\quad 19 \frac{1}{2}{ }^{\mathrm{h}}$ to $2 \mathrm{I}_{4}{ }^{\frac{1}{\mathrm{~h}}}$ Irregular triple-crested wave in N.F. $(+40)$, followed till 22^{h} by a sharp increase and decrease $(+53,-38) .20^{\mathrm{h}}$ to $20 \frac{1}{2} \mathrm{~h}$ Decrease in V.F. (-18). $\quad 2{ }^{1 \frac{1}{4} h}$ to $21 \frac{3}{4}$ Sharp wave in Dec. $\left(-8^{\prime}\right) . \quad 22 \frac{3}{4} \mathrm{~h}$ to 24^{h} Triple wave in Dec. ($+3^{\prime}$, $\left.-3^{\prime},+3^{\prime}\right) .24^{\mathrm{d}} 23^{\mathrm{h}}$ to $25^{\mathrm{d}} \circ \frac{1}{4} \mathrm{~h}$ Decrease in V.F. $\left(-3^{2}\right)$. $24^{\mathrm{d}} 23 \frac{1}{2} \mathrm{~h}$ to $25^{\mathrm{d}} \circ \frac{1}{2} \mathrm{~h}$ Double-crested wave in N.F. $(+21)$.
$25^{\mathrm{d}} 0 \frac{1}{2} \mathrm{~h}$ to 2^{h} Double-crested wave in Dec. (-9'), flat-crested wave in N.F. $(+19)$. $2 \frac{1}{4} \mathrm{~h}$ to 4^{h} Flatcrested wave in N.F. $(+25) . \quad 2 \frac{1}{2} \mathrm{~h}$ to $3 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 4 \frac{1}{2} \mathrm{~h}$ to $6 \frac{1}{2} \mathrm{~h}$ Increase and decrease in Dec. $\left(+15^{\prime},-6^{\prime}\right)$. 5^{h} to 7^{h} Wave in V.F. (-14). $5^{\frac{1}{4} \mathrm{~h}}$ to $77^{\frac{3}{4} \mathrm{~h}}$ Irregular double-crested wave in N.F. (-23) followed till $8 \frac{1}{2} \mathrm{~h}$ by a decrease $(-30) .9^{\mathrm{h}}$ to I^{h} Sharply serrated double wave in Dec. $\left(-5^{\prime}+3^{\prime}\right) . \quad 1 \pm \frac{1}{2} \mathrm{~h}$ to $12 \frac{1}{2} \mathrm{~h}$ Serrated wave in N.F. (-35). 12^{h} to $13 \frac{1}{2} \mathrm{~h}$ Truncated wave in N.F. $(+23)$. 13^{h} to $18 \frac{1}{4} \mathrm{~h}$ Slow wave in V.F. $(+40)$. $16 \frac{1}{2}^{\mathrm{h}}$ to 17^{h} Sharp double-crested wave in N.F. $(+20)$. $16 \frac{3}{4}$ to 17^{h} Sharp double wave in Dec. $\left(-3^{\prime},+3^{\prime}\right) . ~ 17^{\mathrm{h}}$ to $17 \frac{1}{2} \mathrm{~h}$ Wave in N.F. (+18), followed till $19^{\text {h }}$ by a sharp double-crested wave (+77), with a pause of $\frac{1 \mathrm{~h}}{4}$ during first increase. $17 \frac{1}{2} \mathrm{~h}$ to $\mathrm{I} 8 \frac{3}{4} \mathrm{~h}$ Sharp double-crested wave in Dec. ($-\mathrm{I} 4^{\prime}$), with a pause of $\frac{1 \mathrm{~h}}{4}$ during first decrease. $25^{\mathrm{d}} 23 \frac{1}{4} \mathrm{~h}$ to $26^{\mathrm{d}}{ }^{\frac{1}{2} \mathrm{~h}}$ Irregular wave in Dec. ($+12^{\prime}$). $25^{\mathrm{d}} 23 \frac{1 \mathrm{~h}}{}$ to $26^{\mathrm{d}} 3^{\mathrm{h}}$ Irregular quadruple wave in N.F. $(+15,-15,+35,-23) . \quad 25^{d} 23^{\frac{3 h}{4}}$ to $26^{d}{ }^{\text {h }}{ }^{\text {h }}$ Decrease in V.F. (-23)
$26^{\mathrm{d}}{ }_{2 \frac{1}{4}}{ }^{\mathrm{h}}$ to 4^{h} Slightly truncated wave in Dec. $\left(+10^{\prime}\right)$. $3 \frac{1 \mathrm{~h}}{4}$ to 5^{h} Increase in V.F. $(+15) .4^{\frac{1}{4}}$ to $7 \frac{3}{4} \mathrm{~h}$ Slow wave in Dec. $\left(-7^{\prime}\right)$. Io $\frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $10 \frac{3 \mathrm{~h}}{4}$ Increase in Dec. $\left(+4^{\prime}\right)$. $14^{\text {h }}$ to $14^{\frac{1 \mathrm{~h}}{4}}$ Decrease in Dec. (-7^{\prime}). 19^{h} to $19 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-6^{\prime}\right)$. $21 \frac{1}{2} \mathrm{~h}$ to $22 \frac{3 \mathrm{~h}}{4}$ Irregular wave in N.F. (+36). $22 \frac{3}{4} \mathrm{~h}$ to $23 \frac{1}{4} \mathrm{~h}$ Two successive waves in Dec. (- $3^{\prime},-4^{\prime}$).
$27^{\mathrm{d}}{ }^{\mathrm{I}} 7^{\frac{1}{2}} \mathrm{~h}$ to $\mathrm{I} 7 \frac{3}{4}^{\mathrm{h}}$ Sharp decrease in Dec. $\left(-9^{\prime}\right) . \quad 17 \frac{1}{2}^{\mathrm{h}}$ to 18^{h} Increase in N.F. $(+27)$.
$29^{\mathrm{d}} 1^{\mathrm{h}}$,to 2^{h} Wave in Dec. $\left(+3^{\prime}\right)$.

$3 \mathrm{I}^{\mathrm{d}}{ }^{19} \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{1}{2} \mathrm{~h}$ Wave in N.F. (-20). $19 \frac{3 \mathrm{~h}}{4}$ to $20 \frac{1}{4} \mathrm{~h}$ Sharp decrease in Dec. $\left(-10^{\prime}\right)$, followed till $2 \mathrm{I}^{\mathrm{h}}$ by slower return $\left(+5^{\prime}\right)$. $3 \mathrm{I}^{\mathrm{d}}{ }_{23}{ }_{\frac{1}{4}} \mathrm{~h}$ to Nov. $\mathrm{I}^{\mathrm{d}} \mathrm{I}_{\frac{1}{2}} \mathrm{~h}^{4}$ Double wave in Dec. $\left(+5^{\prime},-6^{\prime}\right)$, the first portion steep, the last slow and irregular.

November $\quad 1^{d} \circ \frac{3}{4}$ h to 2^{h} Wave in N.F. (-20). 3^{h} to $4^{\frac{1}{2} \mathrm{~h}}$ Irregular double-crested wave in Dec. $\left(+4^{\prime}\right) . \quad 4^{\mathrm{h}}$ to $5 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in N.F. $(+30)$. 8^{h} to $8 \frac{3 \mathrm{~h}}{4}$ Serrated wave in Dec. $\left(-4^{\prime}\right)$. $10 \frac{1}{2} \mathrm{~h}$ to 11^{h} Sharply serrated wave in Dec. $\left(+t^{\prime}\right)$, in N.F. small. $11 \frac{1}{2}$ h to $12 \frac{3}{4} \mathrm{~h}$ Serrated double wave in N.F. ($-16,+12$), the first portion truncated ; followed till 14^{h} by a triple-crested wave (-30). $\mathrm{I}_{2} \frac{1}{2} \mathrm{~h}$ to 13^{h} Double-crested wave in Dec. $\left(+t^{\prime}\right)$, followed till $\mathrm{I} 3^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ by a truncated wave $\left(+4^{\prime}\right)$. $\quad \mathrm{I} 3 \frac{1}{2}^{\mathrm{h}}$ to $\mathrm{I}_{4^{\mathrm{h}}}$. Sharp double wave in Dec. ($+2^{\prime}$, - 3^{\prime}). $14^{\frac{1 \mathrm{~h}}{4}}$ to $14 \frac{3 \mathrm{~h}}{4}$ Sharp decrease and increase in Dec. ($-3^{\prime},+6^{\prime}$). $14^{\frac{3 \mathrm{~h}}{4}}$ to $15 \frac{1}{2}$ h Serrated increase in Dec. $\left(+6^{\prime}\right)$. $15^{\text {h }}$ to $15^{\frac{1 \mathrm{~h}}{}}$ Decrease in N.F. (-25), followed till $15 \frac{3 \mathrm{~h}}{4}$ by a sharp wave (-35). $15^{\text {h }}$ to $15 \frac{1}{2}^{\mathrm{h}}$ Sharp increase in V.F. $(+30)$. $15 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Very sharp decrease in Dec. $\left(-14^{\prime}\right)$, followed till $16 \frac{1 \mathrm{~h}}{2}$ by an irregular wave ($+6^{\prime}$) with superposed fluctuations ; short sharp fluctuations also in N.F. and V.F. $19 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 20^{h} Very sharp double wave in Dec. ($-17^{\prime},+8^{\prime}$), followed till $20 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ by a wave (-6^{\prime}). $19 \frac{1 \mathrm{~h}}{4}$ to 20^{h} Very sharp irregular wave in N.F. (+ 100) , sharp decrease in V.F. (-35). $20 \frac{1 \mathrm{l}}{\mathrm{h}}$ to $21_{4}^{\mathrm{h}} \mathrm{h}$ Triple wave in N.F. $(+23,-22,+20)$, the second portion truncated, followed till $22 \frac{1 \mathrm{~h}}{4}$ by an irregular
 rapidly diminishing in activity after the first two movements.
$2^{\mathrm{d}} 15^{\frac{1}{4} \mathrm{~h}}$ to $16 \frac{1}{2} \mathrm{~h}$ Double-crested wave in N.F. (-22). $19 \frac{3}{4} \mathrm{~h}$ to $21 \frac{1}{2} \mathrm{~h}$ Truncated wave in Dec. $\left(-8^{\prime}\right) .20^{\mathrm{h}}$ to $2 I_{\frac{11}{4} \mathrm{~h}}$ Wave in N.F. $(+30)$.
$3^{\mathrm{d}} 17^{\mathrm{h}}$ to 19^{h} Serrated wave in Dec. $\left(-3^{\prime}\right)$. 23^{h} to $23 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$5^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $6^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ See Plate III.
 in V.F. $(+25)$. $5^{\frac{1}{2} \mathrm{~h}}$ to 16^{h} Irregular increase in Dec. $\left(+5^{\prime}\right)$, followed till 17^{h} by an irregular sharp decrease (-22^{\prime}). ${ }_{5} \frac{15}{2} \frac{1 \mathrm{~h}}{}$ to $17 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ Irregular double wave in N.F. $\left(-30,+20\right.$), followed till $18 \frac{1}{2} \mathrm{~h}$ by a serrated wave $(+50)$. 17^{h} to 18^{h} Serrated wave in Dec. $\left(+8^{\prime}\right)$, followed till $18 \frac{1}{2}$ h by an irregular wave $\left(+5^{\prime}\right)$. $18 \frac{1 \mathrm{~h}}{2}$ to $20 \frac{1 \mathrm{~h}}{2}$ Irregular wave in Dec. $\left(+7^{\prime}\right)$. $21 \frac{11}{4}$ h to $23 \frac{3 \mathrm{~h}}{}{ }^{\frac{3}{4}}$ Three successive irregular waves in Dec. $\left(+5^{\prime},+7^{\prime},+7^{\prime}\right) . \quad 22^{\mathrm{h}}$ to $23 \frac{1 \mathrm{~h}}{4}$ Wave in V.F. $(-17$).
$7^{\mathrm{d}} 19^{\mathrm{h}}$ to $2 \frac{1}{4}^{\frac{\mathrm{h}}{} \mathrm{h}}$ Irregular double-crested wave in Dec. $\left(-5^{\prime}\right)$, irregular wave in N.F. (+3 I).
 $16 \frac{1}{2} \mathrm{~h}$ to I^{h} Double-crested wave in N.F. $(+52) . \quad 22^{\mathrm{h}}$ to $22 \frac{1}{2} \mathrm{~h}$ Waves in Dec. $\left(+4^{\prime}\right)$ and N.F. $(+25)$.
1915.
 to $2 I^{\frac{3}{4} h}$ Wave in Dec. $\left(-3^{\prime}\right)$. $21 \frac{1}{4} \mathrm{~h}$ to 22^{h} Wave in N.F. $(+20)$. $22 \frac{11_{4}}{}$ to $22 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$. $9^{d} 23^{\frac{3}{4}}$ to $1^{d} 0^{\frac{1}{2} h}$ Waves in Dec. $\left(+5^{\prime}\right)$ and N.F. $(+20)$.
$1^{\mathrm{d}}{ }^{1} 3^{\frac{3 \mathrm{~h}}{4}}$ to $144_{4}^{\frac{3 \mathrm{~h}}{}}$ Double-crested wave in Dec. ($+4^{\prime}$).
 wave in N.F. $(+18,-10) . \quad 21^{\mathrm{h}}$ to $22 \frac{3 \mathrm{~h}}{4}$ Double wave in Dec. $\left(+3^{\prime},-3^{\prime}\right)$, in N.F. small.
$12^{\mathrm{d}} 20 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ Wave in N.F. $(+27)$, followed till $23 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ by a wave $(+18) .2 \mathrm{I}^{\mathrm{h}}$ to 23^{h} Double wave in Dec. $\left(-5^{\prime},+4^{\prime}\right) . \quad{ }^{12}{ }^{\mathrm{d}}{ }^{2} 3^{\frac{3}{4} \mathrm{~h}}$ to $13^{\mathrm{d}}{ }^{1}{ }^{\mathrm{h}}$ Flat-crested wave in Dec. ($+5^{\prime}$).
$13^{\mathrm{d}} 0^{\mathrm{h}}$ to I^{h} Decrease in V.F. (-17). $\circ_{4}^{\frac{1}{4}}$ to $\mathrm{I}_{2}^{\mathrm{h}}$ Wave in N.F. $(+30)$.
$14^{\mathrm{d}} 184_{4}^{\mathrm{h}}$ to $15^{\mathrm{d}} 10 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Loss of register in Dec. and N.F. $14^{\mathrm{d}}{ }^{2} 2_{2}^{\frac{1 \mathrm{~h}}{}}$ to $15^{\mathrm{d}} 7^{\mathrm{h}}$ Loss of register in V.F.
$15^{\mathrm{d}} 19 \frac{1 \mathrm{~m}^{\mathrm{h}}}{}$ to $16^{\mathrm{d}}{ }_{11} \frac{3{ }_{4}^{4}}{}$ Loss of register in Dec. and N.F.
$15^{\mathrm{d}} 22^{\mathrm{h}}$ to 23^{h} Sharp wave in V.F. (-20), followed by fluctuations till 24^{h}.
$16^{\mathrm{d}} 12^{\mathrm{h}}$ to $16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in V.F. $(+58)$. $12 \frac{1 \mathrm{l}}{2} \mathrm{~h}$ to $133^{\frac{3 \mathrm{~h}}{}}$ Serrated double wave in Dec. $\left(+4^{\prime},-4^{\prime}\right)$. $12 \frac{1 \mathrm{~h}}{2}$ to $13 \frac{1}{2}^{\frac{1}{h}}$ Serrated double-crested wave in N.F. (-20). $13 \frac{3 \mathrm{~h}}{4}$ to $14 \frac{1}{2}^{\mathrm{h}}$ Irregular double wave in N.F. $(-22,+30)$, followed till $144^{\frac{3}{4}}$ by a sharp increase $(+55)$. 14^{h} to $144^{\frac{1}{4} \mathrm{~h}}$ Sharp wave in Dec. $\left(-7^{\prime}\right)$, followed till $15^{\text {h }}$ by a sharp decrease (-13^{\prime}), with slower partial return ($+8^{\prime}$). $17^{\frac{3 \mathrm{~h}}{4}}$ to $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ Irregular decrease in N.F. $\left(-38^{\prime}\right)$, followed till $20 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ by a sharp double-crested wave $(+85)$. 19^{h} to $20 \frac{3 \mathrm{3h}}{4}$ Sharp double-crested wave in Dec. $\left(-19^{\prime}\right)$. $21^{1 \frac{1}{4}}$ to 24^{h} Irregular double wave in V.F. $(+7,-10)$. $21 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $23 \frac{3 \mathrm{~h}}{4}$ Irregular truncated wave in N.F. $(+60)$. $21 \frac{3 \mathrm{~h}}{4}$ to $23 \frac{1 \mathrm{~h}}{4}$ Double-crested wave in Dec. $\left(-8^{\prime}\right)$, followed till 24^{h} by a wave $\left(-7^{\prime}\right)$.
${ }_{1} 7^{\mathrm{d}}{ }^{\frac{1}{2} \mathrm{~h}}$ to $2 \frac{1}{2} \mathrm{~h}$ Sharp double-crested wave in Dec. $\left(+9^{\prime}\right)$, followed till $4^{\frac{1}{2}}{ }^{\mathrm{h}}$ by an irregular double wave $\left(+6^{\prime},-3^{\prime}\right)$. $\frac{3}{4} \frac{3 \mathrm{~h}}{}$ to $3 \frac{3 \mathrm{~h}}{4}$ Two successive waves in N.F. $(+32,+30)$, the second truncated. $1 \frac{3 \mathrm{~h}}{4}$ to 5^{h} Irregular wave in V.F. $(-28) .4^{\frac{1}{2} h}$ to $5^{3 \mathrm{~h}}$ Increase in Dec. $\left(+15^{\prime}\right) . \quad 6 \frac{1}{2} \mathrm{~h}$ to $7 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Decrease in N.F. $(-40) .8^{\mathrm{h}}$ to $8 \frac{1 \mathrm{~h}}{4}$ Decrease in Dec. $\left(-5^{\prime}\right)$. $8 \frac{1 \mathrm{~h}}{4}$ to $8 \frac{1 \mathrm{~h}}{2}$ Increase in N.F. $(+20) . \quad 1 \frac{1 \mathrm{~h}}{2}$ to 13^{h} Serrated waves in Dec. $\left(+7^{\prime}\right)$ and N.F. $\left(-48^{\prime}\right)$. 16^{h} to $16 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$. 16^{h} to ${ }^{16 \frac{1}{4} \mathrm{~h}}$ Sharp
 in N.F. $(+20,-17,+40,-20)$.
$18^{\mathrm{d}} \circ \frac{1 \mathrm{~h}}{4}$ to $0 \frac{1}{2}^{\mathrm{h}}$ Sharp increase in Dec. $\left(+12^{\prime}\right)$, followed till 3^{h} by two successive waves $\left(-12^{\prime},-7^{\prime}\right)$. $\circ \frac{1 \mathrm{~h}}{4}$ to 3^{h} Double-crested wave in V.F. $(-28) .5^{\mathrm{h}}$ to 7^{h} Irregular wave in N.F. $(+30) . \quad 63_{4}^{\mathrm{h}}$ to $7_{4}^{\frac{\mathrm{h}}{} \mathrm{h}}$ Sharp increase in Dec. $\left(+17^{\prime}\right)$. $7 \frac{1 \mathrm{~h}}{4}$ to $8 \frac{1 \mathrm{~h}}{2}$ Double-crested wave in N.F. $(-28) .8 \frac{1}{2} \mathrm{~h}$ to rr^{h} Serrated wave in Dec. $\left(-10^{\prime}\right)$. $11 \frac{1}{2}$ h to $12^{\text {h }}$ Sharply serrated wave in Dec. $\left(+5^{\prime}\right)$, followed till $13 \frac{12^{h}}{}$ by two successive serrated waves $\left(-4^{\prime},-5^{\prime}\right)$. 12^{h} to 15^{h} Wave in V.F. $(+19)$. $13 \frac{1}{2}^{\mathrm{h}}$ Sharp decrease in Dec. $\left(-6^{\prime}\right)$. $133^{\frac{1 \mathrm{~h}}{}}$ to 14^{h} Increase in N.F. $(+35)$, followed till 15^{h} by a double wave $(-24,+26)$. $133^{\frac{3}{4} \mathrm{~h}}$ to $14^{\frac{3}{4} \mathrm{~h}}$ Double wave in Dec. $\left(+4^{\prime},-4^{\prime}\right)$. 16^{h} to 1^{h} Sharp waves in Dec. $\left(-15^{\prime}\right)$ and N.F. $(+50)$. $18 \frac{11^{\mathrm{h}}}{}$ to 19^{h} Sharp wave in Dec. $\left(-7^{\prime}\right)$, followed till 20^{h} by an irregular wave (-5^{\prime}). $18 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to $20 \frac{1 \mathrm{l}}{4} \mathrm{~h}$ Manycrested wave in N.F. $\left(+4^{2}\right)$. $20 \frac{1 h^{h}}{}$ to $22 \frac{11}{2} \mathrm{~h}$ Truncated wave in Dec. $\left(-6^{\prime}\right) . \quad 2 \mathrm{I}^{\mathrm{h}}$ to $23 \frac{1 \mathrm{~h}}{4} \mathrm{~h}$ Wave in N.F. $\left(+4^{\circ}\right) . \quad 23^{\mathrm{h}}$ to $23^{\frac{1}{4} \mathrm{~h}}$ Sharp increase in Dec. $\left(+7^{\prime}\right)$. $18^{\mathrm{d}} 3^{2 \frac{1 \mathrm{~h}}{4}}$ to $19^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Irregular wave in N.F. $(+20)$.
 $\left(+5^{\prime}\right) .8 \frac{1 \mathrm{~h}}{4}$ to $9 \frac{1 \mathrm{~h}}{4}$ Irregular wave in N.F. (-20). 12^{h} to $5^{\text {h }}$ Wave in V.F.F. $(+20)$. $12 \frac{1 \mathrm{~h}}{4}$ to 14^{h} Serrated wave in N.F. (-32). 16^{h} to $17 \frac{1}{2}^{\mathrm{h}}$ Wave in N.F. (-37). $16 \frac{1^{\mathrm{h}}}{}$ to 18^{h} Wave in Dec. (-5^{\prime}). $19 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. $19 \frac{1 \mathrm{~h}^{\mathrm{h}}}{}$ to $20 \frac{3 \mathrm{hh}}{4}$ Wave in N.F. $\left(+23\right.$), followed till $2 \mathrm{I}_{4}^{\frac{1 \mathrm{~h}}{}}$ by a sharper wave $\left(+1^{6} f\right) . \quad 21^{\text {h }}$ to $24^{\text {h }}$ Many-crested wave in Dec. $\left(+7^{\prime}\right)$.
$2^{\mathrm{d}} 4 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to $6 \frac{1}{2} \mathrm{~h}$ Wave in N.F. $(-23) .5^{\mathrm{h}}$ to 7^{h} Wave in Dec. $\left(+7^{\prime}\right) . \quad 15^{\mathrm{h}}$ to $15^{\frac{3}{4} \mathrm{~h}}$ Wave in N.F. (-36). $15 \frac{11}{4}$ to $166^{\frac{1}{h}}$ Wave in Dec. $\left(-13^{\prime}\right)$. 19^{h} to 20^{h} Wave in Dec. $\left(-7^{\prime}\right)$. $21_{\frac{3}{4}}$ to 23^{h} Wave in Dec. (- Io'). $21 \frac{3 \mathrm{hh}}{4}$ to $23 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(+66)$.
 wave in N.F. $(+16,-13) . \quad 15 \frac{3 \mathrm{~h}}{4}$ to 17^{h} Double-crested wave in Dec. $\left(-7^{\prime}\right)$: wave in N.F. $(+38)$. 17^{h} to $188^{\frac{1}{4} \mathrm{~h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. $199^{\frac{1}{4} \mathrm{~h}}$ to 20^{h} Wave in Dec. (-5^{\prime}), followed till $21_{4}^{\frac{3}{4} \mathrm{~h}}$ by a triple wave $\left(-3^{\prime},+3^{\prime},-3^{\prime}\right)$, the first portion triple-crested. $19^{\frac{1}{2}}{ }^{\text {h }}$ to $20^{\text {h }}$ Wave in N.F. $(+20)$, followed till ${ }_{21}^{21 \mathrm{~h}}$ by a truncated wave $(+45)$, followed till 22^{h} by a wave $(+20) .20^{\mathrm{h}}$ to 23^{h} Serrated wave in V.F. (-15).
$22^{\mathrm{d}} 0 \frac{1 \mathrm{~h}}{} \mathrm{~h}$ to 2^{h} Wave in Dec. $\left(+6^{\prime}\right)$. 12^{h} to $13 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Double-crested wave in Dec. $\left(+3^{\prime}\right)$. $12 \frac{3 \mathrm{~h}}{4}$ to 14^{h} Wave in N.F. $(-21) . \quad 154^{\frac{1 \mathrm{~h}}{2}}$ to $15 \frac{3 \mathrm{~h}}{4}$ Decrease in Dec. $\left(-9^{\prime}\right)$. $15 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $16 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(+24) . \quad 19 \frac{1 \mathrm{~h}}{4}$ to $20 \frac{1}{2} \mathrm{~h}$ Irregular waves in Dec. (-10') and N.F. $(+55)$, both sharp at commencement.
$26^{\mathrm{d}} 20 \frac{1}{2} \mathrm{~h}$ to 22^{h} Waves in Dec. $\left(-3^{\prime}\right)$ and N.F. $(+26)$.
$27^{\mathrm{d}} \mathrm{I}^{8 \mathrm{~h}}$ to 20^{h} Wave in Dec. (- $\left.5^{\prime}\right)$. $20 \frac{1}{2} \mathrm{~h}$ to 22^{h} Wave in Dec. (-6^{\prime}), steep at commencement: truncated wave in N.F. $(+45)$, followed till $22 \frac{3 \mathrm{~h}}{4}$ by a wave $(+36)$. $23 \frac{1}{2} \mathrm{~h}$ to $23 \frac{3 \mathrm{~h}}{4}$ Decrease in Dec. $\left(-5^{\prime}\right)$. $27^{\mathrm{d}} 23 \frac{1}{2} \mathrm{~h}$ to $28^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Wave in N.F. $(+35)$.
$28^{\mathrm{d}} 2 \frac{3 \mathrm{~h}}{4}$ to $4^{\frac{3 \mathrm{~h}}{4}}$ Wave in Dec. $\left(+6^{\prime}\right) . \quad 3 \frac{1}{2}^{\frac{h}{\mathrm{~h}}}$ to $6 \frac{1 \mathrm{~h}}{4}$ Wave in N.F. $(+24)$.
$30^{\mathrm{d}} 10 \frac{3 \mathrm{~h}}{4}$ to $15 \frac{3 \mathrm{~h}}{4}$ Loss of register in V.F.
1915.
 $6^{\mathrm{d}}{ }^{11^{\mathrm{h}}}$ to $7^{\mathrm{d}}{ }^{1}{ }^{\mathrm{h}}$ See Plate III.
$7^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ Wave in Dec. (-11^{\prime}), steep at commencement. $2 \mathrm{I}^{\mathrm{h}}$ to 22^{h} Steep wave in N.F. $(+50)$.
$8^{\mathrm{d}} \mathrm{I}_{2}^{1 \mathrm{~h}}$ to $3_{4}^{1 \mathrm{~h}}$ Double-crested wave in Dec. $\left(+5^{\prime}\right)$. 23^{h} to $23 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(+27)$.
$9^{\mathrm{d}} 20 \frac{3 \mathrm{hh}}{4}$ to $2 \mathrm{I}_{4}^{\frac{1 \mathrm{~h}}{}}$ Irregular waves in Dec. $(-$ ro') and N.F. $(+37)$, both steep at commencement.
$1^{d^{d}} 18^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Slow wave in N.F. (-27).

 $1_{12}{ }^{d} \mathrm{I}^{h}$ Wave in N.F. $(+28)$.

$14^{\mathrm{d}} 13 \frac{3 \mathrm{hh}}{4}$ to 15^{h} Decrease in N.F. (-27). $16 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $17 \frac{1}{4}^{\frac{1 \mathrm{~h}}{}}$ Decrease in Dec. $\left(-5^{\prime}\right) . \quad 18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Increase in N.F. $(+28) . \quad 22^{\mathrm{h}}$ to $23 \frac{1 \mathrm{~h}}{4} \mathrm{~h}$ Wave in N.F. $(+25)$; in Dec. small.
$15^{\mathrm{d}}{ }^{10 \frac{1}{4} \mathrm{~h}}$ to 12^{h} Wave in Dec. (-4^{\prime}). ${ }^{12 \frac{1}{2} \mathrm{~h}}$ to $144^{\frac{1}{2} \mathrm{~h}}$ Wave in N.F. (-30). $15 \frac{1 \mathrm{~h}}{\mathrm{~h}}$ to $18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular triple wave in N.F. $(-35,+50,-37)$. 16^{h} to $16 \frac{11^{h}}{}$ Decrease in Dec. $\left(-9^{\prime}\right)$, continued till $17 \frac{1}{4}^{\text {h }}$ by a sharp double wave ($-5^{\prime},+4^{\prime}$), the first portion serrated ; followed till $188^{\frac{1}{4} \mathrm{~h}}$ by a wave $\left(+8^{\prime}\right) .{ }^{1} 8 \frac{33^{h}}{4}$ to $19 \frac{12^{\frac{1}{h}}}{}$ Wave in Dec. $\left(+4^{\prime}\right)$. 19^{h} to $20 \frac{1}{2}^{\mathrm{h}}$ Irregular double wave in N.F. $(-27,+20)$. $20^{\text {h }}$ to $20 \frac{1}{2}^{\frac{1}{2}}$ Decrease
 followed till $2 \mathrm{I}_{4}^{\frac{3 \mathrm{~h}}{}}$ by a sharp wave ($-1 \mathrm{I}^{\prime}$). $2 \mathrm{I}^{\mathrm{h}}$ to $2 \mathrm{I}^{\frac{1 \mathrm{~h}}{4}}$ Sharp increase in N.F. (+25), followed till $2^{\frac{3 \mathrm{hh}}{4}}$ by a sharp double wave $(-23,+20)$. $2 \mathrm{I}^{\mathrm{h}}$ to $2 \mathrm{I}_{2}^{\frac{4}{2}}$ Small sharp double wave in V.F. $(+7,-7)$. $15^{\frac{1}{d}} 22^{\frac{1 \mathrm{~h}}{4}}$ to $16^{\mathrm{d}} \mathrm{o}_{4}^{1 \mathrm{~h}}$ Irregular wave in Dec. $\left(-5^{\prime}\right)$.
$1^{6^{d}}{ }^{1} 4^{\frac{1}{4} h}$ to $15 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right)$. $15 \frac{1}{2} \mathrm{~h}$ to $16 \frac{3}{4} \mathrm{~h}$ Increase in N.F. $(+30)$.
$17^{\mathrm{d}} 0^{\text {oh }}$ to I^{h} Small double wave in Dec. $\left(+2^{\prime},-2^{\prime}\right) . \quad 15 \frac{3 \mathrm{~h}}{4}$ to ${ }_{1} 7^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right) . \quad 18 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Two successive waves in Dec. $\left(-3^{\prime},-2^{\prime}\right)$.
$19^{\mathrm{d}} 18^{\mathrm{h}}$ to 19^{h} Wave in Dec. $\left(-3^{\prime}\right)$. $22 \frac{1 \frac{1}{2}^{\mathrm{h}}}{}$ to $23 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-3^{\prime}\right)$. $22 \frac{1 \mathrm{~h}}{2}$ to $23 \frac{3 \mathrm{~h}}{4}$ Irregular wave in N.F. $(+25)$.

$24^{\mathrm{d}} 19 \frac{3}{4}^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Waves in Dec. $\left(-5^{\prime}\right)$ and N.F. $(+20)$.
$25^{\mathrm{d}} 0^{\mathrm{h}}$ to $\frac{1}{2}^{\frac{\mathrm{h}}{}}$ Wave in Dec. $\left(+4^{\prime}\right) . \quad 7^{\mathrm{h}}$ to $8 \frac{1 \mathrm{~h}}{4}$ Wave in N.F. $(-20) . \quad 14 \frac{3 \mathrm{~h}}{4}$ to $15 \frac{1}{2} \mathrm{~h}$ Serrated wave in N.F. $(-15) .21 \frac{1 \mathrm{~h}}{2}$ to $22 \frac{3 \mathrm{~h}}{4}$ Two successive waves in N.F. $\left(+2 \mathrm{I},+17\right.$). $22 \frac{1 \mathrm{~h}}{4}$ to 23^{h} Wave in Dec. $\left(+t^{\prime}\right)$. $25^{\mathrm{d}} 233^{\frac{1 \mathrm{~h}}{}}$ to $26^{\mathrm{d}} \circ 0_{4}^{\frac{1}{4}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$26^{\mathrm{d}} 0^{3 \mathrm{~h}}$ to 2^{h} Wave in Dec. $\left(-7^{\prime}\right)$. $5^{\frac{1}{2} \mathrm{~h}}$ to $7 \frac{1 \frac{1}{2}^{\mathrm{h}}}{}$ Irregular truncated wave in Dec. $\left(+5^{\prime}\right)$. $\quad 10^{\mathrm{h}}$ to $11 \frac{1}{2}^{\mathrm{h}}$ Flatcrested wave in Dec. $\left(-4^{\prime}\right)$. 12^{h} to 15^{h} Wave in N.F. (-45), steep at commencement. $13 \frac{3 \mathrm{~h}^{2}}{}$ to $15 \frac{1}{2^{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$27^{\mathrm{d}} 14^{\mathrm{h}}$ to $15 \frac{1 \mathrm{l}}{}{ }^{\mathrm{h}}$ Wave in N.F. (-22). $2 \mathrm{I}_{\frac{1}{2}}{ }^{\mathrm{h}}$ to $22 \frac{1 \mathrm{i}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-8^{\prime}\right)$, steep at commencement, double wave in N.F. $(+15,-18)$.
$29^{\mathrm{d}} \circ \frac{1 \mathrm{~L}}{\mathrm{~h}}$ Sharp increase in Dec. $\left(+5^{\prime}\right)$, followed till 2^{h} by slower decrease $\left(-8^{\prime}\right)$ 。 $0 \frac{3 \mathrm{~h}}{4}$ to $\mathrm{I}_{2}^{\mathrm{h}}$ Decrease in V.F. (-I2).

-

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

METEOROLOGICAL OBSERVATIONS

1915.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { IgI5. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$	$\underset{\substack{\text { BARO- } \\ \text { METFR. }}}{ }$	Temperature.							Difference between the Air Temperature and Dew Point Temperature.				temperature.				Electricity.	
			Of the Air.						$\left\|\begin{array}{c}\text { Of the } \\ \text { Dew } \\ \text { Point. }\end{array}\right\|$De- duced Meail Daily Value.				Of Radiation.	$\begin{aligned} & \text { Of the } \\ & \text { Earth } \\ & 3 \text { ft. } 2 \text { in. } \\ & \text { below } \\ & \text { the } \\ & \text { Surface } \\ & \text { of the } \\ & \text { Soil. } \end{aligned}$					
				苞	Daily	, $\begin{gathered}\text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. }\end{gathered}$	$\left\lvert\, \begin{gathered}\text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ \text { of } \\ \text { Years. }\end{gathered}\right.$			隠		$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \dot{3} \\ & \dot{a} \end{aligned}$			$\begin{aligned} & \text { Highest } \\ & \text { in suan's } \\ & \text { Rays. } \end{aligned}$	$\begin{aligned} & \text { Lowest } \\ & \text { on the } \\ & \text { Grass. } \end{aligned}$			
		in.	\bigcirc	-	\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc	-			-	\bigcirc	-	in.	
Jan. 1	Full	28.884	$44 \cdot 8$	31.4	13.4	$437 \cdot 8$	-0.8	$36 \cdot 8$	$35 \cdot 5$	$2 \cdot 3$	$5 \cdot 5$	0.4	92	$48 \cdot 3$	24.0	$44^{2} 3$	$0 \cdot 410$	$\mathrm{mP}: \mathrm{mN}$: wP	
		28.717	$46 \cdot 0$	$37 \cdot 4$	$8 \cdot 6$	41.2	+ 2.8	$39 \cdot 2$	$36 \cdot 6$	$4 \cdot 6$	$8 \cdot 0$	1.7	85	61.7	$30 \cdot 7$	43.93	-0.016	${ }_{w P}$: mP : mP	
3	..	28.649	$42 \cdot 9$	$34 \cdot 4$	$8 \cdot 5$	$38 \cdot 8$	+ 0.5	$38 \cdot 0$	$36 \cdot 9$	I.9	$2 \cdot 7$	0.5	94	$46 \cdot 9$	$29 \cdot 2$	$43 \cdot 84$	$0 \cdot 379$	${ }_{w} \mathrm{P}$: $w \mathrm{~N}$: wP	
4	.	28.935	$42 \cdot 6$	$33 \cdot 1$	$9 \cdot 5$	$38 \cdot 2$	$2-0.1$	$37 \cdot 0$	$35 \cdot 3$	$2 \cdot 9$	$6 \cdot 0$	0.2	90	$42 \cdot 0$	$32 \cdot 1$	$43 \cdot 68$	0.186	wwP : wP : mP	
5	.	29.420	$45 \cdot 7$	33.4	12.3	$40 \cdot 7$	+ $2 \cdot 5$	39.6	$38 \cdot 3$	$2 \cdot 4$	$4 \cdot 6$	0.8	91	$58 \cdot 0$	27.9	$43 \cdot 50$	0.048	$\mathrm{mP}: \mathrm{wP}: \mathrm{wP}$	
6		29.663	47.0	$40 \cdot 2$	$6 \cdot 8$	43.7	+ 5.6	$42 \cdot 1$	$40 \cdot 2$	$3 \cdot 5$	$6 \cdot 0$	I $\cdot \mathrm{I}$	87	57.8	$33 \cdot 2$	43.48	-107	$\mathrm{wP}: \mathrm{wP}: \mathrm{ww} \mathrm{P}$	
7	In Equator	$29 \cdot 255$	$52 \cdot 0$	$40 \cdot 9$	II•I	$46 \cdot 0$	+8.0	$45 \cdot 0$	$43 \cdot 9$	$2 \cdot 1$	$5 \cdot 9$	$0 \cdot 0$	93	$52 \cdot 7$	$36 \cdot 0$	$43 \cdot 48$	$0 \cdot 427$	${ }_{\text {ww }} \mathrm{P}$	
8	Last Quarter	29.260	$45 \cdot 3$	$40 \cdot 8$	$4 \cdot 5$	$42 \cdot 4$	+ 4.5	39.4	$35 \cdot 6$	$6 \cdot 8$	$9 \cdot 7$	$4 \cdot 1$	76	$67 \cdot 5$	35.0	$43 \cdot 70$	$0 \cdot 000$	$w^{\text {P }}$: mP : mP	
9		29.225	43.9	$36 \cdot 3$	7.6	$39 \cdot 8$	+ 1.9	$38 \cdot 0$	37.7	$2 \cdot 1$	$9 \cdot 0$	$1 \cdot 4$	86	54.9	29.4	$43 \cdot 82$	- 155	${ }_{\mathrm{v}} \mathrm{P}: \mathrm{mP}$: sP	
10		29.470	47%	$32 \cdot 8$	14.9	39.1	+ I. 2	37.6	$35 \cdot 7$	$3 \cdot 4$	$6 \cdot 0$	0.7	88	$50 \cdot 1$	$25 \cdot 6$	+3.70	$0 \cdot 235$	mP : vP : wwP	
11		29.216	$47 \cdot 6$	$38 \cdot 3$	$9 \cdot 3$	$42 \cdot 5$	+ 4.6	39.7	$36 \cdot 2$	$6 \cdot 3$	$9 \cdot 1$	$2 \cdot 5$	79	64.4	30.9	$43 \cdot 52$	0.006	$\mathrm{wP}: \mathrm{mP}: \mathrm{sP}$	
12	Perigee	29.695	44.0	$38 \cdot 1$	$5 \cdot 9$	$4 \mathrm{I} \cdot \mathrm{I}$	+3.2	38.8	$35 \cdot 9$	$5 \cdot 2$	$8 \cdot 5$	$2 \cdot 7$	83	$54 \cdot 2$	$3 \mathrm{I} \cdot 2$	$43 \cdot 50$	0.015	sP	
13	Greatest Dec. S.	29.867	$53 \cdot 2$	$40 \cdot 0$	13.2	$46 \cdot 7$	+ $8 \cdot 7$	$45 \cdot 6$	44.4	$2 \cdot 3$	3.4	$0 \cdot 9$	92	62.7	34-1	$43 \cdot 38$	0.060	$\mathrm{mP}: \mathrm{wP}$	
14		29.851	50.0	$46 \cdot 2$	3.8	$48 \cdot 8$	+10.8	$46 \cdot 9$	44.9	$3 \cdot 9$	$6 \cdot 4$	$2 \cdot 3$	86	55.6	$39 \cdot 8$	43.52	0.000	wP	
15	New	29.582	50.7	$46 \cdot 1$	$4 \cdot 6$	$48 \cdot 1$	$+10.0$	$45 \cdot 8$	$43 \cdot 3$	$4 \cdot 8$	$9 \cdot 7$	2.8	84	70.9	41.2	43.91	0.052	wP	
16		$29 \cdot 321$	$46 \cdot 9$	$36 \cdot 9$	10.0	$43 \cdot 6$	+ $5 \cdot 3$	$40 \cdot 7$	$37 \cdot 2$	$6 \cdot 4$	$9 \cdot 4$	$3 \cdot 2$	78	$52 \cdot 8$	31.2	$44 \cdot 26$	0.071	${ }_{v P}$: sP	
16 18 18	.	29.851	$38 \cdot 9$	33.9	$5 \cdot 0$	$36 \cdot 6$	- $\mathrm{I} \cdot 9$	$33 \cdot 3$	28.6	$8 \cdot 0$	10.7	$5 \cdot 9$	72	$57 \cdot 9$	$27 \cdot 5$	44.41	0.000	sP	
18		$30 \cdot 203$	$38 \cdot 7$	33.5	$5 \cdot 2$	$35 \cdot 8$	- 2.8	$32 \cdot 8$	$28 \cdot 3$.7.5	II.O	$5 \cdot 2$	73	64.5	$27 \cdot 8$	+ + . 21	0.000	$m P: s P$	
19		$30 \cdot 285$	$42 \cdot 9$	$32 \cdot 5$	10.4	$38 \cdot 5$	- 0.2	$37 \cdot 4$	$36 \cdot 0$	$2 \cdot 5$	$4 \cdot 0$	I. 8	92	+3. 5	27.0	43.73	0.009		
20	In Equator	29.957	$47 \cdot 4$	41.0	$6 \cdot 4$	$44^{\circ} \mathrm{O}$	+ $5 \cdot 2$	$42 \cdot 4$	$40 \cdot 5$	$3 \cdot 5$	$5 \cdot 5$	1.7	89	53.2	39^{-1}	$43 \cdot 35$	0.052	$m \mathrm{P}$: wP	
21		29.022	$47 \cdot 1$	33.7	13.4	$41 \cdot 5$	+ 2.7	$39 \cdot 9$	37.9	$3 \cdot 6$	$7 \cdot 6$	I $\cdot \mathrm{I}$	87	$51 \cdot 3$	$29 \cdot 3$	43.37	$0 \cdot 316$	wN : mP : sP	
22		28.952	$34 \cdot 1$	31.8	$2 \cdot 3$	32.7	$-6 \cdot 1$	$32 \cdot 0$	30.6	2.I	$5 \cdot 6$	$0 \cdot 0$	92	$32 \cdot 6$	$27 \cdot 9$	$43 \cdot 48$	I•049	sP : sP, sN : vP	
23	FirstQuarter	29.246	38.8	22.3	$16 \cdot 5$	$30 \cdot 8$	-8.1	$30 \cdot 4$	$29 \cdot 3$	1.5	$+7$	0.0	95	$36 \cdot 0$	18.0	+3.18	0.000	$\mathrm{sP}: \mathrm{sP}: \mathrm{mP}$	
24	Apogee	$29 \cdot 506$	$4 \mathrm{I} \cdot 6$	$38 \cdot 1$	$3 \cdot 5$	39.7	$+0.8$	$38 \cdot 9$	$37 \cdot 9$	I. 8	$3 \cdot 6$	I. 2	93	$48 \cdot 0$	33.0	+2.79	0.019*	$\mathrm{wP}: \mathrm{mP}$	
25	\cdots	29.514	$40 \cdot 4$	$36 \cdot 4$	$4^{\circ} 0$	$38 \cdot 1$	- I.0	$36 \cdot 6$	$34 \cdot 6$	$3 \cdot 5$	$6 \cdot 4$	$1 \cdot 4$	87	$52 \cdot 0$	$33 \cdot 9$	$4^{2 \cdot 19} 0$	$0 \cdot 000$	mP : sP	
26		29.460	4 I 5	$3 \mathrm{I} \cdot 3$	10.2	$36 \cdot 3$	- 3.0	$35 \cdot \mathrm{I}$	33.4	$2 \cdot 9$	$7 \cdot 3$	0.9	90	63.4	27.0	$4^{2.09}$	0.001*	$s \mathrm{P}: \mathrm{sP}$: mP	
27	Greatest Dec. N.	29.400	$36 \cdot 8$	$34 \cdot 1$	$2 \cdot 7$	$35 \cdot 3$	-4.2	33.0	29.4	$5 \cdot 9$	$9 \cdot 4$	1.7	78	$38 \cdot 0$	$3 \mathrm{I} \cdot 7$	12.050	0.016	$m \mathrm{P}: \mathrm{sP}: \mathrm{sP}$	
28		$29 \cdot 473$	$35 \cdot 6$	$32 \cdot 5$	3.1	33.6	- 6.0	31.2	$26 \cdot 8$	$6 \cdot 8$	$9 \cdot 8$	$4 \cdot 5$	75	$43 \cdot 8$	$30 \cdot 4$	41.99	c. 000		
29	. .	29.577	$37 \cdot 9$	$32 \cdot 2$	$5 \cdot 7$	$35 \cdot 2$	- 4.5	$32 \cdot 3$	$27 \cdot 5$	$7 \cdot 7$	$10 \cdot 8$	$2 \cdot 3$	73	$5 \mathrm{I} \cdot 2$	27.0	$4 \mathrm{I} \cdot 80$	0.000	ssP : ssP : sP	
30		29.741	39.0	$32 \cdot 0$	$7 \cdot 0$	$35 \cdot 5$	-4.2	33•I	$29 \cdot 6$	$5 \cdot 9$	$10 \cdot 3$	2.4	78	$44 \cdot 5$	$26 \cdot 2$	+1.55	$0 \cdot 000$	$s \mathrm{P}: \mathrm{sP}: \mathrm{mP}$	
31	Full	29.45 I	$42 \cdot 0$	$35 \cdot 8$	$6 \cdot 2$	$38 \cdot 6$	- I•I	$36 \cdot 5$	$33 \cdot 5$	$5 \cdot 1$	$8 \cdot 5$	1.7	83	$52 \cdot 3$	32.1	4133	$0 \cdot 039$	$\mathrm{w}^{\text {P }}: \mathrm{mP}: \mathrm{mP}$	
Means		29.440	$43 \cdot 6$	$35 \cdot 7$	$7 \cdot 9$	39.7	+ I•I	$37 \cdot 9$	$35 \cdot 5$	t^{2}	$7 \cdot 3$	I.8	$85 \cdot 2$	$52 \cdot 7$	$30 \cdot 6$	43.263	$\begin{array}{r} \text { Sum } \\ 3.668 \end{array}$		
Number of Column for Reference.	I	2	3	4	5	6	7	8	9	10	I I	12	13	14	15	16	17	18	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, $18+1-1905$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns II and 12) are deduced from the $2+$ hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column 16 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amounts entered on January $2+$ and 26 are derived from frost and fog.

The mean reading of the Barometer for the month was $29^{\mathrm{tn}} \cdot 44^{\circ}$, being $0^{\text {tn }} .35+$ lower than the average for the 65 years, $1841-1905$.

Temperature of the Air.

The highest in the month was $53^{\circ} \cdot 2$ on January 13; the lowest in the month was $22^{\circ} \cdot 3$ on January 23; and the range was $30^{\circ} \cdot 9$.
The mean of all the highest daily readings in the month was $43^{\circ} \cdot 6$, being $0^{\circ} .5$ higher than the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was $35^{\circ} \cdot 7$, being $2^{\circ} \cdot \circ$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $7^{\circ} \cdot 9$, being $I^{\circ} \cdot 5$ less than the average for the 65 years, $18+1-1905$
The mean for the month was $39^{\circ} \cdot 7$, being $I^{\circ} \cdot 1$ higher than the average for the 65 years, $18+1-1905$.

The mean Temperature of Evaporation for the month was $37^{\circ} \cdot 9$, being $0^{\circ} \cdot 7$ higher than
The mean Temperature of the Dew Point for the month was $35^{\circ} \cdot 5$, being equal to
The mean Degree of Humidity for the month was 85°, being 2.8 lower than
The mean Elastic Force of Vapour for the month was ${ }^{\text {in }}$.209, being $0^{\text {in. }} 002$ greater than
the average for the 65 years, $1841-1905$.
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2^{\text {grs. }} 4$, being equal to
The mean Weight of a Cubic Foot of Air for the month was 546 grains, being 8 grains less than
The mean amount of Cloud for the month (a clear sky being represented by \circ and an overcast sky by 10) was 7.9 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 134$. The maximum daily amount of Sunshine was $5^{\circ} 9$ hours on January 26 .
The highest reading of the Solar Radiation Thermometer was 70.9 on January 15 ; and the lowest reading of the Terrestial Radiation Thermometer was $18^{\circ} \cdot 0$ on January 23 .
The Proportions of Wind referred to the cardinal points were N. 5, E. 2, S. io, W. ir. Three days were calm.
The Greatest Pressure of the Wind in the month was 21.7 lbs . on the square foot on January 16. The mean daily Horizontal Movement of the Air for the month was 357 miles; the greatest daily value was 730 miles on January 16 ; and the least daily value was ro8 miles on January 26.
Rain (oin. 005 or over) fell on 21 days in the month, amounting to $3^{\text {in }} 6668$, as measured by gauge No. 6 partly sunk below the ground ; being $\mathrm{i}^{\mathrm{tn}} .787 \mathrm{greater}$ than the average fall for the 65 years, $1841-1905$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column I3) are deduced from the corresponding temperatures of the Air and Evaporation in Columns 6 and 9 , and the Greatest and Least Degree of difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers Thermers in The mean differences (Columns II and I2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column i6 are taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amounts entered on February 12 and 25 are derived from frost.

The mean reading of the Barometer for the month was $29^{\text {in. }} 45 \mathrm{I}$, being $0^{\text {in. }} 35 \mathrm{I}$ lower than the average for the 65 years, $184 \mathrm{I}-\mathrm{r} 905$.
Temperature of the Air.
The highest in the month was $2^{\circ} \cdot 3$ on February + ; the lowest in the month was $25^{\circ} .6$ on February 25 ; and the range was $26^{\circ} \%$.
The mean of all the highest daily readings in the month was $4^{\circ}{ }^{\circ}+$, being $1^{\circ} .2$ higher than the average for the 65 years, 1841-1905.
The mean of all the highest daily readings in the month was $35^{\circ} \circ$, being $0^{\circ} .8$ higher than the average for the 65 years, $1841-1905$.
The mean of all the
The mean for the month was $40^{\circ} \cdot 5$, being $1^{\circ} \circ$ higher than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $3^{\circ} \cdot 3$, being $0^{\circ} \cdot 6$ higher than
The mean Temperature of the Dew Point for the month was $35^{\circ} \cdot 3$, being $0^{\circ} \cdot 1$ lower than
The mean Degree of Humidity for the month was $82 \cdot 0$, being 3.5 less than
The mean Elastic Force of Vapour for the month was oln.206, being oln.oor less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2^{\text {grs }} 4$, being equal to
The mean Weight of a Cubic Foot of Air for the month was 546 grains, being 7 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was $7 \cdot 2$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.278 . The maximum daily amount of Sunshine was 7.7 hours on February 26 . The highest reading of the Solar Radiation Thermometer was $87^{\circ} .8$ on February 19; and the lowest reading of the Terrestrial Radiation Thermometer was $17^{\circ} .0$ on February 25 , The Proportions of Wind referred to the cardinal points were N. 2, E. 4, S. 14, W. 5. Three days were calm.
The Greatest Pressure of the Wind in the month was $\mathbf{1 2 . 9}$ lbs. on the square foot on Febuary 2. The mean daily Horizontal Movement of the Air for the month was 352 miles; the greatest daily value was 615 miles on February 28 ; and the least daily value was 107 miles on February 20.
Rain (${ }^{\mathrm{ln}} .005$ or over) fell on 15 days in the month, amounting to $3^{\mathrm{in}} \cdot \mathbf{1 7 1}$, as measured by gauge No. 6 partly sunk below the ground; being $\mathrm{I}^{\mathrm{in}} .6 \mathrm{~g}$ greater than the average fall for the 65 years, 1841 -1905.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\[
\begin{gathered}
\text { MONTH } \\
\text { and } \\
\text { DAY, } \\
\text { 19Y5. }
\end{gathered}
\]} \& \multirow{3}{*}{\[
\begin{gathered}
\text { Phases } \\
\text { of } \\
\text { the } \\
\text { Moon. }
\end{gathered}
\]} \& Baro－
metrr． \& \multicolumn{7}{|c|}{Temperature．} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Difference between the Air Temperature and Dew Point Temperature．}} \& \multirow[b]{3}{*}{} \& \multicolumn{3}{|c|}{temperature．} \& \multirow[t]{3}{*}{} \& \multirow{3}{*}{Electricity．} \\
\hline \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
bigi io恄获品 \\
 \\

\end{tabular}} \& \multicolumn{5}{|c|}{Of the Air．} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Of
Erapo
ration． \\
Mean of 24 Values．
\end{tabular}} \& \multirow[t]{2}{*}{Of the
Dew
Point． \(|\)\begin{tabular}{c}
De－ \\
duced \\
Mean \\
Daily \\
Value．
\end{tabular}} \& \& \& \& \& Of Rad \& diation． \& Of the \& \& \\
\hline \& \& \& \& \[
\begin{aligned}
\& \dot{\vec{B}} \\
\& \stackrel{\rightharpoonup}{8} \\
\& \stackrel{\rightharpoonup}{3}
\end{aligned}
\] \& Daily Range \& \[
\begin{array}{|c}
\text { Mean } \\
\text { of } 24 \\
\text { Hourly } \\
\text { Values. }
\end{array}
\] \& Excess
above
Average
of
65 Years． \& \& \& \[
\begin{aligned}
\& \text { ⿷匚⿳⿻コ一冖㐅乂: }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { 䍖 } \\
\& \hline
\end{aligned}
\] \& \& Highest
in Sun＇s Rays． \& Lowest Grass． \& \[
\begin{aligned}
\& \text { the } \\
\& \text { Surface } \\
\& \text { of the } \\
\& \text { Soil. }
\end{aligned}
\] \& \& \\
\hline \& \& in． \& － \& \(\bigcirc\) \& － \& － \& \& \(\bigcirc\) \& － \& － \& － \& \(\bigcirc\) \& \& － \& \(\bigcirc\) \& \(\bigcirc\) \& in． \& \\
\hline Mar． 1 \& Full \& 29.420 \& 44.3 \& 35•1 \& 9.2 \& \(39^{-2}\) \& －I． 2 \& \(35 \cdot 9\) \& 31．6 \& \(7 \cdot 6\) \& 11.9 \& \(3 \cdot 2\) \& 75 \& \(72 \cdot 0\) \& 29.2
28.2 \& 41－16 \& 0．112 \& \[
\begin{aligned}
\& \mathrm{wN}, \mathrm{mP}: \mathrm{vP}: \mathrm{sP} \\
\& \mathrm{sP}: \mathrm{sP}: \mathrm{sP}, \mathrm{mN}
\end{aligned}
\] \\
\hline 2 \& In Equator \& 29.753 \& \(45 \cdot 6\) \& 33.9 \& \(1 \mathrm{I} \cdot 7\) \& \(38 \cdot 7\) \& － 1.7 \& \(35 \cdot 5\) \& \(31 \cdot 3\) \& \(7 \cdot 4\) \& 12.9 \& \(2 \cdot 3\) \& 75 \& 71.0 \& \(28 \cdot 2\) \& 41．18 \& 0.038 \& \(s \mathrm{P}: \mathrm{sP}: \mathrm{sP}, \mathrm{mN}\) \\
\hline 3 \& \& 29.727 \& 52.5 \& \(38 \cdot 0\) \& 14.5 \& \(45 \cdot 5\) \& \(+5.0\) \& \(44 \cdot 2\) \& \(42 \cdot 6\) \& 2.9 \& 4.7 \& 0.7 \& 90 \& \(73 \cdot 3\) \& \(35 \cdot 3\) \& 41．14 \& －．166 \& sN，wP ：wP ：wP \\
\hline \& \& 29．850 \& 53.0 \& \(44 \cdot 6\) \& \(8 \cdot 4\) \& \(47 \cdot 9\) \& ＋ \(7 \cdot 2\) \& \(46 \cdot 1\) \& 44－1 \& 3.8 \& \(7 \cdot 5\) \& 0.7 \& 88 \& \(65 \cdot 1\) \& \(41 \cdot 3\) \& 41－27 \& 0.014 \& wP ：wP ：mP \\
\hline 5 \& Perigee \& 29.919 \& \(55 \cdot 1\) \& \(46 \cdot 5\) \& \(8 \cdot 6\) \& \(50 \cdot 1\) \& ＋ 9.2 \& \(47 \cdot 3\) \& \(44 \cdot 3\) \& \(5 \cdot 8\) \& \(8 \cdot 8\) \& \(2 \cdot 3\) \& 81 \& 80.9 \& \(40 \cdot 2\) \& 41．69 \& \(0 \cdot 000\) \& \({ }_{w}^{w P}\) \\
\hline 6 \& \& 29.854 \& 57.0 \& 44.9 \& 12．I \& \(48 \cdot 8\) \& ＋ \(7 \cdot 8\) \& \(45 \cdot 8\) \& 42.6 \& \(6 \cdot 2\) \& I2．5 \& I•9 \& 80 \& \(86 \cdot 5\) \& 38.0 \& \(42 \cdot 29\) \& \(0 \cdot 000\) \& wP ：wP ：mP \\
\hline 7 \& \& 29.794 \& \(46 \cdot 0\) \& \(36 \cdot 8\) \& \(9 \cdot 2\) \& \(42 \cdot 7\) \& ＋ \(1 \cdot 7\) \& 39.4 \& \(35 \cdot 4\) \& \(7 \cdot 3\) \& \(14^{\circ} \mathrm{O}\) \& \(3 \cdot 3\) \& 76 \& 73.5 \& 33.0 \& 42.61 \& \(0 \cdot 013\) \& \[
\begin{gathered}
w P: m P: m P \\
w w N: m P: m P: s P
\end{gathered}
\] \\
\hline 8 \& Last Quarter \& 29.990 \& \(42 \cdot 1\) \& \(33 \cdot 3\) \& \(8 \cdot 8\) \& \(36 \cdot 6\) \& － 4.5 \& \(34^{\circ} \mathrm{O}\) \& \(30 \cdot 2\) \& 6.4 \& 10.6 \& 1.7
3.6 \& 78 \& 92.0
87.0 \& \(27 \cdot 9\)
\(30 \cdot 4\) \& 43.02
42.89 \& 0．011 \& \[
\begin{gathered}
\mathrm{wwN}, \mathrm{mP}: \mathrm{mP}: \mathrm{sP} \\
\mathrm{mp}: m \mathrm{~m}: \mathrm{sP}
\end{gathered}
\] \\
\hline 9 \& Greatest Dec．S． \& \(30 \cdot 224\) \& \(43 \cdot 6\) \& \(34 \cdot 0\) \& 9.6 \& \(37 \cdot 8\) \& － 3.2 \& \(34 \cdot 2\) \& \(29 \cdot 2\) \& \(8 \cdot 6\) \& 12.2 \& 3.6 \& 72 \& 87.0 \& \(30 \cdot 4\) \& \(42 \cdot 89\) \& \(0 \cdot 000\) \& \(\mathrm{mp}: \mathrm{mP}: \mathrm{sP}\) \\
\hline 10 \& \& 30．123 \& \(43 \cdot 0\) \& 35－1 \& \(7 \cdot 9\) \& \(39 \cdot 9\) \& －I．0 \& 37－1 \& 33.4 \& \(6 \cdot 5\) \& 14.9 \& \(3 \cdot 3\) \& 78 \& \(58 \cdot 5\) \& \(26 \cdot 9\) \& 42.69 \& \(0 \cdot 000\) \& \(m P: m P: s P\) \\
\hline 11 \& ． \& 29.833 \& \(50 \cdot 0\) \& \(40 \cdot 2\) \& \(9 \cdot 8\) \& \(43 \cdot 7\) \& ＋ \(2 \cdot 7\) \& \(42 \cdot 4\) \& \(40 \cdot 9\) \& 2.8 \& \(5 \cdot 4\) \& 0.7 \& 89 \& \(66 \cdot 5\) \& \(29 \cdot 1\) \& \(42 \cdot 52\) \& 0.028 \& \(m P: m P: w P\) \\
\hline 12 \& ． \& 29.998 \& \(49 \cdot 0\) \& \(40 \cdot 1\) \& \(8 \cdot 9\) \& 47.4 \& \(+3 \cdot 3\) \& 43.0 \& \(41 \cdot 4\) \& 3.0 \& \(7 \cdot 6\) \& 0.2 \& 89 \& \(63 \cdot 8\) \& 32.0 \& 42.61 \& \(0 \cdot 000\) \& mP \\
\hline 13 \& ． \& 30.005 \& \(48 \cdot 6\) \& \(38 \cdot 4\) \& \(10 \cdot 2\) \& \(43 \cdot 7\) \& ＋ 2.4 \& \(42 \cdot 1\) \& \(40 \cdot 2\) \& \(3 \cdot 5\) \& \(5 \cdot 9\) \& I－2 \& 87 \& \(62 \cdot 3\) \& \(30 \cdot 9\) \& \(42 \cdot 68\) \& \(0 \cdot 000\) \& mP \\
\hline 14 \& \& 30.031 \& \(57 \cdot 5\) \& \(38 \cdot 4\) \& \(19 \cdot 1\) \& \(45 \cdot 8\) \& ＋ 4.3 \& \(43 \cdot 6\) \& \(41 \cdot 1\) \& 4.7 \& \(9 \cdot 9\) \& 0.9 \& 84 \& \(92 \cdot 5\) \& \(28 \cdot 7\) \& 42.90 \& \(0 \cdot 000\) \& \(m P: w P: w P\) \\
\hline 15 \& New ：In Equator \& 30.050 \& \(48 \cdot 0\) \& \(4 \mathrm{I} \cdot \mathrm{I}\) \& \(6 \cdot 9\) \& \(45 \cdot 3\) \& ＋ 3.6 \& \(43 \cdot 6\) \& 417 \& \(3 \cdot 6\) \& \(8 \cdot 5\) \& \(2 \cdot 2\) \& 87 \& \(52 \cdot 1\) \& 34.7 \& \(43 \cdot 02\) \& 0.000 \& \(w P: w P: m P\) \\
\hline 16 \& ． \& 29.956 \& \(47 \cdot 3\) \& 39．5 \& \(7 \cdot 8\) \& 44.3 \& ＋ 2.4 \& 41.6 \& \(38 \cdot 5\) \& \(5 \cdot 8\) \& \(8 \cdot 1\) \& \(2 \cdot 0\) \& 79 \& 63.9 \& \(30 \cdot 1\) \& 43.29 \& \(0 \cdot 000\) \& wP ： mP ：\(: m P\) \\
\hline 17 \& ． \& 29.702 \& \(46 \cdot 8\) \& \(38 \cdot 7\) \& 8． I \& \(44 \cdot 0\) \& ＋ 2.0 \& 41.0 \& \(37 \cdot 5\) \& \(6 \cdot 5\) \& 14.6 \& \(3 \cdot 1\) \& 77 \& \(57 \cdot 5\) \& 31.5 \& 43.41 \& \(0 \cdot 000\) \& \\
\hline 18 \& － \& 29.305 \& 41．4 \& 31.2 \& 10.2 \& \(35 \cdot 8\) \& \(-6 \cdot 2\) \& \(34 \cdot 2\) \& 31．8 \& 4.0 \& 13.9 \& \(2 \cdot 1\) \& 86 \& \(60 \cdot 1\) \& \(26 \cdot 6\) \& \(43 \cdot 52\) \& 0.032 \& mP ：sP ：mP \\
\hline 19 \& \& 29.410 \& \(39 \cdot 1\) \& 29.9 \& 9.2

7 \& 33.7 \& － 8.2 \& 31.0 \& $26 \cdot 1$ \& 7.6 \& 12.9 \& 1．8 \& 73 \& $87 \cdot 1$ \& 20.5 \& 43.48 \& 0.021 \& $$
w P: \underset{s P}{s P}: s P
$$

\hline 20 \& \& 29.801 \& $46 \cdot 0$ \& $28 \cdot 2$ \& 17.8 \& 37.7 \& -4.2 \& 34.4 \& 29.9 \& $7 \cdot 8$ \& 12.5 \& $6 \cdot 7$ \& 74 \& 90．2 \& $19 \cdot 1$ \& $43 \cdot 17$ \& $0 \cdot 002$ \&

\hline 21 \& Apogee \& 29.987 \& 54.5 \& $32 \cdot 5$ \& 22.0 \& $42 \cdot 0$ \& ＋ 0.1 \& $37 \cdot 8$ \& $32 \cdot 7$ \& $9 \cdot 3$ \& 18.0 \& $0 \cdot 0$ \& 71 \& $100 \cdot 3$ \& 21.2 \& $42 \cdot 66$ \& $0 \cdot 000$ \& mP

\hline 22 \& \& 29.850 \& $49 \cdot 3$ \& 31•1 \& $18 \cdot 2$ \& $40 \cdot 9$ \& －I．I \& $38 \cdot 1$ \& $34 \cdot 6$ \& $6 \cdot 3$ \& $16 \cdot 3$ \& I．3 \& 79 \& $89 \cdot 3$ \& 18.9 \& $42 \cdot 50$ \& － 153 \& $m P: w P, w N: w P$

\hline 23 \& | Greatest Dec．N．： |
| :--- |
| First Quarter | \& 29.727 \& 59.3 \& $44 \cdot 3$ \& 15.0 \& $50 \cdot 1$ \& ＋ $7 \cdot 9$ \& $48 \cdot 2$ \& $46 \cdot 2$ \& $3 \cdot 9$ \& 10.8 \& 0.4 \& 86 \& $92 \cdot 7$

97 \& $33 \cdot 6$
35.0 \& 42.43
42.73 \& 0.017
0.039 \&

\hline 24 \& \& 29.752 \& 57.0 \& $45: 2$ \& II 18 \& 51.4 \& ＋ 9.0 \& $49 \cdot 9$ \& $48 \cdot 4$ \& 3.0 \& $7 \cdot 9$ \& $0 \cdot 9$ \& 90 \& $97 \cdot 3$ \& $35 \cdot 0$ \& 42.73 \& $0 \cdot 039$ \& WwP ：wwP ：wP

\hline 25 \& ． \& 29.876 \& $5 \mathrm{I} \cdot \mathrm{O}$ \& 34．6 \& 16.4 \& $43 \cdot 1$ \& ＋ 0.4 \& 41.1 \& $38 \cdot 7$ \& $4 \cdot 4$ \& 10.4 \& $2 \cdot 2$ \& 84 \& 66.6 \& $26 \cdot 2$ \& 43.21 \& $0 \cdot 142$ \& $w P: \mathrm{mP}^{\text {P }}: \mathrm{sP}$

\hline 26 \& \& 29.757 \& $42 \cdot 0$ \& 31.4 \& 10.6 \& $36 \cdot 1$ \& －6．9 \& 33.5 \& $29 \cdot 7$ \& $6 \cdot 4$ \& II． 6 \& I．9 \& 77 \& $80 \cdot 9$ \& $22 \cdot 1$ \& 43.63 \& $0 \cdot 000$ \& ${ }_{s P} \cdot \mathrm{mP} \cdot{ }^{\text {d }}$

\hline 27 \& \ldots \& 29.561 \& 44.4 \& 27.7 \& 16.7 \& 34.5 \& － 8.8 \& 31.0 \& $25 \cdot 6$ \& $8 \cdot 9$ \& $16 \cdot 1$ \& $4 \cdot 8$ \& 70 \& $106 \cdot 3$ \& $20 \cdot 3$ \& $43 \cdot 55$ \& $0 \cdot 000$ \& $\mathrm{sP} \cdot \mathrm{mP} \cdot \mathrm{\nabla}$

\hline 28 \& \& 29.566 \& $42 \cdot 5$ \& $28 \cdot 9$ \& 13.6 \& $34^{\circ} \mathrm{O}$ \& － 97 \& $30 \cdot 6$ \& 24.6 \& $9 \cdot 4$ \& 15.0 \& $3 \cdot 5$ \& 67 \& $106 \cdot 4$ \& 19.6 \& 43．15 \& $0 \cdot 001$ \& $$
m P: m P: m P, s P
$$

\hline 29 \& \& 29.648 \& 41.3 \& $25 \cdot 9$ \& 15.4 \& $32 \cdot 5$ \& －11．6 \& 30.5 \& 26.9 \& $5 \cdot 6$ \& 10.8 \& 0.0 \& 77 \& 112.9
102.8 \& 15.8 \& $42 \cdot 69$
$42 \cdot 38$ \& 0.007

0.000 \& | $s P: w P: m P$ |
| :--- |
| $s P: m P: v P$ |

\hline 30 \& \& 29.638 \& $45 \cdot 7$ \& $28 \cdot 0$ \& 17.7 \& $35 \cdot 9$ \& － 8.6 \& $32 \cdot 3$ \& $27 \cdot 8$ \& 8．1 \& 15.5 \& 3.7 \& 76 \& $102 \cdot 8$ \& 16.7 \& $42 \cdot 38$ \& $0 \cdot 000$ \& $s P: m P: v P$

\hline 31 \& Full \& 29.866 \& 49° \& $30 \cdot 3$ \& $18 \cdot 7$ \& $39 \cdot 5$ \& － $5 \cdot 4$ \& $35 \cdot 6$ \& $30 \cdot 5$ \& $9 \cdot 0$ \& $15 \cdot 3$ \& 2.8 \& 70 \& $110 \cdot 0$ \& 19.9 \& $42 \cdot 06$ \& $0 \cdot 000$ \& sP ：mP ：vP

\hline Means \& ． \& $29 \cdot 806$ \& $4^{8 \cdot 1}$ \& $35 \cdot 7$ \& 12.4 \& 41－5 \& -0.4 \& $38 \cdot 9$ \& $35 \cdot 5$ \& $6 \cdot 0$ \& II 5 \& $2 \cdot 1$ \& $79 \cdot 5$ \& $8 \mathrm{I} \cdot 3$ \& $27 \cdot 8$ \& 42.63 \& $$
\begin{gathered}
\text { Sum } \\
0.796
\end{gathered}
$$ \& ．

\hline Number of Column for Reference \& I \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& 16 \& 17 \& 18

\hline
\end{tabular}

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column 10 ）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns II and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column i6 are taken daily at noon．
The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．

Temperature of the Ait．

The highest in the month was $59^{\circ} \cdot 3$ on March 23；the lowest in the month was $25^{\circ} .9$ on March 29；and the range was $33^{\circ} \cdot 4$ ．
The mean of all the highest daily readings in the month was $48^{\circ} \cdot \mathrm{x}$ ，being $\mathrm{I}^{\circ} \cdot 7$ lower than the average for the 65 years， $1841-1905$ ．
The mean of all the lowest daily readings in the month was $35^{\circ} \cdot 7$ ，being $0^{\circ} .6$ higher than the average for the 65 years，1841－1905．
The mean of the daily ranges was $12^{\circ} \cdot 4$ ，being $2^{\circ} \cdot 3$ less than the average for the 65 years， $1841-1905$ ．
The mean for the month was $41^{\circ} \cdot 5$ ，being $0^{\circ} \cdot 4$ lower than the average for the 65 years， 184^{1-1905} ．

The mean Temperature of Evaporation for the month was $38^{\circ} \cdot 9$, being $0^{\circ} \cdot 5$ lower than
The mean Temperature of the Dew Point for the month was $35^{\circ} \cdot 5$, being $0^{\circ} .8$ lower than
The mean Degree of Humidity for the month was 79.5, being $\mathrm{r} \cdot \circ$ less than
The mean Elastic Force of Vapour for the month was $0^{\ln } \cdot 200$, being $0^{\text {in }} .006$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2^{\mathrm{grs}} \cdot 4$, being ogr. 1 less than
The mean Weight of a Cubic Foot of Air for the month was 55x grains, being 2 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by \circ and an overcast sky by 1o) was 7.9 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.242 . The maximum daily amount of Sunshine was ro.6 hours on March 21.
The highest reading of the Solar Radiation Thermometer was $112^{\circ} .9$ on March 29 ; and the lowest reading of the Terrestrial Radiation Thermometer was $15^{\circ} \cdot 8$ on March 29 .
The Proportions of Wind referred to the cardinal points were N. 8, E. 3, S. 7, W. 8. Five days were calm.
The Greatest Pressure of the Wind in the month was 12.0 lbs. on the square foot on March r . The mean daily Horizontal Movement of the Air for the month was 276 miles; the greatest daily value was 646 miles on March 1 ; and the least daily value was 91 miles on March 24.
Rain (otn. 005 or over) fell on 14 days in the month, amounting to o ${ }^{\text {tn }} .796$, as measured by gauge No. 6 partly sunk below the ground; being otn. 724 less than the average fall for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { rgr5. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		temperature．							Difference between the Air Temperature and Dew Point Temperature．				temperature．				Electricity．	
			Of the Air．					$\left\|\begin{array}{c}\text { Of } \\ \begin{array}{c}\text { Evapo－} \\ \text { ration．}\end{array} \\ \hline \\ \text { Mean } \\ \text { of 24 } \\ \text { Hourly } \\ \text { Values．}\end{array}\right\|$	Of theDewPoint．				Of Radiation．	$\begin{aligned} & \text { Of the } \\ & \text { Earth } \\ & \text { 3 ft. } \mathrm{in} \text { in. } \\ & \text { below } \\ & \text { the } \\ & \text { Surface } \\ & \text { of the } \\ & \text { Soil. } \end{aligned}$					
					$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$	Mean of 24 Hourly Values．	Excess above Average of 65 Years．					若			$\left\|\begin{array}{c} \text { Highest } \\ \text { in Sun's } \\ \text { Rays. } \end{array}\right\|$	$\begin{aligned} & \text { Lowest } \\ & \text { on the } \\ & \text { Grass. } \end{aligned}$			
$\begin{array}{r} \text { Apr. I } \\ 2 \\ 3 \end{array}$	Perigee	$\begin{gathered} \text { in. } \\ 30.098 \\ 30.085 \\ 29.835 \end{gathered}$	$\begin{array}{r} \circ \\ 53 . \end{array}$	$\begin{gathered} \circ \\ 3 I \cdot I \\ 32 \cdot 6 \\ 4 \cdot I \cdot 6 \end{gathered}$	$\begin{gathered} 0 \\ 22.4 \\ 21.6 \\ 9.6 \end{gathered}$	$\circ$$42 \cdot 6$$45 \cdot 3$$45 \cdot 4$	$\begin{array}{c\|c} \\ 6 & - \\ 3 & 2.7 \\ 4 & -0.4 \\ \hline \end{array}$	－\circ－				\bigcirc			$\left\lvert\, \begin{gathered} \circ \\ 92 \cdot 4 \\ 105 \cdot 8 \\ 63.5 \end{gathered}\right.$				$\begin{gathered} m P: s P: s P \\ m P: w N, w P \\ m P, w N: s N, w P: w P \end{gathered}$
								$38 \cdot 2$	$32 \cdot 8$	$9 \cdot 8$	$15 \cdot 3$	$4 \cdot 2$	69	－${ }^{\circ}$		$\begin{gathered} \circ \\ 41 \cdot 96 \\ 42 \cdot 00 \end{gathered}$			
			$54 \cdot 2$					$40 \cdot 5$	$35 \cdot 0$	$\begin{array}{r} 10 \cdot 3 \\ 1.9 \end{array}$	$18 \cdot 5$	$2 \cdot 2$	68	$\begin{aligned} & 24.4 \\ & 36 \cdot 9 \end{aligned}$			$\begin{aligned} & 0.000 \\ & 0.049 \end{aligned}$		
			$5 \mathrm{I} \cdot 2$					44.5	$43 \cdot 5$		3.0	$0 \cdot 4$	93			$\begin{aligned} & 42 \cdot 00 \\ & 42 \cdot 20 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.049 \\ & 0.287 \end{aligned}\right.$		
		29.661	58.9	$45^{\circ} \mathrm{O}$	13.9	$52 \cdot 2$	＋6．0	$47 \cdot 4$	$42 \cdot 5$	$9 \cdot 7$	17.8	I•7	70	113.0	37－5	$42 \cdot 56$	0.000	wwP ：wP ：mP	
	Greatest Dec．S．	29.608	$5 \mathrm{I} \cdot 8$	$40 \cdot 8$	I 1.0	$46 \cdot 6$	＋0．3	$42 \cdot 2$	$37 \cdot 2$	$9 \cdot 4$	15.5	$3 \cdot 1$	70	$66 \cdot 1$	33.0	$43 \cdot 04$	0.000	mP	
	Last Quarter	29.354	$48 \cdot 7$	$35 \cdot 2$	13.5	$43 \cdot 4$	-2.9	41.6	39.5	$3 \cdot 9$	$9 \cdot 6$	$0 \cdot 7$	86	81.0	$27 \cdot 4$	43.38	0．190	$m \mathrm{P}$ ：wwP，sN ：vP	
7		29.049	54.5	41.6	12.9	$47 \cdot 3$	＋ 1.0	$42 \cdot 8$	$37 \cdot 8$	9.5	18．1	0.4	70	103.0	34.5	43.69	0.066	wP ：mP	
8		29.367	55.0	$39 \cdot 0$	16.0	$44 \cdot 7$	－1．4	$40 \cdot 3$	$35 \cdot 2$	$9 \cdot 5$	$17 \cdot 2$	$4 \cdot 7$	69	109．0	$32 \cdot 4$	43.90	0.015	wP ：mP ：vvP	
9	．	29.723	52.5	$39 \cdot 0$	13.5	$44 \cdot 8$	－ $1 \cdot 2$	$39 \cdot 4$	$33 \cdot 1$	11.7	$20 \cdot 2$	$6 \cdot 0$	63	99.9	$32 \cdot 7$	43.91	$0 \cdot 008$	mP ：sP	
10		29.869	54.3	39•1	15.2	$45 \cdot 9$	－0．0	$40 \cdot 6$	34.6	II• 3	$18 \cdot 5$	$2 \cdot 7$	65	$103 \cdot 1$	$29 \cdot 3$	$4!05$	0.060	sN, sp ： sP	
1 I		30.086	53.6	$39 \cdot 2$	14.4	$46 \cdot 6$	$+0.8$	$43 \cdot 6$	$40 \cdot 2$	$6 \cdot 4$	11．I	$3 \cdot 4$	79	82.5	$28 \cdot 1$	44－12	$0 \cdot 000$	$m P: m P: w P$	
12	In Equator	30.048	$49 \cdot 0$	41－6	$7 \cdot 4$	$45 \cdot 0$	－0．9	$43 \cdot 0$	$40 \cdot 7$	$4 \cdot 3$	$8 \cdot 6$	$0 \cdot 9$	85	$60 \cdot 1$	$40 \cdot 5$	$44 \cdot 27$	0．156	wP ：wP ：wP，wN	
13		29.909	44.4	$39 \cdot 8$	4.6	$42 \cdot 1$	－ 4.0	39.9	37－2	$4 \cdot 9$	8－1	I－4	83	53.3	$36 \cdot 8$	$44 \cdot 50$	0．119	$\mathrm{mN}, \mathrm{sP}: \mathrm{mP}$	
14	New	29.925	$53 \cdot 3$	$34 \cdot 3$	19.0	$43 \cdot 0$	－ 3.4	$39 \cdot 3$	$34 \cdot 9$	$8 \cdot 1$	19.2	0.8	73	105．2	$27 \cdot 3$	44.51	$0 \cdot 000$	mP ：wP	
15		$30 \cdot 000$	$58 \cdot 0$	$32 \cdot 1$	$25 \cdot 9$	$45 \cdot 9$	－0．9	$42 \cdot 2$	$37 \cdot 9$	$8 \cdot 0$	13.9	$1 \cdot 0$	74	101．0	$25 \cdot 6$	44.49	0.000	mP	
16		30.019	62.7	43.4	19.3	$52 \cdot 3$	＋ $5 \cdot 1$	$47 \cdot 9$	$43 \cdot 4$	$8 \cdot 9$	16.9	I－5	72	122.0	33.8	44.48	0.012	mP	
17	Apogee	30.082	55.0	$37 \cdot 7$	17.3	$45 \cdot 6$	－ $2 \cdot 0$	$40 \cdot 0$	$33 \cdot 6$	12.0	18.8	$3 \cdot 2$	63	113.7	27.4	44.85	0.000	mP ：wP	
18		30.056	$53 \cdot 8$	$28 \cdot 6$	25.2	4.3 .6	－ 14	39.0	33.5	$10 \cdot 1$	17.7	0.0	67	119.9	19.3	$45 \cdot 22$	0.000	mP ：wP ：wwP	
19	Greatest Dec．N．	29.941	$62 \cdot 5$	33.9	28.6	$48 \cdot 7$	＋0．4	43.8	$38 \cdot 5$	$10 \cdot 2$	18.0	$4 \cdot 6$	68	115.6	$21 \cdot 9$	$45 \cdot 48$	$0 \cdot 000$	wP ：mP	
20		29.787	$58 \cdot 3$	$40 \cdot 2$	18.1	$4.8 \cdot 6$	＋O．I	44.7	$40 \cdot 5$	$8 \cdot 1$	12.9	$3 \cdot 1$	73	$96 \cdot 8$	34－1	$45 \cdot 48$	0.041	$\mathrm{w}^{\text {P }}$ ： sP	
21		29.962	52.9	$35 \cdot 5$	$17 \cdot 4$	$43 \cdot 9$	－ $4 \cdot 8$	$38 \cdot 4$	31.9	12.0	19.0	$4 \cdot 7$	62	103．3	26－1	$45 \cdot 84$	0.000	P	
22	First Quarter	29.959	52.7	$37 \cdot 2$	15.5	$45 \cdot 4$	－ $3 \cdot 3$	$40 \cdot 6$	35．I	$10 \cdot 3$	$17 \cdot 2$	$5 \cdot 1$	68	82.4	$26 \cdot 6$	$45 \cdot 94$	$0 \cdot 000$	$m P: s P: m P$	
23		29.969	52.7	37.6	$15 \cdot 1$	$44 \cdot 8$	－3．8	$40 \cdot 2$	34.8	10.0	$15 \cdot 9$	4.4	68	109．5	23.7	$45 \cdot 84$	0.012	vP ：vP ：mP	
24		29.936	54.0	34.2	19.8	42.9	－ $5 \cdot 7$	38.8	33.9	9.0	$16 \cdot 2$	I． 8	72	118.2	22.2	$46 \cdot 06$	$0 \cdot 000$	mP	
25		29.926	$45 \cdot 0$	$38 \cdot 7$	$6 \cdot 6$	$42 \cdot 1$	$-6 \cdot 5$	$40 \cdot 0$	$37 \cdot 4$	$4 \cdot 7$	$8 \cdot 7$	2.4	84	52.4	24.3	$46 \cdot 03$	$0 \cdot 208$	$\mathrm{mP}: \mathrm{mN}: \mathrm{wP}$	
26	In Equator	30.071	$59 \cdot 0$	$42 \cdot 7$	$16 \cdot 3$	$4^{8 \cdot 1}$	－0．5	$45 \cdot 5$	$42 \cdot 7$	$5 \cdot 4$	13.8	I－3	82	105．0	$37 \cdot 8$	$46 \cdot 1$	$0 \cdot 000$	wP ：mP	
27		$30 \cdot 100$	$58 \cdot 6$	$42 \cdot 0$	16．6	$48 \cdot 4$	－0．3	$45 \cdot 0$	$41 \cdot 3$	7－1	$15 \cdot 7$	2.0	77	121．8	$35 \cdot 4$	$45 \cdot 99$	0.000	mP ：wP	
28		30.060	$65 \cdot 4$	$42 \cdot 2$	23.2	$52 \cdot 9$	＋ 4.1	$48 \cdot 2$	4 $3 \cdot 5$	$9 \cdot 4$	16.8	1．1	70	124.9	$33 \cdot 5$	$46 \cdot 20$	$0 \cdot 000$	$m P$ ：wP ：wP	
29	Full	30.022	63.2	$40 \cdot 2$	$23 \cdot 0$	51.4	＋ 2.4	$45 \cdot 5$	39＊4	12.0	$21 \cdot 7$	2.6	64	127.0	29.8	$46 \cdot 50$	$0 \cdot 000$	$m P$ ：wP ：mP	
30	Perigee	29.874	72.4	$40 \cdot 1$	32．3	54.9	＋ $5 \cdot 8$	$49 \cdot 8$	44.9	10.0	$22 \cdot 9$	0.9	68	121．9	27.9	$46 \cdot 89$	0.000	$m P$ ：wP ：mP	
Means		29.879	554	$38 \cdot 2$	$17 \cdot 2$	$46 \cdot 5$	－0．8	$42 \cdot 4$	$37 \cdot 9$	$8 \cdot 6$	15.6	$2 \cdot 4$	$72 \cdot 5$	99^{-1}	29.7	$44 \cdot 65$	$\begin{array}{r} \text { Sum } \\ 1 \cdot 223 \end{array}$	．	
Number of Column for Reference	I	2	3	4	5	$6!$	7	8	9	10	1 I	12	13	14	15	16	17	18	

The results apply to the civil day．
The main reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point temperatures（Column ${ }_{10}$ ）is the difference between the numbers in Columns 6 and 9，and the Greatest and Least Differences（Columns 11 and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column 16 are taken daily at noon．
The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．

Temperature of the Air，
The highest in the month was $72^{\circ} \cdot 4$ on April 30 ；the lowest in the month was $28^{\circ} .6$ on April 18 ；and the range was $43^{\circ} .8$ ．
The mean of all the highest daily readings in the month was $55^{\circ} \cdot 4$ ，being $1^{\circ} \cdot 8$ lower than the average for the 65 years， $1841-1905$ ．
The mean of all the lowest daily readings in the month was $38^{\circ}-2$ ，being $0^{\circ} .8$ lower than the average for the 65 years， $1841-1905$ ．
The mean of the daily ranges was $17^{\circ} \cdot 2$ ，being $r^{\circ} \circ$ less than the average fot the 65 years， $1841-1905$ ．
The mean for the month was $46^{\circ} \cdot 5$ ，being $0^{\circ} .8$ lower than the average for the 65 years，1841－1905．

The mean Temperature of Evaporation for the month was $42^{\circ} \cdot 4$, being $1^{\circ} \cdot 5$ lower than
The mean Temperature of the Dew Point for the month was $37^{\circ} \cdot 9$, being $2^{\circ} \cdot 2$ lower than
The mean Degree of Humidity for the month was 72.5 , being 3.3 less than
The mean Elastic Force of Vapour for the month was on. 228 , being $o^{\text {in }} \cdot 020$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2^{\text {grs. } 6, ~ b e i n g ~ o s r . ~} 3$ less than
The mean Weight of a Cubic Foot of Air for the month was 547 grains, being 4 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by \circ and an overcast sky by ro) was 6.6 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.387 . The maximum daily amount of Sunshine was 13.3 hours on April 29 . The highest reading of the Solar Radiation Thermometer was $127^{\circ} \cdot 0$ on April 29; and the lowest reading of the Terrestrial Radiation Thermometer was $19^{\circ} \cdot 3$ on April 18 .
The Proportions of Wind referred to the cardinal points were N. 8, E. 5, S. 6, W. 7. Four days were calm.
The Greatest Pressure of the Wind in the month was ro० lbs. on the square foot on April 9. The mean daily Horizontal Movement of the Air for the month was 298 miles; the greatest daily value was 626 miles on April 9 ; and the least daily value was 75 miles on April 1 i.
 for the 65 years, $1841-1905$.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 19I5. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Temperature.							Difference between the Air Temperature Temperature Temperature.				Temperature.				Electricity.	
			Of the Air.						Of the Dew Point. De- duced ducen Mean Daily Value.				Of Radiation.	$\begin{gathered} \text { Of the } \\ \text { Earth } \\ \text { Berth } \\ \text { 3f.lin. } \\ \text { below } \\ \text { the } \\ \text { Surface } \\ \text { of the } \\ \text { Soil. } \end{gathered}$					
					Daily Range.	$\begin{gathered} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Faines. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ 65 \text { Years. } \end{gathered}\right.$			$\begin{gathered} \text { 玉ig } \\ \stackrel{y y}{*} \end{gathered}$		$\begin{aligned} & \text { 菏 } \\ & \text { H } \end{aligned}$			Highest in Sun's Rays.	$\begin{aligned} & \text { Lowest } \\ & \text { on the } \\ & \text { Grass. } \end{aligned}$			
		in.	-	\bigcirc	\bigcirc	-	-	-	${ }^{\circ}$	-	\bigcirc	\bigcirc			\bigcirc	${ }^{\circ}$	${ }^{\circ}$	in.	
May I	.	29.708	$67 \cdot 6$	$47 \cdot 8$	19.8	$56 \cdot 7$	$+7 \cdot 4$	51.6	$46 \cdot 8$	$9 \cdot 9$	16.9	$5 \cdot 5$	69	126.6	$32 \cdot 9$	47-29	0.003		
	Greatest Dec. S.	29.712	$60 \cdot 2$	41.2	19.0	$50 \cdot 9$	+ 1.4	$47 \cdot 4$	$43 \cdot 7$	$7 \cdot 2$	$16 \cdot 2$	$2 \cdot 1$	77	1177	35°	$47 \cdot 81$	0.020	wP: wwP	
3	Greatan Dee.s.	29.967	$52 \cdot 7$	$36 \cdot 7$	16.0	44.6	$-5 \cdot 2$	$40 \cdot 3$	$35 \cdot 3$	$9 \cdot 3$	15.5	$2 \cdot 3$	70	123.0	$26 \cdot 3$	$48 \cdot 29$	$0 \cdot 000$	mP :	
4		$29 \cdot 842$	57•9	$45 \cdot 0$	12.9	$49 \cdot 2$	- 0.8	$46 \cdot 1$	$42 \cdot 8$	$6 \cdot 4$	12.4	I•7	79	130.4	$36 \cdot 0$	$48 \cdot 37$	0.012	$\ldots: \ldots: m P$	
4 5		29.759	$73 \cdot \mathrm{I}$	$43 \cdot 2$	29.9	57.0	+ $6 \cdot 7$	$52 \cdot 9$	$49 \cdot 1$	$7 \cdot 9$	$18 \cdot 8$	1.5	75	I $36 \cdot \mathrm{I}$	$33 \cdot 1$	$48 \cdot 52$	0.000	wP : wwP : wP	
6	Last Quarter	29.757	74.0	$47 \cdot 6$	$26 \cdot 4$	$60 \cdot 5$	$+10 \cdot 0$	$56 \cdot 3$	$52 \cdot 7$	$7 \cdot 8$	19.7	0.8	75	$122 \cdot 1$	37.4	$48 \cdot 8 \mathrm{I}$	0.000	wP : wP : wwP	
7		29.850	71.4	$49 \cdot 5$	$21 \cdot 9$	$60 \cdot 2$	+ 9.5	$56 \cdot 1$	$52 \cdot 5$	$7 \cdot 7$	$15 \cdot 5$	0.4	76	134.2	$38 \cdot 1$	$49 \cdot 39$	$0 \cdot 000$		
8		30.003	$68 \cdot 4$	$44 \cdot 7$	$23 \cdot 7$	56:9	+ $5 \cdot 9$	51.9	$47 \cdot 3$	$9 \cdot 6$	19.I	$3 \cdot 3$	70	132.0	$38 \cdot 7$	50.02	$0 \cdot 000$	wwP : wP	
9	In Equator	30.224	$6 \mathrm{I} \cdot 3$	$40 \cdot 5$	20.8	$49 \cdot 9$	- 1-3	44.6	39.0	10.9	$18 \cdot 5$	$2 \cdot 8$	66	$130 \cdot 0$	31.4	$50 \cdot 49$	$0 \cdot 000$		
10		30.118	$65 \cdot 2$	39-2	$26 \cdot 0$	$52 \cdot 0$	+ 0.5	$46 \cdot 3$	$40 \cdot 5$	II• 5	$22 \cdot 1$	$2 \cdot 9$	66	$138 \cdot 7$	29.9	50•74	0.000	$m P: w P: m P$	
1 I		29.824	$68 \cdot 5$	$38 \cdot 1$	$30 \cdot 4$	53.9	+ $2 \cdot 1$	47.0	$40 \cdot 2$	13.7	$25 \cdot 2$	$2 \cdot 0$	59	$129 \cdot 1$	$22 \cdot 1$	$50 \cdot 89$	0.000	$m P: \mathrm{mP}_{\mathrm{wP}}: \mathbf{w P}$	
12	-	29.573	69.0	$45 \cdot 2$	23.8	54-I	+ 2.0	$50 \cdot 6$	$47 \cdot 2$	$6 \cdot 9$	$19 \cdot 2$	I 9	77	$136 \cdot 7$	$38 \cdot 2$	51.00	$0 \cdot 008$		
13		$29 \cdot 481$	47-5	$40 \cdot 5$	7.0	$45^{\prime} 2$	- $7 \cdot 2$	$44 \cdot 8$	44.4	$0 \cdot 8$	$1 \cdot 3$	$0 \cdot 0$	97	$65 \cdot 5$	$40 \cdot 3$	51-12	1.628	${ }_{w} P, m N: m N, w P: w P$	
14	New: Apogee	29.734	52.1	$36 \cdot 5$	$15 \cdot 6$	$43 \cdot 7$	- $8 \cdot 9$	$39 \cdot 9$	$35 \cdot 4$	$8 \cdot 3$ 8	$17 \cdot 6$	0.0	73	107.5	$30 \cdot 8$	$51 \cdot 22$ 50.73	$0 \cdot 205$	$w N, w P: m P: m P, w w P$	
15	Now. Apogee	29.990	57.8	$35 \cdot 1$	22.7	$46 \cdot 8$	- $6 \cdot 0$	$42 \cdot 2$	37.0	$9 \cdot 8$	$17 \cdot 2$	$1 \cdot 0$	69	105.2	25.4	$50 \cdot 73$	$0 \cdot 000$		
16		29.808	64.5	$42 \cdot 7$	$2 \mathrm{I} \cdot 8$	$52 \cdot 3$	-0.7	$49^{\circ} \mathrm{O}$	$45 \cdot 6$	$6 \cdot 7$	$12 \cdot 3$	$0 \cdot 2$	78	119.5	39°	$50 \cdot 41$	0.043	mN, wwP : wwP	
17	Greavest Dee. N.	29.530	57.2	$48 \cdot 8$	$8 \cdot 4$	52.4	-0.7	$50 \cdot 2$	$48 \cdot 0$	$4 \cdot 4$	$8 \cdot 6$	$2 \cdot 0$	85	85.7	$42 \cdot 9$	$50 \cdot 40$	-163	wwP : wN, wwP : wP	
18		29.621	$48 \cdot 8$	44.2	$4 \cdot 6$	$45 \cdot 9$	-7.4	$44 \cdot 8$	$43 \cdot 6$	$2 \cdot 3$	$3 \cdot 7$	0.4	84	$57 \cdot 1$	42.4	$50 \cdot 68$	I•197	wwN, wP : wwN : wP	
19		$29 \cdot 854$	$62 \cdot 7$	$42 \cdot 8$	19.9	$51 \cdot 3$	-2.2	47.0	$42 \cdot 5$	$8 \cdot 8$	$16 \cdot 6$	2.6	72	127.0	$36 \cdot 4$	$50 \cdot 68$	0.000	wP: wP : wwP	
20		29.866	$6 \mathrm{r} \cdot 3$	$42 \cdot 5$	18.8	53•I	-0.7	51.4	$49 \cdot 7$	$3 \cdot 4$	6.1	0.6	88	99.0	$33 \cdot 5$	$50 \cdot 48$	$0 \cdot 000$	wP: wwP	
21		29.864	$68 \cdot 9$	$5 \mathrm{I} \cdot 0$	17.9	$58 \cdot 5$	$+4.3$	55.8	$53 \cdot 3$	$5 \cdot 2$	$14 \cdot 2$	$0 \cdot 0$	83	136.7	$39 \cdot 4$	$50 \cdot 74$	$0 \cdot 000$		
22	First Quarter	29.916	$68 \cdot 7$	$52 \cdot 0$	$16 \cdot 7$	$60 \cdot 2$	$+5 \cdot 6$	$57 \cdot 4$	54.9	$5 \cdot 3$	$10 \cdot 9$	$1 \cdot 9$	83	$135 \cdot 5$	$45 \cdot 3$	51.14	0.000	${ }_{\text {wwP }}$	
23	In Equator	30.024	74.2	$50 \cdot 2$	$24^{\circ} \mathrm{O}$	$6 \mathrm{I} \cdot 3$	+6.4	$53 \cdot 2$	$46 \cdot 2$	15.1	$27 \cdot 0$	$2 \cdot 3$	58	136.3	$41 \cdot 9$	$5 \mathrm{I} \cdot 89$	0.000	wwP w	
24	-	30.038	71.7	$48 \cdot \mathrm{I}$	23.6	$59 \cdot 8$	$+4.5$	51.7	44.6	$15 \cdot 2$	$27 \cdot 4$	$7 \cdot 9$	57	${ }^{1} 39.5$	$37 \cdot 6$	52.42	$0 \cdot 00$		
25		29.925	74.4	44•1	$30 \cdot 3$	$59 \cdot 6$	+ 4.I	$53 \cdot 2$	$47 \cdot 6$	12.0	$22 \cdot 5$	I. 6	65	$141 \cdot 1$	$36 \cdot 1$	52.90	$0 \cdot 000$		
26		29.829	$75 \cdot 7$	$49 \cdot 4$	$26 \cdot 3$	$62 \cdot 1$	+ 6 - 3	$55 \cdot 2$	$49 \cdot 3$	12.8	$25 \cdot 5$	$4 \cdot 1$	63	141.7	$35 \cdot 7$	53.31 53.63	$0 \cdot 000$	$\begin{gathered} \mathrm{wP}: \mathrm{mP} \\ \mathrm{mP} \end{gathered}$	
27		29.942	6I.4	$46 \cdot 1$	$15 \cdot 3$	$52 \cdot 6$	- 3.4	$47 \cdot 5$	$42 \cdot 4$	10.2	$17 \cdot 6$	$3 \cdot 5$	69	137.4	$41 \cdot 1$	53.63	$0 \cdot 000$		
28	Perigee : Full	29.874	$6 \mathrm{I} \cdot 4$	$43 \cdot 3$	$18 \cdot 1$	$50 \cdot 7$	- $5 \cdot 5$	$45 \cdot 2$	39.5	11.2	$16 \cdot 5$	4.7	65	126.8	31.1	53.92	0.000	mP	
29	Perigee . Full	29.644	63.3	$37 \cdot 0$	$26 \cdot 3$	$50 \cdot 0$	-6.4	$45 \cdot 9$	41.6	$8 \cdot 4$	15.8	$1 \cdot 1$	73	123.4	24.0 25.8	$54 \cdot 12$	0.000	$\mathrm{mP}_{\mathrm{mP}}$	
30	Greatest Dec. S.	29.834	56.I	39.7	$16 \cdot 4$	$47 \cdot 5$	$-9 \cdot 2$	42.7	37.4	10.1	$16 \cdot 1$	$3 \cdot 4$	68	125.2	$25 \cdot 8$	54.03	0.000	mP	
31		29.995	63.0	$34 \cdot 0$	$29^{\circ} 0$	$48 \cdot 9$	-8.2	$43 \cdot 7$	$38 \cdot 1$	$10 \cdot 8$	$20 \cdot 6$	0.7	66	125.7	$20 \cdot 3$	53.95	$0 \cdot 000$	$m P$: $s P$: wP	
Means	\ldots	$29 \cdot 842$	63.9	43.4	20.4	53.2	+ 0.1	$48 \cdot 8$	$44 \cdot 5$	$8 \cdot 7$	17.0	$2 \cdot 1$	$72 \cdot 8$	$122 \cdot 3$	34.5	$50 \cdot 95$	3.279	.	
Number of Column for	I	2	3	4	5	6	7	8	9	10	II	12	13	14	15	16	17	18	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. Degree of Humidity (Column mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least The mean difference between the Air and Dew Point themperatules (Columns if and i2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column i6 are Differences (Columns
taken daily at noon.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in. }} 84_{42}$, being $0^{\text {in. }} 048$ higher than the average for the 65 years, 1841 1-1905.
Temperature of the Air.
The highest in the month was $75^{\circ} \cdot 7$ on May 26 ; the lowest in the month was $34^{\circ} \circ$ on May 31 ; and the range was $41^{\circ} \cdot 7$.
The mean of all the highest daily readings in the month was $63^{\circ} \cdot 9$, being equal to the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was $43^{\circ} \cdot 4$, being $0^{\circ} \cdot 3$ lower than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $20^{\circ} \cdot 4$, being $0^{\circ} \cdot 2$ greater than the average for the 65 years, 1841-1905.
The mean for the month was $53^{\circ} \cdot 2$, being $0^{\circ} \cdot 2$ higher than the average for the 65 years, 1841-1905.

The mean Temperature of Evaporation for the month was $48^{\circ} \cdot 8$, being $0^{\circ} \cdot 2$ lower than
The mean Temperature of the Dew Point for the month was $44^{\circ} \cdot 5$, being $\circ^{\circ} \cdot 5$ lower than
The mean Degree of Humidity for the month was 72.8, being $1 \cdot 4$ less than
The mean Elastic Force of Vapour for the month was $0^{\text {in }}$ 294, being oin.005 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grs. }}{ }_{3}$, being obr. ${ }^{\mathrm{m}}$ less than
The mean Weight of a Cubic Foot of Air for the month was 539 grains, being I grain greater than
The mean amount of Cloud for the month (a clear sky being represented by \circ and an overcast sky by 10) was 5.3 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.445 . The maximum daily amount of Sunshine was $15 . \circ$ hours on May 24.
The highest reading of the Solar Radiation Thermometer was $141^{\circ} \cdot 7$ on May 26; and the lowest reading of the Terrestrial Radiation Thermometer was $20^{\circ} \cdot 3$ on May $3 \mathbf{1 4}$
The Proportions of Wind referred to the cardinal points were N. 9, E. 13, S. 3, W. 2. Four days were calm.
The Greatest Pressure of the Wind in the month was 7.3 lbs . on the square foot on May 3. The mean daily Horizontal Movement of the Air for the month was 266 miles ; the greatest daily value was 479 miles on May 27; and the least daily value was 97 miles on April 5 .
Rain (o ${ }^{\text {th }} .005$ or over) fell on 8 days in the month, amounting to $3^{\text {in. }} 279$, as measured by gauge No. 6 partly sunk below the ground; being $1^{\text {in. }} 364$ greater than the average fall for the 65 years, $1841-1905$.

$\begin{gathered} \text { MONTH } \\ \text { mad } \\ \text { DAY, } \\ \text { 1915. } \end{gathered}$	$\begin{aligned} & \text { Phases } \\ & \text { of } \\ & \text { the } \\ & \text { Moon. } \end{aligned}$	BARO－METER．	Temperature．							Difference between the Air Temperature and Dew Point Temperature．				temperature．				Electricity．	
			Of the Air．					$\left\lvert\, \begin{gathered} \text { Of } \\ \text { Evapo- } \\ \text { ration. } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { Of the } \\ & \text { Dew } \\ & \text { Point. } \end{aligned}\right.$				Of Radiation．	Of theEarth3 ft． 2 in.belowtheSurfaceof theSoil．					
			䕗	㵄	Daily	Mean of 24 Hourly Values．	$\left\lvert\, \begin{gathered}\text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ \text { of } \\ \text { Years．}\end{gathered}\right.$	Mean of 24 Hourly Values．	$\begin{aligned} & \text { De- } \\ & \text { duced } \\ & \text { Mean } \\ & \text { Daily } \\ & \text { Value. } \end{aligned}$	$$		薄			$\begin{aligned} & \text { Highest } \\ & \text { in Sun's } \\ & \text { Rays. } \end{aligned}$	Lowest on the Grass．			
	Last Quarter In Equator	$\begin{aligned} & \mathrm{in} . \\ & 29 \cdot 902 \\ & 29.88 \mathrm{I} \\ & 29.874 \end{aligned}$	$\begin{aligned} & 65 \cdot 3 \\ & 74 \cdot 6 \\ & 66 \cdot 9 \end{aligned}$	$\begin{gathered} \circ \\ 36 \cdot 6 \\ 40 \cdot 1 \\ 47 \cdot 5 \end{gathered}$	$\begin{aligned} & 28 \cdot 7 \\ & 34 \cdot 5 \\ & 19 \cdot 4 \end{aligned}$	$\begin{gathered} \circ \\ 5 \mathrm{I} \cdot 6 \\ 56 \cdot 6 \\ 55 \cdot 8 \end{gathered}$	$\left.\left\|\begin{array}{c} \\ \hline \end{array}\right\| \begin{gathered} \\ - \\ -1 \cdot 2 \\ -2 \cdot 3 \end{gathered} \right\rvert\,$	$\begin{gathered} c \\ 46 \cdot 8 \\ 5 \mathrm{I} \cdot 0 \\ 52 \cdot \mathrm{I} \end{gathered}$	$41 \cdot 9$ $45 \cdot 8$ $48 \cdot 6$	－	－	－		）	－				$\begin{gathered} m P: w P \\ w P: \underset{w P}{w}: w P \\ w P \end{gathered}$
June I										9.710.8	21．8	$2 \cdot 2$	70	138.0	$25 \cdot 2$	$53 \cdot 78$			
2											23.3	1．5	67	139.4	$27 \cdot 3$	$\begin{aligned} & 53.78 \\ & 53.88 \end{aligned}$	$\begin{array}{l\|l} 0.000 \\ 0.000 \end{array}$		
3										$7 \cdot 2$	$12 \cdot 3$	$2 \cdot 0$	78	121．8	$35 \cdot 8$				
4		30.018	$76 \cdot 1$	$52 \cdot 6$	23.5	61.4	$+3 \cdot 1$	$57 \cdot 5$	54^{1}	$7 \cdot 3$	19.0	1.6	77	145.2	$47 \cdot 5$	$54 \cdot 21$	0.000	wP	
5		30.014	$75 \cdot 7$	50.2	$25 \cdot 5$	$62 \cdot 3$	＋ 3.9	$57 \cdot 9$	$54 \cdot 2$	$8 \cdot \mathrm{I}$	16.8	1．8	75	$\left\|\begin{array}{l} 138.8 \\ 148.5 \end{array}\right\|$	$42 \cdot 9$	54.70	0	${ }_{w} \mathrm{P}$	
6		29.981	$72 \cdot 5$	52.8	19.7	$62 \cdot 5$	＋ 4.2	$58 \cdot 5$	$55 \cdot 1$	$7 \cdot 4$	15.5	$1 \cdot 0$	77		$39 \cdot 5$	$55 \cdot 22$	$0 \cdot 000$	wwP	
7	．	29.862	82.3	51.7	30.6	$64 \cdot 9$	$+6 \cdot 7$	$59 \cdot 5$	$55 \cdot 0$	$9 \cdot 9$	20.8	0.6	71	151．9	$38 \cdot 2$	$55 \cdot 8 \mathrm{I}$	10.000	wwP wwP	
8		29.690	$87 \cdot 2$	$59 \cdot 6$	27.6	$72 \cdot 2$	＋14．1	$65 \cdot 3$	60.1	$\begin{aligned} & 12.1 \\ & 10.8 \end{aligned}$	25.4	$3 \cdot 4$	6568	$\begin{array}{r} 154.0 \\ 147.4 \end{array}$	$50 \cdot 1$51.8	$\begin{aligned} & 56 \cdot 49 \\ & 57 \cdot 06 \end{aligned}$	0．008		
9	．	29.724	$72 \cdot 0$	$57 \cdot 3$	14.7	$67 \cdot 7$	$+6 \cdot 7$	$58 \cdot 8$	53.9		19.4	I $\cdot 1$					$0 \cdot 043$		
10		29.750	69.5	$57 \cdot 3$	12.2	6r．6	$+3.5$	57．I	53.2	$8 \cdot 4$	14.2	1.0	75	$126 \cdot 2$	$53 \cdot 5$	57.66	$0 \cdot 010$	wP	
11	Apogee	29.950.	67.8	$5 \mathrm{I} \cdot \mathrm{I}$	16.7	$59 \cdot 8$	＋ 1.6	53.6	$48 \cdot 4$	11.4	18.0	$4 \cdot 0$	66	129.0	$40 \cdot 2$	58.07	$0 \cdot 000$	wP	
12	New	30.072	$70 \cdot 7$	$47 \cdot 6$	$23 \cdot 1$	$57 \cdot 8$	－0．6	51.9	$46 \cdot 6$	II $\cdot 2$	$23 \cdot 3$	I－5	66	126.0	34.0	$58 \cdot 23$	$0 \cdot 000$	${ }_{6} \mathrm{P}$	
13	Greatest Dec．N．	30.035	$72 \cdot 9$	$43 \cdot 4$	29.5	$58 \cdot 9$	＋0．4	$5 \mathrm{I} \cdot 2$	4.4 .4	14.5	27.4	$3 \cdot 1$	58	131．3	$30 \cdot 3$	$58 \cdot 30$	$0 \cdot 000$	$\begin{gathered} m P: w P \\ w P: m P, w P: w P \\ m P: w P: w P \end{gathered}$	
14		30.036	$64 \cdot 9$	$49 \cdot 2$	15.7	$55 \cdot 1$	－3．6	$49 \cdot 9$	$44 \cdot 9$	10.2	18.2	$4 \cdot 7$	69	$146 \cdot 9$	$42 \cdot 0$	$\begin{aligned} & 58 \cdot 30 \\ & 58 \cdot 31 \end{aligned}$	0．000		
15	．	30.042	$66 \cdot 0$	$48 \cdot 2$	17.8	$55 \cdot 6$	－ 3.2	$50 \cdot 4$	$45 \cdot 5$	$10 \cdot 1$	$17 \cdot 9$	$2 \cdot 5$	72	$147 \cdot 0$	$37 \cdot 0$				
16	．	29.993	$70 \cdot 7$	$45 \cdot 2$	$25 \cdot 5$	$57 \cdot 5$	－1．4	$53 \cdot 0$	$48 \cdot 9$	$8 \cdot 6$	$17 \cdot 7$	I－2	73	145.4	34．2	$58 \cdot 38$	$0 \cdot 000$	$\begin{gathered} m P: w P: w w P \\ w P \\ m P: w P: w P \end{gathered}$	
17	．	$29 \cdot 987$	68.2	$48 \cdot 3$	19.9	$56 \cdot 6$	－ 2.4	52.2	$48 \cdot 1$	$8 \cdot 5$	17.4	$1 \cdot 0$	73	141.8	$35 \cdot 4$	$\begin{aligned} & 58 \cdot 40 \\ & 58 \cdot 49 \end{aligned}$	$0 \cdot 000$		
18		30.025	62.2	$45 \cdot 2$	17.0	53.0	－ $6 \cdot 2$	$47 \cdot 4$	41.8	11.2	17.8	$5 \cdot 3$	66	148.5	$34 \cdot 8$		$0 \cdot 000$		
19		29.996	$64 \cdot 0$	41.5	22.5	52.8	－6．7	$46 \cdot 9$	41.0	II 18	$20 \cdot 5$	$3 \cdot 2$	65	149.6	30．1	$58 \cdot 55$	$0 \cdot 000$	$\begin{aligned} & m P \\ & m P: w P: w w P \\ & w P: w P: w w P \end{aligned}$	
20		29.922	71.0	$38 \cdot 0$	33.0	54.8	－ $5 \cdot 1$	48.8	43－1	1197	$23 \cdot 3$	$1 \cdot 3$	65	155.0	24.6	$\begin{aligned} & 58 \cdot 58 \\ & 58 \cdot 61 \end{aligned}$	$0 \cdot 000$		
21		$29 \cdot 763$	$76 \cdot 1$	$42 \cdot 9$	$33 \cdot 2$	58.4	－ 1.9	51.4	45－I	13.3	27.3	0.8	6 I	148.0	27.0		$0 \cdot 000$		
22	．	29.846	$68 \cdot 1$	47.9	$20 \cdot 2$	$56 \cdot 8$	－ 3.8	51.4	$46 \cdot 4$	10.4	19.8	I－2	68	145.8	$32 \cdot 4$	$58 \cdot 70$	$0 \cdot 000$	wP ：wwP ：wP wP wwP ：wP	
23		29.785	$59 \cdot 6$	47．1	12.5	$52 \cdot 7$	-8.2	$49 \cdot 5$	$46 \cdot 3$	$6 \cdot 4$	10.9	$2 \cdot 1$	79	104.3	39－1	$58 \cdot 73$	0.017		
24	．	29.729	$57 \cdot 8$	$49 \cdot 6$	$8 \cdot 2$	53.5	$-7 \cdot 7$	$52 \cdot 0$	$50 \cdot 5$	3.0	$5 \cdot 7$	0.6	90	$72 \cdot 6$	49．I				
25		29.704	73.4	$53 \cdot 2$	$20 \cdot 2$	$6 \mathrm{I} \cdot 3$	－0．1	$58 \cdot 0$	$55 \cdot 2$	$6 \cdot 1$	14.1	0.8	80	$150 \cdot 3$	$52 \cdot 7$	$58 \cdot 70$	0 0．00	$\underset{w_{w} P}{ }=w^{w} P$	
26	${ }_{\text {Greaterigee }}^{\text {Pee．S．}}$	29.726	$73 \cdot 5$	54.2	19.3	$62 \cdot 4$	－0．9	$56 \cdot 1$	$50 \cdot 7$	11.7	22.5	I－1	66	159.0	$43 \cdot 0$	58.65	0.000		
27	Full	29.666	69.5	$5 \mathrm{I} \cdot 6$	$17 \cdot 9$	$57 \cdot 2$	－4．4	54.6	$52 \cdot 2$	$5 \cdot 0$	$15 \cdot 2$	0.4	84	133.0	$42 \cdot 0$	$58 \cdot 88$	$0 \cdot 184$	wwP	
28		29.593	$72 \cdot 0$	54.5	17.5	$60 \cdot 0$	－ 1.6	$56 \cdot 6$	53.6	$6 \cdot 4$	12.0	1．4	80	144.0	$48 \cdot 4$	59－18	0.070	wwP wwP wwP	
29		29.577	$73 \cdot 8$	$52 \cdot 1$	21.7	$60 \cdot 7$	－ 0.9	$57 \cdot 4$	54.6	$6 \cdot 1$	14.2	1．6	81	142.6	$46 \cdot 1$	59．20	0.014		
30	．	29.615	$73 \cdot 3$	54.7	18.6	$59 \cdot 5$	-2.0	$57 \cdot 3$	$55 \cdot 4$	4．I	14.5	1.2	86	1 34.7	$46 \cdot 2$	59.33	－ 119		
Means	．	$29 \cdot 859$	$70 \cdot 6$	49°	21.5	$58 \cdot 6$	-0.9	$53 \cdot 8$	$49 \cdot 5$	9•I	$18 \cdot 2$	I． 8	72.4	$138 \cdot 7$	$39 \cdot 3$	57．50	$\begin{gathered} \text { Sum } \\ 0.561 \end{gathered}$		
Number of Column for Reference	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

The results apply to the civil day．

 taken daily at noon．
The values given in Columns 3，4，5，14，and ${ }_{15}$ are derived from eye－readings of self－registering thermometers．
The mean reading of the Barometer for the month was 29 in． 859 ，being oin． 044 higher than the average for the 65 years， $1841-1905$ ．

Temperature of the Air．

The highest in the month was $87^{\circ} \cdot 2$ on June 8 ；the lowest in the month was $36^{\circ} \cdot 6$ on June 1 ；and the range was $5^{\circ} \cdot 6$ ．
The mean of all the highest daily readings in the month was $70^{\circ} \cdot 6$ ，being $0^{\circ} \cdot \frac{1}{l}$ lower than the average for the 65 years， $184 \mathrm{r} \rightarrow 1905$ ．
The mean of all the lowest daily readings in the month was $49^{\circ} \cdot$ ，being $0^{\circ} \cdot 9$ lower than the average for the 65 years， $1841-1905$ ．
The mean of the daily ranges was $21^{\circ} \cdot 5$ ，being $0^{\circ} \cdot 7$ greater than the average for the 65 years， $1841-1905$ ．
The mean for the month was $5^{\circ} \cdot 6$ ，being $0^{\circ} \cdot 8$ lower than the average for the 65 years， $1841-1905$ ．

The mean Temperature of Evaporation for the month was $53^{\circ} \cdot 8$, being $\mathrm{I}^{\circ} \cdot \mathrm{I}$ lower than
The mean Temperature of the Dew Point for the month was $49^{\circ} \cdot 5$, being $1^{\circ}+$ lower than
The mean Degree of Humidity for the month was $72 \cdot 4$, being $1 \cdot 2$ less than
The mean Elastic Force of Vapour for the month was $0^{\ln } \cdot 355$, being $o^{\ln } .018$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{g r s} .0$, being $0^{g r .} 2$ less than
The mean Weight of a Cubic Foot of Air for the month was 533 grains, being 2 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by io) was $5 \cdot 3$.
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was $0 \cdot 44^{\circ}$. The maximum daily amount of Sunshine was $1+7$ hours on June 20 .
The highest reading of the Solar Radiation Thermometer was $159^{\circ} \circ$ on June 26 ; and the lowest reading of the Terrestrial Radiation Thermometer was $34^{\circ} .6$ on June 20 .
The Proportions of Wind referred to the cardinal points were N. 4, E. ro, S. 6, W. 4. Six days were calm.
 the greatest daily value was 347 miles on June 14; and the least daily value was ir miles on June i.
Rain (oin. 005 or over) fell on 9 days in the month, amounting to $0^{\text {in. }} 56 \mathrm{I}$, as measured by gauge No. 6 partly sunk below the ground; being in. 477 less than the average fall for the 65 years, 1841 - 1905 .

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1915. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Temperature．							Difference between the Air Temperature and Dew Point Temperature．				temperature．				Electricity．	
			Of the Air．						Of the Dew Point． De－ duced MMen Daily Value．				Of Radiation．						
				菏	$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$		Excess above Average of 65 Years．			$\begin{aligned} & \dot{\tilde{\tilde{E}}} \\ & \text { 部 } \end{aligned}$		$\begin{aligned} & \text { 淢 } \\ & \text { an } \end{aligned}$			Highest Rays．	Lowest on the Grass．			
		in．	\bigcirc	－	\bigcirc		－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc		in．	
July ${ }^{\text {I }}$		29.928	$66 \cdot 4$	52.4	14.0	$58 \cdot 8$	-2.7	$56 \cdot 4$	54.3	4.5	$9 \cdot 3$	0.4	83	115.2	$42 \cdot 0$	$59 \cdot 19$	0.000	wwP : wP : wwP	
	In Equator	30.059	$80 \cdot 1$	$5 \mathrm{I} \cdot 1$	29.0	$65 \cdot 3$	＋ 37	$59 \cdot 7$	55^{-2}	$10 \cdot 1$	19.8	0.0	71	147.4	$43 \cdot 0$	59.43	$0 \cdot 000$	wwP : wP	
3		30.012	85.9	$58 \cdot 8$	$27 \cdot 1$	$7 \mathrm{I} \cdot 2$	＋ 9.4	64.0	$58 \cdot 6$	12.6	23.4	$2 \cdot 5$	64	161．0	51.0	59.60	$0 \cdot 000$	wP ：wwP ：wP	
4	Last Quarter	29.767	87.1	$60 \cdot 1$	27.0	$72 \cdot 7$	$+10.6$	65.0	$59 \cdot 2$	13.5	$25 \cdot 6$	0.0	62	149.0	51．3	$60 \cdot 12$	$0 \cdot 000$	wP ：wwP	
		29.782	$80 \cdot 6$	$58 \cdot 6$	22.0	$67 \cdot 4$	＋5．1	$60 \cdot 6$	$54 \cdot 8$	12.6	$26 \cdot 7$	3.0	64	$149 \cdot 8$	$49 \cdot 2$	$60 \cdot 83$	0.000	wP : mP	
6		29.744	$79 \cdot 2$	$52 \cdot 5$	$26 \cdot 7$	$65 \cdot$	＋2．6	$58 \cdot 0$	$52 \cdot 3$	12.7	$24 \cdot 7$	$2 \cdot 7$	63	$156 \cdot 0$	＋1．3	$6 \mathrm{I} \cdot 43$	$0 \cdot 356$	wP ：wwP ：wP	
7		29.461	$69 \cdot 7$	$56 \cdot 1$	13.6	$59 \cdot 5$	-2.9	57•1	55.0	$4 \cdot 5$	II• 5	0.6	86	$120 \cdot 5$	52.6	61.60	0－109	${ }_{\text {w }} \mathrm{P}$	
8	Apogee	29.744	$64 \cdot 6$	$55 \cdot 8$	8.8	$58 \cdot 8$	－ $3 \cdot 6$	$55 \cdot 9$	$5 \mathrm{I} \cdot 3$	$7 \cdot 5$	$9 \cdot 9$	I． 0	82	$95 \cdot 5$	51.6	$6 \mathrm{I} \cdot 68$	0.021	wP ：w	
9		29.946	71.4	$54 \cdot 6$	16.8	$6 \mathrm{I} \cdot 0$	－ 1.4	$55 \cdot 5$	50.8	10.2	$18 \cdot 2$	0.6	70	$132 \cdot 7$	$46 \cdot 6$	61.50	0.056	wwP ：wP	
10	${ }_{\text {Greatest Dec．}}$ N．	$29 \cdot 875$	$7 \mathrm{I} \cdot 2$	$5 \mathrm{I} \cdot \mathrm{O}$	$20 \cdot 2$	61.2	－I•3	54.9	$49 \cdot 4$	II． 8	19.0	$5 \cdot 1$	66	$139 \cdot 2$	$40 \cdot 6$	6I．28	0.000		
11		29.683	64.9	54.4	10.5	$59 \cdot 6$	－ $3 \cdot 1$	$55 \cdot 8$	52.4	$7 \cdot 2$	12.8	$3 \cdot 6$	77	$92 \cdot 6$	$5 \mathrm{I} \cdot 2$	$6 \mathrm{I} \cdot 07$	0.000	$w w P: w P: w P$	
12	New	29.622	$70 \cdot 4$	$52 \cdot 0$	$18 \cdot 4$	$60 \cdot 6$	－ 2.3	$54 \cdot 5$	$49 \cdot 2$	II 4.	20.9	$3 \cdot 3$	67	$143 \cdot 0$	$39 \cdot 9$	6I•12	$0 \cdot 000$	wP ：mP	
13		29.622	$69 \cdot 5$	$45 \cdot 2$	24.3	$58 \cdot \mathrm{I}$	－ $5 \cdot 0$	$53 \cdot 6$	$49 \cdot 5$	$8 \cdot 6$	$16 \cdot 1$	0.6	73	114.4	$32 \cdot 8$	61.08	0.000	$m P: w P: w P$	
14		29.570	$69 \cdot 5$	$49 \cdot 6$	$19 \cdot 9$	$57 \cdot 7$	－ $5 \cdot 6$	$54 \cdot 1$	52.5	$5 \cdot 2$	$16 \cdot 3$	0.0	84	$147 \cdot 4$	$39 \cdot 5$	61.50	0．19t	$\ldots \mathrm{P}$	
15		29.497	69.4	$5 \mathrm{I} \cdot 2$	$18 \cdot 2$	58.8	－ 4.6	53.9	$49 \cdot 6$	$9 \cdot 2$	19.6	0.2	72	131.3	$43 \cdot 5$	$60 \cdot 80$	0.022		
16		$29 \cdot 455$	$63 \cdot 0$	$48 \cdot 2$	$14 \cdot 8$	$55 \cdot 7$	－ $7 \cdot 7$	$53 \cdot 8$	$52 \cdot 0$	$3 \cdot 7$	$10 \cdot 0$	0.0	88	$105 \cdot 8$	$39 \cdot 1$	$60 \cdot 70$	0.644	wwP ：wwP，wwN	
17	In Equator	29.356	$62 \cdot 8$	51.5	II．3	$56 \cdot 9$	－ $6 \cdot 5$	54^{2}	51.7	$5 \cdot 2$	$9 \cdot 9$	I．3	83	103.0	$43 \cdot 3$	$60 \cdot 48$	0.028	wwP：wP	
18		29.981	$69 \cdot 1$	$49 \cdot 0$	$20 \cdot 1$	$57 \cdot 5$	-5.8	53.4	$49 \cdot 7$	$7 \cdot 8$	I $5 \cdot 9$	I． 8	74	118.0	$40 \cdot 0$	$60 \cdot 19$	0.000	wwP	
19	First Quarter	29.929	$72 \cdot 5$	53.1	19.4	$6 \mathrm{I} \cdot 0$	-2.2	$57 \cdot 8$	$55 \cdot 0$	$6 \cdot 0$	$10 \cdot 8$	$3 \cdot 5$	81	$136 \cdot 0$	$40 \cdot 0$	60.01	$0 \cdot 000$	wwP	
20		29.773	71.0	55.0	$16 \cdot 0$	$6 \mathrm{I} \cdot \mathrm{I}$	-2.1	$55 \cdot 6$	$50 \cdot 1$	11．0	$2 \mathrm{I} \cdot 0$	0.6	70	139.1	$50 \cdot 3$	60.02	$0 \cdot 055$	wwP ：wP ：mP	
21		29.807	$71 \cdot 5$	$52 \cdot 8$	$18 \cdot 7$	$60 \cdot 0$	－ 3.2	$55 \cdot 1$	$50 \cdot 8$	$9 \cdot 2$	$18 \cdot 7$	$2 \cdot 4$	72	$146 \cdot 8$	$48 \cdot 7$	$60 \cdot 12$	0.000		
22		$29 \cdot 574$	$60 \cdot 9$	$56 \cdot 6$	$4 \cdot 3$	$58 \cdot 5$	-4.6	57.5	$56 \cdot 7$	1．8	$4 \cdot 7$	0.0	94	$76 \cdot 9$ 124.5	$54 \cdot 1$ 51.4	$60 \cdot 17$ $60 \cdot 29$	$\begin{aligned} & 0.526 \\ & 0.467 \end{aligned}$		
23	Greatest Dec． S ．	$29 \cdot 389$	$65 \cdot 5$	55.2	$10 \cdot 3$	$58 \cdot 6$	-4.4	$56 \cdot 9$	$55 \cdot 4$	$3 \cdot 2$	$\begin{array}{r}9 \cdot 3 \\ \hline\end{array}$	0.2	88	124.5	$5 \mathrm{I} \cdot 4$	$60 \cdot 29$	$\begin{aligned} & 0.467 \\ & 0.076 \end{aligned}$	$\begin{aligned} & \text { wwP } \\ & w w P \end{aligned}$	
24	Perigee	29.541.	$73 \cdot 5$	$5 \mathrm{I} \cdot 2$	22.3	59.4	－ 3.5	$56 \cdot 6$	$50 \cdot 9$	$8 \cdot 5$	$15 \cdot 9$	0.6	84	1414	$46 \cdot 2$	$60 \cdot 31$	0.076	wwP	
		29.623	$70 \cdot 6$	$53 . \mathrm{C}$	17.6	$57 \cdot 3$	$-5 \cdot 4$	54.9	$52 \cdot 8$	$4 \cdot 5$	17.5	I． 2	84	139.0	$49 \cdot 4$	60.26	$0 \cdot 133$	wwP ：wwP，mN ：wwP	
26	Full	29.645	71.6	$49 \cdot 9$	21.7	59.0	－ $3 \cdot 5$	$55 \cdot 5$	$52 \cdot 4$	6.6	$16 \cdot 6$	0.6	79	137.8	$43 \cdot 9$	60.23	$0 \cdot 000$	$w \mathrm{P}$	
27		29.595	69.8	50%	19.4	58.8	－ 3.6	$55 \cdot 8$	$53 \cdot \mathrm{I}$	$5 \cdot 7$	$18 \cdot 1$	0.8	82	128.2	$44^{\circ} \mathrm{O}$	60.21	$0 \cdot 277$	wP ：wN，wP ：wP	
28		29.789	$70 \cdot 7$	$5 \mathrm{I} \cdot 5$	19.2	$59 \cdot 6$	-2.7	$54 \cdot 1$	$49 \cdot 2$	$10 \cdot 4$	21.7	$4 \cdot 0$	69	133.8	$45^{\circ} 0$	$60 \cdot 27$	0.000	${ }_{w} \mathrm{P}$	
29		29.971	$73 \cdot 2$	$48 \cdot 8$	24.4	$57 \cdot 8$	-4.5	$5+4$	51.4	$6 \cdot 4$	$18 \cdot 3$	I． 0	79	$142 \cdot 2$	$4 \mathrm{I} \cdot 3$	$60 \cdot 27$	$0 \cdot 116$	$w P: v P$	
30	In Equator	29.927	$72 \cdot 5$	50.1	22.4	$60 \cdot 2$	－2．I	54.9	$50 \cdot 2$	$10 \cdot 0$	$18 \cdot 3$	$0 \cdot 2$	70	132.8	$42 \cdot 7$	$60 \cdot 23$	$0 \cdot 000$	wP	
3 I		$20 \cdot 745$	$75 \cdot 4$	$52 \cdot 6$	22.8	6I•I	－I•I	$56 \cdot 7$	$52 \cdot 9$	$8 \cdot 2$	16.9	0.2	75	$142 \cdot 6$	$47 \cdot 2$	$60 \cdot 30$	0.000	${ }_{W} P$	
Means	．	29.723	71.4	$52 \cdot 7$	18.7	60.6	$-2 \cdot 1$	$56 \cdot 3$	$52 \cdot 7$	$8 \cdot 1$	$16 \cdot 7$	I 4	$76 \cdot 0$	$130 \cdot 4$	$45 \cdot 2$	$60 \cdot 53$	3.080	\cdots	
Number of Column for Reference．	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations， $18+1$－1905．The temperature of the Dew Point（Column 9）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of（Hlaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column io）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns if and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column i6 are taken daily at noon．
The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．

Temperature of the Air．
The highest in the month was $87^{\circ} \cdot 1$ on July 4 ；the lowest in the month was $45^{\circ} \cdot 2$ on July 13 ；and the range was $41^{\circ} \cdot 9$ ．
The mean of all the highest daily readings in the month was $71^{\circ} \cdot 4$ ，being $2^{\circ} .8$ lower than the average for the 65 years， $1841-1905$ ．
The mean of all the lowest daily readings in the month was $52^{\circ} \cdot 7$ ，being $0^{\circ} .6$ lower than the average for the 65 years，1841－1905．
The mean of the daily ranges was $18^{\circ} \cdot 7$ ，being $2^{\circ} \cdot 2$ less than the average for the 65 years， $18+1-1905$ ．
The mean for the month was $60^{\circ} \cdot 6$ ，being $2^{\circ} \cdot 1$ lower than the average for the 65 years $18+1-1905$ ．

The mean Temperature of Evaporation for the month was $56^{\circ} \cdot 3$, being $\mathbf{I}^{\circ} .6$ lower than
The mean Temperature of the Dew Point for the month was $52^{\circ} \cdot 7$, being $\mathrm{I}^{\circ} \cdot \mathrm{I}$ lower than
The mean Degree of Humidity for the month was $76 \cdot 0$, being $3 \cdot 2$ greater than

the average for the 65 years, $18+1-1905$.

The mean Elastic Force of Vapour for the month was $\circ^{\mathrm{in}} .399$, being oin.or 6 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4{ }^{\text {grs. }} 4$, being $0^{\text {arr. } 2}$ less than
The mean Weight of a Cubic Foot of Air for the month was 528 grains, being 1 grain greater than

The mean proportion of Sunshine for the month (constant suns $1^{\circ} \cdot \circ$ on July 3 ; and the lowest reading of the Terrestrial Radiation Thermometer was $32^{\circ} \cdot 8$ on $\mathrm{July}^{1} 3$.
The highest reading of the Solar Radiation Thermometer was 1. Two days were calm
 The Greatest Pressure of the Wind in the month was 7.5 lbs. on the square foot on J uly 7 . Ihe mean

Rain (oin. 005 or over) fell on 15 day
fall for the 65 years, $1841-1905$.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { I9 } 95 . \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Mooon. } \end{gathered}$	Baro-METER.	temperature.							Difference between the Air Temperature and Dew Point Temperature.				Temperature.				Electricity.	
			Of the Air.					$\left\lvert\, \begin{gathered} \text { Of } \\ \text { Erapo } \\ \text { ration. } \end{gathered}\right.$	$\begin{gathered} \text { Of the } \\ \text { Dew } \\ \text { Point. } \end{gathered}$				Of Rad	iation.	Of the				
				受	Daily Range.	$\begin{array}{\|c} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{array}$	$\begin{array}{\|c\|} \text { Excess } \\ \text { above } \\ \text { Average } \\ \text { of } \\ 65 \text { Years. } \end{array}$	Mean Hourly Values.	De- duced Mean Daily Value.	岦				$\begin{gathered} \text { Highest } \\ \text { in Sun's } \\ \text { Rays. } \end{gathered}$	$\begin{aligned} & \text { Lowest } \\ & \text { on the } \\ & \text { Grass. } \end{aligned}$				
		in.	-	-			-	-	-	-	-	\bigcirc			\bigcirc	-	-	in.	
Aug. I		$29 \cdot 546$	$77 \cdot 3$	54.4	22.9	63.8	+ 1.6	57.9	$53^{\circ} \mathrm{O}$	10.8	19.8	4.9	69	$149 \cdot 1$	44.3	60.51	$0 \cdot 000$	wwP	
2	Last Quarter	29.403	$72 \cdot 3$	$54 \cdot \mathrm{I}$	18.2	6I.2	-- 0.9	$57 \cdot 6$	53.9	$7 \cdot 3$	$16 \cdot 2$	0.6	75	144.6	$43 \cdot 8$	$60 \cdot 75$	0.193	wwP	
3		29.445	$66 \cdot 9$	$57 \cdot \mathrm{I}$	9.8	$59 \cdot 1$	- 3.0	$57 \cdot 5$	$56 \cdot \mathrm{I}$	$3 \cdot 0$	$8 \cdot 0$	$0 \cdot 4$	90	113.3	55.3	60.95	0.681	wwP : . . : .	
4		$29 \cdot 723$	69.0	$54 \cdot 3$	14.7	$60 \cdot 1$	- 2.0	$57 \cdot 6$	$55 \cdot 4$	$4 \cdot 7$	II•9	$0 \cdot 0$	85	124.7	$49 \cdot 6$	6I.20	$0 \cdot 434$. : wwP : wwP	
5	Apogee	29.809	$69 \cdot 5$	51.4	$18 \cdot 1$	59.0	- 3.1	$55 \cdot 3$	$52 \cdot 0$	$7 \cdot 0$	14.9	$0 \cdot 8$	78	$130 \cdot 5$	$46 \cdot 6$	6I-II	0.001	wwP	
6	Greatest Dec. N .	$29.74{ }^{1}$	$74 \cdot 6$	$58 \cdot 7$	15.9	$65 \cdot 1$	+ 2.9	61.0	$57 \cdot 6$	$7 \cdot 5$	$16 \cdot 0$	0.9	77	13 I .8	57.5	6i.II	0.011	wwP	
7		29.874	$73 \cdot 7$	$58 \cdot 2$	I $5 \cdot 5$	64.0	+ 1.8	6I.6	$59 \cdot 6$	$4 \cdot 4$	$7 \cdot 9$	I•5	86	$110 \cdot 3$	52.8	6I•II	0.022	wwP	
8		29.867	75.4	62.1	13.3	$66 \cdot 6$	+ 4.3	63.7	$6 \mathrm{I} \cdot 4$	$5 \cdot 2$	12.4	2.0	84	128.6	57.8	$6 \mathrm{I} \cdot 4 \mathrm{I}$	0.000	wwP	
9		29.855	74.4	$6 \mathrm{I} \cdot 3$	$13 \cdot 1$	$65 \cdot 3$	+ 3.0	63.7	$62 \cdot 5$	2.8	8.0	0.9	86	118.6	58.9	6I.60	- 399	wwP	
10	New	29.823	$77 \cdot 1$	$59 \cdot 9$	17.2	$66 \cdot 5$	+ 4.2	$64 \cdot 2$	62.4	$4 \cdot 1$	14.4	$0 \cdot 4$	86	$140 \cdot 8$	$55 \cdot 1$	$62 \cdot 03$	$0 \cdot 759$	wwP	
11		29.861	$76 \cdot 1$	$59 \cdot 3$	16.8	$65 \cdot 2$	+ 2.8	$60 \cdot 8$	$56 \cdot 9$	$8 \cdot 3$	18.7	I-5	76	137.6	$54 \cdot 9$	62.53	0.003	wwP	
12	.	29.818	$74 \cdot 1$	$57 \cdot 9$	$16 \cdot 2$	63.2	+ 0.7	$60 \cdot 2$	57.7	$5 \cdot 5$	14.9	$1 \cdot 3$	82	139.3	$5 \mathrm{I} \cdot 5$	$62 \cdot 60$	0.038	wwP	
13	In Equator	29.731	$73 \cdot 8$	53.4	$20 \cdot 4$	61.0	- 1.5	$56 \cdot 8$	$52 \cdot 8$	$8 \cdot 2$	18.2	0.6	76	$130 \cdot 5$	$46 \cdot 1$	$62 \cdot 59$	0.052	wwP : wP : wN, wP	
14		29.743	$72 \cdot 5$	$52 \cdot 2$	$20 \cdot 3$	$60 \cdot 2$	--2.3	$56 \cdot 2$	$52 \cdot 8$	$7 \cdot 4$	16.5	$0 \cdot 4$	76	135.5	$46 \cdot 4$	62.58	0.011	wwP	
15		$29 \cdot 716$	68.5	53.3	15.2	59°	-3.4	$55 \cdot 9$	$53 \cdot 1$	$5 \cdot 9$	13.8	$1 \cdot 4$	81	130.0	$46 \cdot 0$	$62 \cdot 38$	0.152	wwP : wwN : wwP	
16		$29 \cdot 748$	$70 \cdot 0$	51.8	18.2	$59 \cdot 3$	- 3.0	$55 \cdot 4$	$52 \cdot 0$	$7 \cdot 3$	14.1	0.6	76	123.8	$46 \cdot 7$	$62 \cdot 18$	0.313	wwP : wP	
17		29.827	$72 \cdot 7$	50.2	22.5	$59 \cdot 2$	- $2 \cdot 9$	$55 \cdot 3$	$51 \cdot 9$	$7 \cdot 3$	20.0	0.6	77	132.0	$45 \cdot 8$	62.08	$0 \cdot 000$	wwP	
18	First Quarter	29.885	70.0	$50 \cdot 2$	19.8	$58 \cdot 1$	-3.8	54.3	50.9	$7 \cdot 2$	$18 \cdot 1$	$1 \cdot 0$	78	115.8	$42 \cdot 6$	$6 \mathrm{I} \cdot 74$	0.000	wwP	
19		29.904	$69 \cdot 1$	$49 \cdot 7$	19.4	$58 \cdot 2$	- $3 \cdot 5$	$54 \cdot 1$	$50 \cdot 4$	$7 \cdot 8$	16.6	I•2	76	12.4.9	$42 \cdot 2$	$6 \mathrm{I} \cdot 70$	0.001	${ }_{\text {w }}$	
20		29.970	71.6	$50 \cdot 0$	21.6	$60 \cdot 3$	- 1.2	$55 \cdot 6$	51.5	8.8	$18 \cdot 5$	1.0	72	$123 \cdot 1$	$42 \cdot 1$	$6 \mathrm{I} \cdot 53$	0.000	ww $^{\text {P }}$: wP	
21		29.972	69.0	55.0	14.0	$59 \cdot 9$	- 1.4	$54 \cdot 6$	$49 \cdot 9$	10.0	$16 \cdot 4$	$4 \cdot 3$	78	118.0	49.9	$6 \mathrm{I} \cdot 47$	0.000	wP	
22		$30 \cdot 900$	67.4	54.5	12.9	$60 \cdot 4$	-0.7	$55 \cdot 8$	$5 \mathrm{I} \cdot 8$	$8 \cdot 6$	17.6	$3 \cdot 4$	73	$110 \cdot 2$	51.4	$6 \mathrm{I} \cdot 48$	0.000	wP	
23		$30 \cdot 927$	73.0	56.8	$16 \cdot 2$	$62 \cdot 9$	+ 2.0	$58 \cdot 3$	54.4	$8 \cdot 5$	17.7	$2 \cdot 3$	74	128.1	$47 \cdot 2$	6I.49	$0 \cdot 000$	wwP : wP	
24	Full	30.066	71.0	$54 \cdot 6$	16.4	$6 \mathrm{I} \cdot 3$	+0.5	$57 \cdot \mathrm{I}$	53.5	$7 \cdot 8$	15.7	$1 \cdot 3$	76	$120 \cdot 9$	$43 \cdot 5$	$6 \mathrm{I} \cdot 57$	0.000	${ }_{w} \mathrm{P}$	
25		30.036	72.0	$53 \cdot 6$	18.4	62.0	+ $1 \cdot 3$	$57 \cdot 5$	$53 \cdot 7$	$8 \cdot 3$	17.9	I.0	75	117.1	$44 \cdot 6$	$6 \mathrm{I} \cdot 62$	0.000	wwP : wP : wP	
26	In Equator	29.977	73.8	$49 \cdot 9$	23.9	$6 \mathrm{I} \cdot 3$	$+0.6$	$57 \cdot 6$	$54 \cdot 3$	$7 \cdot 0$	$16 \cdot 1$	0.6	78	119.9	44.2	$6 \mathrm{I} \cdot 73$	0.000	wwP	
27		29.881	73.1	$5 \mathrm{I} \cdot 4$	21.7	61.0	+0.4	$57 \cdot 3$	$54 \cdot \mathrm{I}$	$6 \cdot 9$	16.0	0.8	79	119.5	$42 \cdot 5$	$6 \mathrm{I} \cdot 76$	0.000	wwP	
28		29.714	$71 \cdot 6$	50.1	$21 \cdot 5$	$6 \mathrm{I} \cdot \mathrm{I}$	+0.7	$57 \cdot 2$	$53 \cdot 8$	$7 \cdot 3$	14.9	0.6	77	117.6	$40 \cdot 0$	6I.71	0.000	wwP	
29		29.629	65.0	$48 \cdot 4$	16.6	$55 \cdot 4$	- 4.9	$53 \cdot 2$	51.1	$4 \cdot 3$	$9 \cdot 3$	2.7	86	$97 \cdot 0$	$40 \cdot 2$	6I.59	$0 \cdot 140$	wwP : wP	
30	\ldots	29.860	63.4	$43 \cdot 6$	19.8	$53 \cdot 3$	--6.8	$4^{8 \cdot 4}$	$43 \cdot 4$	$9 \cdot 9$	17.6	0.4	69	$109 \cdot 5$	33.0	61.47	$0 \cdot 000$	$w \mathrm{P}: \mathrm{mP}: \mathrm{mP}$	
31	.	29.944	$65 \cdot 7$	$5 \mathrm{I} \cdot 2$	14.5	$56 \cdot 0$	- $3 \cdot 9$	51-5	$47 \cdot 3$	$8 \cdot 7$	$15 \cdot 7$	$4 \cdot 0$	73	124.2	$40 \cdot 2$	61.10	0.000	wP	
Means	.	29.826	71.4	$53 \cdot 8$	$17 \cdot 6$	$60 \cdot 9$	-0.7	$57 \cdot 2$	$53 \cdot 9$	$7 \cdot 0$	$15 \cdot 2$	1.4	$78 \cdot 2$	$12+7$	+7.1	$6 \mathrm{r} \cdot 63$	$\begin{gathered} \text { Sum } \\ 3.2 \mathrm{IO} \end{gathered}$.	
Number of Column for Reference.	I	2	3	4	5	6	7	8	9	10	I I	12	13	If	15	16	17	18	

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, ${ }_{1} 8_{1-1905}$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns if and 12) are deduced from the $2+$ hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The readings in Column i6 are taken daily at noon
The values given in Columns $3,4,5,14$, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\ln .826}$, being $0^{\text {in }} .0 \neq 3$ higher than the average for the 65 years, $18+1-1905$.

Temperature of the Air.

The highest in the month was $77^{\circ} \cdot 3$ on August 1 ; the lowest in the month was $43^{\circ} \cdot 6$ on August 30 ; and the range was $33^{\circ} \cdot 7$.
The mean of all the highest daily readings in the month was $71^{\circ} \cdot 4$, being $1^{\circ} \cdot 3$ lower than the arerage for the 65 years, $18+1-1905$.
The mean of all the lowest daily readings in the month was $53^{\circ} \cdot 8$, being $0^{\circ} .8$ higher than the average for the 65 years, 184^{1-1905}.
The mean of the daily ranges was $17^{\circ} \cdot 6$, being $2^{\circ} \cdot 1$ less than the average for the 65 years, $18+1-1905$
The mean for the month was $60^{\circ} \cdot 9$, being $0^{\circ} \cdot 7$ lower than the average for the 65 years, $18+1-1905$.

The mean Temperature of Evaporation for the month was $57^{\circ} \cdot 2$, being $0^{\circ} \cdot 3$ lower than
The mean Temperature of the Dew Point for the month was $53^{\circ} \cdot 9$, being $0^{\circ} \cdot 1$ lower than
The mean Degree of Humidity for the month was $78 \cdot 2$, being $1 \cdot 9$ greater than
The mean Elastic Force of Vapour for the month was $0^{\text {in. }} 416$, being ${ }^{\text {in. }} 002$ less. than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\text {grs. }} 7$, being orr. i greater than
The mean Weight of a Cubic Foot of Air for the month was 529 grains, being I grain greater than
The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by io) was $6 \cdot 7$.
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was 0.359 . The maximum daily amount of Sunshine was ir 8 hours on August i.
The highest reading of the Solar Radiation Thermometer was $149^{\circ} \cdot 1$ on August 1 ; and the lowest reading of the Terrestrial Radiation Thermometer was $33^{\circ} \cdot 0$ on August 30 .
The Proportions of Wind referred to the cardinal points were N. 4, E. 2, S. 8, W. 9. Eight days were calm.
The Greatest Pressure of the Wind in the month was 4.6 lbs . on the square foot on Augast 30 . The mean daily Horizontal Movement of the Air for the month was 196 miles; the greatest daily value was 435 miles on August 3; and the least daily value was 79 miles on August 9
Rain ($\mathrm{o}^{\mathrm{in}} \cdot 005$ or over) fell on 13 days in the month, amounting to $3^{\mathrm{ln}} \cdot 210$, as measured by gauge No. 6 partly sunk below the ground ; being onn. 866 greater than the average fall for the 65 years, $184^{1-1905 .}$

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { 1915. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Templiature.							Difference between the Air Temperature Temperature Temperature.				temperature.			$\left\|\begin{array}{c} 0 \\ 4 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	Electrisity.	
			Of the Air.						Of the Dew Point. De- duced Mean Daily Value.				Of Radiation.	Of theEarthBft. in.3flow.theturfaceSuf theSoil.					
					$\begin{aligned} & \text { Daily } \\ & \text { lange. } \end{aligned}$	$\begin{array}{\|c} \text { Mear } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{array}$	Excess above Average of 65 Years.			吾					$\begin{array}{\|l} \text { Highest } \\ \text { in Sun's } \\ \text { Rays. } \end{array}$	Lowes on the Grass.			
		in.									16.8	0.6			125.0	$38 \cdot 8$		$\begin{gathered} \text { in. } \\ 0.066 \end{gathered}$	
Sept.I	Last Quarter: Aporee	29.644	67.9	$46 \cdot 6$	$2 \mathrm{I} \cdot 3$	$56 \cdot 0$	- 3.8	$52 \cdot \mathrm{I}$	$48 \cdot 4$	$7 \cdot 6$	16.8	0.6	76	125.0	$38 \cdot 8$ 36.8	$60 \cdot 74$ $60 \cdot 4$		$\begin{gathered} \text { wwP : wP : wwP } \\ { }_{w} \mathrm{P} \end{gathered}$	
	Greatest Dec. N.	29.494	61.I	$45 \cdot 2$	15.9 16.2	51.5 52.7	- 8.2	$48 \cdot 2$ 48.6	$44 \cdot 8$	$6 \cdot 7$ $8 \cdot 2$	16.8 16.4	0.0 2.6	78	111199 115	$36 \cdot 8$ 39	$60 \cdot 43$ $60 \cdot 17$	$\left\lvert\, \begin{aligned} & 0.000 \\ & 0.007\end{aligned}\right.$	${ }_{\text {w }} \mathrm{P}$ P $:$ vP	
3		29.543	61.2	45°	$16 \cdot 2$	$52 \cdot 7$	- $6 \cdot 9$	$48 \cdot 6$	$44 \cdot 5$	$8 \cdot 2$	16.4	2.6	74	115.7			$0 \cdot 007$	wP : vP	
4		29.794	63.6	$44 \cdot 5$	$19 \cdot 1$	53.1	- 6.4	$48 \cdot 0$	$42 \cdot 7$	10.4	19.4	$2 \cdot 8$	68	122.0	$36 \cdot 1$	59.86	0.000	${ }_{\mathrm{w}} \mathrm{P}: \mathrm{mP}$	
5		30.080	$67 \cdot 7$	$39 \cdot 8$	$27 \cdot 9$	$53 \cdot 4$	- 6.0	$48 \cdot 4$	$43 \cdot 4$	$10 \cdot 0$	19.5	I•I	69	112.2	$30 \cdot 1$	59.56	0.000	wP	
6		$30 \cdot 192$	71.4	$42 \cdot 2$	$29 \cdot 2$	$55 \cdot 4$	-3.8	$50 \cdot 7$	$46 \cdot 3$	9•I	$20 \cdot 5$	I. 5	72	132.9	$30 \cdot 9$	59.30	$0 \cdot 000$	wP	
7		30.150	$72 \cdot 0$	$46 \cdot 4$	$25 \cdot 6$	$58 \cdot 8$	-0.2	53.8	49.4	$9 \cdot 4$	19.8	1.6	71	130.0	37.0	59.17	0.000	wwP	
8		$30 \cdot 110$	72.9	$45 \cdot 1$	$27 \cdot 8$	$59 \cdot 3$	+ 0.5	$54 \cdot 7$	$50 \cdot 6$	$8 \cdot 7$	18.7	I•	74	130.0	$35 \cdot 5$	$59 \cdot 20$	$0 \cdot 000$:	
9	New : In Equator	30.112	$70 \cdot 9$	$53 \cdot 5$	17.4	$6 \mathrm{I} \cdot \mathrm{I}$	- 2.5	$57 \cdot 5$	54.4	$6 \cdot 7$	$16 \cdot 5$	$0 \cdot 8$	79	119.4	$40 \cdot 9$	59.19	$0 \cdot 00$	wwP: wP	
10		$30 \cdot 110$	67.9	$50 \cdot 0$	I $7 \cdot 9$	$58 \cdot \mathrm{I}$	-0.3	$53 \cdot 5$	$49 \cdot 4$	$8 \cdot 7$	$20 \cdot 2$	0.6	73	I28.1	$35 \cdot 9$	59.39	0.000	wwP	
11		30.024	64.9	$48 \cdot 4$	$16 \cdot 5$	$56 \cdot 7$	- $1 \cdot 4$	$52 \cdot 6$	$48 \cdot 8$	$7 \cdot 9$	17.9	I. 2	75	123.1	$36 \cdot 4$	$59 \cdot 42$	0.001*	wwP	
12		29.885	$74 \cdot 1$	$48 \cdot 2$	$25 \cdot 9$	59^{2}	+ 1.2	54.7	$50 \cdot 6$	$8 \cdot 6$	21.8	I.O	74	132.5	$35 \cdot 0$	$59 \cdot 4 \mathrm{I}$	0.000	: wwP : w	
13		29.767	$75 \cdot 7$	$45 \cdot 1$	$30 \cdot 6$	$60 \cdot 1$	$+2 \cdot 3$	$55 \cdot 1$	$50 \cdot 7$	$9 \cdot 4$	$18 \cdot 6$	I.O	72	I 34.0	$33 \cdot 5$	$59^{\circ} 4^{\circ}$	0.000	wP : wwP : wP	
14	Perigee	29.810	63.9	$53 \cdot 5$	10.4	$57 \cdot 8$	+ $\mathrm{O} \cdot \mathrm{I}$	$54 \cdot 2$	51.0	$6 \cdot 8$	13.7	I. 2	78	90.2	$47 \cdot 1$	$59 \cdot 32$	0.029	wwP	
15		29.963	$73 \cdot 9$	$56 \cdot 1$	17.8	63.5	+ $5 \cdot 9$	$59 \cdot 4$	$56 \cdot 3$	$7 \cdot 2$	18.4	I•I	77	12 I 4	$52 \cdot 3$	59.49	0.001	wwP	
16		$30 \cdot 130$	77.0	$63 \cdot 2$	13.8	68.3	+10.8	64.7	6I.9	$6 \cdot 1$	12.1	I.5	80	113.0	$54 \cdot 9$	$59 \cdot 64$	0.000	wwP	
17		$30 \cdot 130$	79.0	$59 \cdot 0$	20.0	$68 \cdot 2$	+II.O	63.3	59.4	$8 \cdot 8$	$19 \cdot 2$	$2 \cdot 2$	74	131.5	$48 \cdot 5$	60.00	0.000	ww?	
18		30.034	$74 \cdot 2$	$54 \cdot 8$	19.4	$62 \cdot 9$	$+6.0$	$59 \cdot 6$	$56 \cdot 8$	6.I	15.1	0.4	81	120.5	$43 \cdot 1$	$60 \cdot 3 \mathrm{I}$	0.000	wwP	
19		30.065	$65 \cdot 3$	$48 \cdot 7$	16.6	$58 \cdot 1$	+ 1.6	54.2	$50 \cdot 7$	$7 \cdot 4$	15.6	$2 \cdot 8$	76	128.5	$37 \cdot 9$	$60 \cdot 51$	0.000	wwP : wP	
20		30.033	$65 \cdot 2$	$44 \cdot 5$	$20 \cdot 7$	$54 \cdot 2$	- 2.0	$49 \cdot 8$	$45 \cdot 5$	$8 \cdot 7$	18.8	$2 \cdot 7$	72	123.0	31.3	$60 \cdot 60$	0.000	$w P: w w P: w P$	
21		30.026	$67 \cdot 2$	$4^{8 \cdot 3}$	18.9	$56 \cdot 2$	+0.3	$50 \cdot 9$	$45 \cdot 9$	$10 \cdot 3$	21.5	$3 \cdot 5$	69	$122 \cdot 1$	$35 \cdot 2$	$60 \cdot 29$	0.000	${ }_{\text {w }}$	
22	In Equator	29.991	$72 \cdot 6$	$48 \cdot 1$	24.5	$59 \cdot 6$	+4.0	$54 \cdot 4$	$49 \cdot 8$	$9 \cdot 8$	$20 \cdot 2$	2.0	70	121.0	$35 \cdot 7$	60.02	$0 \cdot 000$	wP : wwP : wP	
23	Full	29.790	73.4	$5+\cdot 9$	18.5	63.0	+ $7 \cdot 6$	59.7	$56 \cdot 9$	$6 \cdot \mathrm{I}$	II $\cdot 7$	2.5	81	114.6	$49 \cdot 4$	59.82	0.031	wwP	
24		29.560	$72 \cdot 3$	$55 \cdot 3$	17.0	62.0	$+6 \cdot 7$	$59 \cdot 4$	$57 \cdot 2$	$4 \cdot 8$	15.9	0.6	84	126.4	$46 \cdot 8$	59.83	0.219	wwP	
25		29.393	$66 \cdot 9$	$50 \cdot 3$	$16 \cdot 6$	57.9	+ 2.7	55.0	$52 \cdot 4$	$5 \cdot 5$	I 1.3	I.4	82	118.3	$39 \cdot 9$	59.98	0.000	wwP	
26		29.271	67.6	$46 \cdot \mathrm{I}$	21.5	$56 \cdot 2$	+ $\mathrm{I} \cdot \mathrm{O}$	$53 \cdot 1$	$50 \cdot 2$	$6 \cdot 0$	15.5	0.0	81	I 30.I	$36 \cdot 8$	$60 \cdot 00$	0.000	wwP	
27	.	29.377	$58 \cdot 3$	47%	10.9	$52 \cdot 7$	- 2.4	$49 \cdot 8$	47.0	$5 \cdot 7$	$9 \cdot 7$	I. 6	8 I	$93 \cdot 3$	$38 \cdot 0$	59.78	0.002	wwP : wP : wP	
28		$29 \cdot 45$	$59 \cdot 2$	$39 \cdot 2$	20.0	47.9	- 7.0	$44 \cdot 5$	$40 \cdot 8$	$7 \cdot 1$	$16 \cdot 6$	1.4	78	104.0	27.8	$59 \cdot 60$	I-283	w^{P} : wP : mN	
29	Apogee	$29 \cdot 304$	$53 \cdot 1$	$39 \cdot 7$	$13 \cdot 4$	$45 \cdot 4$	-9.3	42.0	$38 \cdot 1$	$7 \cdot 3$	14.5	1. 6	76	101.0	$3 \mathrm{I} \cdot \mathrm{I}$	$58 \cdot 68$	$0 \cdot 381$	wN : wP : mP	
30	Greatest Dec. N .	$29.56+$	50.8	36.8	14.0	$+5.0$	- 9.4	$4 \mathrm{I} \cdot 5$	$37 \cdot 5$	$7 \cdot 5$	10.4	I.7	75	79.0	29.0	$58 \cdot 00$	$0 \cdot 000$	mP : wP : mP	
Means	.	$29 \cdot 827$	$67 \cdot 7$	+r'z	19.5	57.1	$-3 \cdot \mathrm{I}$	$53 \cdot 1$	$49^{\circ}+$	$7 \cdot 8$	$16 \cdot 7$	I•5	$75 \cdot 7$	$118 \cdot 5$	$38 \cdot 4$	59.70	$\begin{array}{r} \text { Sum } \\ 2 \cdot 020 \end{array}$		
Number of Column for Reference.	1	2	3	+	5	6	7	8	9	10	I 1	12	13	14.	15	16	17	18	

The results apply to the eivil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in and I2) are deduced from the $2+$ hourly photographic measures of the Dry-bulb and Wet-Bulb Thermometers. The readings in Column i6 are taken daily at noon.
The values given in Columns $3,4,5,1+$, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 17). The amount entered on September if was derived from dew.

The mean reading of the Barometer for the month was $29^{\text {in }} 8.82$, being $0^{\text {in }} .016$ higher than the average for the 65 years, i $\$_{+1-1905}$
Temperiture of the Air.
The highest in the month was $79^{\circ} \circ$ on September 17 ; the lowest in the month was $36^{\circ} .8$ on September 30 ; and the range was $42^{\circ} \cdot 2$
The mean of all the highest daily readings in the month was $67^{\circ} \cdot 7$. being $0^{\circ} \cdot 4$ higher than the average for the 65 years, $18+1-1905$
The mean of all the lowest daily readings in the month was $48^{\circ} \cdot 2$, being $0^{\circ} \cdot 9$ lower than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $19^{\circ} .5$, being $I^{\circ} \cdot 3$ greater than the average for the 65 years, $1841-1905$.
The mean for the month was $57^{\circ} \cdot 1$, being $0^{\circ} .2$ lower than the average for the 65 years, 1841-1905.

The mean Temperature of Exaporation for the month was $53^{\prime} \mathrm{I}$, being 1 olower than
The mean Temperature of the Dew Point for the month was $49^{\circ} \cdot 4$, being $\mathrm{I}^{\circ} \cdot 8$ lower than
The mean Degree of Humidity for the month was $75 \cdot 7$, being +5 less than
The mean Elastic Force of Vapour for the month was oin. 353 , being oln. 024 less. than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grs. }} 9$, being obr. 3 less than
The mean Weight of a Cubic Foot of Air for the month was 534 grains, being I grain greater than
The mean amount of Cloud for the month (a clear sky being represented by \circ and an overcast sky by $1 \circ$) was $5 \cdot 0$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.489 . The maximum daily amount of Sunshine was in $\circ \circ$ hours on September 4 .
The highest reading of the Solar Radiation Thermometer was i $34^{\circ} \circ$ on September 13; and the lowest reading of the Terrestriul Radiulion Thermometer was $27^{\circ} \cdot 8$ on September 28. The Proportions of Wind referred to the cardinal points were N. 5, E. 8, S. 7, W. 8. Two days were calm.
The Greatest Pressure of the Wind in the month was $7 \cdot 5 \mathrm{lbs}$. on the square foot on September 29. The mean daily Horizontal Movement of the Air for the month was $23+\mathrm{miles}$: the greatest daily value was +12 miles on September 29 ; and the least daily value was 120 miles on September 22 .
Rain (oin. 005 or over) fell on 7 days in the month, amounting to 2 in. 020 , as measured by gauge No. 6 partly sunk below the ground; being oin. 128 lower than the average fall for the 65 years, $184^{1-1905 .}$

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { rg15. } \end{gathered}$	$\begin{aligned} & \text { Phases } \\ & \text { of } \\ & \text { the } \\ & \text { Moon. } \end{aligned}$		temperature．							Difference between the Air Temperature and Dew Point Temperature．				Temperature．				Electricity	
			Of the Air．					$\left\|\begin{array}{c} \text { Of } \\ \text { Evapo- } \\ \text { ration. } \end{array}\right\|$	$\begin{aligned} & \text { Of the } \\ & \text { Dew } \\ & \text { Point. } \end{aligned}$				Of Rad	diation．					
				$\begin{aligned} & \text { 安 } \\ & \stackrel{y}{3} \\ & \hline \end{aligned}$	Daily Range．	$\begin{array}{\|c} \text { Mean } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values. } \end{array}$		$\begin{gathered} \text { Meana } \\ \text { of } 24 \\ \text { Hourly } \\ \text { Values } \end{gathered}$	$\begin{gathered} \text { De- } \\ \text { duced } \\ \text { Mean } \\ \text { Daily } \\ \text { Value. } \end{gathered}$	苞	范			Highest in Sun＇s Rays．	Lowest on the Grass．	$\left\lvert\, \begin{gathered} \text { below } \\ \text { the } \\ \text { Surface } \\ \text { of the } \\ \text { Soil. } \end{gathered}\right.$			
		in．	\bigcirc				\checkmark	\checkmark	－	\bigcirc	\bigcirc	－			\bigcirc	\bigcirc	\bigcirc	in．	
Oct． 1	Last Quarter	29.797	$56 \cdot 0$	$34 \cdot 3$	$21 \cdot 7$	$44^{\circ} \mathrm{O}$	－10．1	$40 \cdot 0$	$35 \cdot 3$	$8 \cdot 7$	18.8	0.5	71	$96 \cdot 3$	25.5	57.30	0.000	mP ：wP ：mP	
		29.863	53.9	$36 \cdot 4$	$17 \cdot 5$	$46 \cdot 1$	－－7．6	$44 \cdot 6$	$42 \cdot 9$	$3 \cdot 2$	$7 \cdot 2$	$2 \cdot 0$	89	74.5	31.0	$56 \cdot 70$	0.074	P：wwN，wwP ：	
3		30.070	61.3	$39 \cdot 6$	21.7	$50 \cdot 7$	-2.6	$47 \cdot 1$	$43 \cdot 3$	$7 \cdot 4$	19.0	$0 \cdot 0$	77	112.9	$28 \cdot 3$	$56 \cdot 21$	$0 \cdot 000$		
4		$30 \cdot 129$	$58 \cdot 9$	$30 \cdot 1$	19.8	$48 \cdot 0$	－ $5 \cdot 0$	$45 \cdot 3$	$42 \cdot 3$	$5 \cdot 7$	13.3	c． 7	81	$96 \cdot 6$	28.0	$56 \cdot 00$	0.000	${ }_{w} \mathrm{P}$	
5		30.059	56.0	$4 \mathrm{I} \cdot 9$	14.1	$48 \cdot 3$	－ 7.5	$45 \cdot 6$	$42 \cdot 7$	$5 \cdot 6$	$10 \cdot 0$	I－3	81	90.5	$3 \mathrm{I} \cdot 6$	$55 \cdot 82$	0.000	${ }_{w} \mathrm{P}$	
6		30.048	$59 \cdot 4$	$48 \cdot 9$	10.5	52.4	－ 0.1	$50 \cdot 5$	$48 \cdot 6$	3.8	$10 \cdot 5$	0.2	88	$96 \cdot 3$	$37 \cdot 5$	55.55	0.021	P	
7	In Equator	30.009	$59 \cdot 3$	$47 \cdot 2$	$12 \cdot 1$	$51 \cdot 5$	－ 0.8	$48 \cdot 8$	$46 \cdot 0$	$5 \cdot 5$	12.4	0.4	82	$116 \cdot 1$	39．I	$55 \cdot 53$	0.000	wwP ：wwP ：wP	
8	New	29.708	$60 \cdot 1$	$45 \cdot 1$	15.0	$5 \mathrm{I} \cdot 5$	－0．5	$4^{8 \cdot 5}$	$45 \cdot 4$	$6 \cdot 1$	12.8	I． 7	80	112.0	$37 \cdot 0$	$55 \cdot 60$	$0 \cdot 000$	P ：wwP ：	
9		29.673	57.0	$49 \cdot 9$	7．1	$52 \cdot 3$	$+0.7$	$50 \cdot 6$	$48 \cdot 9$	$3 \cdot 4$	$9 \cdot 5$	0.6	88	82.0	$47 \cdot 1$	55.5 I	0.054		
10		$29 \cdot 661$	$57 \cdot 5$	$49 \cdot 0$	$8 \cdot 5$	$52 \cdot 5$	＋I． 2	$5 \mathrm{I} \cdot \mathrm{I}$	$49 \cdot 7$	$2 \cdot 8$	$7 \cdot 2$	$0 \cdot 4$	91	$94 \cdot 5$	$43 \cdot 2$	$55 \cdot 42$	$0 \cdot 000$	wP	
1 I	Perigee	29.635	$60 \cdot 9$	$48 \cdot 2$	12.7	53.5	＋ 2.6	$52 \cdot 1$	50.7	$2 \cdot 8$	$7 \cdot 9$	$0 \cdot 0$	90	$96 \cdot 2$	$38 \cdot 2$	$55 \cdot 55$	$0 \cdot 000$	$\begin{gathered} \text { ww : wP } \\ \text { D. } \end{gathered}$	
12		29.678	67.9	$4^{8 \cdot 2}$	$10 \cdot 7$	57.3	$+6 \cdot 7$	$54 \cdot 3$	51.6	$5 \cdot 7$	17.8	$0 \cdot 0$	81	$115 \cdot 6$	$39 \cdot 5$	$55 \cdot 5 \mathrm{I}$	$0 \cdot 001$	wP ：wwP ：wP	
13	Createst Dec．S．	29.859	$61 \cdot 7$	$45 \cdot 4$	$16 \cdot 3$	$55 \cdot 2$	$+4.9$	$53 \cdot 2$	$5 \mathrm{I} \cdot 1$	4－1	$10 \cdot 5$	0.6	87	$86 \cdot 2$	$36 \cdot 5$	$55 \cdot 60$	0.008	wwP ：wP	
14		29.980	$65 \cdot 1$	$43 \cdot 7$	$2 \mathrm{I} \cdot 4$	51.9	＋ 1.8	$49 \cdot 9$	$48 \cdot 0$	3.9	$12 \cdot 1$	$0 \cdot 0$	87	103.4	$35 \cdot 1$	55.67	$0 \cdot 000$	P	
15	First Quarter	29.967	$55 \cdot 3$	$43 \cdot 6$	11.7	$4^{8 \cdot 6}$	$-\mathrm{I} \cdot 3$	$48 \cdot 3$	$48 \cdot 0$	0.6	$5 \cdot 1$	$0 \cdot 0$	98	83.3	$35 \cdot 6$	$55 \cdot 62$	$0 \cdot 00$		
15		29.920	$58 \cdot 4$	$48 \cdot 2$	10．2	53.3	＋ 3.5	$5 \mathrm{I} \cdot 8$	$50 \cdot 3$	$3 \cdot 0$	$7 \cdot 7$	$0 \cdot 4$	90	$76 \cdot 1$	$48 \cdot 2$	$55 \cdot 50$	$0 \cdot 000$	${ }_{w} \mathrm{P}$	
17		29.990	$59 \cdot 1$	$47 \cdot 6$	115	$52 \cdot 9$	$+3.3$	51．6	$50 \cdot 3$	$2 \cdot 6$	$7 \cdot \mathrm{I}$	0.8	92	85.0	39.0	$55 \cdot 39$	0.000	wwP	
18	\ldots	$30 \cdot 128$	$58 \cdot 9$	$40 \cdot 5$	18.4	$50 \cdot 2$	＋ 0.9	48.0	$45 \cdot 7$	$4 \cdot 5$	II．I	$0 \cdot 0$	85	98.8	32.8	$55 \cdot 46$	0.001		
19		30.0988	$56 \cdot 6$	$45 \cdot 1$	11.5	＋9．7	＋ 0.6	47°	$44^{\text {I }}$	$5 \cdot 6$	II•I	I•3	82	$93 \cdot 2$	$32 \cdot 2$	$55 \cdot 27$	$0 \cdot 000$	wwP：wP ：wP	
20	In Equator	29.949	$55 .+$	42.5	12.9	＋8．5	－0．3	$45 \cdot 9$	$43 \cdot 1$	$5 \cdot 4$	13.9	$1 \cdot 3$	82	$9+2$	29.0	$55 \cdot 18$	$0 \cdot 000$	wwP：wP ：wP	
21	In Equator	29.886	52.7	$36 \cdot 3$	16.4	$4+9$	－ 3.7	$43 \cdot 3$	＋1．5	3.4	$9 \cdot 6$	0.0	88	$66 \cdot 4$	$26 \cdot 8$	55.01	0.009	wP ：wwP ：wP	
22		29.965	$59 \cdot 3$	$43 \cdot 2$	$16 \cdot 1$	$50 \cdot 0$	＋I•7	$48 \cdot 1$	$46 \cdot 1$	$3 \cdot 9$	$9 \cdot 5$	0.4	87	$98 \cdot 8$	$32 \cdot 1$	$54 \cdot 68$	$0 \cdot 007$	wwP ：wP	
23	Full	29.874	$58 \cdot 2$	$40 \cdot 8$	17.4	$48 \cdot 0$	－ $0 \cdot 1$	$46 \cdot 3$	44.	$3 \cdot 6$	12.0	$0 \cdot 0$	88	97.9	$29 \cdot 9$	54.40	0．166	wP：wwP：wN	
24		29.713	50%	$47 \cdot 7$	$2 \cdot 7$	$4^{8.8}$	$+0.9$	$47 \cdot 6$	$46 \cdot 3$	2.5	$5 \cdot 4$	$0 \cdot 0$	91	63.0	$45 \cdot 6$	54.25	$0 \cdot 362$	wwN：wwP，wN ：wwN，wwP	
		29.918	$5 \mathrm{I} \cdot 1$	$42 \cdot 5$	$8 \cdot 6$	$46 \cdot 2$	－I•5	$42 \cdot 1$	$37 \cdot 4$	$8 \cdot 8$	$14 \cdot 1$	＋ 6	73	92．I	$32 \cdot 9$	54.08	0.000	${ }_{\text {ww }} \mathrm{P}: \mathrm{wP}$ ：wP	
26		30.082	49.8	$4 \mathrm{I} \cdot \mathrm{I}$	$8 \cdot 7$	45.0	-2.6	$42 \cdot 0$	$38 \cdot 5$	$6 \cdot 5$	$9 \cdot 4$	$2 \cdot 6$	78	$74 \cdot 3$	$34 \cdot 1$	$53 \cdot 68$	0.001	${ }_{w P} \mathrm{P}: \mathrm{mP}$ ： wP	
27	$\xrightarrow{\text { Arogee：}}$ Createst Iee N ．	29.868	$46 \cdot 1$	$39 \cdot 5$	$6 \cdot 6$	$42 \cdot 6$	－ 4.9	$39 \cdot 3$	$35 \cdot 3$	$7 \cdot 3$	II•9	$2 \cdot 5$	76	$62 \cdot 8$	32.0	53.27	0.001	wP ：mP ：mP	
28		$29 \cdot 379$	554	$4 \mathrm{I} \cdot 0$	14.4	$46 \cdot 0$	－I． 4	$44^{\circ} 9$	43.7	$2 \cdot 3$	$6 \cdot 2$	$0 \cdot 0$	92	74.7	32.4	52.91	0.532	sN：wwP ：wP	
29		29.551	54.0	$33 \cdot 1$	$20 \cdot 9$	$42 \cdot 0$	－ $5 \cdot 3$	$40 \cdot 9$	$39 \cdot 6$	$2 \cdot 4$	$10 \cdot 1$	$0 \cdot 0$	9 I	$85 \cdot 1$	29.0	$52 \cdot 63$	0．000	wP ：wP ：wwP	
30		29.700	56.0	$32 \cdot 1$	$23 \cdot 9$	40.8	-6.4	$39 \cdot 6$	$38 \cdot 1$	$2 \cdot 7$	$10 \cdot 3$	0.0	91，	$95 \cdot 9$	$27 \cdot 2$	52.31	0．002＊	wP ：wwP ：w	
31	Last Quarter	$29 \cdot 279$	$49 \cdot 5$	＋0．2	$9 \cdot 3$	$45 \cdot 3$	－ 1.8	443	$43 \cdot 2$	$2 \cdot 1$	$4 \cdot 7$	$0 \cdot 6$	92	$60 \cdot 3$	$30 \cdot 0$	51.87	0．180	$w^{\text {P }}$ ：wwN	
Means	．	29.853	$56 \cdot 8$	$\pm 2 \cdot 6$	14^{2}	＋9．0	－I． 0	$46 \cdot 9$	$44 \cdot 6$	$4 \cdot 4$	$10 \cdot 6$	$0 \cdot 7$	$85 \cdot 5$	$89 \cdot 5$	$3+4$	54.95	$\begin{array}{r} \text { Sum } \\ 1.419 \end{array}$		
Number of Column for Reference．	I	2	3	4	5	6	7	8	9	10	I 1	12	13	14	15	16	17	18	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The averace temperature（Column 7）is deduced from the 65 years observations，1841－1905．The temperature of the Dew Point Columetrical Tables Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glan and theatest and Least The mean difference between the Air and Dew Point Temperatures（Column Io）is the difference between the numbers Columns and a 6 Differences（Columns if and 12）are deduced from the $2+$ hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column 16 are taken daily at noon．
The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．
＊Rainfall（Column 17）．The amount entered on October 30 was derived from fog．
The mean reading of the Barometer for the month was $29^{\text {th }} .853$ ，being $o^{\text {in．}} 1_{32}$ higher than the average for the 65 years， $184 \mathbf{I}^{1-1905}$ ．

Temperature of the Air．

The highest in the month was $67^{\circ} \cdot 9$ on October 12 ；the lowest in the month was $32^{\circ} \cdot 1$ on October 29 ；and the range was $35^{\circ} \cdot 8$ ．
， $6^{\circ} \cdot 8$ being $0^{\circ} \cdot 7$ lower than the average for the 65 years， $18+1-1005$
The mean of all the lowest daily readings in the month was $42^{\circ} \cdot 6$ ，being $0^{\circ} .6$ lower than the average for the 65 years， $18+1-1905$ ．
The mean of the daily ranges was $14^{\circ} \cdot 2$ ，being $\circ^{\circ} \cdot 1$ less than the average for the 65 years， $1841-1905$.
The mean for the month was $49^{\circ} \cdot$ ，being $^{\circ}{ }^{\circ} \cdot$ lower than the average for the 65 years，1841－1905．

The mean Temperature of Evaporation for the month was $46^{\circ} \cdot 9$, being $1^{\circ} \cdot o$ lower than
The mean Temperature of the Dew Point for the month was $44^{\circ} \cdot 6$, being $r^{\circ} \cdot 1$ lower than
The mean Degree of Humidity for the month was $85 \cdot 5$, being $0 \cdot 5$ greater than
The mean Elastic Force of Vapour for the month was $o^{i n} .295$, being oln.○I2 less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\text {grs. }} 4$, being ogr. 1 less than
The mean Weight of a Cubic Foot of Air for the month was 543 grains. being 3 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by \circ and an overcast sky by 10) was 4.0 .

The Proportions of Wind referred to the cardinal points were N. 7, E. 8, S. 5, W. 3. Eight days were calm.
 the greatest daily value was 600 miles on October 25 ; and the least daily value was 63 miles on October 15 .
 for the 65 years, 1841-1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { r9r5. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$		Temperature．							Difference between the Air Temperature and Dew Point Temperature．				tempratare．				Electricity．	
			Of the Air．					$\left\lvert\, \begin{gathered} \text { Of } \\ \text { Erapo- } \\ \text { ration. } \end{gathered}\right.$	$\begin{aligned} & \text { Of the } \\ & \text { Dew } \\ & \text { Point. } \end{aligned}$				Of Ra	diation．					
				$\begin{aligned} & \text { 䓂 } \\ & \text { 茑 } \end{aligned}$	$\begin{gathered} \text { Daily } \\ \text { Range. } \end{gathered}$	Mean of 24 Hourly Values．	$\|$Excess above Average of 65 Years．	$\begin{aligned} & \text { Mean } \\ & \text { of } 24 \\ & \text { Hourly } \\ & \text { Values. } \end{aligned}$	De－ duced Mean Daily Value．	吾				Highest in Sun＇s Rays．	$\begin{aligned} & \text { Lowest } \\ & \text { on the } \\ & \text { Grass. } \end{aligned}$				
		in．	－	－	\bigcirc	\bigcirc			－	－	\bigcirc	\bigcirc			－	\bigcirc	\bigcirc	in．	
Nov．I		29.217	$49 \cdot 6$	$43 \cdot 7$	5.9	$47 \cdot 5$	＋ 0.5	$46 \cdot 4$	$45 \cdot 1$	$2 \cdot 4$	$5 \cdot 8$	0.8	92	$54 \cdot 8$	$40 \cdot 5$	51．36	0．861	wwN ：wN，wwP ：wP	
		29.492	$48 \cdot 0$	$37 \cdot 4$	10.6	$42 \cdot 6$	-4.2	$40 \cdot 3$	$37 \cdot 5$	$5 \cdot 1$	$8 \cdot 9$	3.9	83	74.6	$3 \mathrm{I} \cdot 1$	$5 \mathrm{I} \cdot \mathrm{I} 0$	0.000	$w^{\text {P }}$	
3	In Equator	29.588	$46 \cdot 5$	$34 \cdot 5$	12.0	$40 \cdot 2$	-6.4	$38 \cdot 1$	$35 \cdot 4$	$4 \cdot 8$	$7 \cdot 8$	$2 \cdot 5$	84	$73 \cdot 1$	28.0	51－10	0．001＊	${ }_{w} \mathrm{P}$	
4		29.715	49^{-1}	37.9	II 12	$43 \cdot 3$	－3．1	41.4	$39 \cdot 2$	$4 \cdot 1$	$8 \cdot 3$	0.0	84	71.1	$30 \cdot 0$	51.07	0.002	wP	
5		29.840	$47 \cdot 9$	$36 \cdot 2$	11.7	$40 \cdot 4$	－5•7	$38 \cdot 6$	$36 \cdot 3$	4•I	$9 \cdot 4$	I． 5	85	$75 \cdot 5$	$29 \cdot 8$	$50 \cdot 40$	0.001	mP	
6		29.993	$48 \cdot 7$	$35 \cdot 5$	13.2	41.0	－ $4 \cdot 8$	$39 \cdot 6$	$37 \cdot 8$	$3 \cdot 2$	$10 \cdot 2$	$0 \cdot 5$	88	$64 \cdot 8$	$27 \cdot 5$	$50 \cdot 12$	0．002＊	mP ：wP ：wP	
7	New	29.913	$46 \cdot 6$	$32 \cdot 5$	14.1	41.1	-4.3	$40 \cdot 0$	$38 \cdot 6$	$2 \cdot 5$	$6 \cdot 1$	0.5	91	$54 \cdot 9$	$27 \cdot 1$	$49 \cdot 84$	0.000	mP ：mP ：wP	
8	Perigee	$20 \cdot 658$	$5 \mathrm{I} \cdot \mathrm{I}$	41．3	9.8	$46 \cdot 0$	＋I． 0	$44 \cdot 5$	$42 \cdot 8$	$3 \cdot 2$	$8 \cdot \mathrm{I}$	0.7	90	74.0	34.5	49.72	0.000	${ }_{w} \mathrm{P}$	
9	Greatest Dec．s．	29.174	52.4	$37 \cdot 9$	14.5	$47 \cdot 2$	＋ 2.6	$45 \cdot 3$	$43 \cdot 2$	$4 \cdot 0$	$7 \cdot 4$	$2 \cdot 2$	87	60.0	$32 \cdot 3$	$49 \cdot 61$	$0 \cdot 332$	wP ：wwP	
10		$29 \cdot 102$	$49 \cdot 5$	$35 \cdot 3$	14.2	$41 \cdot 7$	－ 2.6	$38 \cdot 7$	$35 \cdot 0$	$6 \cdot 7$	13.4	I•3	78	$66 \cdot 1$	$29 \cdot 7$	49．6I	$0 \cdot 000$	wwP ：wP ：mP	
11	．	29.323	$47 \cdot 2$	$36 \cdot 7$	10.5	$41 \cdot 6$	－ 2.4	39.2	$36 \cdot 2$	$5 \cdot 4$	$9 \cdot 5$	I． 8	82	$69 \cdot 3$	$3 \mathrm{I} \cdot \mathrm{I}$	$49 \cdot 41$	0.486	$w^{\text {P }}$ ：mP ：wP，wwP	
12		28.630	$58 \cdot 1$	$43 \cdot 3$	14.8	$49 \cdot 4$	＋ 57	$48 \cdot 5$	$47 \cdot 6$	I． 8	$5 \cdot \mathrm{I}$	0.4	94	$72 \cdot 4$	$42 \cdot 5$	$48 \cdot 95$	0.459	wwP ：wwP ：wP	
13	First Quarter	29．130	$45 \cdot 8$	35.0	10.8	$40 \cdot 5$	－3．0	$37 \cdot 2$	33.0	$7 \cdot 5$	I2．8	I•7	74	$57 \cdot 2$	31.6	$48 \cdot 71$	0.036	vP ：mP	
14		29.553	$40 \cdot 2$	31.6	8.6	$35 \cdot 6$	－ $7 \cdot 7$	$33 \cdot 2$	$29 \cdot 5$	$6 \cdot 1$	II $\cdot 8$	$1 \cdot 4$	78	$54 \cdot 2$	$26 \cdot 9$	$48 \cdot 69$	0．001	mP	
15	．	29.655	$41 \cdot 7$	28.0	13.7	34.0	－9•I	$32 \cdot 0$	$28 \cdot 5$	$5 \cdot 5$	10.2	$0 \cdot 0$	79	$58 \cdot 6$	$2 \mathrm{I} \cdot 5$	$48 \cdot 32$	0.070	：mP ：vP	
16	In Equator	29.882	$41 \cdot 1$	$32 \cdot 6$	$8 \cdot 5$	$36 \cdot 5$	－6．3	34.7	$3 \mathrm{I} \cdot 9$	$4 \cdot 6$	$8 \cdot 9$	1.2	84	$53 \cdot 3$	28.5	47．80	0．171	${ } \mathrm{P}: \mathrm{mP}$	
17	．．	$30 \cdot 108$	$4 \mathrm{I} \cdot 0$	27.5	13.5	34.4	－8．2	$32 \cdot 5$	29.4	$5 \cdot 0$	11．6	$1 \cdot 2$	80	$53 \cdot 3$	23.9	47．19	0.090	mP	
18		$30 \cdot 112$	$39 \cdot 8$	27.4	12.4	33.0	－ 9.4	32.4	$3 \mathrm{I} \cdot 2$	I．8	$3 \cdot 9$	0.8	93	$40 \cdot 2$	23.0	$46 \cdot 64$	0.054	mP ：vP	
19		$30 \cdot 274$	$42 \cdot 5$	$30 \cdot 1$	12.4	$37 \cdot 5$	－ 4.8	$35 \cdot 1$	$3 \mathrm{I} \cdot 7$	$5 \cdot 8$	$9 \cdot 9$	$3 \cdot 0$	80	62.9	24.0	$46 \cdot 23$	$0 \cdot 000$	mP	
20		30.482	$43 \cdot 2$	$36 \cdot 3$	$6 \cdot 9$	38.8	－ 3.4	$36 \cdot 1$	$32 \cdot 5$	$6 \cdot 3$	$6 \cdot 8$	$2 \cdot 6$	79	72.4	29.8	$45 \cdot 95$	0.000	mP	
21	Full	29．511	$40 \cdot 4$	$36 \cdot 3$	$4 \cdot 1$	$38 \cdot 6$	－ $3 \cdot 5$	$36 \cdot 6$	$33 \cdot 9$	$4 \cdot 7$	$6 \cdot 4$	$3 \cdot 4$	84	47－1	29.8	45.76	0.000	$\mathrm{w}^{\text {P }}$ ：mP	
22		30.289	$42 \cdot 0$	$36 \cdot 5$	$5 \cdot 5$	$39 \cdot 3$	-2.8	$37 \cdot 9$	$36 \cdot 1$	$3 \cdot 2$	$5 \cdot 6$	$2 \cdot 4$	89	$50 \cdot 0$	$35 \cdot 3$	$45 \cdot 70$	$0 \cdot 000$	${ }_{\mathrm{w}} \mathrm{P}: \mathrm{mP}$	
23	（treatest Dee．N．${ }_{\text {Apogee }}$	$30 \cdot 149$	$42 \cdot 4$	31－1	II $\cdot 3$	$36 \cdot 8$	－ 5.2	$36 \cdot 0$	$34 \cdot 9$	I．9	$4 \cdot 3$	0.8	93	$40 \cdot 9$	$30 \cdot 7$	$45 \cdot 61$	0.004	mP	
24		$30 \cdot 219$	$4 \mathrm{I} \cdot 2$	$35 \cdot 6$	$5 \cdot 6$	38.2	$-3 \cdot 8$	$35 \cdot 9$	$32 \cdot 9$	$5 \cdot 3$	$7 \cdot 5$	$2 \cdot 9$	81	52．I	$29 \cdot 0$	$45 \cdot 60$	0.000	$m \mathrm{P}: .$.	
25	．	$30 \cdot 043$	39.7	$30 \cdot 5$	$9 \cdot 2$	$35 \cdot 9$	－6．0	$33 \cdot 6$	30•1	$5 \cdot 8$	$8 \cdot 8$	$3 \cdot 5$	79	$46 \cdot 0$	$26 \cdot 6$	$45 \cdot 50$	0.000	$\ldots: \mathrm{sP}: \mathrm{mP}$	
26	．	$30 \cdot 001$	$39 \cdot 1$	$27 \cdot 7$	$\mathrm{II} \cdot+$	$34 \cdot 6$	-7.2	$32 \cdot 5$	29．I	$5 \cdot 5$	$8 \cdot 4$	$0 \cdot 9$	79	$54 \cdot 8$	2I•5	$45 \cdot 40$	0.000	$m \mathrm{P}: \mathrm{sP}$ ： sP	
27		$30 \cdot 156$	$37 \cdot 9$	23.0	14.9	28.0	－13．7	$27 \cdot 1$	23.4	$4 \cdot 6$	12.7	$3 \cdot 1$	82	$38 \cdot 8$	18．1	$45 \cdot 00$	0.000	sP	
28		29.929	$34 \cdot 9$	$23 \cdot 7$	11．2	$29 \cdot 8$	－II．7	$28 \cdot 9$	$26 \cdot 1$	$3 \cdot 7$	$6 \cdot 8$	0.0	85	47°	19.2	$44 \cdot 60$	0.000	${ }_{w} \mathrm{P}$ ： sP	
29	Last Quarter	29.259	$48 \cdot 8$	$27 \cdot 2$	2 I． 6	$38 \cdot 7$	－ $2 \cdot 5$	$38 \cdot 3$	$37 \cdot 8$	0.9	$2 \cdot 6$	0.0	96	$47 \cdot 1$	21.0	44.13	O．116	${ }_{\text {wP }}$ ：wwP	
30		29.087	$47 \cdot 8$	4 $1 \cdot 9$	$5 \cdot 9$	$44 \cdot 5$	＋ $3 \cdot 5$	$42 \cdot 9$	41.0	$3 \cdot 5$	$8 \cdot 4$	I． 8	88	$64 \cdot 3$	35．1	$43 \cdot 83$	$0 \cdot 301$	wwP ：wP ：wwP	
Means	\cdots	$29 \cdot 749$	$44 \cdot 8$	$33 \cdot 8$	I 1.0	$39 \cdot 2$	-43	$37 \cdot 4$	$34 \cdot 9$	$4 \cdot 3$	$8 \cdot 2$	I．6	$84 \cdot 7$	$58 \cdot 4$	$28 \cdot 7$	$47 \cdot 77$	$\left\lvert\, \begin{gathered} \text { Sum } \\ 2.897 \end{gathered}\right.$		
Number of Column for Reference．	1	2	3	4	5	6	7	8	9	10	I I	12	I 3	14	I 5	16	17	18	

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8 ）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9 ）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column io）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns if and 12）are deduced from the $2+$ hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column i6 are taken daily at noon．
The values given in Columns 3，4，5，14，and ${ }_{15}$ are derived from eye－readings of self－registering thermometers．
＊Rainfall（Column 17）．The amounts entered on November 3 and 6 were derived from frost and fog．
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 749$ ，being $\mathrm{o}^{\text {in．}}$ ． 00 g lower than the average for the 65 years， 1841 1－1905．
Temperature of the Air．
The highest in the month was $58^{\circ} \cdot 1$ on November 12；the lowest in the month was $23^{\circ} \circ$ on November 27；and the range was $35^{\circ} \cdot 1$ ．
The mean of all the highest daily readings in the month was $44^{\circ} \cdot 8$ ，being $4^{\circ} \cdot 2$ lower than the average for the 65 years， $1841-1905$ ．
The mean of all the lowest daily readings in the month was $33^{\circ} \cdot 8$ ，being $4^{\circ} \cdot 1$ lower than the average for the 65 years， $184^{1-1905 .}$
The mean of the daily ranges was $11^{\circ} \cdot 0$ ，being $\circ^{\circ} \cdot 1$ less than the average for the 65 years，1841－1905．
The mean for the month was $39^{\circ} \cdot 2$ ，being $4^{\circ} \cdot 3$ lower than the average for the 65 years，1841－1905．

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \end{gathered}$			Wind as deduced from shlf-Registering anemometers.								
			Osler's.				Ramma				
			General Direction.		$\left\lvert\, \begin{gathered} \text { Pressure } \\ \text { on the } \\ \text { Square Foot. } \end{gathered}\right.$						
			A.M.	1.M.							
Nov. 1		hours.	E: ENE : NE N: NNE NNW: N	$\begin{aligned} & \text { NNE: N } \\ & \text { N:NNW } \\ & \mathrm{N} \end{aligned}$		Ibs.		$10, r$ $: 10, r, n$ $:$ Io, eut-n,c.-r $10, w$ $: 7, e u, w$ $: 9$, eu,w $0, h o .-f r$ $: 0, h$ $: 5, c u, h$			
	0.0	$9 \cdot 7$			$5 \cdot 5$	$0 \cdot 46$	$4^{6}+$				
	$3 \cdot 3$	$9 \cdot 6$			$3 \cdot 9$	0. 55	+16				
	$3 \cdot 9$	$9 \cdot 5$			I-2	$0 \cdot 15$	$2+7$				
	0.5	$9 \cdot 5$	$\mathrm{N}: \text { NNE }$	NNE: N	$3 \cdot 1$	$0 \cdot 24$	$33+$				
	$2 \cdot 5$	$9 \cdot 4$	NNE: N	N: NNE	$1 \cdot+$	O.16	$2+7$				
	$0 \cdot 1$	$9 \cdot 4$	NNE: N	NNE: Calm	$\mathrm{I} \cdot \mathrm{O}$	0.03	14^{2}				
7	$0 \cdot 0$	$9 \cdot 3$	Calm : SW	WSW : SW	0.3	0.03	203	$\left\|\begin{array}{cc} 10, \text { tk.-f } & : 10, \mathrm{n}, \mathrm{~m}: 10, \mathrm{n}, \mathrm{~h} \\ 10, \mathrm{~m} & : 10, \mathrm{~m} \\ 9, & : 10, \mathrm{w} \end{array}\right\|$	10, $\mathrm{n}, \mathrm{h} \quad$:	v.-cl, h	: 10, h
8	$1 \cdot 3$	$9 \cdot 3$	$\begin{gathered} \text { WSW:SW } \\ \text { SW } \end{gathered}$	WSW: SW SSW : WSW : SW	$2 \cdot 0$	O-12	$206)$		$\begin{array}{r} \text { 9. s.-clu, m, p.-cl } \\ \mathrm{ro}, \mathrm{n}, \mathrm{r} \end{array}$	2, p,-cl	5, cu
9	-*	$9 \cdot 2$			$6 \cdot 5$	0. 56	457			p.-cl	\bigcirc
10	3.4	$9 \cdot 2$	SW: WSW WSW : SW Calm: S	$\begin{gathered} \text { WSW:W } \\ \text { WSW :ESE: E } \\ \text { S:Calm } \end{gathered}$	6.3	$0 \cdot 68$	530		2, c.11, w	p.ecl	: o, w
11	$3 \cdot 2$	$9 \cdot \mathrm{I}$			$2 \cdot 3$	$0 \cdot 15$	334	p.-cl : 3,h,ci,ci.s: I, th.-cl, ci	10, s	10, r	: $10, \mathrm{r}$
12	$0 \cdot 3$	$9 \cdot 0$			$5 \cdot 7$	0.21	268	ro, r : io.m slt.-r: 10, eut.-n, r	10	v.-(l),silt.-r	8, oc.-r
13	$2 \cdot 1$	$9 \cdot 0$	$\begin{gathered} \text { Calm : NNW:NW } \\ \text { SW:W :WNW } \\ \text { SW :SSW } \end{gathered}$	$\begin{gathered} \text { WNW ; WSW:SW } \\ \text { NW: W:SW } \\ \text { SSW:Calm } \end{gathered}$	16.0	$1 \cdot 52$	547				
14	3.7	$8 \cdot 9$			0.7	0.04	214				
15	$4 \cdot 5$	$8 \cdot 9$			$0 \cdot 6$	0.00	203				
16	$5 \cdot 4$	8.8	NW: NNE: N NW: W:SW NW:WSW	$\left\|\begin{array}{c} \text { NNW : NW } \\ \text { NNW : NW } \\ \mid \text { Calm : NW : NNE } \end{array}\right\|$	$\begin{aligned} & \mathrm{I} \cdot \mathrm{I} \\ & 0.8 \end{aligned}$	O. 14	256		$\begin{array}{ll} \text { 2, p.-cl, cu }: \text { 6, lu.-ha } & : \text { I, h } \\ \text { 2, th.-cl, h }: \text { v.cl, m } & : 7, \mathrm{~m} \\ \text { 9,cu.tk.-mı } & : \text { ro, r } \end{array}: \begin{aligned} & \text {, } \mathrm{cu} \end{aligned}$		
17	$4 \cdot 0$	$8 \cdot 8$				0.03	155				
18	0.0	$8 \cdot 7$			2.0	0.04	158				
19	$5 \cdot 5$	$8 \cdot 7$	NNE: NE	ENE:NE	$2 \cdot \mathrm{I}$	$0 \cdot 10$	24^{2}	m, ho.-fr : 5, cu : $2, \mathrm{~s}$, ci.-cu	3, p., cl, s.--cu,ci.-s: $10, \mathrm{cu}$: 10,		
20	1.2	$8 \cdot 6$	NNE : NE	NE: ENE: E	$2 \cdot 0$	O. 15	24^{2}	Io : 9, cu.-n : 9, cu, cu.-n	4, cu, cu.-n :	: 9	
2 I	$0 \cdot 0$	$8 \cdot 6$	E: NNE: NE	E: NNE: NE	I. 5	$0 \cdot 15$	270	IO : io, n : $10, \mathrm{n}$	10, 11	: 10	
22	0.0	$8 \cdot 5$	E: NNE: NENNW:	$\begin{gathered} \text { N: NW } \\ \text { Calm : N : NNE } \\ \text { NNW: NW } \end{gathered}$	I. I 0 0	$\begin{aligned} & 0 \cdot 10 \\ & 0.06 \end{aligned}$	213	$\begin{array}{\|ll} \hline 10 & : 10, \mathrm{cu}, \mathrm{~s} \\ \text { 10, } \mathrm{m}, \mathrm{f} & : 10, \mathrm{~m} \end{array}$: 10		
23	$0 \cdot 0$	$8 \cdot 5$					158		10, 11.	Io, slt.-r	9, slt.-r
24	0.2	$8 \cdot 4$	N		$1 \cdot 7$	O.IX	255	10 : ıо, cu, n : 8, cu.-n	Io, cu, cu.-n : 10		
	$0 \cdot 0$	$8 \cdot 4$	$\begin{gathered} \text { NW : W : SW } \\ \text { NW : NNW } \\ \text { Calm : N : Var. } \end{gathered}$	$\begin{gathered} \text { SW: WNW: NW } \\ \text { N : NNE } \\ \text { ENE : E: Calm } \end{gathered}$	1.0	0.08	228		$8, \mathrm{~m}$ $:$ p.-cl, m $:$ o, m $3, \mathrm{cu}$ $:$ o,ho. fr $:$ o,ho. fr, h		
26	$5 \cdot 4$	$8 \cdot 3$			2.6	0.23	277				
27	$2 \cdot 2$	$8 \cdot 3$			$0 \cdot 2$	0.00	104		th.-cl, m : o, ho.-fr : o, m, ho.-fr		
28	$0 \cdot 9$	$8 \cdot 2$	$\begin{gathered} \text { SE : SSE : S } \\ \text { SSE }: \text { SE } \\ \text { SSW:S } \end{gathered}$	$\begin{gathered} \text { S: SSE : SE } \\ \text { SE S : SSW } \\ \text { SSW :S } \end{gathered}$	$\begin{aligned} & 1.2 \\ & 0.9 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.05 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 242 \\ & 205 \\ & 347 \end{aligned}$		$\begin{aligned} & \text { 6, cu, cu.-s } \\ & \text { Io, c.-r } \\ & 9, \text { cu. }-\mathrm{n}, \mathrm{~s} \end{aligned}$	$\begin{aligned} & : \circ \\ & : \text { io, slt.-r } \\ & : \text { ro, c.-r } \end{aligned}$	$\begin{aligned} & : \mathrm{ro}, \mathrm{ho} .-\mathrm{fr} \\ & : \mathrm{Io}, \mathrm{r} \\ & : \quad 9, \text { slt.-r } \end{aligned}$
29	$0 \cdot 0$	$8 \cdot 2$									
30	I•5	$8 \cdot 2$									
Means	I. 8	$8 \cdot 9$.	.	0.22	275				
$\begin{aligned} & \text { Number of } \\ & \text { Column for } \\ & \text { Reference. } \end{aligned}$	19	20	21	22	23	24	25	26	27		

The mean Temperature of Evaporation for the month was $37^{\circ} \cdot 4$, being $4^{\circ} \cdot 5$ lower than
The mean Temperature of the Dew Point for the month was $34^{\circ} \cdot 9$, being $5^{\circ} \cdot 1$ lower than
The mean Degree of Humidity for the month was 84.7 , being 2.6 less than
The mean Elastic Force of Vapour for the month was $0^{\mathrm{In}} \cdot 203$, being $0^{\mathrm{In}} .044$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was 2 grs. 4 , being ogr. 4 lesss than
The mean Weight of a Cubic Foot of Air for the month was 553 grains, being 5 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by \circ and an overcast sky by 10) was 5.2 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.207 . The maximum daily amount of Sunshine was 5.5 hours on November 19 . The highest reading of the Solar Radiation Thermometer was $74^{\circ} .6$ on November 2; and the lowest reading of the Terrestrial Radiation Thermometer was $18^{\circ} \cdot 1$ on November 27 . The Proportions of Wind referred to the cardinal points were N. in, E. 3, S. 6, W. 7. Three days were calm.
The Greatest Pressure of the Wind in the month was 16.0 lbs . on the square foot on November 13. The mean daily Horizontal Movement of the Air for the month was 275 miles; the greatest daily value was $5+7$ miles on November 13 ; and the least daily value was 104 miles on November 27 .
 for the 65 years, 1841 -1905.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { rgry. } \end{gathered}$	$\begin{gathered} \text { Phases } \\ \text { of } \\ \text { the } \\ \text { Moon. } \end{gathered}$	BARO－ METER．	temperature．							Difference between the Air Temperature and Dew Point Temperature．				temperature．				Electricity．
			Of the Air．					$\begin{array}{\|c} \text { Of } \\ \text { Evapo- } \\ \text { ration. } \end{array}$	$\begin{array}{\|c\|} \hline \text { Of the } \\ \text { Dew } \\ \text { Point. } \end{array}$				Of Rad	diation．	Of the			
				$\begin{aligned} & \text { 滒 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Daily	$\|$Mean of 24 Hourly Values	（ $\begin{gathered}\text { Excess } \\ \text { above } \\ \text { abe } \\ \text { average } \\ \text { of } \\ \text { of } \\ \text { Oears．}\end{gathered}$	$\substack{\text { Mean } \\ \text { of } 24 \\ \text { ory } \\ \text { Hourly } \\ \text { Values．} \\ \hline}$	De－ duced Mean Daily Value．	$\dot{\tilde{\Xi}}$		$\begin{aligned} & \text { 蔦 } \\ & \text { 品 } \end{aligned}$		$\begin{aligned} & \text { Highest } \\ & \text { ins Sans's } \\ & \text { Rays. } \end{aligned}$	$\|$Lowest on the Grass．			
		in．	\bigcirc	－				。	\bigcirc	\bigcirc	in．							
Dec．I	In Equator	29.054	$48 \cdot 1$	$40 \cdot 1$	$8 \cdot 0$	44.9	$9+4.0$	$42 \cdot 3$	$39 \cdot 3$	$5 \cdot 6$	$5 \cdot 8$	I•I	8 I	$53 \cdot 1$	31.0	44．00	0.420	wwP
2		$29 \cdot 427$	$46 \cdot 5$	$40 \cdot 2$	$6 \cdot 3$	$43 \cdot 0$	＋ $2 \cdot 1$	41.6	$39^{\circ} 9$	$3 \cdot 1$	$5 \cdot 0$	2.5	89	$52 \cdot 7$	33.5	44.21	0.000	wwP ：wP ：wwP
3		29.404	$50 \cdot 1$	$40 \cdot 4$	$9 \cdot 7$	44.7	$7+3.6$	43.8	$42 \cdot 8$	I $\cdot 9$.	$5 \cdot 0$	0.7	93	$52 \cdot 2$	$37 \cdot 1$	44.37	－．233	wwN ：wwP ：wP
4		29．188	55.4	$44 \cdot 8$	10.6	$50 \cdot 5$	$5+9 \cdot 2$	$49 \cdot 2$	$47 \cdot 8$	2.7	$6 \cdot 5$	I•3	90	$59 \cdot 3$	$39 \cdot 5$	$44 \cdot 52$	0．574	wwN ：wwP ：wwN
5		$29 \cdot 295$	$5 \mathrm{I} \cdot 8$	$40 \cdot 2$	II． 6	$45 \cdot 9$	$9+4.4$	$44 \cdot 6$	$43 \cdot 1$	2.8	$7 \cdot 2$	0.6	9 I	$74 \cdot 8$	$34 \cdot 8$	$44 \cdot 84$	0．169	wwP: wP: wwP
	New	28.944	$52 \cdot 8$	$45 \cdot 8$	$7 \cdot 0$	$50 \cdot 3$	$3+8.8$	$48 \cdot 0$	$45 \cdot 6$	4.7	$9 \cdot 5$	I． 8	84	66.4	$39 \cdot 3$	$45 \cdot 40$	0.279	wwN ：wP：wP
7	（ireatest Dee．s．	29.229	$5 \mathrm{I} \cdot 5$	$44^{\circ} \mathrm{O}$	$7 \cdot 5$	$48 \cdot 0$	＋6．7	$45 \cdot 5$	$42 \cdot 5$	$5 \cdot 5$	$9 \cdot 1$	$1 \cdot 0$	83	59.0	$36 \cdot 3$	45.70	$0 \cdot 145$	${ }^{w} \mathrm{P}$
8		29.413	$49 \cdot 6$	$35 \cdot 1$	14.5	$44 \cdot 4$	＋ 3.4	$41 \cdot 1$	$37 \cdot 3$	7－I	II 13	$3 \cdot 4$	76	62.7	$29 \cdot 1$	$45 \cdot 90$	$0 \cdot 000$	$w \mathrm{P}: \mathrm{wP}: \mathrm{mP}$
9	．	29.463	54.3	$30 \cdot 7$	23.6	$40 \cdot 6$	0.0	39.4	$38 \cdot 1$	2.5	II $\cdot 2$	$1 \cdot 7$	94	$50 \cdot 6$	$27 \cdot 2$	$45 \cdot 90$	0.612	$m P$ ：wP，wN ：wwP
10	．	29.255	$56 \cdot 4$	$47 \cdot 7$	$8 \cdot 7$	53.4	＋13．0	$50 \cdot 7$	$48 \cdot 0$	$5 \cdot 4$	$10 \cdot 2$	$2 \cdot 2$	82	67.0	$42 \cdot 2$	$45 \cdot 55$	0.041	wwP
11	．	29.293	$50 \cdot 0$	$37 \cdot 4$	12.6	45．1	＋ 4.9	$42 \cdot 8$	$40 \cdot 2$	$4 \cdot 9$	$9 \cdot \mathrm{I}$	$2 \cdot \mathrm{I}$	83	62.5	$3 \mathrm{I} \cdot \mathrm{I}$	$45 \cdot 80$	－．191	wwP ：wP ：mP
12	\ldots	29.605	$37 \cdot 4$	$32 \cdot 1$	$5 \cdot 3$	33.7	－－6．6	31.5	27.4	$6 \cdot 3$	10.5	$3 \cdot 2$	77	$41 \cdot 0$	$25 \cdot 5$	$45 \cdot 97$	0.008	$m P: m P: s P$
13	Yirst Quarter：	$30 \cdot 119$	$36 \cdot 8$	$29 \cdot 2$	$7 \cdot 6$	$33 \cdot 5$	-7.0	31.6	$28 \cdot 1$	$5 \cdot 4$	$9 \cdot 6$	1.4	80	41.4	20.0	45.70	0.001	$\mathrm{mP}: \mathrm{sP}$
14	．．	29.975	$45 \cdot 6$	31.7	13.9	$39 \cdot 5$	－ $1 \cdot 2$	$38 \cdot 1$	$36 \cdot 2$	$3 \cdot 3$	$6 \cdot 2$	$1 \cdot 7$	87	$45 \cdot 8$	$26 \cdot 4$	＋5．10	$0 \cdot 128$	$m \mathrm{P}$ ：wP ：ww \mathbf{P}
15	．	29.462	$45 \cdot 3$	$42 \cdot 7$	$2 \cdot 6$	$44 \cdot 3$	$+3.5$	$4.3 \cdot 2$	$41 \cdot 9$	$2 \cdot 4$	$3 \cdot 5$	I•5	92	47.0	$38 \cdot 2$	$44 \cdot 60$	$0 \cdot 297$	wwP
16		$29 \cdot 376$	$47 \cdot 6$	$38 \cdot 2$	$9 \cdot 4$	＋2．3	＋ 1.6	$41 \cdot 2$	$39 \cdot 8$	$2 \cdot 5$	$6 \cdot 4$	$1 \cdot 5$	89	$58 \cdot 2$	$30 \cdot 2$	$44 \cdot 50$	0.092	wP
17	．	29.539	43.7	$38 \cdot 7$	$5 \cdot 0$	$4 \mathrm{I} \cdot 5$	＋I•I	$40 \cdot 6$	$39 \cdot 5$	$2 \cdot 0$	$3 \cdot 5$	1．3	93	$52 \cdot 0$	31.9	$44 \cdot 56$	0.030	wwP ：wP
18	．	29.886	$43 \cdot 8$	$36 \cdot 1$	$7 \cdot 7$	$40 \cdot 2$	$+0.2$	39.0	$37 \cdot 5$	$2 \cdot 7$	$+\cdot 8$	I． 6	90	49.0	33.4	44.60	0.000	${ }_{w} \mathrm{P}: \mathrm{mP}$
19	\cdots	30．224	$40 \cdot 2$	$30 \cdot 2$	$10 \cdot 0$	$36 \cdot 1$	－ 3.4	$34 \cdot 6$	32.4	3.7	$6 \cdot 8$	$3 \cdot 2$	86	47－1	24.3	44.55	0.000	${ }_{w} \mathrm{P}: \mathrm{mP}$
20	Greatest Dec．N．	$30 \cdot 116$	$39 \cdot 1$	$33 \cdot 1$	$6 \cdot 0$	$36 \cdot 6$	-2.4	34.7	$32 \cdot 0$	$4 \cdot 6$	$6 \cdot 7$	$2 \cdot 4$	84	$45 \cdot 6$	29.6	44.40	0.022	$\mathrm{mP}: \mathrm{wP}$
21	Apogee ：Full	29.778	$47 \cdot 9$	$35 \cdot 5$	12.4	$43 \cdot 1$	$+4.4$	41.7	$40 \cdot 0$	$3 \cdot 1$	$7 \cdot 0$	0.9	89	$46 \cdot 8$	33.0	$44 \cdot 15$	0.233	$\mathrm{wN}: \mathrm{wP}$
22	．	29.616	$49 \cdot 8$	$39 \cdot 2$	10.6	$45 \cdot 6$	$+7 \cdot 2$	$44^{1} 1$	$42 \cdot 3$	$3 \cdot 3$	$4 \cdot 8$	I－I	89	54.7	$3 \mathrm{I} \cdot 0$	44.00	$0 \cdot 061$	w^{m}
23	\ldots	$29 \cdot 165$	$49 \cdot 3$	$42 \cdot 2$	7．1	$+5 \cdot 7$	＋ 7.5	$43 \cdot 5$	$4 \mathrm{I} \cdot \mathrm{I}$	$4 \cdot 6$	$7 \cdot 4$	I．I	84	$6 \mathrm{I} \cdot 8$	$36 \cdot 0$	44.05	0．131	wwP：wP
24	．	28.795	$52 \cdot 0$	$43 \cdot 3$	$8 \cdot 7$	$47 \cdot 6$	＋ 9.4	$46 \cdot 1$	44.4	$3 \cdot 2$	$5 \cdot 4$	$0 \cdot 9$	90	$50 \cdot 0$	41.0	$44 \cdot 30$	$0 \cdot 588$	wP，wwN ：wP．：wwP
25	．	28.839	$49 \cdot 2$	$41 \cdot 0$	$8 \cdot 2$	$45 \cdot 4$	＋ $7 \cdot 0$	$43 \cdot 7$	41．8	$3 \cdot 6$	$5 \cdot 7$	$2 \cdot 2$	88	69.0	$32 \cdot 0$	$44^{5} \mathrm{I}$	$0 \cdot 305$	wwP ：wP
26		29.325	$50 \cdot 0$	$40 \cdot 1$	$9 \cdot 9$	$45 \cdot 5$	＋ $6 \cdot 9$	$43 \cdot 2$	$40 \cdot 5$	$5 \cdot 0$	$9 \cdot 2$	I•3	83	68.4	$30 \cdot 9$	44.71	O．144	wwP ：wP
27	．	29.324	54.3	$43 \cdot 2$	II I I	$50 \cdot 0$	＋ 11.2	$46 \cdot 5$	$42 \cdot 8$	$7 \cdot 2$	13.4	0.9	77	$64 \cdot 6$	$4 \mathrm{I} \cdot 8$	$44 \cdot 80$	0.270	wwP ：wP
28	In Equator	29.614		$43 \cdot 4$	6．1	$46 \cdot 5$	＋ 7.6	$43 \cdot 3$	$39 \cdot 6$	$6 \cdot 9$	$10 \cdot 0$	$3 \cdot 2$	78	64.4	37－4	＋5．00	0.004	wP
29	Last Quarter	29.501	$46 \cdot 7$	$42 \cdot 9$	$3 \cdot 8$	$45 \cdot 3$	＋6．3	$44 \cdot 2$	$42 \cdot 9$	$2 \cdot 4$	$3 \cdot 0$	I－3	92	$49 \cdot 2$	$35 \cdot 1$	$45 \cdot 20$	$0 \cdot 005$	wP
30		29.599	$5 \mathrm{I} \cdot 2$	$43 \cdot \mathrm{I}$	$8 \cdot \mathrm{I}$	$46 \cdot 9$	＋ 8.0	$45 \cdot 1$	$43 \cdot 1$	3.8	$6 \cdot 1$	2•I	88	$63 \cdot 3$	$35 \cdot 7$	$45 \cdot 30$	$0 \cdot 002$	wP
31		29.505	$52 \cdot 0$	47.0	$5 \cdot 0$	$49 \cdot 3$	＋10．6	$46 \cdot 9$	$43 \cdot 3$	$6 \cdot 0$	$7 \cdot 3$	$3 \cdot 5$	83	$54^{\circ} \mathrm{O}$	$4 \mathrm{I} \cdot 6$	$45 \cdot 40$	－ 219	wwP ：wwN，wwP ：wP
Means	．	29.462	$48 \cdot 3$	$39 \cdot 3$	$9 \cdot 0$	44^{2}	$+43$	$42 \cdot 3$	$10 \cdot 0$	＋．I	$7 \cdot 3$	I．8	$86 \cdot 0$	$55 \cdot 9$	33.4	$44 \cdot 88$	$\begin{gathered} \text { Sum } \\ 5 \cdot 204 \end{gathered}$	
Number of Column for Reference．	1	2	3	4	5	6	7	8	9	10	I I	12	13	It	15	16	17	18

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9 ）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference betwcen the Air and Dew Point Temperatures（Column 10 ）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns 11 and 12）are deduced from the $2+$ hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．The readings in Column 16 are taken daily at noon．
The values given in Columns 3，4，5，14，and 15 are derived from eye－readings of self－registering thermometers．
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 462$ ，being $0^{\text {in }} \cdot 323$ lower than the average for the 65 years， $1841-1905$ ．
Temperature of the Air．
The highest in the month was $56^{\circ} \cdot 4$ on December ro；the lowest in the month was $29^{\circ} \cdot 2$ on December 13；and the range was $27^{\circ} \cdot 2$ ．
The mean of all the highest daily readings in the month was $4^{\circ} \cdot 3$ ，being $4^{\circ} \cdot 1$ higher than the average for the 65 years， $18+1-1905$ ．
The mean of all the lowest daily readings in the month was $39^{\circ} \cdot 3$ ，being $4^{\circ} \cdot 3$ higher than the average for the 65 years， $1841-1905$ ．
The mean of the daily ranges was $9^{\circ} \circ$ ，being $0^{\circ} \cdot 2$ less than the average for the 65 years， 184^{1-1905} ．
The mean for the month was $44^{\circ} \cdot 2$ ，being $4^{\circ} \cdot 3$ higher than the average for the 65 years， $18+1-1905$ ．

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { Igrs. } \end{gathered}$			Wind as deduced from sble-Registering anemometers.					Clouds and Weather.	
			Oslerss.				Romse		
			General Direction.		$\begin{gathered} \text { Iressure } \\ \text { on the } \\ \text { square lioot. } \end{gathered}$				
			A.M.	P....		$\begin{array}{\|l\|l} \text { a } \\ 0 \\ 0 \\ 0 \end{array}$		A.M.	Р.M.
	hours.	hours.					miles.		
Dec. I	$0 \cdot 3$	$8 \cdot \mathrm{I}$		s: ssly : SW	$0 \cdot 8$	0.56	+26	9, ¢е.-r : ro, en, n : io, cu.-n, r	7, fq. -r : r.लl, oc.-stler,w: 8, w
2	I-4	$8 \cdot \mathrm{I}$	SW: WSW	Calm : E: ENE	$3 \cdot 1$	O.10	239	10 : $5 . \mathrm{mth}$.-rt: 0 , th.-ell,so.-ha	Io, m : 5, p.-cl, m : $10, \mathrm{~h}$
3	$\bigcirc \cdot 0$	8•I	ENE: E	E : SW			336	io : io, r, m : io, n, m	10, n, slt.-r,m: 5, p.-cl, cu : v.-cl, w
4	$0 \cdot 0$	8.1	SW : SSW : SSE	SSE : SE : SW	$9 \cdot 5$	0.62	+47		Io, eu.-n : $10 . \mathrm{cm.-n,sit.-r,w:} \mathrm{io}$,
5	$2 \cdot 2$	$8 \cdot 0$	WSW: WNW: Calm	SE: ESE	$6 \cdot 5$	0.22	26 I	10 : p.esl, ei : 7, cu, ci.-s	io, cu.-n, s : ro, r : io, slt.-r
	$2 \cdot 7$	$8 \cdot 0$	SSE:S : SW	SW : SSW	18.9	$0 \cdot 99$	557	ro,fq.-r, w : ro,em.-n,w: t, eu, st.-w	ro, slt.-r : r,p.cl,th.ecl: r, li.-cl, w
7	O. I	$8 \cdot 0$	SW: SSW	SSW: SW: W	8.0	$0 \cdot 60$	+73	w $\quad: 7, \mathrm{cu}: ~ 7, \mathrm{cu}, \mathrm{slt} .-\mathrm{r}$	9,0c.-silt.-r : ro, fq.-r : $10, \mathrm{r}$
8	$5 \cdot 2$	$8 \cdot 0$	W : WSW : SW	WSW: NW: N	+3	0.54	+49	1,w: w , th.-el : 3, th.-cl, w	s, cu, eu.-n : p.-el : o, h, slt.-m
9	$0 \cdot 0$	$7 \cdot 9$	Calm : ENE: E	E: ESE: SW	$3 \cdot 0$	0.12	256	r.-cl, ho.fr: 10 , sitt.-m: $10, \mathrm{n}, \mathrm{s}, \mathrm{r}, \mathrm{m}$	10, $\mathrm{n}, \mathrm{r}, \mathrm{m}: 3 \mathrm{l}$
10	1.0	$7 \cdot 9$	SW: SAW	SW	13.0	$0 \cdot 98$	580	10 : IO, slt. -r : io, cun, cun-12, w	0, w, so.-ha: p.-el, w : ro, s, n
11	$2 \cdot 9$	$7 \cdot 9$	SSW: WSW : NW	sw : Wsw	7.0	0.53	+20	10, r : io, r, s. : 7, eu, w	10, slt.rr : 2, cu : 0
12	$0 \cdot 0$	$7 \cdot 9$	WSW: NW: N	N: NNW: NW	$3 \cdot 1$	$0 \cdot 28$	315	I, ho.-fr : v-rel ho.fr: 3, v.-cl, sn	
13	I-3	$7 \cdot 8$	NW: WNW: W	NW: WNW: WSW	2.f)	0.23	318	o, ho.-fr : o,th.ecl.m: $3, \mathrm{ml}, \mathrm{ci}, \mathrm{th} . \mathrm{cl}$	+,th.-cl,cu,s : th.-cl,lu.-ha: o, th.-cl, m
14	$0 \cdot 0$	$7 \cdot 8$	SW: SSW	ssw	+ 1	0.38	+40		ıo, slt.-r $:$ ro,eu.-n,slt.r:ro, slt.-r
15	$0 \cdot 0$	$7 \cdot 8$	SSW:	S: SSW	$+2$	0.52	$+57$		ro,eu.-n,slt.-r: 10 : p.-cl, lu.-ha
16	$3 \cdot 8$	$7 \cdot 8$	S : SSW	S'	1.0	0.06	$24+$		
17	$0 \cdot 0$	$7 \cdot 8$	S : SE : Calm	Calm: NNE: N	1.2	0.05	155	10, oc.-r : io :7,cu,cu.-n,m	
18	$0 \cdot 0$	$7 \cdot 8$	N	NNE	$2 \cdot 9$	0.30	333	Io : io,silt.-m : io, cu.-n, m	ro, slt.-mil : $10, \mathrm{~m}$: 10
19	$2 \cdot 2$	$7 \cdot 8$	NNE : NE : Calm	N: NNE	1.0	0.09	174		5, p.ell, ci, w, -m, h: $10, \mathrm{lu} .$. ha $: 10$
20	0.0	$7 \cdot 8$	N : NW:WsW	NNW: N:SW	0.5	0.03	167	Io $\quad 10, \mathrm{~s} \quad: \mathrm{so,cu,cu.-n}$	7, cu : io, tk.-m : slt.-r
21	0.0	$7 \cdot 8$	SSW : WSW	W: NW	I.8	0.18	34^{6}	Io, r : io,m,slt.-r: io, cu.-n, m	ro, eu.-n, m : 9, slt.-m : th.-cl
22	0.0	$7 \cdot 8$	NW : W : WSW	WSW : SW : SSW	$3 \cdot 3$	$0 \cdot 14$	305	v.cl, lu.ha,glt.r: $\mathrm{I} 0, \mathrm{n}, \mathrm{r}, \mathrm{m}: ~ 9$, slt.-r, m	10. sli.re, sll.-III: 9, s.ecu, lu.-ha: 9
23	$3 \cdot 1$	$7 \cdot 8$	SSW : SW	SW : SSW	$4 \cdot 1$	$0 \cdot 39$	410	v.cli.slt.-r, ilu ha: t, th. cli, ci, ci.s: 5 , cu, s.-cu	7. wn.ri.-s,slı.-r: 10, sh.-r $: 10, \mathrm{r}$
24	0.8	$7 \cdot 8$	CaIm : SSW	SSW: S	+9	$0 \cdot 36$	3^{89}	Io, r : 2,p.-cl,cu: 9, fq.-r	$8, \mathrm{cu}, \mathrm{r} \quad: \mathrm{ro}, \mathrm{fq} .-\mathrm{r} \quad: 9$, fq.-hy.-r
25	$1 \cdot 0$	$7 \cdot 8$	SSE	$\mathrm{SSE}: \mathrm{S}$	$3 \cdot 0$	0.24	356	9, fq.-r : ıо, cu.-n : 6, c.-r	9, fq.-r : 7 , v.-cl $: 0$
26	4.4	$7 \cdot 8$	SSW : SW	SW : S : E	$9 \cdot+$	0.48	436	9, lu.-ha : 4,p.-cl,cu: 6, cu	7,cu.-ci,cu.s: v.-cl,slt.-r : ıо, r
27	0.9	$7 \cdot 8$	ESE : S	SSW	31.0	$2 \cdot 99$	829	io, c.-r : io,r,w : 7,cu,cu.-n	6, v.-cl, g : ro, sh.-r, g : io, g
28	$2 \cdot 3$	$7 \cdot 8$	SW: SSW	SSW : Calm : E	11.0	$0 \cdot 57$	388	v.-cl,st.-w: 3, th.-c] : 8,cu.-n,cu	9, s : 9.slt.-mı.stt.-r: 8, slt.-m
29	$0 \cdot 0$	$7 \cdot 8$	ENE	E : Calm : S	$2 \cdot 9$	O.II	251	ro: ra , n, h	10, h, sh.-r : ı0, slt.-r : 2, p.-cl
30	$0 \cdot 1$	$7 \cdot 8$	S : SSE	SSE : SE	$2 \cdot 3$	O. 18	338	v.-cl : 8, eu : по	Io,slt.-r : p.-cl, slt.-r : 10
31	0.0	$7 \cdot 8$	SSE	S : SSW	$9 \cdot 7$	0.89	549	ro, slt.-r : 9, cu.-n : io, c.-r	
Means	I. 2	$7 \bullet 9$.	.	\cdots	0.45	376		
Number of Column for Reference.	19	20	21	22	23		25	26	27

The mean Temperature of Evaporation for the month was $42^{\circ} \cdot 3$, being $3^{\circ} .8$ higher than
The mean Temperature of the Dew Point for the month was $40^{\circ} \cdot 0$, being $3^{\circ} \cdot 3^{\text {higher thrin }}$
The mean Degree of Humidity for the month was $86 \cdot 0$, being $2 \cdot 6$ less than
The mean Elastic Force of Vapour for the month was $0^{\text {ln }} 247$, being $0^{\text {fn. }} 029$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was 2 grs.8, being oir. 2 greater than
The mean Weight of a Cubic Foot of Air for the month was $5 \ddagger^{2}$ grains, being 10 grains less. than
The mean amount of Cloud for the month (a clear sky being represented by 0 and an overcast sky by ro) was 7.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was 0.146 . The maximum daily amount of Sunshine was 5.2 hours on December 8 .
The highest reading of the Solar Radiation Thermometer was $7.4^{\circ} .8$ on December 5 ; and the lowest reading of the Terrestrial Radiation Thermometer was $20^{\circ} \cdot 0$ on December 13 .
The Proportions of Wind referred to the cardinal points were N. 3, E. 3, S. 15, W. 8. Two days were calm.
The Greatest Pressure of the Wind in the month was 31.0 lbs. on the square foot on December 27. The mean daily Horizontal Movement of the Air for the month was 376 miles; the greatest daily value was 829 miles on December 27 ; and the least daily value was 155 miles on December 17 .
Rain (on. ${ }^{\text {m. }} 005$ or over) fell on 24 days in the month, amounting to $5^{\text {in. }} 204$, as measured by gauge No. 6 partly sunk below the ground; being $3^{\text {in. }} 377$ greater than the average fall for the 65 years, 1841 -1905.

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records.

The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading
without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period.
The time is expressed in civil reckoning, commencing at midnight and counting from $0^{\text {h }}$ to 24^{h}.
The height of the barometer cistern above mean sea level is 159 feet : no correction has been applied to the readings to reduce to sea level
Highest and Lowest Readings of the Barometer in each Month for the Year 1915.

	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	in.											
Highest	30.313	30.279	30.256	$30 \cdot 200$	$30 \cdot 268$	30.095	30.084	$30 \cdot 165$	$30 \cdot 220$	30.173	30.587	30.262
Lowest	28.82 I	28.46	29.135	28.904	29.375	29.548	29.121	29.302	29.200	$29 \cdot 109$	$28 \cdot 486$	$28 \cdot 3+5$
Range	I.492	I.810	1.12I	I-296	0.893	0.547	0.963	0.863	1.020	I.064	$2 \cdot \mathrm{IOI}$	I.917
The highest reading in the year was $30^{\circ \mathrm{in}} \cdot 587$ on November 21 . The lowest reading in the year was $288^{\text {in. }} 345$ on December 6 . The range of reading in the year was $2^{\text {in. }} 242$.												

Monthly Mean Readings of the Barometer at every Hour of the Day, as deduced from the Photographic Records.

Hrour,$\substack{\text { Greenwich } \\ \text { Civil Time. }}$	1915.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{ }$
	Janu	February.	March.	April.	May.	June.	July.	August.	September.	October.	Novembe	December.	
Midnight	29.440	$29 \cdot 455$	20.808	29.894	29.850	${ }_{29}^{\text {in. }}$ (${ }^{\text {in }}$	${ }_{20}^{\text {in. }}$ int 725	29.830	${ }_{\text {in }}^{\text {in }} \mathbf{2 9 . 8 3 2}$	in. ${ }_{\text {in }}^{\text {29.869 }}$	29.745	${ }_{\text {in. }}^{\text {in. }} 29$	29.732
r^{h}	29.432	29.457	29.806	29.889	29.845	29.869	29.721	29.826	29.830	29.865	29.740	29.464	29.7329
2	29.434	29.458	29.800	29.884	29.839	29.865	29.718	29.823	29.828	29.859	29.739	29.470	29.726
3	29.434	29.451	29.792	29.879	29.834	29.862	29.717	29.819	29.824	29.852	29.737	29.470	29.723
4	29.433	29.447	29.791	29.878	29.833	29.861	29.718	29.815	29.822	29.849	29.737	29.463	29.72 I
5	29.429	29.447	29.789	29.879	29.836	29.863	29.723	29.816	29.823	$29 \cdot 847$	29.739	29.459	29.721
6	29.432	29.447	29.791	29.886	29.839	29.867	29.729	29.821	29.828	29.849	29.743	29.459	29.724
7	29.438	29.452	29.799	29.892	29.844	29.871	29.733	29.828	29.833	29.855	29.751	29.461	29.730
8	29.445	29.457	29.805	29.897	29.850	29.873	29.735	29.831	29.838	29.861	29.760	29.466	29.735
9	29.453	29.460	29.808	29.899	29.851	29.871	29.735	29.834	29.843	29.863	29.767	29.472	29.738
10	29.454	29.463	29.811	29.896	29.851	29.869	29.734	29.835	$29.84{ }^{2}$	29.863	29.771	29.475	29.739
11	29.451	29.465	29.813	29.890	29.850	29.864	29.729	29.83 I	29.838	29.859	29.766	29.469	29.735
Noon	29.442	29.461	29.810	29.884	29.846	29.860	29.726	29.829	29.834	29.853	29.757	29.459	29.730
$13^{\text {h }}$	29.433	29.454	29.804	29.877	29.841	29.854	29.721	29.827	29.829	29.846	29.749	29.449	29.724
14	29.430	29.447	29.799	29.868	29.836	29.848	29.721	29.824	29.824	29.843	29.743	29.442	29.719
15	29.433	29.443	29.795	29.860	29.831	29.841	29.718	29.819	29.817	29.837	29.741	29.444	29.715
16	29.435	29.444	29.793	29.855	29.827	29.837	29.714	29.817	29.813	29.835	29.742	29.447	29.713
17	29.439	29.443	29.796	29.853	29.827	29.835	29.714	29.815	29.812	29.841	29.747	29.452	29.715
18	29.441	29.447	29.806	29.857	29.830	29.837	29.714	29.815	29.813	$29 \cdot 849$	29.750	29.453	29.718
19	29.444	29.447	29.813	29.863	29.835	29.843	29.714	29.820	29.817	29.852	29.753	29.460	29.722
20	29.448	29.443	29.819	29.874	29.845	29.850	29.719	29.828	29.822	29.854	29.753	29.465	29.727
21	29.450	29.442	29.826	29.881	29.855	29.861	29.725	29.835	29.825	29.856	29.754	29.473	29.732
22	29.450	29.442	29.828	29.885	29.858	29.864	29.724	29.837	29.827	29.855	29.752	29.475	29.733
23	29.449	$29 \cdot 445$	29.829	29.885	29.858	29.867	29.723	29.838	29.828	29.852	29.749	29.479	29.733
24	29.446	29.450	29.829	29.886	29.855	29.868	29.72 I	29.837	29.827	$29 \cdot 849$	29.746	29.480	29.733
	29.440	29.45 I	29.805	29.879	29.842	29.859	29.723	29.826	29.827	29.853	29.749	29.462	29.726
	29.440	29.451	29.807	29.879	29.843	29.859	29.723	29.826	$29 \cdot 826$	29.852	29.750	29.462	29.726
$\underbrace{}_{\substack{\text { Number of of pass } \\ \text { employed. }}}$	31	28	31	30	31	30	31	31	30	31	30	31	

Monthly Mean Temperature of the Air at every Hour of the Day, as deduced from the Photographic Records.

Grour,$\substack{\text { Greenwich } \\ \text { Givil Time. }}$	1915.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{ }$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$39^{\circ} \mathrm{I}$	$39^{\circ} 2$	$39^{\circ} \mathrm{O}$	42.4	$47 \cdot 7$	$52 \cdot 2$	$56 \cdot 2$	$56 \cdot 8$	$52 \cdot 8$	$45 \cdot 8$	$37^{\circ} \cdot 6$	$43^{\circ} \cdot 4$	46.0
$\mathrm{I}^{\text {h }}$	$38 \cdot 7$	38.7	$38 \cdot 5$	41.6	$46 \cdot 7$	$51 \cdot 5$	55.4	$56 \cdot 1$	$52 \cdot 2$	$45 \cdot 3$	$37 \cdot 4$	$43 \cdot 0$	$45 \cdot 4$
2	$38 \cdot 4$	$38 \cdot 2$	38.2	$4{ }^{1.0}$	$45 \cdot 9$	$50 \cdot 9$	54.7	$55 \cdot 8$	51.4	$45 \cdot 1$	$36 \cdot 9$	$42 \cdot 7$	$44 \cdot 9$
3	$37 \cdot 9$	$37 \cdot 7$	$37 \cdot 8$	$40 \cdot 5$	$45^{\cdot 2}$	$50 \cdot 3$	$54 \cdot 2$	$55 \cdot 3$	$50 \cdot 7$	44.7	$36 \cdot 5$	$42 \cdot 4$	$44 \cdot 4$
4	37.7	37.3	$37 \cdot 6$	39.9	$44 \cdot 7$	$49 \cdot 9$	$53 \cdot 6$	55.0	$50 \cdot 2$	44.7	$36 \cdot 2$	$42 \cdot 1$	$44^{1} 1$
5	37.6	37.0	$37 \cdot 5$	39.4	$44 \cdot 9$	$50 \cdot 2$	$53 \cdot 6$	$54 \cdot 8$	49.9	$44 \cdot 8$	$36 \cdot 0$	$42 \cdot 4$	44°
6	$37 \cdot 6$	$37 \cdot 2$	37.7	39.6	$46 \cdot 4$	$51 \cdot 9$	$54 \cdot 8$	$55 \cdot 7$	$49 \cdot 8$	$45 \cdot 2$	$35 \cdot 9$	$42 \cdot 3$	44.5
7	$37 \cdot 9$	37.7	38.6	41.8	48.8	$54 \cdot 4$	$57 \cdot 1$	$57 \cdot 6$	52.5	$46 \cdot 0$	$36 \cdot 3$	$42 \cdot 6$	$45 \cdot 9$
8	38.1	38.5	$40 \cdot 3$	44^{-2}	$52 \cdot 2$	57.9	$60 \cdot 0$	$60 \cdot 2$	$55 \cdot 6$	$47 \cdot 6$	37.0	$42 \cdot 8$	47.9
9	$38 \cdot 6$	$39 \cdot 6$	$4 \mathrm{I} \cdot 9$	$47 \cdot 8$	55.7	$61 \cdot 3$	$62 \cdot 6$	62.9	$59 \cdot 1$	49.8	$37 \cdot 9$	$43 \cdot 3$	$50 \cdot 0$
10	39.4	$4{ }^{1 \cdot 2}$	$42 \cdot 9$	$49 \cdot 8$	$57 \cdot 9$	63.5	64.2	$64 \cdot 8$	61.7	51.4	39°	$44 \cdot 2$	51.7
11	$40 \cdot 4$	$42 \cdot 7$	$43 \cdot 8$	51.5	59^{6}	65.5	$65 \cdot 6$	$65 \cdot 7$	$63 \cdot 6$	$53 \cdot 3$	$40 \cdot 8$	$45 \cdot 2$	$53 \cdot 1$
Noon	$41 \cdot 4$	$43 \cdot 9$	$44 \cdot 5$	52.4	$60 \cdot 9$	$66 \cdot 8$	$66 \cdot 2$	66.8	$64 \cdot 9$	54.4	42.4	$46 \cdot 1$	54.2
$13^{\text {h }}$	$41 \cdot 9$	$44 \cdot 6$	$45 \cdot 5$	$52 \cdot 9$	6I.6	67.5	$67 \cdot 1$	67.5	$65 \cdot 7$	55^{2}	$43 \cdot 1$	$46 \cdot 3$	54.9
14	$42 \cdot 2$	$44 \cdot 7$	$45 \cdot 8$	53.4	61.6	67.9	$66 \cdot 9$	67.2	$65 \cdot 5$	$54 \cdot 9$	$43 \cdot 4$	$46 \cdot 3$	55.0
15	$42 \cdot 0$	$44 \cdot 7$	$46 \cdot 1$	$53 \cdot 1$	61.4	67.4	$67 \cdot 1$	67.5	$64 \cdot 9$	$54 \cdot 6$	43.0	$46 \cdot 0$	$54 \cdot 8$
16	$4 \mathrm{I} \cdot 7$	$43 \cdot 7$	$45 \cdot 6$	52.4	$60 \cdot 5$	$66 \cdot 4$	$66 \cdot 3$	66.5	63.3	53.3	$42 \cdot 3$	$45 \cdot 7$	54°
17	41.4	$42 \cdot 7$	$44 \cdot 9$	51.4	$59 \cdot 2$	$64 \cdot 9$	65.4	65.6	$6 \mathrm{I} \cdot 6$	51.8	$4 \mathrm{I}^{1} \cdot 6$	$45 \cdot 3$	53.0
18	$41 \cdot 1$	41.7	$43 \cdot 8$	$50 \cdot 0$	$57 \cdot 4$	63.2	$64 \cdot 2$	$64 \cdot 1$	59.4	$50 \cdot 3$	$4{ }^{1 \cdot 1}$	$45 \cdot 1$	51.8
19	$40 \cdot 7$	$40 \cdot 8$	$42 \cdot 7$	48.4	$55 \cdot 3$	$60 \cdot 7$	62.7	62.0	$57 \cdot 4$	$49 \cdot 1$	$40 \cdot 6$	$45 \cdot 1$	$50 \cdot 5$
20	$40 \cdot 4$	$40 \cdot 3$	$4 \mathrm{I} \cdot 8$	47°	$53 \cdot 1$	$58 \cdot 1$	$6 \mathrm{I} \cdot 0$	60.0	$56 \cdot 1$	$48 \cdot 2$	$40 \cdot 0$	$45 \cdot 1$	$49 \cdot 3$
21	$40 \cdot 0$	$40 \cdot 1$	$40 \cdot 8$	$45 \cdot 9$	51.2	$56 \cdot 0$	59.4	59.0	$55 \cdot 1$	$47 \cdot 4$	39.4 38.8	$44 \cdot 8$	$48 \cdot 3$
22	39.6	$39 \cdot 9$	40.2	$45 \cdot 0$	$49 \cdot 6$	$54 \cdot 7$	$58 \cdot 3$	$58 \cdot 1$	$54 \cdot 2$	$46 \cdot 9$	38.8	$44 \cdot 5$	47.5
23	$39 \cdot 6$	$39 \cdot 4$	$39 \cdot 6$	43.9	48.5	53.4	$57 \cdot 3$	57.3	53.3	$46 \cdot 3$	38.0	$44^{\circ} \mathrm{O}$	$46 \cdot 7$
24	$39 \cdot 3$	39.2	38.8	43.0	$47 \cdot 3$	$52 \cdot 6$	$56 \cdot 3$	$56 \cdot 6$	$52 \cdot 4$	$46 \cdot 0$	$37 \cdot 4$	$43 \cdot 6$	$46 \cdot 0$
교 $\int^{\mathrm{o}^{\mathrm{h}} .23^{\mathrm{h}} \text {. }}$	39.7	$40 \cdot 5$	$4^{1.5}$	$46 \cdot 5$	$53 \cdot 2$	58.6	$60 \cdot 6$	60.9	57-1	49°	$39 \cdot 2$	44^{-2}	49^{2}
	$39 \cdot 8$	$40 \cdot 5$	41.4	$46 \cdot 5$	$53 \cdot 2$	$58 \cdot 7$	60.6	$60 \cdot 9$	$57 \cdot 1$	49°	39.3	44^{-2}	$49 \cdot 3$
$\left.{ }_{\substack{\text { Number of Days } \\ \text { emploged. }}}\right\}$	31	28	31	30	31	30	31	31	30	31	30	31	.

Monthly Mean Temperature of Evaporation at every Hour of the Day, as deduced from the Photographic Records.

Hour, Greenwich Civil Time.	1915.												Yearly
	January.	February.	March.	April.	May.	June.	July.	Aurust.	September.	Ortober.	November.	December.	
Midnight	$37 \cdot 5$	$37^{\circ} 3$	$37^{\circ} \cdot 5$	$40^{\circ} \cdot 1$	+5.5	$50^{\circ} 2$	54.4	$55^{\circ} 2$	$51{ }^{\circ} 2$	$t+7$	$36 \cdot 3$	$\underline{+1.8}$	$44^{\circ} 3$
$\mathrm{I}^{\text {h }}$	$37 \cdot 1$	$36 \cdot 9$	37.2	$39 \cdot 5$	$+4 \cdot 8$	$49 \cdot 6$	$53 \cdot 8$	$5+9$	$50 \cdot 7$	+ +3	$36 \cdot 2$	+ $1 \cdot 5$	$43 \cdot 9$
2	$36 \cdot 6$	$36 \cdot 5$	$36 \cdot 8$	$39 \cdot 3$	$+{ }^{+2}$	49°	53.2	$5+7$	$50 \cdot 1$	$t+1$	$35 \cdot 8$	+ $1 \cdot 4$	$43 \cdot 5$
3	$36 \cdot 4$	$36 \cdot 1$	$36 \cdot 7$	38.8	+3.7	$48 \cdot 6$	$52 \cdot 7$	$5+3$	+9) +	+3.8	$35 \cdot 4$	+0.9	$43 \cdot 1$
4	$36 \cdot 1$	$35 \cdot 8$	$36 \cdot 4$	$38 \cdot 4$	+3.3	+8.2	$52 \cdot 2$	53.9	+1). 1	+3.8	$35 \cdot 2$	+0.8	$42 \cdot 8$
5	$35 \cdot 9$	$35 \cdot 5$	$36 \cdot 3$	$37 \cdot 8$	$+3 \cdot 5$	48.5	$52 \cdot 2$	53.7	+ $8 \cdot 7$	+t.0	$3+9$	$40 \cdot 5$	$42 \cdot 6$
6	$36 \cdot 0$	$35 \cdot 8$	$36 \cdot 3$	$37 \cdot 9$	$+4 \cdot 6$	+9.7	53.4	$5+4$	+9.0	+ +7	$3+8$	+0.9	$43 \cdot 1$
7	$36 \cdot 4$	$36 \cdot 2$	$36 \cdot 8$	39°	$+6.4$	51.4	$54 \cdot 8$	55.5	$50 \cdot 2$	+5.6	$35 \cdot 2$	+1.2	$4+$ I
8	$36 \cdot 7$	$36 \cdot 9$	$38 \cdot 1$	$4 \mathrm{I} \cdot 2$	+8.6	53.6	56.6	57.0	$52 \cdot 5$	+6.6	$35 \cdot 6$	+1.4	+5.4
9	$37 \cdot 2$	$37 \cdot 8$	$39 \cdot 3$	$43 \cdot 6$	$5 \mathrm{I} \cdot 0$	$55 \cdot 6$	57.9	$58 \cdot 5$	$5+8$	+7.8	$36 \cdot 3$	+1.8	$46 \cdot 8$
10	$37 \cdot 8$	39.0	$39 \cdot 7$	+4.6	$52 \cdot 2$	$56 \cdot 7$	$58 \cdot 5$	$59 \cdot$ I	$55 \cdot 5$	+8.6	$37 \cdot 2$	$+^{2 \cdot 5}$	$47 \cdot 6$
II	$38 \cdot 5$	$39 \cdot 9$	$40 \cdot 2$	$45 \cdot 5$	53.0	57%	58.9	$59 \cdot 4$	$56 \cdot 2$	$49 \cdot 7$	$38 \cdot 5$	+3. 1	$48 \cdot 4$
Noon	$39 \cdot 2$	$40 \cdot 7$	$40 \cdot 7$	$45 \cdot 9$	53.4	$58 \cdot 1$	$59 \cdot 0$	$59 \cdot 8$	56.7	$50 \cdot 1$	$39 \cdot 6$	$43 \cdot 7$	$4^{8 \cdot 9}$
$13^{\text {h }}$	$39 \cdot 5$	41.0	41.2	$+6.1$	53.5	58.5	59.3	$60 \cdot 2$	57°	$50 \cdot 3$	$40 \cdot 1$	$+3 \cdot 8$	$49 \cdot 2$
14	$39 \cdot 7$	$4 \mathrm{I} \cdot \mathrm{I}$	41-5	$46 \cdot 3$	$53+$	$58 \cdot 7$	$59 \cdot$ I	$60 \cdot 2$	57.0	$50 \cdot 3$	$40 \cdot 2$	+3.8	$49 \cdot 3$
15	$39 \cdot 6$	$4 \mathrm{I} \cdot 0$	41-7	$46 \cdot 1$	53.2	$58 \cdot 7$	$59 \cdot 2$	$60 \cdot 4$	$56 \cdot 8$	+9.9	+0.0	$43 \cdot 6$	$49 \cdot 2$
16	$39 \cdot 5$	$40 \cdot 5$	$41 \cdot 4$	$45 \cdot 8$	$52 \cdot 8$	$58 \cdot 3$	$58 \cdot 9$	60.0	$56 \cdot \mathrm{I}$	$49 \cdot 3$	$39 \cdot 6$	$+3 \cdot 4$	$4^{8.8}$
17	$39 \cdot 4$	$39 \cdot 9$	$40 \cdot 9$	+5.2	$52 . t$	57.6	$58 \cdot 5$	$59 \cdot 6$	$55 \cdot 3$	$+^{8 \cdot 6}$	$39 \cdot 2$	$43 \cdot 2$	$4^{8 \cdot 3}$
18	$39 \cdot 2$	$39 \cdot 3$	$40 \cdot 3$	$4+6$	$5 \mathrm{I} \cdot 4$	$56 \cdot 8$	57%	$58 \cdot 8$	$5+7$	+7.7	$38 \cdot 19$	$43 \cdot 1$	$47 \cdot 7$
19	$38 \cdot 9$	$38 \cdot 7$	$39 \cdot 7$	$+3 \cdot 8$	$50 \cdot 1$	$55 \cdot 6$	57.4	57.8	54°	+7.1	$38 \cdot 6$	+2.8	$47 \cdot 0$
20	$38 \cdot 6$	$38 \cdot 4$	$39 \cdot 2$	+3.1	$4^{8 \cdot 8}$	$54 \cdot 2$	56.8	57.0	$53 \cdot 4$	+6.6	$3^{x \cdot 2}$	+2.9	$46 \cdot 4$
2 I	$38 \cdot 4$	$38 \cdot 3$	$38 \cdot 6$	$42 \cdot 6$	47.9	$53 \cdot 2$	$56 \cdot 2$	$56 \cdot 6$	52.8	$46 \cdot 1$	$37 \cdot 8$	$+^{2 \cdot 8}$	$45 \cdot 9$
22	$38 \cdot 1$	$38 \cdot 0$	$38 \cdot 1$	$41 \cdot 9$	$46 \cdot 8$	$52 \cdot 3$	$55 \cdot 7$	$56 \cdot 1$	$52 \cdot 2$	+5.7	$37 \cdot 2$	$+^{2 \cdot 5}$	$45 \cdot 4$
23	37.9	$37 \cdot 7$	$37 \cdot 8$	$4^{1 \cdot 1}$	$46 \cdot 1$	$5 \mathrm{I} \cdot 3$	$55 \cdot 0$	$55 \cdot 4$	$51 \cdot 5$	$+5 \cdot 2$	$37 \cdot 8$	$+^{2 \cdot 3}$	44.9
24	$38 \cdot 3$	$38 \cdot 4$	$38 \cdot 5$	$4 \mathrm{I} \cdot 8$	$46 \cdot$ t	$5 \mathrm{I} \cdot 8$	55.0	$56 \cdot 4$	$52 \cdot 3$	$4 \cdot 6$	$37 \cdot 3$	$42 \cdot 9$	$45 \cdot 5$
a $\int o^{\mathrm{h}},-23^{\mathrm{h}}$.	$37 \cdot 9$	$38 \cdot 3$	$38 \cdot 9$	$42 \cdot 4$	$4^{8 \cdot 8}$	$53 \cdot 8$	$56 \cdot 3$	$57 \cdot 2$	$53 \cdot \mathrm{I}$	$4 \cdot 6$	$37 \cdot 4$	+2.3	$4^{6 \cdot 1}$
$\sum\left\{I^{\text {h }} .-24^{\text {h }}\right.$.	$37 \cdot 9$	38•3	$38 \cdot 9$	$42 \cdot 4$	$4^{8 \cdot 8}$	$53 \cdot 8$	$56 \cdot 3$	$57 \cdot 2$	$53 \cdot 1$	$4 \cdot 6$	37%	$4^{2 \cdot 3}$	$46 \cdot 1$
$\left.\begin{array}{c}\text { Number of Days } \\ \text { employed. }\end{array}\right\}$	3 I	28	$3{ }^{1}$	30	31	30	3 I	3 I	30	3 I	30	3 I	.

Monthly Mean Temperature of the Dew Point at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures.

Hour,$\begin{gathered}\text { Greenwich } \\ \text { Civil Time. }\end{gathered}$	1915.												$\xrightarrow{\text { Yearly }}$ Means.
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$35^{\circ} \cdot 4$	$34^{\circ} \cdot 8$	$35^{\circ} \cdot 6$	37-3	$43^{\circ} \mathrm{I}$	$48^{\circ} \cdot 2$	$52 \cdot 7$	$53 \cdot 8$	$49^{\circ} \cdot 6$	$43^{\circ} \cdot 4$	$3{ }^{\circ} 5$	$40^{\circ} \mathrm{O}$	$42 \stackrel{\circ}{ }$
$\mathrm{I}^{\text {h }}$	$35 \cdot 6$	$34 \cdot 3$	$35 \cdot 4$	$36 \cdot 9$	$42 \cdot 7$	$47 \cdot 7$	$52 \cdot 2$	$53 \cdot 8$	$49^{\cdot 2}$	$43 \cdot 2$	$34^{\cdot 6}$	$39 \cdot 7$	$42 \cdot 1$
2	34.2	$34 \cdot 2$	$34 \cdot 8$	$37 \cdot 2$	$42 \cdot 2$	$47 \cdot 0$	$51 \cdot 7$	53.7	$48 \cdot 8$	$42 \cdot 9$	$34 \cdot 3$	39.9	$41 \cdot 7$
3	34.4	$33 \cdot 9$	34.5	$36 \cdot 6$	$42 \cdot 0$	$46 \cdot 8$	$5 \mathrm{I} \cdot 2$	$53 \cdot 3$	$48 \cdot 0$	$42 \cdot 8$	$33 \cdot 9$	$39 \cdot 2$	41.4
4	$33 \cdot 9$	33.7	$34 \cdot 8$	$36 \cdot 6$	41.7	$46 \cdot 4$	$50 \cdot 8$	$52 \cdot 8$	$47 \cdot 9$	$42 \cdot 8$	$33 \cdot 7$	$39 \cdot 1$	$4 \mathrm{I} \cdot 2$
5	$33 \cdot 6$	33.4	$34 \cdot 6$	$35 \cdot 7$	41•9	$46 \cdot 7$	$50 \cdot 8$	52.6	$47 \cdot 5$	$43 \cdot 1$	$33 \cdot 2$	$38 \cdot 3$	41.0
6	$33 \cdot 8$	$33 \cdot 8$	34.4	$35 \cdot 7$	$42 \cdot 6$	$47 \cdot 6$	$52 \cdot 0$	53.2	$4^{8 \cdot 1}$	44.1	$33 \cdot 1$	39.3	41.5
7	34.4	$34 \cdot 2$	34.3	$35 \cdot 5$	$43 \cdot 8$	$48 \cdot 5$	52.7	53.7	$47 \cdot 9$	$45 \cdot 2$	$33 \cdot 6$	$39 \cdot 5$	41•9
8	$34 \cdot 3$	$34 \cdot 7$	35.2	$37 \cdot 7$	$44 \cdot 9$	$49 \cdot 7$	$53 \cdot 6$	54.2	$49^{\cdot 6}$	$45 \cdot 5$	$33 \cdot 6$	$39 \cdot 7$	$42 \cdot 7$
9	$35 \cdot 3$	$35 \cdot 4$	$36 \cdot 1$	$39 \cdot 0$	$46 \cdot 6$	$50 \cdot 7$	$53 \cdot 9$	$54 \cdot 8$	$50 \cdot 9$	$45 \cdot 7$	$34 \cdot 1$	$40 \cdot 1$	$43 \cdot 6$
10	$35 \cdot 3$	$36 \cdot 3$	$35 \cdot 8$	$39 \cdot 1$	47.1	51.0	53.7	54.4	$50 \cdot 2$	$45 \cdot 7$	$34 \cdot 9$	$40 \cdot 5$	$43 \cdot 7$
11	$36 \cdot 1$	$36 \cdot 5$	$35 \cdot 9$	$39 \cdot 3$	$47 \cdot 2$	$50 \cdot 8$	53.4	$54 \cdot 2$	$50 \cdot 1$	$46 \cdot 0$	$35 \cdot 6$	$40 \cdot 7$	$43 \cdot 8$
Noon	$36 \cdot 4$	$36 \cdot 9$	$36 \cdot 2$	$39 \cdot 3$	$46 \cdot 9$	$5 \mathrm{I} \cdot 1$	53.2	$54 \cdot \mathrm{I}$	$50 \cdot 0$	$45 \cdot 9$	$36 \cdot 1$	41.0	$43 \cdot 9$
$13^{\text {h }}$	$36 \cdot 5$	$36 \cdot 8$	$36 \cdot 0$	$39 \cdot 3$	$46 \cdot 5$	$51 \cdot 3$	$53 \cdot 0$	54.4	$49 \cdot 9$	$45 \cdot 6$	$36 \cdot 5$	$4^{1} \cdot 0$	$43 \cdot 9$
14	$35 \cdot 1$	$36 \cdot 9$	$36 \cdot 6$	$39 \cdot 3$	$46 \cdot 3$	51.4	$52 \cdot 9$	54.7	$50 \cdot 0$	$45 \cdot 9$	$36 \cdot 4$	$4{ }^{1} 0$	$43 \cdot 9$
15	$36 \cdot 6$	$36 \cdot 7$	$36 \cdot 7$	39^{-1}	$46 \cdot \mathrm{I}$	$5 \mathrm{I} \cdot 8$	$52 \cdot 9$	54.7	$50 \cdot 1$	$45 \cdot 4$	$36 \cdot 4$	$40 \cdot 9$	$43 \cdot 9$
16	$36 \cdot 1$	$36 \cdot 7$	$36 \cdot 5$	$39 \cdot 1$	$46 \cdot 0$	$5 \mathrm{I} \cdot 8$	$52 \cdot 9$	54.7	$50 \cdot 1$	$45 \cdot 3$	$36 \cdot 3$	$40 \cdot 7$	$43 \cdot 9$
17	37.0	$36 \cdot 5$	$36 \cdot 3$	$38 \cdot 8$	$46 \cdot 4$	$5 \mathrm{I} \cdot 6$	$52 \cdot 9$	54.7	$49 \cdot 9$	$45 \cdot 4$	$36 \cdot 2$	$40 \cdot 8$	$43 \cdot 9$
18	$36 \cdot 8$	$36 \cdot 4$	$36 \cdot 2$	$38 \cdot 9$	$46 \cdot 0$	$51 \cdot 4$	$52 \cdot 6$	$54 \cdot 3$	$50 \cdot 5$	$45 \cdot 0$	$36 \cdot 2$	$40 \cdot 8$	$43 \cdot 8$
19	$36 \cdot 7$	$36 \cdot 0$	$36 \cdot 0$	$38 \cdot 8$	$45 \cdot 2$	$5 \mathrm{I} \cdot 2$	$52 \cdot 9$	$54 \cdot 2$	$51 \cdot 5$	44.9	$36 \cdot 1$	$40 \cdot 2$	$43 \cdot 6$
20	$36 \cdot 3$	35.9	$35 \cdot 9$	$38 \cdot 7$	44.5	$50 \cdot 7$	$53 \cdot 1$	54.4	$50 \cdot 7$	44.9	$35 \cdot 9$	$40 \cdot 4$	$43 \cdot 5$
21	$35 \cdot 8$	$36 \cdot 0$	$35 \cdot 8$	$38 \cdot 8$	44.5	$50 \cdot 6$	53.4	54.4	50.6	44.7	$35 \cdot 7$	$40 \cdot 5$	43.4.
22	$36 \cdot 1$	$35 \cdot 5$	$35 \cdot 4$	$38 \cdot 3$	$43 \cdot 8$	$50 \cdot 0$	$53 \cdot 3$	54.3	$50 \cdot 2$	44.4	$35 \cdot 1$	$40 \cdot 1$	$43 \cdot 0$
23	$35 \cdot 7$	$35 \cdot 5$	$35 \cdot 4$	$37 \cdot 8$	$43 \cdot 5$	$49 \cdot 2$	$52 \cdot 9$	$53 \cdot 7$	$49 \cdot 7$	$43 \cdot 8$	$34 \cdot 9$	$40 \cdot 3$	$42 \cdot 7$
24	$35 \cdot 4$	$35 \cdot 1$	35.3	$37 \cdot 7$	$43 \cdot \mathrm{I}$	$48 \cdot 6$	$52 \cdot 8$	$53 \cdot 8$	49^{-2}	$43 \cdot 7$	$34 \cdot 3$	39.9	$42 \cdot 4$
\% $\int^{0}{ }^{\text {h }} .-23^{\text {h }}$.	$35 \cdot 5$	$35 \cdot 5$	$35 \cdot 6$	$38 \cdot 0$	$44 \cdot 6$	$49 \cdot 7$	52.7	54.0	49^{6}	44.7	$35 \cdot 0$	$40 \cdot 2$	$42 \cdot 9$
	$35 \cdot 5$	$35 \cdot 5$	$35 \cdot 6$	$38 \cdot 0$	$44 \cdot 6$	$49 \cdot 7$	$52 \cdot 7$	$54^{\circ} \mathrm{O}$	$49 \cdot 6$	$44 \cdot 7$	$35 \cdot 0$	$40 \cdot 1$	$42 \cdot 9$

Monthly Mean Degree of Humidity（Saturation $=100$ ）at every Hour of the Day，as deduced by Glaisher＇s Tables from the corresponding Afr and Evaporation Temperatures．

$\begin{gathered} \text { Hour } \\ \substack{\text { Heon } \\ \text { crivilime. } \\ \text { Civilime. }} \end{gathered}$	1915.												$\underset{\substack{\text { Yearly } \\ \text { Means．}}}{ }$
	January．	February．	March．	April．	May．	June．	July．	August．	September．	October．	November．	December．	
Midnight	87	84	88	83	86	86	88	89	89	92	89	87	87
$\mathrm{I}^{\text {h }}$	87	86	89	84	87	87	90	91	90	92	90	88	88
2	86	86	88	86	88	87	94	94	91	92	91	89	89
3	88	86	91	86	89	88	90	93	91	93	91	88	89
4	86	87	90	88	89	88	90	92	93	93	91	90	90
5	86	87	90	87	90	88	90	92	92	94	90	86	89
6	86	88	88	86	87	85	90	92	94	97	90	89	89
7	88	87	85	79	83	80	85	86	84	97	91	89	86
8	88	87	83	77	77	74	80	81	81	93	88	89	83
9	89	85	81	73	71	69	74	75	74	87	87	88	79
ı	87	83	77	67	67	64	69	70	67	82	86	87	76
11	85	79	73	64	64	59	66	67	62	76	82	85	72
Noon	84	76	7^{2}	62	60	58	63	64	58	73	79	83	69
$13^{\text {h }}$	83	73	$7{ }^{\circ}$	61	58	56	61	63	56	71	78	83	68
14	82	74	71	59	58	55	60	64	57	71	76	83	68
15	82	73	70	60	57	57	61	64	58	71	78	83	68
16	84	76	71	61	59	60	63	66	62	74	80	84	70
17	85	79	71	62	62	62	64	69	67	79	82	84	72
18	85	82	74	66	65	65	66	$7{ }^{1}$	73	82	82	85	75
19	86	84	78	70	69	70	70	76	79	86	84	83	78
20	86	85	81	74	72	76	76	82	82	89	85	83	81
21	87	85	83	77	78	82	81	86	85	91	86	87	84
22	88	85	84	77	81	84	83	87	86	92	87	85	85
23	86	87	85	79	83	86	85	87	88	92	89	86	86
24	86	86	88	82	86	87	88	90	89	92	89	87	88
$\int^{0} 0^{\mathrm{h}} .-23^{\mathrm{h}}$ ．	86	83	81	74	74	74	77	79	77	86	86	86	80
$\stackrel{\sim}{\sim}$	86	83	81	74	74	74	77	79	77	86	86	86	80

Total Amount of Sunshine registered in each Hour of the Day in each Month，as derived from the Records of the Campbell－Stokes Self－Registering Instrument for the Year 1915.

Month， I915．	Registered Duration of Sunshine in the Hour ending																			
	兵	\％	4	¢	$\dot{8}$	3	吕	言	\％	${ }_{\text {a }}^{4}$	$\stackrel{6}{6}$	溴	息	䍐	家	－				
	h	h	n	h	h	h	h	1	h	h	h	h	h	h	h	h	h	h		
January	．	．	\cdots	\cdots	0.5	$5 \cdot 2$	$7 \cdot 1$	$6 \cdot 3$	$6 \cdot 1$	$5 \cdot 4$	$3 \cdot 6$	0.5	．		\cdots	\cdots	$34 \cdot 7$	258.5	0.134	18
February	．	．	．	$2 \cdot 1$	7.7	II－1	11．3	$9 \cdot 9$	$9 \cdot 5$	9.2	9.0	5.8	1.3	\cdots	\cdots	．．	$76 \cdot 9$	$276 \cdot 5$	0.278	26
March	．		3.6	$7 \cdot 4$	$7 \cdot 8$	$9 \cdot 1$	$9 \cdot 8$	$9 \cdot 2$	$9 \cdot 6$	$9 \cdot 2$	8.6	$6 \cdot 7$	$6 \cdot 0$	1．5	\cdots	．	88.5	$365 \cdot 3$	0.242	36
April		1.7	10.9	14.3	14.9	$15 \cdot 3$	$16 \cdot 1$	14.3	13.2	12.9	13.4	12.2	11.2	$7 \cdot 4$	2.0		159.8	412.9	0.387	48
May	1.5	10.2	$13 \cdot 1$	14.3	17.5	17.7	17.3	17.4	18.2	17.8	$17 \cdot 1$	14.9	14.6	12.5	$8 \cdot 3$	1.7	214.1	$480 \cdot 9$	0.445	57
June	1.4	6.0	$8 \cdot 4$	$12 \cdot 1$	15.7	18.2	19.7	19.0	20.0	19.4	18.4	17.7	14.3	14.4	$10 \cdot 6$	$2 \cdot 3$	$217 \cdot 6$	$494 \cdot 4$	0.440	62
July	$3 \cdot 1$	10.7	13.8	15.1	14.1	$16 \cdot 4$	15.9	$13 \cdot 1$	15.0	13.3	15.0	14.5	$14 \cdot 1$	13.3	9.8	2.0	199.2	$498 \cdot 2$	0.400	60
August	0.2	1．3	$7 \cdot 3$	11.4	13.7	15.4	15.0	15.9	$15 \cdot 3$	15.6	13.8	12.7	11.7	8.9	3.6	$0 \cdot 3$	162.1	451－2	0.359	52
September	．	．．	$5 \cdot 2$	12.8	15.3.	20.6	20.9	$20 \cdot 3$	21.2	18.2	15.8	14.2	14.4	$6 \cdot 9$	．	\cdots	185.8	379.6	0.489	42
October				2.0	4.4	$6 \cdot 2$	9.5	$9 \cdot 8$	8.7	9.9	$9 \cdot 6$	7.8	$2 \cdot 6$		．	．	$70 \cdot 5$	$330 \cdot 7$	0.213	30
November	．．		．	．	0.9	$4 \cdot 8$	$9 \cdot 2$	8.4	10.0	10.1	$9 \cdot 1$	2.6	．		．．	．．	$55 \cdot 1$	$266 \cdot 2$	0.207	20
December				．	1.3	5.0	$7 \cdot 6$	$8 \cdot 5$	$6 \cdot 2$	$4 \cdot 6$	$2 \cdot 1$	－ 4	．				$35 \cdot 7$	244.2	0．146	16
For the year	$6 \cdot 2$	29.9	$62 \cdot 3$	91．5	113.8	145.0	159.4	152.1	153.0	145.6	135.5	110.0	$90 \cdot 2$	$64 \cdot 9$	$34 \cdot 3$	$6 \cdot 3$	$1500 \cdot 0$	$4458 \cdot 6$	0.312	

The hours are reckoned from apparent midnight．

	Dry-Pulb Thermoneters,+ tt. abore the Ground.						Wet-1 inll Thermameter.tit: alove the cirouml.				$\begin{aligned} & \text { nus } \\ & \text { ont } \\ & \text { onthin } \\ & \text { Hentit. } \end{aligned}$	0) 9 -luatb 'hermometers, f ft above the (irotad						Wet-Bulb Thermometer, 4 ft . above the Ground.				
	$\underbrace{\text { and }}_{\substack{\text { Masai- } \\ \text { mum. }}}$	$\underset{\substack{\text { Minio. } \\ \text { muni. }}}{\text { and }}$	$9^{\text {n }}$	Soon.	${ }^{15}{ }^{\text {h }}$	$2 \mathrm{t}^{\text {h }}$	$\\|^{\text {, }}$:5"			,		,"	Nown		$2{ }^{14}$	${ }^{4 \prime}$	Yoor.	${ }^{15}$	2_{211}	
January.											Marcil.											
${ }^{\text {d }}$											$\stackrel{4}{4}$											
1	$44 \cdot 8$ $46 \cdot 0$	31.4 37.4 3.4	38.0 40.9	$39 \cdot 6$ 4.7	$39 \cdot 6$ +4	$+2 \cdot 6$ 37.6	$36 .+$	38.7 +1.9	3×7 +14	+2.0 36.7	1 2	+4.3	$35 \cdot 1$ $3 \cdots \cdot 1$	36.6 3.7	+3.9 +2.5	$+^{1 \cdot 8}$	$38 \cdot 1$ $30 \cdot 7$	$3+1$ $3+7$	38.7 37.6	38.2	35.4 36.6	
3	42.9	37.1	+1.9 +1.7	$+2 \cdot 7$ +2.6	++5 39.6	37.6 36.6	39. +1.0	+1.9)	$+1 \cdot 9$ $39 \cdot 2$	$36 \cdot 7$ $35 \cdot 6$	3	+5.6 -2.5 2.5	33.4 3.0 3	37.1 +5.6	$+2 \cdot 5$ +19	${ }_{30}^{+1 .+}$	39.7 +6.6	3+7	37.6 +8.0	38.5 +8.4	36.6 +5.2	
4	$42 \cdot 6$	$33 \cdot 1$	34.9	$39 \cdot 6$	${ }^{1}+$	+0.1	$3+8$	37-9	35	3\%	$+$	53.0	+4.\%	(6).9	+5.7	$51 \cdot$	+9.0	+6.3	+7.0	$4^{8 \cdot 1}$	46.6	
5	$45 \cdot 7$	33.4	$36 \cdot 2$	$+{ }^{+} 3$	$+{ }^{+2}$	$+3 \cdot 3$	35.8	+2.8	$+3.9$	+1.0	5	$55 \cdot 1$	+7:2	+9.2	53.0	53.4	+9.5	46.9	48.8	49.6	47.7	
6	47.0	40.2	$4{ }^{2 \cdot 9}$	$46 \cdot 3$	$+6.6$	+ + +	+1.5	+3.0)	$+{ }^{(6)}$	$+3 \cdot 5$	6	57.0	+ $+^{\circ}$	+7.4	$52 \cdot 2$	$55 \cdot 7$	+ 8.6	+5.1	$4^{8 \cdot} \cdot$	$50 \cdot 2$	45.0	
7	52.0	43.0	+ +6	$50 \cdot 5$	$5 \mathrm{I} \cdot 9$	+3.8	$+{ }^{+6}$	50.0	+9.9)	+ $1 \cdot 9$	7	+5.8	$38 \cdot 8$	+ $+^{+1}$	+2.1	+5.4	$39 \cdot 6$	+0.8	$39 \cdot+$	38.9	$36 \cdot 4$	
8	45	$40 \cdot 8$	+2.3	+4.7	$+{ }^{+2}$	+1.6	+0.2	+0.3	+0.0	$39 \cdot 1$	s	+2.1	3.33	37.9	to.	37.6	$3+3$	35.0	$35 \cdot 2$	$34 \cdot 7$	31.6	
9	43.9	$37 \cdot 1$	$39 \cdot 6$	${ }^{2}+{ }^{2}+$	+3.1	$37 \cdot$	38.8	$39 \cdot 8$	39.3	36.0	9	4.6	3.40	$37 \cdot+$	39.2	$+^{2 \cdot 1}$	38.6	$33 \cdot 8$	$3+8$	36.2	36.4	
10	$47 \cdot 1$	32.8	$3{ }^{1} \cdot 1$	39^{2}	$40 \cdot 2$	+7.1	33.2	37.0	$39 \cdot 3$	+5.6	\%	$+3.0$	$35 \cdot 1$	37.6	$\mathrm{I}^{1} 5$	4-6	+2.3	35.	37^{1}	38.6	+0.0	
11	47.7	$38 \cdot 3$	+1.8	+4+	+5.1	$38 \cdot 8$	39.1	+0.5	+1.7	36.5	$1{ }^{1}$	50.0	+0.2	+2.7	+5.6	+4. 6	+2.5	+1-8	+ +6	+7.5	41.6	
12	$44^{\circ} \mathrm{O}$	$38 \cdot 1$	$40 \cdot 9$	$+3 \cdot 6$	$43 \cdot 6$	+0.6	39. 1	+1.0	$+^{1 \cdot 6}$	$39 \cdot 5$	12	+1).0	40.1	+ +5	+7.	47.	+ +2	$+3.7$	+5.7	+4. 1	+2.8	
13	$53 \cdot 2$	$39 \cdot 9$	44^{-8}	49.6	53.1	+9.1	$+{ }^{+6}$	+9.0	519)	+ $8 \cdot 3$	13	+ 8.6	$38 \cdot+$	+2.9	+5.3	+ $5 \cdot 2$	+1-8	+1/2	+3.0	$+5 \cdot 5$	43.0	
14	$50 \cdot 0$	$46 \cdot 2$	$49 \cdot 1$	49.8	$49 \cdot 6$	+9.7	+6.8	+7.3	+7. +	$4^{8.6}$	${ }^{1}+$	57.5	$3^{8 \cdot}+$	+3.2	51.2	56	+3.1	+2. +	47.7	$51 \cdot 2$	41.8	
15	$50 \cdot 7$	$46 \cdot 1$	$46 \cdot 6$	49^{-2}	$49 \cdot 8$	4.6	$+{ }^{+3}$	+5.7	+6.6	$+5 \cdot 5$	15	+8.0	+1.1	+5.6)	+5.6	+7.9	+7. +	$+3 \cdot 5$	$+3 \cdot 6$	+5.4	45.7	
16	$47 \cdot 2$	39.1	43.4	$45 \cdot 7$	$4+6$	$39 \cdot 1$	40.8	$+2 \cdot 3$	+1.8	37.0	16	$+7.5$	$39 \cdot 5$	+ + -	+6.6	47.3	+5.5	+2.0	+3.1	+3.8	43.0	
17	$39 \cdot 2$	33.9	$35 \cdot 4$	38.4	$38 \cdot 6$	$36 \cdot 2$	$32 \cdot 5$	$34^{\text {I }}$	33.6	33.0	17	+6.8	$+1 \cdot 3$	4.t	$+6.2$	+5.4	+3.5	+I.I	+1-5	$4{ }^{2 \cdot 2}$	$40 \cdot 5$	
18	38.7	$33 \cdot 6$	$34 \cdot 6$	$36 \cdot 6$	38.3	$36 .+$	31.3	33.0	$3+1$	$33 \cdot 7$	18	$43 \cdot 5$	$3{ }^{1 / 2}$	$40^{\circ}+$	$3+6$	33.3	31.4	38.5	31.7	31.8	30.8	
19	$42 \cdot 9$	$32 \cdot 5$	$36 \cdot 7$	$39 \cdot 9$	42.8	42.9	$35 \cdot 9$	$38 \cdot 8$	+1.	+1.7	19	$39 \cdot 1$	29.9	33.5	36.6	38.5	31.7	31.5	31.9	32	29.8	
20	$47 \cdot 1$	$4{ }^{1.0}$	$42 \cdot 6$	+4*9	46.0		+0.8	+3.0	+4.	+5.8	20	46	28.2	$36 \cdot 9$	5.6	$+5 \cdot 3$	+1.6	32	39^{8}	$39 \cdot 5$	37.8	
21	47.4	$34 \cdot 6$	$43 \cdot 1$	44^{+1}	39.7	$3+6$	+2.3	+2.8	$37 \cdot 8$	$32 \cdot 0$	21	$5+5$	$32 \cdot 5$	+1.8	50	5.5	37.6	$37 \cdot 9$	+2.9	+5.4	34.5	
22	34.8	$3 \mathrm{I} \cdot 8$	32.5	32.4	32.8	$32 \cdot 9$	$32 \cdot 3$	$32 \cdot 3$	$32 \cdot 5$	32.7	22	$49 \cdot 3$	31.1	+4.3	+8.8	+4. +	4.8	$39 \cdot 5$	$42 \cdot 6$	+2.3	$42 \cdot 7$	
23	38.8	$22 \cdot 3$	$23 \cdot 8$	29.4	$32 \cdot 5$	$38 \cdot 8$	23.5	29.1	$\cdot 2$	$3^{8.6}$	23	$59 \cdot 3$	+3.3	51.5	52.9	$58 \cdot 1$	$+6.5$	$50 \cdot$	$5 \mathrm{I}+$	53.4	45.1	
24	41.6	$38 \cdot 1$	$39 \cdot 6$	$40 \cdot 7$	41.2	40.0	$38 \cdot 6$	$39 \cdot 1$	39.9	$38 \cdot 8$	24	57.0	+5.2	51	$55 \cdot 6$	$56 .+$	53.2	50.5	53.0	53.0	51.5	
25	$40 \cdot 4$	$36 \cdot 4$	$37 \cdot 2$	$39 \cdot 6$	39.8	38.0	$36 \cdot 4$	36.8	37.	36.7	25	53.2	36.2	$+3 \cdot 6$	$30^{\circ}+$	+1.8	36.4	${ }^{+2 \cdot 9}$	$37 \cdot 9$	$38 \cdot 5$	34.5	
26	41.5 36.8	31.3 34.6	33.0 35.0	$39 \cdot 0$ 35.8	4.3 34.8	$36 \cdot 8$	32.9 33.6	37.0 33.3	37.8 32.6	36.0	26	$42 \cdot 0$	31	$39 \cdot 6$ 36.6	39.0 40.6	$40 \cdot 7$ $40 \cdot 3$	33.9 3.2	36.3 32.8	$3+\cdot 9$ $3+6$	$36 \cdot 3$ 34	32.0 30.0	
28	35.6	$32 \cdot 5$	32.9	$34 \cdot 6$	$34 \cdot 6$	$3+4$	31.3	31.8	$32 \cdot 0$	$3 \mathrm{I} \cdot 2$	27 28	$7+7$ 42.5	28.9 28.9	37.7	48	4	30.6	$32 \cdot 8$	$3{ }^{3} \cdot$	34.5	$30 \cdot 0$ $30 \cdot 0$	
29	$37 \cdot 9$	$32 \cdot 2$	34-1	$36 \cdot 8$	37.4	$34 \cdot 9$	30.8	32.0	32.7	34.1	${ }^{29}$	+1.3	25.9	35.0	$32 \cdot 3$	37.2	32.7	32.	32.0	33.6	31.0	
30	39.0	32.0	34.5	$36 \cdot 2$	39.0	$35 \cdot 8$	$33 \cdot 3$	$34 \cdot 3$	$3+8$	$31 \cdot 8$	30	$45 \cdot 7$	28.0	$36 \cdot 2$	39.4	$4+6$	35-8	32	33.5	37.0	$32 \cdot 7$	
31	42.0	$35 \cdot 6$	$38 \cdot 7$	38.6	$4{ }^{1 \cdot 6}$	39^{-1}	37-1	36.8	38.0	37. 1	31	49.0	$30 \cdot 3$	$42 \cdot 3$	44.6	$48 \cdot 7$	$38 \cdot 3$	37.3	38.6	$40 \cdot 9$	$35 \cdot 0$	
Means	$43 \cdot 7$	35.9	38.6	+1.4	$42 \cdot 0$	$40 \cdot 0$	$7 \cdot 2$	$39 \cdot 2$	39.6	38.4	Means	$4^{8 \cdot 4}$	$35 \cdot 9$	419	$4 \cdot 5$	46.1	40.8	39.3	${ }^{\circ}$	+1.7	38.6	
February.											1 PRRI.											
${ }_{\text {d }}$	$45 \cdot 0$	$35 \cdot 3$	$38 \cdot 7$	41.1	$43 \cdot 6$	41.6	$35 \cdot 8$	37.9		9.8	I	53.5	$31 \cdot 1$	45.4	517	$52 \cdot 1$		$40 \cdot 6$	44^{1}	44.4	$39 \cdot 5$	
2	$49 \cdot 1$	$41 \cdot 2$	48.0	+9•1	48.7	+6.7	+7-4	$48 \cdot 0$	+7.5	44^{-2}	2	54.2	$32 \cdot 6$	50.3	54°	49.9	$45 \cdot 9$	42.7	45.0	+2.0	$4+7$	
3	$50 \cdot 3$	39°	$44 \cdot 8$	48.6	$49 \cdot 3$	$46 \cdot 6$	42.7	$45 \cdot 6$	$46 \cdot 4$	$44^{\cdot 8}$	3	$50 \cdot 6$	41.6	$44 \cdot 2$	44.2	46.6	$50 \cdot 6$	43.2	$42 \cdot 8$	44.9	49.7	
4	$52 \cdot 3$	$42 \cdot 1$	47.3	52.0	$49^{\cdot 2}$	44^{8}	$4 \cdot 8$	48.0	$45 \cdot 8$	$42 \cdot 2$	4	58.9	47.9	51.8	56.5	57.8	48.3	$48 \cdot 3$	49.6	$49 \cdot 3$	41.8	
	$52 \cdot 2$	$40 \cdot 3$	$46 \cdot 4$	$49 \cdot 6$	46.7	+5.4	44.5	46.6	$45 \cdot 4$	43.4	5	51.8	$42 \cdot 3$	46.0	$49 \cdot 8$	$50 \cdot 9$	$+6$.	$43 \cdot 5$	44.8	$43 \cdot 5$	$4 \mathrm{I} \cdot 6$	
6	49.0	$43 \cdot 1$	44.4	$46 \cdot 8$	$46 \cdot 6$	43.5	43.5	44.3	44°	$42 \cdot 9$	6	$4^{8 \cdot 7}$	$35 \cdot 2$	47.8	46.3	$45 \cdot 6$	$47 \cdot 6$	44^{-1}	43.7	$43 \cdot 8$	$46 \cdot 2$	
7	$49 \cdot 6$	$42 \cdot 2$	43.6	$45 \cdot 6$	45.4	+9.6	$4{ }^{2.8}$	+3.1	$43 \cdot 5$	$4^{8 \cdot 3}$	7	$54 \cdot 5$	$43 \cdot 5$	$47 \cdot 8$	$52 \cdot 1$	52.0	43.8	42.7	$44 \cdot 5$	$43 \cdot 3$	38.8	
8	$49 \cdot 6$	37.8	$40 \cdot 4$	44^{-2}	$43 \cdot 6$	43.3	36.8	+0.4	40.7	41.7	8	55.0	$40 \cdot 9$	45.7	52.0	51.2	+2.2	${ }^{1} \mathrm{I} \cdot 8$	44.0	$43 \cdot 8$	39-1	
9	50.2	$36 \cdot 3$	$39 \cdot 5$	43.0	45.8	36.5	37.6	+0.5	40.9	35.4	9	$52 \cdot 5$	$39^{\circ} \mathrm{O}$	45.5	$49^{6} 6$	$50 \cdot 0$	43.1	$+1.0$	42.0	$40 \cdot 9$	39.7	
10	$47 \cdot 8$	$33 \cdot 7$	39.6	$46 \cdot 8$	$47 \cdot 2$	37.0	37.6	${ }^{2 \cdot 2}$	$\begin{array}{r}1.9 \\ \hline \text { - } \\ \hline\end{array}$	35.7	10	54.3	$39 \cdot 1$	$45 \cdot 7$	$50 \cdot 3$	$5 \mathrm{I} \cdot 6$	46.4	$40 \cdot 7$	42.8	42.5	$40 \cdot 6$	
11	$46 \cdot 6$	$30 \cdot 1$	30.4	45.6	$46 \cdot 2$ $39 \cdot 1$	$35 \cdot 0$ 3 I .8	$3{ }^{3} \cdot 4$	${ }^{4.7}$	40.8 36.0	$33 \cdot 6$ 30.6	11	$53 \cdot 6$ 49.0	$39 \cdot 2$ $42 \cdot 5$	47.6 46.6	$52 \cdot 9$ 48.8	$52 \cdot 1$ $45 \cdot 7$	46.9	$4+2$ 42.8	$47 \cdot 8$	45.2	44^{6}	
12	$40 \cdot 3$	29.7	$33 \cdot 7$	$36 \cdot 6$	39.I	$3{ }^{1.8}$	33.1	35.2	36.9	$30 \cdot 6$	12	49.0	$42 \cdot 5$	4 (6.6)	+ $8 \cdot 8$	$45 \cdot 7$	$4{ }^{-1}$	$42 \cdot 8$	$44 \cdot 8$	$45 \cdot 0$	$43 \cdot 9$	
13	$47 \cdot 7$	28.9	$36 \cdot 6$	38.6	$47 \cdot 3$	$43 \cdot 6$	35.9	$37 \cdot 7$	42.7	41.8	13	$4.4+$	$39 \cdot 8$	$42 \cdot 6$	44^{1}	44.2	+1.6	39.9	$40 \cdot 8$	41.2	$39 \cdot 3$	
14	$44^{\circ} \mathrm{O}$	$38 \cdot 1$	39.9	+0.4	40.9	39.3	38.9	$39 \cdot 6$	$39 \cdot 8$	$36 \cdot 1$	14	53.3	34.3	$40 \cdot 1$	50	$52 \cdot 5$	${ }^{42 \cdot 1}$	$38 \cdot 3$	42.6	42.8	$39 \cdot 6$	
15	42.7	$3+\cdot 1$	35.5	39.4	42.6	36.8	33.4	35.9	37.9	$3+3$	15	58.0	$32 \cdot 1$	$4^{8.6}$,	52.2	56.3	50.8	+3.4	$45 \cdot 8$	$4^{8 \cdot 8}$	48.0	
16	+5.9	$28 \cdot 1$	$32 \cdot 9$	$44 \cdot 3$	$4+7$	+0.0	31.4	3	38.9	36.9	16	62.7	43.4	53.3	$39 \cdot 7$	60	$49 \cdot 3$	49.1	51.0	51.7	$46 \cdot 2$	
17	$46 \cdot 2$	39.7	$43 \cdot 5$	45	$45 \cdot 7$	$46 \cdot 0$	$42 \cdot 3$	43.9	44.8	44^{-2}	17	55.0	$38 \cdot 5$	46.0	52.2	53.7	41.8	$40 \cdot 5$	43.0	$43 \cdot 5$	38.9	
18	51.2	39.3	$47 \cdot 6$	49.3	$48 \cdot 7$	$40 \cdot 6$	44.8	45.6	$44 \cdot 8$	$39 \cdot 7$	18	$53 \cdot 8$	28	48.6	$53 \cdot 1$	51.6	+0.9	$42 \cdot 6$	$45 \cdot 3$	44.4	$38 \cdot 3$	
19	$48 \cdot 0$	$39 \cdot 8$	+ 4	$45 \cdot 6$	47.0	+1.6	42.7	43.0	++	39.9	19	62.5	33.9	52.8	59.4	60.2	50.7	45.4	$50 \cdot 4$	$52 \cdot 8$	$47 \cdot 2$	
20	44°	$33 \cdot 7$	38.8	41.9	43.4	33.8	38.0	40.5	${ }^{0.1}$	33.6	20	58.3	$46 \cdot 3$	49.8	$5+7$ -1.0	78.0 50.8	46.3	$4{ }^{46 \cdot 1}$	$50 \cdot 0$	$46 \cdot 3$	$40 \cdot 2$	
21	$47 \cdot 8$	$28 \cdot 3$	35.6	$45 \cdot 3$	$45 \cdot 2$		32.7	38.8	39.6	35.4	21	$52 \cdot 9$	35.3	+5.4	${ }_{51}^{51.6}$	50.8 51.6	42.4	$40 \cdot 1$	$42 \cdot 5$	42.0	$39 \cdot 2$	
22	$43 \cdot 2$	$33 \cdot 7$	38.4	+2.9	$40 \cdot 9$	$36 \cdot 9$	37.5	40.0	39.8	$36 \cdot 1$	22	52.7	$37 \cdot 2$	+7.8	$5 \mathrm{I} \cdot 6$	$5 \mathrm{I} \cdot 6$	48.0	$40 \cdot 7$	$43 \cdot 4$	$43 \cdot 8$	42.8	
23	$40 \cdot 2$	$32 \cdot 7$	$35 \cdot 5$	$37 \cdot 6$	38.2	33.4	32.6	33.2	33.6	$32 \cdot 7$	23	52.7	39.2	48.6	+5.7	$5 \mathrm{I} \cdot 3$	40.8	$43 \cdot 4$	41.3	$43 \cdot 3$	$36 \cdot 5$	
24	37.7	30.7	$32 \cdot 9$	$35 \cdot 3$	$37 \cdot 3$	33.2	31.3	33.0	33.8	$30 \cdot 9$	24	54.0	34.2	$45 \cdot 6$	51.6	51	40.3	42.0	4.4	4. ${ }^{1}$	$37 \cdot 2$	
25	$42 \cdot 8$	$25 \cdot 6$	32.9	$39 \cdot 6$	$42 \cdot 5$	35.7	30.9	34.8	36.8	$3+3$	25	45.0	38.4	4.0	+ +6	43.4	$43 \cdot 6$	$4 \mathrm{I} \cdot 3$	$42 \cdot 6$	42.	41.9	
26	$45 \cdot 0$	27.8	$36 \cdot+$	43.3	44°	$39 \cdot 6$	32.8	37.	38.4	$3 \cdot 3$	26	59.0	$+2.9$	47.4	53.3	57.1	$45 \cdot 1$	$45 \cdot 7$	49.3	$50 \cdot 6$	43.3	
27	$4{ }^{8 \cdot 1}$	$38 \cdot 1$	$40 \cdot 8$	$46 \cdot 4$	45.9	$42 \cdot 6$	39.6	+3.9	$40 \cdot 1$	$40 \cdot 5$	27	58.6	42.0	4.8	$52 \cdot 3$	77.4	48.7	43.0	$46 \cdot 8$	49.4	46.8	
28	$46 \cdot 4$	37.0	$40 \cdot 6$	$45 \cdot 5$	$46 \cdot 0$	$40 \cdot 8$	$36 \cdot 8$	39.4	$39 \cdot 1$	$37 \cdot 4$	28	6.7 6.2	$42 \cdot 2$ $40 \cdot 2$	57.1 56.7	62.2 61.9	$64 \cdot 1$ 61.9	50.9 46.7	51.6 50.4	$54 \cdot 9$ $52 \cdot 1$	$55 \cdot 1$ 51.0	$46 \cdot 0$ $45 \cdot 2$	
											30	$72 \cdot+$	$40 \cdot 1$	$49 \cdot 5$	65.3	71.4	57.7	$48 \cdot 0$	$56 \cdot \mathrm{I}$	$59 \cdot 5$	$52 \cdot 1$	
Means	46.5	$35 \cdot 2$	$39 \cdot 6$	43.9	$4 \cdot 7$	$40 \cdot 1$	37.8	$40 \cdot 7$	41.0	38.3	Means	$55 \cdot 3$	$38 \cdot 7$	+7.8	52.4	53.1	$45 \cdot 9$	$43 \cdot 6$	$45 \cdot 9$	$46 \cdot 1$	$42 \cdot 6$	

	Readings of			Thermometers on the Ordinary Stand in the Magnetic Pavilion Enclosure-continued. (The readings of the maximum and minimum thermometers apply to the twenty-four hours ending $21^{\text {h }}$.)																	
	Dry-Julb Thermometers, 4 ft above the Cround.						Wet-Julb Thermometer, 4 ft . above the Ground.				Days of the Month.	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.			
($\begin{gathered}\text { of the } \\ \text { Month. }\end{gathered}$	Maximum.	Minimum.	$9^{\text {h }}$	N	15 ${ }^{\text {h }}$	$21^{\text {b }}$		Noon.	$15^{\text {h }}$	$2 \mathrm{x}^{\mathrm{h}}$		Maxi-	Minimum.	$9^{\text {b }}$	Noon.	15	$21^{\text {b }}$	$9^{\text {b }}$	oon.	${ }^{15}$	$21^{\text {h }}$
May.											July.										
d				$62 \cdot 6$	$65 \cdot 6$		$53 \cdot 1$	$55 \cdot 1$	$56 \cdot 6$	$51 \stackrel{\circ}{1}$	d	$66^{\circ} 4$	- 4	$56 \cdot 1$	61-1	$65 \cdot 6$	$59 \cdot 9$	$54 \cdot 7$	57-8	$60^{\circ} \cdot 4$	$58 \cdot 2$
1	$67 \cdot 6$ $60 \cdot 2$		48.6	$62 \cdot 6$ $56 \cdot 3$	$65 \cdot 6$ 59.4	54 $46 \cdot 0$	$53 \cdot 1$ $47 \cdot 2$	50.6		$43 \cdot 0$	2	$80 \cdot 1$	51-1	$68 \cdot 5$	$73 \cdot 5$	$74 \cdot 6$	$68 \cdot 5$	63.5	63:2	$63 \cdot 1$	$63 \cdot 1$
3	$52 \cdot 7$	$36 \cdot 7$	$47 \cdot 4$	50.8	$50 \cdot 3$	44.4	$4 \mathrm{I} \cdot 5$	$43 \cdot 3$	$43 \cdot 3$	$4 \mathrm{I} \cdot 3$	3	85.9	58.8	$74 \cdot 1$	$78 \cdot 7$	82.0	70.6	$63 \cdot 1$	67.7	$69 \cdot 0$	$65 \cdot \mathrm{I}$
4	$57 \cdot 9$	44.1	$4^{8 \cdot 7}$	53.8	55.4	$48 \cdot 1$	$46 \cdot 1$	$48 \cdot 8$	$49 \cdot 1$	$46 \cdot 5$	4	87.1	$60 \cdot 1$	$77 \cdot 7$	84.1	85.8	$66 \cdot 4$	$67 \cdot 8$	$70 \cdot 3$	$69 \cdot 8$	63.7
5	$73 \cdot 1$	$43 \cdot 2$	$59 \cdot 4$	$67 \cdot 4$	$70 \cdot 0$	$58 \cdot 4$	54.0	$59 \cdot 2$	$59 \cdot 9$	$56 \cdot 2$	5	$80 \cdot 6$	$58 \cdot 6$	67.9	$73 \cdot 8$	$79 \cdot 4$	$66 \cdot 1$	$6 \mathrm{I} \cdot 6$	$62 \cdot 6$	$63 \cdot 7$	$60 \cdot 4$
6	74.0	$47 \cdot 6$	64.4	$69 \cdot 9$	71.0	61.0	$58 \cdot 8$	$60 \cdot 8$	61.3	$58 \cdot 0$	6	$79 \cdot 2$	$52 \cdot 5$	$67 \cdot 7$	71.9	$74 \cdot 6$	$65 \cdot 6$	$6 \mathrm{I} \cdot 2$	$60 \cdot 8$	$62 \cdot 1$	$57 \cdot 4$
7	71.4	$49 \cdot 5$	$64 \cdot 6$	$70 \cdot 7$	$70 \cdot 6$	$54 \cdot 6$	$59 \cdot 3$	61.9	63.0	$52 \cdot 7$	7	$69 \cdot 7$	$56 \cdot 1$	$58 \cdot 9$	$59^{\circ} \mathrm{O}$	$68 \cdot 3$	$56 \cdot 9$	$36 \cdot 9$	$57 \cdot 8$	$6 \mathrm{I} \cdot 5$	$55^{\circ} \mathrm{O}$
8	$68 \cdot 4$	$4^{8 \cdot 6}$	61.7	$66 \cdot 9$	$65 \cdot 2$	$4^{8 \cdot 6}$	55.8	$57 \cdot 1$	$54 \cdot 8$	$46 \cdot 7$	8	$64 \cdot 6$	$55 \cdot 8$	$59 \cdot 1$	61.6	$64 \cdot 1$	57.0	$56 \cdot 5$	57.1	$57 \cdot 8$	$56 \cdot 9$
9	$6 \mathrm{I} \cdot 3$	$43 \cdot 0$	$54 \cdot 3$	$59 \cdot 4$	$58 \cdot 6$	44.1	$47 \cdot 1$	$50 \cdot 3$	$49^{\cdot 6}$	$40 \cdot 2$	9	71.4	$54 \cdot 6$	$60 \cdot 5$	67.4	$67 \cdot 8$	$60 \cdot 1$	$55 \cdot 5$	$57 \cdot 6$	58.0	$53 \cdot 2$
10	$65 \cdot 2$	$39 \cdot 2$	$54 \cdot 7$	$65 \cdot 0$	$64 \cdot 6$	$50 \cdot 2$	$50 \cdot 3$	$55 \cdot 1$	$53 \cdot 8$	$45 \cdot 7$	10	$7 \mathrm{I} \cdot 2$	51.0	64.2	$69 \cdot 6$	$67 \cdot 2$	$60 \cdot 8$	$56 \cdot 1$	$58 \cdot 8$	$57 \cdot 9$	$57 \cdot 1$
I I	68.5	$38 \cdot 1$	$59 \cdot 2$	$65 \cdot 1$	$66 \cdot 1$	$53 \cdot 2$	$49 \cdot 8$	$52 \cdot 6$	$53 \cdot 3$	$47 \cdot 6$	11	64.9	57.0	$59 \cdot 8$	61.4	$63 \cdot 6$	$58 \cdot 4$	$56 \cdot 3$	$55 \cdot 9$	$56 \cdot 7$	$55 \cdot 0$
12	$69 \cdot 0$	$4^{8 \cdot 1}$	$57 \cdot 4$	$64 \cdot 6$	$58 \cdot 3$	$4^{8 \cdot 1}$	$54 \cdot 3$	56.4	$54 \cdot 3$	$46 \cdot 7$	12	$70 \cdot 4$	$54 \cdot 2$	61.7	63.7	$69 \cdot 5$	$58 \cdot 7$	$55 \cdot 8$	$54 \cdot 8$	$57 \cdot 6$	$53 \cdot 3$
13	$4^{8 \cdot 3}$	$43 \cdot 2$	$46 \cdot 1$	47.1	$46 \cdot 9$	$43 \cdot 2$	$45 \cdot 7$	$46 \cdot 6$	$46 \cdot 7$	$43 \cdot 1$	13	69.5	$45 \cdot 2$	$62 \cdot 3$	$66 \cdot 8$	$6+\cdot 4$	$68 \cdot 6$	56	$57 \cdot 7$	$57 \cdot 3$	$55 \cdot 3$
14	$52 \cdot 1$	$36 \cdot 5$	$43 \cdot 6$	$47 \cdot 7$	$50 \cdot 0$	$43 \cdot 5$	$40 \cdot 5$	$40 \cdot 8$	$42 \cdot 2$	$40 \cdot 3$	14	69.5	$49 \cdot 6$	$63 \cdot 2$	$66 \cdot 7$	$62 \cdot 5$	55	$56 \cdot 8$	$58 \cdot 5$	$55 \cdot 9$	$55 \cdot 6$
15	$57 \cdot 8$	$35 \cdot 1$	$49 \cdot 4$	53.7	$54 \cdot 5$	$48 \cdot 3$	$44 \cdot 2$	$45 \cdot 0$	$46 \cdot 2$	$43 \cdot 9$	15	$69 \cdot 4$	$5 \mathrm{I} \cdot 2$	$60 \cdot 9$	$63 \cdot 7$	65.4	57.7	$56 \cdot 1$	56.I	54.8	$53 \cdot 4$
16	64	$42 \cdot 7$	53.7	$57 \cdot 8$	$6 \mathrm{I} \cdot 6$	$52 \cdot 7$	$50 \cdot 2$	$53 \cdot 2$	$55 \cdot 3$	$49 \cdot 9$	16	$63 \cdot 0$	$48 \cdot 2$	$58 \cdot 1$	59.7	56.6	58.6	$56 \cdot 5$ $56 \cdot 0$	$55 \cdot 6$	$54 \cdot 4$	$58 \cdot 3$
17	$57 \cdot 2$	$49 \cdot 8$	$54 \cdot 8$	54.2	$55 \cdot 7$	51.8	51.9	$52 \cdot 8$	$52 \cdot 5$	$49 \cdot 3$	17	$62 \cdot 8$	$54 \cdot 9$	60.8	$56 \cdot 5$	$55 \cdot 6$	55.0	$56 \cdot 0$	$54 \cdot 6$	54.2	$5 \mathrm{I} \cdot 0$
18	$52 \cdot 0$	$44 \cdot 2$	$45 \cdot 7$	$46 \cdot 4$	$47 \cdot 2$	$44 \cdot 6$	4.4 .9	$45 \cdot 6$	$45 \cdot 3$	$42 \cdot 6$	18	$69 \cdot 1$	$49 \cdot 0$	$58 \cdot 3$	61.6	$65 \cdot 9$	57.5	54	$56 \cdot 8$	$57 \cdot 7$	$53 \cdot 8$
19	$62 \cdot 7$	$42 \cdot 8$	$5 \mathrm{I} \cdot 3$	$57 \cdot 6$	$61 \cdot 4$	$50 \cdot 0$	$46 \cdot 7$	$5 \mathrm{I} \cdot \mathrm{I}$	$52 \cdot \mathrm{I}$	$47 \cdot 8$	19	$72 \cdot 5$	5	$62 \cdot 7$	$6+5$	$67 \cdot 0$	$60 \cdot 0$	59.9	61.2	$62 \cdot 7$	$56 \cdot 0$
20	61.3	$42 \cdot 5$	$54 \cdot 6$	59.0	$60 \cdot 2$	$55 \cdot 3$	$52 \cdot 6$	$56 \cdot 2$	$57 \cdot 5$	54.5	20	$71 \cdot 0$	$55 \cdot 8$	61.5	$66 \cdot 9$	$67 \cdot 3$	$58 \cdot 9$	$57 \cdot 8$	$57 \cdot 3$	$56 \cdot 8$	54.0
2 I	$68 \cdot 9$	$5 \mathrm{I} \cdot \mathrm{O}$	61.5	66.0	$67 \cdot 8$	$55 \cdot 2$	$58 \cdot 6$	$59 \cdot 7$	$60 \cdot 8$	54.4	21	$71 \cdot 5$	52	$63 \cdot 2$	$6+9$	$65 \cdot 8$	$57 \cdot 9$	$55 \cdot 3$	$56 \cdot 4$	$56 \cdot 9$	$56 \cdot 3$
22	$68 \cdot 7$	$53 \cdot 1$	63.7	$67 \cdot 9$	$65 \cdot 6$	$57 \cdot 8$	59.6	62.0	$6 \mathrm{I} \cdot 8$	$55 \cdot 5$	22	60.9	$56 \cdot 6$	60.2	$59 \cdot 3$	$58 \cdot 7$	$58 \cdot 3$	$58 \cdot 1$	$58 \cdot 6$	$58 \cdot 1$	$58 \cdot 3$
23	$74 \cdot 2$	$50 \cdot 2$	63.6	$73 \cdot 7$	$72 \cdot 8$	$56 \cdot 9$	57.7	61.9	$57 \cdot 3$	$47 \cdot 6$	23	$65 \cdot 5$	$55 \cdot 2$	57.7	63	58.5	58.7	$56 \cdot 8$	$60 \cdot 9$	$56 \cdot 8$	$56 \cdot 0$
24	$71 \cdot 7$	$48 \cdot 1$	$65 \cdot 5$	$70 \cdot 1$	70	$56 \cdot 2$	$56 \cdot 6$	58.4	$54 \cdot 8$	$49 \cdot 3$	24	$73 \cdot 5$	51	$64 \cdot 9$	$66 \cdot 2$ 6.8		$56 \cdot 8$		60.4	58.7	$56 \cdot 1$ 53.3
25	74.4	$4+\cdot 1$	60	$72 \cdot 4$ $75 \cdot 1$	72	$59 \cdot 9$	$56 \cdot 1$ $50 \cdot 8$	$60 \cdot 6$	$59 \cdot 7$	$54 \cdot 0$	25	$70 \cdot 6$ 71.6	53.0 49.0	61			2			$54 \cdot 2$	$53 \cdot 3$ 54.7
26	$75 \cdot 7$	$49 \cdot 4$	66.8	$75 \cdot \mathrm{I}$	$74 \cdot 7$	$57 \cdot 7$	59	6	$60 \cdot 4$	$52 \cdot 9$	26	71.6 60.8	49.9	58.1	$66 \cdot 0$		$56 \cdot 3$				$54 \cdot 7$ $54 \cdot 0$
27	61.4	$46 \cdot 1$	55.9	$60 \cdot 2$	$60 \cdot 2$	$49 \cdot 1$	$50 \cdot 0$	51.8	$5 \mathrm{I} \cdot 5$	+4.7	27	$69 \cdot 8$	50.4	$58 \cdot 1$	66	$69 \cdot 5$	$56 \cdot 3$ 58.5	57.7	$60 \cdot 8$	61.5 57.8	$54 \cdot 0$
28	$61 \cdot 4$	$46 \cdot 1$	$50 \cdot 7$	54	57	$49 \cdot 6$	$45 \cdot 1$	47.7	$49 \cdot 8$	$45 \cdot 4$	28	$70 \cdot 7$	5		63.5	$69 \cdot 3$	58.	56	55.2	57.8	53.9
29	$63 \cdot 3$	$37 \cdot 0$	$55 \cdot 2$	6r.5	56	$49 \cdot 3$	$49 \cdot 8$	53.4	$5 \mathrm{I} \cdot 5$		29	$73 \cdot 2$			$69 \cdot 4$		$53 \cdot 8$				$52 \cdot 9$
30	$56 \cdot \mathrm{I}$	$40 \cdot 1$	$51 \cdot 3$	$53 \cdot 6$	51.0	$47 \cdot 4$	+5.3	$4^{6 \cdot 1}$	$44 \cdot 6$	$42 \cdot 7$	30	$72 \cdot 5$	$50 \cdot 1$	$63 \cdot 0$	$67 \cdot 9$	$67 \cdot 7$	$59 \cdot 6$	57.	$57 \cdot 7$ $60 \cdot 0$	$57 \cdot 3$	55.4
3 I	$63 \cdot 0$	$34 \cdot 0$	$5+7$	5	$60 \cdot 1$	47•1	4^{8}	$+^{8 \cdot 9}$	$49^{\cdot 2}$	$44 \cdot 5$	3 I	$75 \cdot 4$	52.	$62 \cdot 0$	68	$70 \cdot 2$	60	58.	60	$60 \cdot 3$	$56 \cdot 8$
Mean	6.40	4	55	60.9	$6 \mathrm{I}+$	$5 \mathrm{I} \cdot 2$	51.0	53.4	$53 \cdot 2$	$47 \cdot 2$	Mean	$7 \mathrm{I} \cdot 4$	$52 \cdot 9$	62.	66.	$67 \cdot+$	59.4	57.	$59 \cdot 0$	$59 \cdot 2$	$56 \cdot 5$
June.											August.										
d																					
I	$65 \cdot 3$	$36 \cdot 6$	$60 \cdot 0$	$62 \cdot 2$	61.6	+8.8	52.5	$52 \cdot 3$	53.0	$46 \cdot 5$	I	$77 \cdot 3$	$54 \cdot 4$	$69 \cdot 7$		$7+1$ $66 \cdot 6$	$56 \cdot 7$	$61 \cdot 4$ 60.6	$\cdot \mathrm{I}$	64.5	54.4 57.8
2	$74 \cdot 6$	$40 \cdot 1$	$6 \mathrm{I} \cdot 6$	69.8	$72 \cdot 6$	$53 \cdot 9$	55.1	$59 \cdot 6$	$60 \cdot 2$	$49^{\cdot 8}$	2	$72 \cdot 3$	$54^{\cdot 1}$	$65 \cdot 2$	$67 \cdot 6$	$66 \cdot 6$	59.4	$60 \cdot 6$	$60 \cdot 5$	$59 \cdot 5$	$57 \cdot 8$
3	$66 \cdot 9$	+7.5	$56 \cdot 3$	62.0	62.8	$56 \cdot 7$	$51 \cdot 6$	$55 \cdot 6$	$57 \cdot 6$	54.5	3	$66 \cdot 9$	$57 \cdot 1$	57.8	$61 \cdot 9$	$63 \cdot 6$	$58 \cdot 0$	$56 \cdot 9$	$59 \cdot 1$	$60 \cdot 1$	$57 \cdot 2$
4	$76 \cdot 1$	$53 \cdot 8$	$60 \cdot 7$	$69 \cdot 9$	$73 \cdot 6$	$57 \cdot 2$	58.0	$62 \cdot 3$	$6{ }_{4} \cdot 1$	$55 \cdot 4$	4	$69 \cdot 0$	$54 \cdot 3$	62.9	$67 \cdot 3$	$62 \cdot 4$	$56 \cdot 7$	59.4	$60 \cdot 3$	$59 \cdot 8$	$56 \cdot 6$
5	$75 \cdot 7$	$50 \cdot 2$	$60 \cdot+$	$72 \cdot 5$	$73 \cdot 8$	63.9	5	62.8	65.0	$60 \cdot 7$	5	$69 \cdot 5$	$51 \cdot+$	63.7	$65 \cdot 8$	$65 \cdot 4$	$58 \cdot 9$	$56 \cdot 1$	$57 \cdot 1$	$58 \cdot 3$	$56 \cdot 4$
6	$72 \cdot 5$	$55 \cdot 3$	$67 \cdot 9$	$68 \cdot 4$	$70 \cdot 0$	57\%	62.0	$62 \cdot 7$	$6 \mathrm{I} \cdot 8$	$55 \cdot+$	6	$74 \cdot 6$	$58 \cdot 7$	$66 \cdot 7$	$70 \cdot 0$	$72 \cdot 1$	$67 \cdot 0$	$63 \cdot 0$	$64 \cdot 4$	6.43	$60 \cdot 8$
7	$82 \cdot 3$	$51 \cdot 7$	$6+2$	$76 \cdot 3$	80.0	$63 \cdot 6$	$59 \cdot 3$	$65 \cdot 4$	$68 \cdot 2$	$6 \mathrm{I} \cdot 5$	7	$73 \cdot 7$	$58 \cdot 2$	$65 \cdot 6$	$6+5$	67.0	$6+1$	$6 \mathrm{I} \cdot 3$	$62 \cdot 7$	$64 \cdot 6$	$62 \cdot 8$
8	$87 \cdot 2$	$59 \cdot 6$	$80 \cdot 6$	$85 \cdot 6$	$85 \cdot 2$	$67 \cdot 6$	71.4	71.6	71:6	64.0	8	$75 \cdot 4$	$62 \cdot 1$	$66 \cdot 6$	$70 \cdot 8$	72.5	$6+4$	$62 \cdot 2$	$66 \cdot 0$	$67 \cdot 0$	63.4
9	$72 \cdot 0$	$58 \cdot 4$	$68 \cdot 7$	$70 \cdot 4$	$67 \cdot 5$	$58 \cdot 6$	59.9	$60 \cdot 5$	$60 \cdot 2$	$56 \cdot 4$	9	$74 \cdot 4$	$61 \cdot 3$	$63 \cdot 8$	$68 \cdot 0$	$72 \cdot 0$	$63 \cdot 6$	63.4	$65 \cdot 7$	$66 \cdot 9$	$63 \cdot 2$
10	$69 \cdot 5$	$57 \cdot 3$	$6 \mathrm{I} \cdot 9$	$62 \cdot 8$	$69 \cdot 2$	59.8	57.8	$57 \cdot 8$	$6 \mathrm{I}+$	$56 \cdot 3$	10	77-1	$59 \cdot 9$	$69 \cdot 3$	$75 \cdot 6$	67.0	$66 \cdot 6$	$66 \cdot 0$	$67 \cdot 8$	$66 \cdot 7$	$63 \cdot 2$
11	$67 \cdot 8$	$54 \cdot 9$	$63 \cdot 1$	$65 \cdot 9$	$65 \cdot 0$	$55 \cdot 3$	56.0	$58 \cdot 2$	$57 \cdot 2$	$5 \mathrm{I} \cdot 2$	11	$76 \cdot 1$	$60 \cdot 1$	$65 \cdot 6$	71.6	$73 \cdot 7$	$62 \cdot 2$	$60 \cdot 6$	$6 \mathrm{I} \cdot 9$	63.0	$59 \cdot 5$
12	$70 \cdot 7$	$47 \cdot 6$	$6 \mathrm{I} \cdot 1$	$67 \cdot 4$	$68 \cdot 7$	51.6	$55 \cdot 1$	$57 \cdot 7$	$55 \cdot 8$	$48 \cdot 2$	12	$74 \cdot 1$	$58 \cdot 8$	$64 \cdot 5$	$70 \cdot 1$	$71 \cdot 1$	$60 \cdot 1$	$60 \cdot 6$	63.4	$63 \cdot 0$	$59 \cdot 0$
13	$72 \cdot 9$	$43 \cdot 4$	$64 \cdot 5$	$70 \cdot 4$	71.4	$55 \cdot 6$	53.0	$55 \cdot 1$	59°	$54 \cdot 1$	13	$73 \cdot 8$	$53 \cdot 4$	63.7	$67 \cdot 4$	$69 \cdot 9$	$55 \cdot 9$	$56 \cdot 9$	$57 \cdot 9$	$60 \cdot 0$	$54 \cdot 7$
14	64.9	$49 \cdot 4$	$56 \cdot 7$	$6+4$	$6 \mathrm{I} \cdot 6$	$50 \cdot 5$	$50 \cdot 4$	$55 \cdot 0$	54^{-2}	$48 \cdot 5$	14	$72 \cdot 5$	$52 \cdot 2$	64.4	64.1	$67 \cdot 2$	59•1	59.5	$59 \cdot 3$	57.9	$56 \cdot 3$
15	$66 \cdot 0$	$48 \cdot 4$	$55 \cdot 7$	62.0	$65 \cdot 0$	$52 \cdot 9$	$50 \cdot 4$	$54 \cdot 5$	$55 \cdot 8$	$49 \cdot 4$	15	$68 \cdot 5$	$53 \cdot 3$	62.4	$67 \cdot 6$	$60 \cdot 2$	$58 \cdot 3$	57.9	$60 \cdot 0$	57.4	$55 \cdot 9$
16	$70 \cdot 7$	$45 \cdot 2$	$59 \cdot 5$	$67 \cdot 1$	$70 \cdot 4$	54.7	$55 \cdot 1$	$58 \cdot 8$	$60 \cdot 4$	53.4	16	$70 \cdot 0$	$5 \mathrm{I} \cdot 8$	$60 \cdot 4$	$62 \cdot 7$	$68 \cdot 0$	$58 \cdot 6$	$57 \cdot 5$	$56 \cdot 8$	59.1	54.7
17	$68 \cdot 2$	$48 \cdot 3$	$57 \cdot 5$	$64 \cdot 6$	$67 \cdot 3$	$5+3$	$53 \cdot 1$	$56 \cdot 6$	$57 \cdot 2$	$50 \cdot 2$	17	$72 \cdot 7$	$50 \cdot 2$	62.8	$68 \cdot 0$	$67 \cdot 1$	$55 \cdot 1$	57.0	$58 \cdot 1$	$58 \cdot 6$	$54 \cdot 8$
18	$62 \cdot 2$	$45 \cdot 7$	$56 \cdot 7$	$59 \cdot 8$	$59 \cdot 6$	$48 \cdot 9$	$50 \cdot 2$	$50 \cdot 9$	$51 \cdot 4$	$45 \cdot 1$	18	$70 \cdot 0$	$52 \cdot 6$	$58 \cdot 6$	$61 \cdot 7$	$67 \cdot 7$	54.1	$55 \cdot 8$	$56 \cdot 0$	$58 \cdot 0$	52.4
19	64.0	$41 \cdot 5$	55.0	$6 \mathrm{~L} \cdot 3$	63.5	$49 \cdot 8$	$47 \cdot 6$	51.8	$52 \cdot 9$	$46 \cdot 4$	19	69.1	$49 \cdot 7$	61.9	$66 \cdot 4$ $60 \cdot 0$	$67 \cdot 3$ 67.3	54.6 61.2	57.0 59.0	56.4 62.2	$57 \cdot 8$ 57.6	$52 \cdot 7$ $55 \cdot 4$
20	$7 \mathrm{I} \cdot 0$	$38 \cdot 0$	$62 \cdot 6$	$65 \cdot 7$	$66 \cdot 6$	$53 \cdot 5$	$53 \cdot 5$ 55.1	54.2 57.3	56.0	$50 \cdot 2$ $50 \cdot 8$	20	71.6 60.0	$50 \cdot 0$ 5.0	$62 \cdot 7$ 59.9	$69 \cdot 0$ $64 \cdot 6$	$67 \cdot 3$ 65.6	61.2 58.5	59.0 59.4	$62 \cdot 2$ 56.8	$57 \cdot 6$ $56 \cdot 8$	$55 \cdot 4$ 53.8
21	$76 \cdot 1$ $68 \cdot 1$	$42 \cdot 9$ $47 \cdot 9$	$64 \cdot 2$ 62.6	$71 \cdot 0$ $66 \cdot 4$	$72 \cdot 4$ $66 \cdot 2$	54.0 51.7	$55 \cdot 1$ 56.6	$57 \cdot 3$ $56 \cdot 3$	$57 \cdot 7$ $56 \cdot 8$	$50 \cdot 8$ $48 \cdot 3$	21	69.0 67.4	$55 \cdot 0$ 54.5	$59 \cdot 9$ $62 \cdot 1$	$6+6$ $66 \cdot 5$	$65 \cdot 6$ $62 \cdot 6$	$58 \cdot 5$ 59.6	55.4 55.8	$56 \cdot 8$ $58 \cdot 8$	$56 \cdot 8$ $58 \cdot 8$	$53 \cdot 8$ $57 \cdot 1$
22	$68 \cdot \mathrm{I}$	$47 \cdot 9$	$62 \cdot 6$	$66 \cdot 4$	$66 \cdot 2$	$51 \cdot 7$	$56 \cdot 6$	$56 \cdot 3$	$56 \cdot 8$	$48 \cdot 3$ $48 \cdot 8$	22	$67 \cdot 4$ $73 \cdot 0$	$54 \cdot 5$ 57	$62 \cdot 1$ 64.4	$66 \cdot 5$ $66 \cdot 8$	$62 \cdot 6$ $70 \cdot 4$	59.6 61.9	$55 \cdot 8$ 59.0	$58 \cdot 8$ $57 \cdot 3$	$58 \cdot 8$ $61 \cdot 0$	$57 \cdot 1$ $59 \cdot 3$
23	$59 \cdot 6$	$47 \cdot 1$	$56 \cdot 6$	$55 \cdot 8$	55.0	$53 \cdot 6$	$52 \cdot 9$	$51 \cdot 2$	$49 \cdot 6$	$48 \cdot 8$	23	$73 \cdot 0$	$57 \cdot 3$ 54.6	64.4 60.7	$66 \cdot 8$	$70 \cdot 4$ $68 \cdot 1$	$61 \cdot 9$	59.0	$57 \cdot 3$	6I•0	$59 \cdot 3$ $56 \cdot 4$
24	$57 \cdot 8$	$49 \cdot 6$	51.4	54.4	57.4	54.8	$50 \cdot 9$	$53 \cdot 1$	$55 \cdot 1$	$54 \cdot 6$	24	71.0	$54 \cdot 6$ 54.9	$60 \cdot 7$	66		$60 \cdot 5$ $56 \cdot 8$	56		61.9 $60 \cdot 8$	$56 \cdot 4$ $55 \cdot 9$
25	73.4	$53 \cdot 2$	$60 \cdot 6$	$70 \cdot 5$	73.2	$58 \cdot 5$	57.0	62.8 58.1	$65 \cdot 2$ 58.6	$57 \cdot 7$ $52 \cdot 3$	25	$72 \cdot 0$ 73.8	$54 \cdot 9$ $49 \cdot 9$	$63 \cdot 1$	$69 \cdot 4$ 71.0	$71 \cdot 5$ $73 \cdot 2$	$56 \cdot 8$ $59 \cdot 0$	$56 \cdot 3$ $59 \cdot 8$		$60 \cdot 8$ $64 \cdot 9$	$55 \cdot 9$ $57 \cdot 3$
26	$73 \cdot 5$	$57 \cdot 2$ 51.6	$67 \cdot 3$ 57.4	$69 \cdot 8$ 65.6	$68 \cdot 4$ $58 \cdot 7$	$58 \cdot$ 56.4	$57 \cdot 7$ 55.8	$58 \cdot \mathrm{I}$ 57.8	$58 \cdot 6$ 55.6	$52 \cdot 3$ $55 \cdot 0$	26	$73 \cdot 8$ $73 \cdot 1$	$49 \cdot 9$ 51.4	$63 \cdot 1$ 61.2	$71 \cdot 0$ $69 \cdot 3$	$73 \cdot 2$ $72 \cdot 6$	$59 \cdot 0$ $58 \cdot 5$	$59 \cdot 8$ $56 \cdot 9$	$62 \cdot 0$ $60 \cdot 7$	$64 \cdot 9$ $63 \cdot 6$	$57 \cdot 3$ $57 \cdot 8$
27	$69 \cdot 5$	$5 \mathrm{I} \cdot 6$	57.4	$65 \cdot 6$	$58 \cdot 7$	$56 \cdot 7$ 59	$55 \cdot 8$ 57.6	$57 \cdot 8$	$55 \cdot 6$	$55 \cdot 0$ $55 \cdot 8$	27	$73 \cdot 1$ $71 \cdot 6$	51.4 $50 \cdot 1$	$6 \mathrm{I} \cdot 2$ $6 \mathrm{I} \cdot 6$	$69 \cdot 3$ $69 \cdot 1$	$72 \cdot 6$ $70 \cdot 2$	$58 \cdot 5$ 62.5	$56 \cdot 9$ 58.5	$60 \cdot 7$ $61 \cdot 5$	$63 \cdot 6$ 63.0	$57 \cdot 8$ $56 \cdot 8$
28	$72 \cdot 0$ 73.8	54.5	$6 \mathrm{~L} \cdot 4$	67.0	64•9	$59 \cdot 8$ $59 \cdot 9$	57.6 57.9	$60 \cdot 4$ $59 \cdot 9$	$60 \cdot 0$ 61.8	$55 \cdot 8$ $58 \cdot 6$	28	$71 \cdot 6$ $65 \cdot 0$	50.1	61.6 63.6	$69 \cdot 1$ $55 \cdot 6$	$70 \cdot 2$ $54 \cdot 6$	62.5 52.6	$58 \cdot 5$ 59	$61 \cdot 5$ 53.8	$63 \cdot 0$ 52.8	$56 \cdot 8$ $48 \cdot 8$
29	$73 \cdot 8$ 73.3	$52 \cdot 1$ $55 \cdot 2$	$61 \cdot 9$ $60 \cdot 3$	$63 \cdot 1$ 71.4	$69 \cdot 0$ $60 \cdot 0$	$59 \cdot 9$ $58 \cdot 1$	$57 \cdot 9$ 57.8	$59 \cdot 9$ $62 \cdot 9$	$6 \mathrm{I} \cdot 8$ $56 \cdot 9$	$58 \cdot 6$ $56 \cdot 5$	28 30	$65 \cdot 0$ 63.4	$51 \cdot 2$ $43 \cdot 6$	$63 \cdot 6$ $55 \cdot 4$	55.6 58.2	$54 \cdot 6$ $61 \cdot 1$	52.6 54.9	$59 \cdot 8$ 49.9	$53 \cdot 8$ $50 \cdot 6$	$52 \cdot 8$ 51.8	$48 \cdot 8$ $49 \cdot 8$
30	$73 \cdot 3$	$55 \cdot 2$	$60 \cdot 3$	71.4	$60 \cdot 0$	58-I	$57 \cdot 8$	$62 \cdot 9$	$56 \cdot 9$	$56 \cdot 5$	30 31	63.4 65.7	$43 \cdot 6$ $5 \mathrm{I} \cdot 2$	55.4 56.8 62.9	$58 \cdot 2$ $59 \cdot 2$	$61 \cdot 1$ 61.8	54.9 52.6	49.9 52.0 58.5	$52 \cdot 9$	54.4	49.8 56.4
Means	$70 \cdot 6$	$49 \cdot 8$	$61 \cdot 3$	66.8	67.4	$56 \cdot 0$	$55 \cdot 7$	58.1	$58 \cdot 7$	$53 \cdot 2$	$\overline{\text { Means }}$	71.4	$54 \cdot 1$	$62 \cdot 9$	$\overline{66 \cdot 8}$	67.5	59.0	$58 \cdot 5$		60.4	$56 \cdot 6$

Readings																					
$\begin{gathered} \text { Dass } \\ \text { often } \\ \text { Month. } \end{gathered}$	Dry- Bulb Thermometers,						Wet-Bulb 'L'hermometer 4 ft . above the Groumd.				$\begin{gathered} \text { Divs } \\ \text { of the } \\ \text { Mouth. } \end{gathered}$	1) ry-Bulb 'Thermoneters, 4 ft . above the ciround.						Wet-Bulb Thermometer, +ft . above the Ground			
	$\underset{\substack{\text { Maxi- } \\ \text { mam. }}}{ }$	$\underset{\substack{\text { Mini- } \\ \text { mum. }}}{\text { a }}$	$9^{\text {a }}$		$\mathrm{rf}^{\text {h }}$	$21^{\text {b }}$	$9^{\text {b }}$	Noon.	$5^{\text {n }}$	21^{17}		Ma	$\xrightarrow{\text { Miniui- }}$ mimm.	$9^{\prime \prime}$		${ }^{151}$		$9^{\text {h }}$			$21^{\text {b }}$
September.											November.										
${ }^{\text {d }}$																					
1	$67 \cdot 9$ $6 \mathrm{I} \cdot \mathrm{I}$	$49^{\circ \cdot 1}$	$59 \cdot 4$ $55 \cdot 6$	63.4 57.0	62.0 57.5	$49 \cdot 6$ $50 \cdot 0$	$55 \cdot 3$ 52.1	$5+9$ 50.7	$55 \cdot 2$ $50 \cdot 1$ 50	+8.7 +7.6	2	+8.6 +8.0	$+4 \cdot 9$ $34 \cdot+$	$+4 \cdot 3$ $+2 \cdot 2$	+9.0 $+5 \cdot 2$	+7.1 +5.8	++9 +0.2	$+8 \cdot 7$ $+0 \cdot 1$ 0.1	$\begin{aligned} & +8 \cdot 2 \\ & +1.8 \end{aligned}$	+6.0 +2.5	$42 \cdot 5$ $38 \cdot 2$
2	$6 \mathrm{I} \cdot 1$	$45^{\circ} \mathrm{C}$	$55 \cdot 6$	57.0 60.4	57.5 56.9	$50 \cdot 0$ 52.6	$52 \cdot 1$ +9.1	$50 \cdot 7$ 52.8 20	$50 \cdot 1$ $50 \cdot 0$	+7.6 +9.8	2 3	+8.0 +6.5	39 $3+5$ 3	$+2 \cdot 2$ 37.7	$+5 \cdot 2$ $+5 \cdot 3$	+5.8 +5.6	+0.2 +0.3	$+0 \cdot 1$ $35 \cdot 8$	$\begin{aligned} & +1.8 \\ & +1.4 \end{aligned}$	+2.5 42.5	$38 \cdot 2$ $39 \cdot 2$
3	$6 \mathrm{I} \cdot 2$	45°	54°	$60 \cdot 4$	$56 \cdot 9$ $60 \cdot 8$	$52 \cdot 6$ 52.7	+9. 49 4	$52 \cdot 8$ $50 \cdot 2$	$50 \cdot 0$ 52.0	49.8 +8.0	4	+0.5 +9.1	$3+5$ 37.9	$\begin{aligned} & 37 \cdot 7 \\ & +3 \cdot 6 \end{aligned}$	+9.3 +8. +	+5.6	+4.0	+2.3	+5.2	+5.6	$30 \cdot 2$ 40.8
4 5	63.6 67.7	44.5 39.8	$54 \cdot 7$ $54 \cdot 6$	$58 \cdot 9$ 63.0	$60 \cdot 8$ $64 \cdot 9$	$52 \cdot 7$ 54 5	49.6 50.9	$50 \cdot 2$ 53.6	52.0 54.0	+8.0 50.6	+	+9.1 47.9	37.9 36.3	$+3 \cdot 6$ $39 \cdot 2$	+6. ${ }^{6.6}$	$4+$	$\begin{array}{r}\text { + } \\ 37 \\ \hline\end{array}$	38.2	+2.4	+1.5	37.0
6	71.4	$42 \cdot 2$	$59 \cdot 1$	$64 \cdot 8$	65.0	$53 \cdot+$	53.8	$55^{\circ}+$	55	51.9	6	+8.7	35.6	$38 \cdot 2$	+ + +	47.9)	+0.6	37.9	+2.7	+4.t	$40 \cdot 2$
7	$72 \cdot 0$	$46 \cdot 4$	$60 \cdot 6$	$70 \cdot 0$	68.7	$55 \cdot 7$	54^{8}	$58 \cdot 9$	$59 \cdot 0$	53.0	7	4.6	$32 \cdot 5$	37.6	+3.6	+6.7	$4{ }^{(6)}$	$37 \cdot 5$	to.8	+4.0	$45 \cdot 1$
8	$72 \cdot 9$	$45 \cdot 1$	$64 \cdot 1$	$70 \cdot 8$	$70 \cdot 8$	58.1	57.6	$60 \cdot 6$	${ }_{61} 8$	$56 \cdot 7$		$5 \mathrm{I} \cdot \mathrm{I}$	$\mathrm{I}^{1} \cdot 3$	+3.2	$4 \cdot 3$	$50 \cdot 8$	+ $8 \cdot 9$	+2.8	$4 \cdot 2$	$46 \cdot 4$	$47 \cdot 3$
9	$70 \cdot 9$	$54 \cdot 7$	$6+7$	$69 \cdot 1$	69.2	$56 \cdot 5$	60.8	62.8	$6 \mathrm{I} \cdot \mathrm{I}$	55.1	9	$52 \cdot+$	$+^{1.6}$	$51 \cdot 3$	$52 \cdot+$	51.1	+1.7	480	$49 \cdot 5$	49.7	$40 \cdot 5$
\%	$67 \cdot 9$	50.0	61.8	$67 \cdot 1$	66.4	$5+5$	59.0	$56 \cdot 3$	$56 \cdot 6$	$53 \cdot 0$	10	+9.5	35.3	+1.5	$+^{8 \cdot 1}$	+7.1	+2.	$30^{\circ} 6$	${ }^{+2 \cdot 7}$	+1.5	$39 \cdot 1$
${ }_{1}$	$64 \cdot 9$	$48 \cdot 4$	$59 \cdot 6$	$64 \cdot 1$	$64 \cdot 5$	$5+5$	$5+6$	$55 \cdot 3$	$55 \cdot 7$	$52 \cdot 3$	11	47.2	36.7	319.7	46	+5.3	+1.6)	37.9	+1.8	${ }^{1 \cdot 2}$	${ }^{1 / 1.1}$
12	$74 \cdot 1$	$48 \cdot 6$	58.7	$72 \cdot 1$	73.1	$52 \cdot 5$	56.8	6 fr 3	$60 \cdot 7$	$5 \mathrm{I} \cdot 3$	12	$58 \cdot 1$	$+^{1 \cdot 2}$	+7	$56 \cdot+$	56.7	${ }^{8} 8.9$	$\cdot 7$	55	53	47.3
13	75.7	45.1	67.5	74°	71.0	61.3	60.7	63.0	63.4	$56 \cdot 5$	13	+9.0	37	38.5	+1.0	+3.0	$37 \cdot+$	$35 \cdot 1$	36.5	37.	$3{ }^{7} 7$
14	63.9	53.5	$56 \cdot 0$	$6 \mathrm{I} \cdot 6$	62.1	$57 \cdot 6$	53.1	$5+7$	$56 \cdot 3$	56.8	14	40	31.	$3+$	39	$39 \cdot 9$	$33 \cdot 5$	33.7	$3+8$	$3+8$	$3{ }^{1 \cdot 9}$
15	73.9	$56 \cdot 1$	62.8	68.1	$70 \cdot+$	$65 \cdot 9$	57-1	$59 \cdot 1$	$62 \cdot 3$	63.3	15	41.	28.0	$30 \cdot 7$	38.6	+0.	35.	$30 \cdot 3$	$35 \cdot 3$	$35 \cdot 7$	$33 \cdot 8$
16	$77 \cdot 0$	63.2	68.1	74.4	74.3	$65 \cdot 7$	$6+9$	$67^{\circ} 6$	67.5	63.8	16	+1.1	$32 \cdot 1$	$3+8$	39.4)	39.9	35	33.8	36.4	36:\%	3.8
17	$79^{\circ} \mathrm{O}$	$63 \cdot 1$	68.4	$75 \cdot 8$	$77 \cdot 2$	63.2	$63 \cdot 6$	$66 \cdot 1$	66.0	61.3	17	41.0	27.5	$30 \cdot 3$	39.6)	+0.0	$35 \cdot 7$	29.0	35.8	$35 \cdot 7$	34.4
18	$74 \cdot 2$	$54 \cdot 8$	$64 \cdot 9$	71.5	71.8	61.4	61.6	$63 \cdot 8$	63.2	$59 \cdot 5$	18	39.8	27.4	31.5	$33 \cdot 5$	$36 \cdot 1$	35.	31.6	$33 \cdot 2$	$35 \cdot 5$	$35 \cdot 2$
19	$65 \cdot 3$	$51 \cdot 4$	$59 \cdot 8$	64.3	62.7	51.4	54.9	$56 \cdot 3$	$5+3$	48.9	19	$42 \cdot 5$	$30 \cdot 1$	$36 \cdot 2$	41.3	${ }^{+1 \cdot 6}$	$+1$.	34.3	37.0	38.0	38.4
20	$65 \cdot 2$	$44 \cdot 5$	$59 \cdot 8$	$63 \cdot 6$	61.7	$50 \cdot+$	52.I	$5+8$	53.8	$48 \cdot 5$	20	$43 \cdot 2$	36.5	38.3	+0.6)	39.6	37.7	36.0	$37 \cdot 5$	36.4	$35 \cdot 8$
21	$67 \cdot 2$	$48 \cdot 3$	$60 \cdot 1$	$65 \cdot 1$	64.8	$52 \cdot 8$	$53 \cdot 1$	$53 \cdot 8$	$5+7$	50.7	21	40.4 42.0	$36 \cdot 3$ 37.1	$39 \cdot 3$ +0.2	+0.7 +1.6	34.5 $+0 \cdot 3$	3.7 .1 37.2	$\begin{aligned} & 375 \\ & 38.6 \end{aligned}$	$\begin{array}{l\|l\|} 37 \cdot 7 \\ 310 \cdot 7 \end{array}$	$\begin{aligned} & 37 \cdot 0 \\ & 38 \cdot 6 \end{aligned}$	$36 \cdot 3$ 36.5
22	$72 \cdot 6$	$4^{8 \cdot 1}$	$6 \mathrm{I} \cdot$	71.4	71.9	$57 \cdot 8$	$6 \mathrm{I} \cdot 0$	${ }^{59} \cdot 8$	$60 \cdot 5$ 64.0	$55 \cdot 4$	23	42.0 42.3	$37 \cdot 1$ $31 \cdot 1$	$+0 \cdot 2$ 31.6	$+1 \cdot 6$ $3+8$	$+0 \cdot 3$ 38.8	$37 \cdot 2$ $+2 \cdot 0$		$\begin{aligned} & 39 \cdot 5 \\ & 33 \cdot 8 \end{aligned}$	$\begin{aligned} & 38 \cdot 6 \\ & 38 \cdot 1 \end{aligned}$	36.5 40.6
23	73.4	$54 \cdot 9$ 57.3	65.6 63.0	$70 \cdot 8$ 67.7	$69 \cdot 2$ 67.5	$6+{ }^{\circ}$ 60.1	61.0 60.0	64.8 61.9	64.0 61.5	$61 \cdot 1$ $58 \cdot 0$	23 24 24	$42 \cdot 3$ $42 \cdot 4$	31.1 35.6	31.6 37.9	$3+\cdot 8$ 40.7	14.8 40.9	37.	35.9	$37 \cdot 8$	37.7	4.7
$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$72 \cdot 3$ 66.9	$57 \cdot 3$ $52 \cdot 2$	$63 \cdot 0$ 59.7	67.7 64.8	67.5 63.6	$60 \cdot 1$ 52.3	$60 \cdot 0$ $56 \cdot+$	$61 \cdot 9$ 59.2	61.5 57.7	$58 \cdot 0$ 51.5	24 25 24	$42 \cdot 4$ 39.7	35.5	31.4	37.6	38	37	30.0	34°	35	347
26	$67 \cdot 6$	$46 \cdot 1$	56.1	62.7	67.2	56.8	$5+3$	56.5	58.0	$54 \cdot 6$	26	$39 \cdot 1$	$30 \cdot 1$	$33 \cdot 6$	$38 \cdot 5$	${ }^{38} 7$	30	$31^{1.1}$	35.	$3+8$	29.8
27	$58 \cdot 3$	$49 \cdot 2$	53.9	$55 \cdot 5$	$54 \cdot 3$	49.9	51.0	51.3	$50 \cdot 7$	46.6	27	37.9	23.5	$24 \cdot 6$	29.0	$36 \cdot 3$	26.2	24.3	$2 \times .5$	32.7	6.1
28	59.2	39^{-2}	$48 \cdot 7$	54.9	53.5	46.6	44.8	46.8	48.5	$45 \cdot 8$	28	$34 \cdot 9$	23.0	$32 \cdot 6$	33.9	$31 \cdot 1$	219.	30.8	33.6	30.9	$28 \cdot 8$
29	53.1	$40 \cdot 1$	$44^{6} 6$	$49 \cdot 9$	$52 \cdot 4$	44^{2}	42.6	$4+7$	$45 \cdot 3$	$40 \cdot 1$	29	$4^{8.2}$	27.2	$37 \cdot 4$	$40 \cdot 6$	$42 \cdot 1$	48.	37.7	+0.1	$4^{1 \cdot 9}$	47°
30	$50 \cdot 8$	$36 \cdot 8$	$46 \cdot 3$	49.8	$50 \cdot 4$	46.3	+2.7	44.6	+5.1	$4^{2 \cdot 1}$	30	$4^{8 \cdot 8}$	$4{ }^{1 \cdot}$	$42 \cdot 3$	47.0	457			$+3 \cdot 5$	$4+$	42
Means	67.	$4^{8 .}$		+2	64.9	. 7		56.7	5.8	52.7	Mean	45	34.1	37.9)	42.	+3.0			39.6		
Ber.											December										
${ }^{\text {d }}$																	$47 \cdot 1$			$45 \cdot 4$	
1	$56 \cdot 0$	34.3	44.6	2.8	$54 \cdot 2$ 53.6	$39 \cdot 7$ $4^{8.8}$	41.0 $45 \cdot 1$	$45 \cdot 3$ 49.9	$\begin{aligned} & 4+0 \\ & 49 \cdot 8 \end{aligned}$	$\begin{aligned} & 38 \cdot 4 \\ & 48 \cdot 1 \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & 2 \end{aligned}$	$\begin{aligned} & 48 \cdot 1 \\ & 47 \cdot 1 \end{aligned}$	$\begin{aligned} & 40 \cdot 1 \\ & 40 \cdot 2 \end{aligned}$	$\begin{aligned} & 46 \cdot 2 \\ & 41 \cdot 1 \end{aligned}$	$40 \cdot 7$ 44.8	46.9 42.3	4 l +8	$4{ }^{49} \cdot 8$	+7.9 +2.6	45.4	. 1
2	53.9	36.4	$40 \cdot 4$ 55	51.9 60.7	53.6	$48 \cdot 8$ $43 \cdot 1$	$45 \cdot 1$ $50 \cdot 8$	$\left\|\begin{array}{c} 49 \cdot 9 \\ 5 \mathrm{I} \cdot 0 \end{array}\right\|$	$\begin{aligned} & 49 \cdot 8 \\ & 49 \cdot 5 \end{aligned}$	$\begin{aligned} & 4^{8 \cdot 1} \\ & 4^{2} \cdot 8 \end{aligned}$	3	$\begin{aligned} & 47 \cdot I \\ & 50 \cdot 1 \end{aligned}$	40.2 40.4	41.1 43.2	$44^{4.6}$	45.2	$49 \cdot+$	43.0	+4.1	44.9	4
3	$61 \cdot 3$	$43 \cdot 2$	55.6	$60 \cdot 7$ 56.2	$59 \cdot 3$	$43 \cdot 1$ $47 \cdot 2$	$50 \cdot 8$ 46.8	$\begin{aligned} & 51 \cdot 0 \\ & 49 \cdot 8 \end{aligned}$	$\begin{aligned} & 49 \cdot 5 \\ & 50 \cdot 3 \end{aligned}$	45.7	4	$55 \cdot 4$	$44 \cdot 8$			55.0	$54+$	45.4	+8.6	53.9	$52^{\prime}+$
4	58.9	39.1	49.4 $50 \cdot 1$	$56 \cdot 2$ 53.8	$56 \cdot 4$ $52 \cdot 1$	$47 \cdot 2$ 49.6	$46 \cdot 8$ 47.0	49.8 48.8	$\begin{aligned} & 50 \cdot \\ & 46.9 \end{aligned}$	$45 \cdot 7$ $47 \cdot 8$	4 5	$55 \cdot 4$ 54.4	$44 \cdot 8$ $40 \cdot 2$	4	45	$47 \cdot 6$	48.6)	$39 \cdot 1$	43.8	45.8	48.2
5	$56 \cdot 0$	41.9 48.6	$50 \cdot 1$ 52.6	$53 \cdot 8$ 56.8 5.	$52 \cdot 1$ 58.6	$49 \cdot 6$ 49.5	$47 \cdot 0$ 51.1	$48 \cdot 8$ 53.0	$46 \cdot 9$ $53 \cdot 2$	$47 \cdot 8$ 47.7	5 6	54.4 52.8	$40 \cdot 2$ 47.4	$40 \cdot 4$ 51.8	51.6	49.5	$47 \cdot 8$	$49 \cdot 4$	46.7	$47 \cdot 8$	$4 .+8$
6	59.4	48.6 48.8	$52 \cdot 6$ 51.9	56	$58 \cdot 6$ 54.6	$49 \cdot 5$ $49 \cdot 6$	$51 \cdot 1$ 50.6	53.0.	53.2 $49 \cdot 8$	47.7 46.6	7	$52 \cdot 8$ $5 \mathrm{r} \cdot 5$	47.4 44.0	46.4	$5 \mathrm{I} \cdot \mathrm{I}$	50.1	$49 \cdot 6$	$43 *$	48.0	$47 \cdot 9$	$48 \cdot 8$
7	59.3	$48 \cdot 8$ $45 \cdot 1$	51.9 53.3	$55 \cdot 6$ 57.3	54.6	49.6 51.4	50.6 49.7	51.8	$49 \cdot 8$ $50 \cdot 0$	46.6 $50 \cdot 0$	7 8	50.0	49.7	$43 \cdot 6$	$4^{8.9}$	48.0	40.1	$40 \cdot 3$	$44^{\circ} \mathrm{O}$	$42 \cdot 8$	37.2
9	$60 \cdot 1$ 57.0	$45 \cdot 1$ 49.9	52.6	56.6	55-1	51.1	$50 \cdot 9$	52.0	$5 \mathrm{I} \cdot 6$	$50 \cdot 7$	9	54.2	30.7	$36 \cdot 3$	39.9	41.8	54	$35 \cdot 6$	$39 \cdot 1$	41.4	52.8
10	57	49.9 49	54.2	$54 \cdot 6$	56.I	52.1	$52 \cdot 3$	51.8	52.8	$5 \mathrm{I} \cdot 3$	1	56.4	$49 \cdot 2$	54.4	$56 \cdot 2$	54.0	49.	53.6	51.0	$49 \cdot 3$	$46 \cdot 6$
11	$60 \cdot 9$	$48 \cdot 2$	$56 \cdot 1$	57.5	60.9	$50 \cdot 9$	53.3	54.1	$56 \cdot 7$	50.8	${ }_{1}$	$50 \cdot 0$	39.5	$45 \cdot 4$	48.5	$46 \cdot 5$	40.	$43 \cdot 5$	$45 \cdot 5$	$43 \cdot 4$	37.2
12	$67 \cdot 9$	48.2	57.9	$65 \cdot 8$	64.2	$57 \cdot 5$	56.8	57.8	$56 \cdot 1$	55.9	12	39.5	$32 \cdot 1$	32.5	34.6	35.2	33.	30.4	33.8	3 I .8	31.4
13	$6 \mathrm{I} \cdot 7$	$47 \cdot 6$	$55 \cdot 3$	60.0	$60 \cdot 7$	$47 \cdot 8$	53.9	$56 \cdot 0$	54.9	$47 \cdot 7$	13	36.8	29.2	$30 \cdot 6$	$35 \cdot 8$	$36 \cdot 6$	$34 \cdot 4$	30.2	$32 \cdot 3$	33.	32.3
14	$65 \cdot 1$	43.7	51.3	60.8	63.5	$4^{8.5}$	51-1	$55 \cdot 1$	56.4	$4^{8.2}$	14	45.4	31.7	37.9	$42 \cdot 9$	43.5	$45 \cdot 3$	35	$40 \cdot 6$	$42 \cdot 1$	44.2
15	$55 \cdot 3$	$43 \cdot 6$	48.5	$54 \cdot 8$	52.7	$46 \cdot 2$	48.4	53.0	51.6	$46 \cdot 1$	15	$45 \cdot 6$	$42 \cdot 7$ 38	43.4	43.4	$45 \cdot 3$	$4+6$ 42.6	$41 \cdot 9$ $40 \cdot 2$	42.0	44°	$43 \cdot 8$
16	$58 \cdot 4$	$45 \cdot 9$	$53 \cdot 3$	$56 \cdot 6$	$57 \cdot 6$	$54 \cdot 2$	52.0	$53 \cdot 6$	53.4	$52 \cdot 5$	16	47.6	38.2	41.3	46.5	44.8 43.5	$4{ }_{4}{ }^{2 \cdot 6}$	$40 \cdot 2$	$43 \cdot 7$ 41.8	$43 \cdot 2$	$42 \cdot 0$ $40 \cdot 6$
17	$59 \cdot 1$	$48 \cdot 2$	53.7	54.8	57.4	48.7	52.5 50.6	-1.9	54.0	$48 \cdot 1$ $47 \cdot 4$	17 18 18	$43 \cdot 7$ 43.8	$39 \cdot 1$ $36 \cdot 1$	$40 \cdot 7$ 39.6	$42 \cdot 4$ 41.5	$43 \cdot 5$ 43.7	$41 \cdot 2$ 41.2	38.7	41.8 40.0	41.7	$40 \cdot 6$ $39 \cdot 6$
18	$58 \cdot 9$ 56.6	$40 \cdot 5$ $45 \cdot 1$	51.4 48.8	$58 \cdot 1$ 56.6	$56 \cdot 7$ 53	$48 \cdot 8$ $49 \cdot 5$	50.6 46.5	51.9 50.3	$51 \cdot 4$ $49 \cdot 1$	$47 \cdot 4$ $47 \cdot 2$	18 19	$43 \cdot 8$ 41.3	$36 \cdot 1$ $30 \cdot 2$	39.6 32.5	$41 \cdot 5$ $38 \cdot 2$	39.4	36.6	31.9	35.8	36.6	$39 \cdot 6$ $35 \cdot 1$
19 20	$56 \cdot 6$ 55.4	$45 \cdot 1$ 44.2	$48 \cdot 8$ 49	$56 \cdot 6$ 51.8	$53 \cdot 7$ 53.4	$49 \cdot 5$ $44 \cdot 9$	$46 \cdot 5$ 47	50.3 48.7	$49 \cdot 1$	$47 \cdot 2$ 42.6	18 20	$41 \cdot 3$ $39 \cdot 1$	$33 \cdot 1$	$34 \cdot 4$	38.7	39.1	36.6	32.8	$36 \cdot 3$	$36 \cdot 1$	35.3
21	52.7	$36 \cdot 3$	$46 \cdot 3$	47.8	51.6	$47 \cdot 3$	$44 \cdot 9$	$46 \cdot 8$	49.0	44.9	21	$47 \cdot 9$	35.4	$42 \cdot 3$	$45 \cdot 7$	47.9	$46 \cdot 2$	41.7	$44 \cdot 5$	$46 \cdot 0$	42.7
22	59.3	43.8	51.6	$57 \cdot 5$	58.0	$46 \cdot 4$	$49 \cdot 9$	52.8	53.5	$45 \cdot 4$	22	$49 \cdot 8$	39.2	$44 \cdot 7$	48.2	$49 \cdot 4$	48.4	44.5	$47 \cdot 1$	$47 \cdot 8$	$46 \cdot 1$
23	$58 \cdot 2$	$40 \cdot 8$	49.9	$56 \cdot 0$	$52 \cdot 9$	$48 \cdot 6$	$48 \cdot 1$	$50 \cdot 3$	$49 \cdot 1$	$47 \cdot 8$	23	$49 \cdot 3$	$42 \cdot 2$	43.7	48.7	$46 \cdot 8$	$44 \cdot 6$	$41^{1.0}$	44.9	$43 \cdot 9$	43.4
24	$50 \cdot 4$	47.7	$48 \cdot 7$	$49 \cdot 8$	$49 \cdot 4$	$49 \cdot 4$	47.8	$47 \cdot 8$	$47 \cdot 6$	47.9	24	52.	$43 \cdot 3$	49.4	$52 \cdot 1$ 48.0	$49 \cdot 2$ $45 \cdot 4$	$47 \cdot 6$ 41.8	47.5 46.0	$48 \cdot 9$	$47 \cdot 3$	$46 \cdot 5$
25	51-1	$43 \cdot 0$	47.9	$49 \cdot 2$	$46 \cdot 0$	$43 \cdot 8$	$4{ }^{1.8}$	$42 \cdot 3$	$42 \cdot 0$	$40 \cdot 4$	25	$49 \cdot 2$ 50.0	$4 \cdot 1$ $40 \cdot 1$ 4	$47 \cdot 6$ 47	$48 \cdot 0$ 49.6	$45 \cdot 4$ 47.5	41.8 $45 \cdot 3$	$46 \cdot 0$ $45 \cdot 8$	45.8 45.4	$43 \cdot 3$ 43.6	$40 \cdot 7$ 44.2
26	$49 \cdot 8$	$41 \cdot 1$	$46 \cdot 7$	$48 \cdot 8$	$48 \cdot 4$	$44^{6} 6$	$42 \cdot 6$	44.7	$44 \cdot 2$	42.8 38.4	26	$50 \cdot 0$	$40 \cdot 1$ 43.2	$47 \cdot 6$ 52.5	$49 \cdot 6$ 52.4	47.5 50.8	$45 \cdot 3$ 50.0	$45 \cdot 8$ 50.8	$45 \cdot 4$ $46 \cdot 5$	$43 \cdot 6$ $44 \cdot 7$	$44 \cdot 2$ $44 \cdot 2$
27	$46 \cdot 1$	$39 \cdot 5$	$43 \cdot 4$	$45 \cdot 7$	$44 \cdot 8$	41.8	$39 \cdot 9$	$40 \cdot 4$	39•7	38.4 42.3	27 28	54.3 50.0	$43 \cdot 2$ $43 \cdot 4$	52.5 44.3	52.4 48.6	50.8	$50 \cdot 7$	52.0	$46 \cdot 5$ 44.7	$44 \cdot 7$ $44 \cdot 4$	$44 \cdot 2$ $43 \cdot 5$
28 29	$55 \cdot 4$ 54.0	$41 \cdot 0$ $33 \cdot 1$	$47 \cdot 4$ $40 \cdot 2$	$52 \cdot 5$	$54 \cdot 2$ $49 \cdot 3$	$42 \cdot 6$ $37 \cdot 8$	$46 \cdot 5$ $40 \cdot 1$	$49 \cdot 9$ 48.3	1.1 $46 \cdot 5$	$42 \cdot 3$ $37 \cdot 8$	28 29	$50 \cdot 0$ $46 \cdot 7$	$43 \cdot 4$ $42 \cdot 9$	45•1	$45 \cdot 7$	46.6	45	$44 \cdot 9$	$45 \cdot \mathrm{I}$	45.6	44.8
30	$56 \cdot 0$	$32 \cdot 1$	$37 \cdot 1$	$46 \cdot 8$	$50 \cdot 9$	$40 \cdot 6$	37.0	$45 \cdot 4$	$46 \cdot 8$	$40 \cdot 0$	30	51.2	$43 \cdot 1$	$45 \cdot 2$	51.0	48.4	48	$44 \cdot 3$	48.2	46.	45.8
31	$49 \cdot 5$	$38 \cdot 3$	$46 \cdot 7$	$46 \cdot 3$	$49 \cdot 4$	47-1	$45 \cdot 4$	$45 \cdot 4$	47.9	$46 \cdot 5$	31	52.0	47.0	51.7	$49 \cdot 1$	$47 \cdot 8$	48	48.4	47°	$46 \cdot 3$	45
Means	$56 \cdot 8$	42.8	$49 \cdot 8$	54•I	$54 \cdot 6$	$47 \cdot 4$	47.8	50.1	$49 \cdot 9$	$46 \cdot 1$	Means	48.6	39.8	43.3	$46 \cdot 2$	$46 \cdot 0$	$44 \cdot 8$	41.8	43.6	$43 \cdot 7$	43.0

Amount of Rain Collected in each Month of the Year 1915.

	Monthly A mount of Rain collected in each Gauge.														$\begin{aligned} & \text { Height of Receiving } \\ & \text { Surface. } \end{aligned}$	
	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Gauge. } \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	Aupust.	September.	October.	November.	December.	Sums.	$\begin{array}{\|c} \text { chove } \\ \text { chere } \\ \text { Ground. } \end{array}$	$\left\|\begin{array}{c} \text { Above } \\ \text { Miean } \\ \text { Level. } \end{array}\right\|$
	6	$\begin{gathered} \text { inl. } \\ 3 \cdot 668 \\ 3 \cdot 5 \mathrm{I} 9 \end{gathered}$	$\begin{aligned} & \text { in. } \\ & 3 \cdot 171 \\ & 3 \cdot 149 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.796 \\ & 0.759 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & \mathrm{I} \cdot 223 \\ & \mathrm{I} \cdot \mathrm{I} 97 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 3 \cdot 279 \\ & 3 \cdot 185 \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { in. } \\ 0.561 \end{array} \\ & 0.55 \mathrm{I} \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 3 \cdot 080 \\ & 3 \cdot 040 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 3 \cdot 210 \\ & 3 \cdot 216 \end{aligned}$	$\begin{array}{\|l} \text { in. } \\ 2.020 \\ \text { I } \cdot 990 \end{array}$	$\begin{aligned} & \text { in. } \\ & \text { i. } 419 \\ & \text { I } \cdot 387 \end{aligned}$	$\begin{aligned} & \frac{\text { in. }}{2} 2.897 \\ & 2.847 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { in. } \\ & 5 \cdot 204 \\ & 5 \cdot 182 \end{aligned}\right.$		$\begin{aligned} & \text { ft. in. } \\ & \text { o. } 5 \\ & \text { I. } 0 \end{aligned}$	$\begin{gathered} \mathrm{ft.} \text { in. } \\ \mathrm{I} 49.6 \\ \mathrm{I} 50 . \mathrm{I} \end{gathered}$
	$\}$	21	15	14	13	8	9	15	13	7	Io	10	24	.		

Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest Hourly Measures, as derived from the Record's of Robinson's Anemometer.

Hour ending.	1915.												$\begin{gathered} \text { Mean for } \\ \text { ther } \\ \text { Year. } \end{gathered}$
	Janaury.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
${ }^{\text {h }}$	Miles.	Miles.	Miles	Miles.	Miles.	${ }^{\text {Miles. }}$	Miles.	Miles.	${ }^{\text {Miles. }}$	${ }^{\text {Miles. }}$	Miles.	Miles.	${ }^{\text {Miles, }}$
1	14.4	$15 \cdot 1$	$10 \cdot 2$	$10 \cdot 3$	$9 \cdot 4$	$7 \cdot 6$	$9 \cdot 4$	$7 \cdot 3$	$8 \cdot 5$	$6 \cdot 9$	9.9	14.4	$10 \cdot 3$
2	14.9	13.9	$9 \cdot 1$	$10 \cdot 3$	$8 \cdot 8$	$7 \cdot 6$	$9 \cdot 5$	$7 \cdot 3$	8.0	$6 \cdot 4$	10.0	$15 \cdot 1$	$10 \cdot 1$
3	14.9	14.9	$9 \cdot 8$	10.5	$8 \cdot 6$	$7 \cdot 5$	$9 \cdot 5$	$6 \cdot 7$	8.0	$6 \cdot 2$	10.4	14.4	$10 \cdot 1$
+	$1+6$	13.5	$9 \cdot 8$	10.3	$9 \cdot 1$	$7 \cdot 4$	$9 \cdot 5$	$7 \cdot 0$	$7 \cdot 6$	$6 \cdot 3$	$10 \cdot 1$	14.0	9.9
5	14.4	14.0	10.5	10.4	9.0	7.5	$9 \cdot 6$	$6 \cdot 7$	$7 \cdot 8$	$6 \cdot 4$	10.8	13.9	$10 \cdot 1$
6	12.9	13.5	10.5	10.8	$9 \cdot 5$	$7 \cdot 4$	$9 \cdot 6$	$6 \cdot 7$	$7 \cdot 6$	$6 \cdot 7$	11.0	13.8	10.0
7	13.4	13.8	10.6	11.1	$9 \cdot 7$	$8 \cdot 1$	$10 \cdot 1$	$6 \cdot 7$	$7 \cdot 9$	$6 \cdot 6$	$10 \cdot 8$	13.2	10.2
8	13.7	13.7	11.4	11.9	10.7	$8 \cdot 5$	10.8	$7 \cdot 1$	$7 \cdot 8$	7.0	10.9	13.7	10.6
9	13.5	14.3	12.5	12.5	10.6	$8 \cdot 7$	II.O	$7 \cdot 3$	9.0	$7 \cdot 4$	11.3	14.5	$\mathrm{II}^{1} \mathrm{I}$
10	13.9	14.5	13.9	13.2	11.7	$8 \cdot 9$	12.4	8.0	10.4	$8 \cdot \mathrm{I}$	11.6	15.6	II. 8
11	14.3	14.9	14.7	13.4	11.6	$9 \cdot 5$	13.3	8.8	$\mathrm{II}_{1} \mathrm{I}$	$9 \cdot 2$	12.6	16.9	12.5
Noon.	16.0	15.6	14.4	$1+\cdot 2$	11.8	$9 \cdot 6$	14.7	$9 \cdot 5$	12.0	10.0	13.6	17.4	13.2
13	$16 \cdot 1$	15.4	13.0	13.8	13.1	9.7	13.4	$9 \cdot 0$	10.7	9.0	12.2	15.9	12.6
$1+$	16.9	16.6	13.6	14.9	13.3	10.3	14.8	$9 \cdot 7$	11.7	$9 \cdot 6$	${ }_{1} 1.8$	${ }^{17} 7$	13.6
15	15.7	$16 \cdot 3$	$13 \cdot 6$	$1+9$	13.0	10.9	15.0	10.0	12.4	$9 \cdot 6$	13.6	17.7	13.6
16	15.1	$16 \cdot 1$	13.4	$15 \cdot 1$	13.3	10.6	14.6	$9 \cdot 7$	12.7	$9 \cdot 5$	12.4	16.8	13.3
17	15.2	14.5	$13 \cdot 1$	14.8	13.0	10.7	15.2	$9 \cdot 9$	1199	$9 \cdot 1$	$12 \cdot 1$	16.9	13.0
18	15.5	14.5	13.3	14.5	12.9	II. 1	14.3	$9 \cdot 6$	$11 \cdot 3$	$8 \cdot 4$	12.3	15.8	12.8
19	15.4	14.3	11.7	$13 \cdot 1$	12.3	10.2	13.7	$9 \cdot 1$	10.0	$8 \cdot 5$	$12 \cdot 1$	$16 \cdot 5$	12.2
20	15.9	13.8	10.5	12.0	12.3	$9 \cdot 5$	II.9	$8 \cdot \mathrm{I}$	10.5	$8 \cdot 7$	12.0	17.1	11.9
21	15.8	13.7	$9 \cdot 4$	$\mathrm{II}^{1} 8$	11.0	8.4	10.9	7.5	$9 \cdot 5$	$8 \cdot 2$	II•1	16.0	$\mathrm{II}^{\text {I }}$
22	14.7	${ }^{1}+6$	$9 \cdot 5$	12.4	10.6	$8 \cdot 7$	II•I	$8 \cdot 0$	$9 \cdot 6$	8.0	11.0	$16 \cdot 2$	11.2
23	14.9	$15 \cdot 1$	$8 \cdot 8$	11.7	9.8	$8 \cdot 4$	$10 \cdot 1$	$8 \cdot 2$	$8 \cdot 8$	$7 \cdot 5$	10.2	16.4	${ }_{10} \cdot 8$
Midnight.	15.0	15.8	$8 \cdot 7$	10.6	10.3	$7 \cdot 9$	$9 \cdot 6$	$7 \cdot 6$	8.8	$7 \cdot 2$	$9 \cdot 3$	15.7	10.5
Means	14.9	${ }^{1}+7$	11.5	12.4	11.1	8.9	11.8	8.1	$9 \cdot 7$	7.9	II.5	15.8	11.5
Greatest $\{(\mathrm{I})$	50	37	38	$3+$	27	21	40	26	31	34	37	51	.
Measures ${ }^{\text {(2) }}$	37	29	29	27	22	18	31	21	25	27	29	38	

(r.) Deduced from the motion of the cups by the formula $V=3 v$;
(2.) , , , , , , , $\quad, \quad V=2 v++$;
where n is the hourly motion of the cups in miles. See Introduction.

[^0]: 1915.

 May
 I^{d} I $8 \frac{3 \mathrm{~h}}{4}$ to $19 \frac{1}{2}$ h Wave in N.F. (-25), and decrease (-5^{\prime}) in Dec., continued further (-17^{\prime}) to $20 \frac{3 \mathrm{~h}}{}{ }^{\text {h }}$.
 in Dec. $\left(-7^{\prime}\right) . \quad 20 \frac{3 \mathrm{~h}}{4}$ to $2 \mathrm{I}_{4}^{\frac{1}{4}}$ Wave in V.F. $(-\mathrm{I} 2)$.
 $2^{\mathrm{d}} \mathrm{I}^{\frac{1 \mathrm{~h}}{2}}$ to 3^{h} Wave in N.F. $(+20)$ and decrease in Dec. $\left(-4^{\prime}\right) .4^{\mathrm{h}}$ to 6^{h} Wave in N.F. $\left(+4^{0}\right) .4^{\frac{1}{2} \mathrm{~h}}$ to $6 \frac{1}{2} \mathrm{~h}$ Wave in Dec. with nett increase ($-7^{\prime},+1 I^{\prime}$), decreasing again (-6^{\prime}) to 7^{h}. 6^{h} to 7^{h} Increase in
 Increase in V.F. (+12). $15 \frac{1}{2}$ h to $18 \frac{34^{h}}{}$ Oscillatory wave in N.F. $(+60)$ with peak at 18^{h}. 18^{h} to $19 \frac{1}{2}{ }^{\frac{1}{h}}$ Wave in Dec. (-3^{\prime}).
 $3^{\mathrm{d}}{ }^{10 \frac{1}{2} \mathrm{~h}}$ to $5^{\text {复 Loss of register in V.F. }}$
 $5^{\mathrm{d}} 8 \frac{1}{2}^{\mathrm{h}}$ to I^{h} Wave in N.F. (-25).
 $9^{d} \mathrm{I}^{\mathrm{h}}$ to I^{h} Wave in N.F. $(+20)$.
 $13^{d} 4^{\frac{3 \mathrm{~h}}{4}}$ to $17 \frac{1 \mathrm{Ll}}{4}$ Double wave in N.F. $(+20,-20)$.
 $14^{\text {d }} 18 \frac{14}{4}$ to $19 \frac{3 \mathrm{~h}}{4}$ Wave in N.F. $(+20)$. $19 \frac{3}{4} \mathrm{~h}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. with nett decrease $\left(-12^{\prime},+9^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in N.F. $(+25)$.
 $15^{\mathrm{d}} 233^{\frac{1 \mathrm{~h}}{}}$ to $1^{\mathrm{d}}{ }^{1} \frac{1}{2}^{\mathrm{h}}$ Double wave in Dec. $\left(+4^{\prime},-3^{\prime}\right)$ and wave in N.F. $(+30)$.
 Wave in Dec. $\left(-4^{\prime}\right) .21^{\mathrm{h}}$ to $22^{\mathrm{h}}, 22^{\mathrm{h}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Two waves in N.F. $(+12,+40)$ and in Dec. $\left(+4^{\prime},-5^{\prime}\right)$. $17^{\text {d }} \circ_{4}^{\frac{1 \mathrm{~h}}{2}}$ to 3^{h} Wave in Dec. $\left(+7^{\prime}\right)$. 1^{h} to 3^{h} Decrease in V.F. (-28). $1_{2^{\mathrm{h}}}$ Sudden increase $(+30)$ in N.F., followed by oscillatory decrease (-75) to 10^{h}. $11 \frac{12^{h}}{}$ to 14^{h} Waves in N.F. and Dec. 12^{h} to 14^{h} Increase in V.F. $(+25)$. $17 \frac{3}{4}^{\frac{3 \mathrm{~h}}{}}$ to I^{h} Waves in Dec. $\left(-5^{\prime}\right)$ and in N.F. $(+45)$.
 $\left(-3^{\prime}\right) . \quad 2 \frac{1}{4}^{3 h}$ to $22 \frac{3 h^{h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 22^{h}$ to 23^{h} Double-crested wave in N.F. $(+20,+20)$.

 $(+20,+12) . \quad 20^{d} 22^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{d}} \mathrm{O}_{2}^{\mathrm{th}}$ Double waves in Dec. $\left(-5^{\prime},+3^{\prime}\right)$ and in N.F. $(+15,-10)$.

 $22^{\mathrm{d}} 0 \frac{1_{2}^{\mathrm{h}}}{}$ to 4^{h} Double wave in Dec. $\left(+4^{\prime},-3^{\prime}\right)$. 4^{h} to $6 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right) .22 \frac{1}{4}^{\mathrm{h}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$ and in N.F. $(+15)$.
 $24^{\mathrm{d}}{ }^{20 \frac{1}{2} \mathrm{~h}}$ to $21^{\frac{1}{2} \mathrm{~h}}$ Waves with steep rise, in N.F. $(+35)$ and in Dec. $\left(-7^{\prime}\right)$ 。 $24^{\mathrm{d}} 233^{\frac{1}{2} h}$ to $25^{\mathrm{d}} \mathrm{I}_{4}^{\frac{3}{4}}$ Wave in Dec. $\left(-5^{\prime}\right)$, and two small waves in N.F. $(+20,+15)$.
 $25^{\mathrm{d}} 13^{\mathrm{h}}$ to 15^{h} Wave in N.F. (-20).
 $26^{\mathrm{d}} \mathrm{II}^{\mathrm{h}}$ to I^{h} Wave in N.F. $(+20)$.

 (-20). $\quad 5 \frac{1 \mathrm{~h}}{}$ to $6 \frac{1 \mathrm{~h}}{}$ Decrease in N.F. (-45). $15 \frac{1}{4}^{\frac{1}{2}}{ }^{2}$ to $21^{\frac{1}{2} h}$ Series of very rapid and frequent movements in N.F., with total range of 85γ; Dec. only slightly disturbed ; Increased diurnal motion in V.F.
 Wave in V.F. $(+17)$?.
 $3^{1^{\mathrm{d}}} \mathrm{I}^{\mathrm{h}}$ to $16 \frac{1}{2} \mathrm{~h}$ Increase in N.F. $(+20)$; decrease (-35) to peak at $17 \frac{11^{h}}{}$; increase $(+45)$ to $18 \frac{1}{2} \mathrm{~h} . \quad 20 \frac{3}{4} \mathrm{~h}$ to 23^{h} Double wave in Dec. $\left(+3^{\prime},-3^{\prime}\right)$.

