STONYHURST COLLEGE

 OBSERVATORY.
RESULTS

OF

METEOROLOGICAL AND MAGNETICAL OBSERVATIONS.

1878.

MANRESA PRESS, ROEHAMPTON. 1879.

TABLE OF CONTENTS.

INTRODUCTION.

The daily routine work of the year in meteorology, astronomy, and terrestrial magnetism includes all that was carried on in preceding years, and in addition an agricultural report is now sent weekly to the Meteorological Office of the Board of Trade.

The meteorological phenomena, which occur only occasionally, have, in this year's report, been collected together in a single form, instead of being scattered in remarks throughout the separate months.

It has been found necessary to reprint all the Rainfall observations of the last thirty years, in order to make the series complete and uniform. Every figure has been recomputed from the original entries, and the most probable corrections applied for all changes of gauge or measure.

The reduction of the meteorological observations taken at Kerguelen Island, in the South Indian Ocean, during the transit of Venus Expedition, mentioned in the report of 1877, has been completed, and, at the request of the Council of the Meteorological Office, a discussion of the Challenger observations, in 1874, and of the Erebus and Terror observations, in 1840 , has been added, in order to make the report on the climate of Kerguelen as complete as possible. The three series of results, two representing the summer, and the third the winter of Kerguelen, have been forwarded to the Meteorological Office for publication.

The daily magnetic curves, which consist of photograpic traces of every change in the value of the Declination and of the Horizontal and Vertical Components of the Intensity since the year 1868, have been tabulated up to date, and it is hoped that the complete reduction of this long series of hourly measures will progress steadily.

A great addition to the astronomical equipment of the observatory has lately been made by the purchase of a large
automatic spectroscope. Daily experiments are being made with this instrument, in order to discover what additions or alterations will tend to render it more efficient for the work proposed, which is, in the first place, to keep, as far as weather permits, a daily record of the number, shape, and position of the prominences of the chromosphere. The full description of the instrument will be deferred until the report of 1879 , when a summary of the work done can be subjoined to the instrumental details.

The object glass of the large equatoreal has returned from the factory of Messrs. Troughton and Simms, and the repolishing has much improved the definition.

The barograph, thermograph, electrograph, forwarded to the $\mathrm{Zi}-\mathrm{Ka}-\mathrm{Wei}$ observatory near Shanghai, arrived at their destination with most of the mercury tubes broken. These accidents were most probably due to the transshipment at Marseilles. A second set of tubes were packed with the greatest care, and most kindly forwarded by Mr. R. H. Scott, of the Meteorological Office. These all reached $\mathrm{Zi}-\mathrm{Ka}-\mathrm{Wei}$ in perfect preservation.

The director of the Manila Observatory spent some time during this year at Stonyhurst, in order to study the instruments and methods of observation. He has since returned to his observatory, and a splendid standard astronomical clock, by Isaac, has just been sent to him, and also a transit-theodolite, of Simms. Some magnetic and astronomical instruments had already been sent out to this distant station by the director of the Stonyhurst Observatory, and yearly reports of the meteorological observations taken at the Manila Observatory have been published since 1870.

Before undertaking a series of magnetic and meteorological observations in connection with the new missions in the South of Central Africa, one of the Jesuit missionaries paid a visit to the observatory of Stonyhurst, and he was then supplied with a dip circle of Dover, and a chronometer from Isaac, which had both been previously tested at the observatory.
S. J. Perry.

\$tonylurst (Observatory.

Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime}$ N. Long. 9m. 52s. 68. w. Height of the Barometer above the sea, 381 ft.

METEOROLOGICAL REPORT.

January, 1878.

Results of Observations taken during the month.	Mean for the last 3I years.
Mean Reading of the Barometer.........................29.666	29.411
Highest , on the 3rst30`226	$30 \cdot 004$
Lowest \quad, \quad on the 24 th28.990	28.55
Range of Barometer Readings............................. $1 \cdot 236$	1.453
Highest Reading of a Max. Therm, on the 20th $53 \cdot 3$	51.8
Lowest Reading of a Min. Therm, on the 31st $23^{\circ} \mathrm{O}$	21'I
Range of Thermometer Readings $30 \cdot 3$	$30^{\circ} 7$
Mean of all the Highest Readings 44.5	42.5
Mean of all the Lowest.................................... $34^{\circ} 2$	$33 \cdot 3$
Mean Daily Range 10'3	9.2
Deduced Monthly Mean (from Mean of Max. and Min.) 39.2	37×7
Mean Temperature from dry bulb $39^{\circ} 7$	37.9
Adopted Mean Temperature 39.5	$37 \cdot 8$
Mean Temperature of Evaporation....................... 38.2	36.4
Mean Temperature of Dew Point $36 \cdot 5$	34.4
Mean elastic force of Vapour 0.217 in	0.201 in
Mean weight of Vapour in a cubic foot of air 2.5 gr	$2 \cdot 3 \mathrm{gr}$
Mean additional weight required for saturation......... 0.3 gr	0.4 gr
Mean degree of Humidity (saturation 1×0) 0.90	0.86
Mean weight of a cubic foot of air $550 \times 7 \mathrm{gr}$	$547 \% 9 \mathrm{gr}$
Fall of Rain ... $5 \cdot 124$ in	$4 \cdot 296$ in
Number of days on which Rain fell 21	$21^{\prime 2}$
Amount of Evaporation 0.318 in	0.813 in

No. of days in the month on which the prevailing wind was	N	NE	E	SE	S	SW	w	NW
	2	2	0	0	3	10	12	2
Mean Velocity in miles per hour	14.2	$5 \% 3$	0	0	3.8	10%	13.9	9.9
Total No. of miles for each Direction	681	255	0	0		2563	3991	474

The total number of miles registered during the month was 8236 .
The max. Velocity of the wind was 37 miles per hour ; direction W. on the 23 rd at $6 \mathrm{p} . \mathrm{m}$. and $9 \mathrm{p} . \mathrm{m}$.
Mean amount of Cloud (an overcast sky being indicated by 10\%) $\quad 7 \times 4$
In the month of January, the highest reading of the Barometer
during 3I years, was on the 8 th, in 1859 , and was 30.310
The lowest , ", 15th, 1865 27.939
The highest Temperature \quad, 7 th, $1877 \quad 59^{\circ} 9$
The lowest , , , r3th, 1867
9.2

The highest adopted mean temperature of the month, $1875 \quad 42^{\circ} 5$
The lowest ", ", 1871 320

The Barometer readings for the month were high, and the range small. The Thermometer was somewhat above the mean of previous years; as was also the Rainfall. The prevailing wind was W. by S.

The Mercury stood high both in Barometer and Thermometer, and the Rainfall was small. S.W. was the most prevalent wind of the month.

Mean amount of Cloud (an overcast sky being indicated by 10*0)... $\quad 7.3$
In the month of March, the highest reading of the Barometer during 31 years, was on the 6th, in 1852, and was 30.401
The lowest , , 3Ist, I860 28•199
The highest Temperature \quad, 25th, $1871 \ldots . . .$. . 68.0
The lowest
", $4^{\text {th, }} 1866$ 14.5

The highest adopted mean temperature of the month, 1871 $44^{\circ} 0$
The lowest , , $\quad 1855 \ldots \ldots . .35^{\circ} 6$

Barometer rather high this month, and Thermometer scarcely at all in excess of the mean value. Rainfall light, and wind W. by S.

13

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)... 6.1
In the month of April, the highest reading of the Barometer
during 31 years, was on the 22nd, in 1855, and was $\ldots \ldots . .30 .191$
The lowest , , , 20th, 1868 28.358

The lowest , ", 12th, $1862 \ldots . . .$. 2477
The highest adopted mean temperature of the month, $1865 \ldots \ldots . .48 .5$
The lowest , , 1841 $40 \cdot 8$

Both Barometer and Thermometer differed but slightly from the means for this month. The Rainfall was very light, and E.N.E. the prevalent wind.

Mean amount of Cloud (an overcast sky being indicated by $10{ }^{\circ}$)...77

In the month of May, the highest reading of the Barometer during 31 years, was on the 22 nd, in 1855, and was $30^{\prime} 124$
The lowest , ", 28th, $1877 \ldots28 .559$

The highest Temperature
99
19th, $1864 \ldots \ldots . . . \quad 82.5$
The lowest , , $\quad 4$ th, $1855 \ldots . . .$. 23.5
The highest adopted mean temperature of the month, $184^{8} \ldots . . .$.
The lowest ,, \quad, $8855 \ldots45^{\circ}$

The Barometer this month was low, and the Thermometer agreed very closely with the mean. The Rainfall was very considerably above the average for May, and this was due principally to the heavy showers at the middle of the month. The wind was S.W. by W.

18

In the month of June, the highest reading of the Barometer during 31 years, was on the 15 th, in 1874 , and was			
The lowest		12th, 1862	28.632
The highest Temperature	"	27th, 1878	$87 \cdot 2$
The lowest	"	30th, 1856	$34^{\circ} \mathrm{z}$
The highest adopted mean temperature of the month, $1858 \ldots \ldots .$.			
The lowest		1856 and 1860	52.2

During this month the Mean Temperature was somewhat higher than usual, but the Atmospheric Pressure and the Rainfall differed but little from their mean value. The Wind was generally from the East.

The temperature recorded on the 27 th was the highest shade temperature ever observed at Stonyhurst in the month of June; the next highest was that of $84^{\circ} .6$ on the 28 th in 1857 . Higher readings have however been observed in July and in August.

Mean amount of Cloud (an overcast sky being indicated by $10{ }^{\circ}$)... $\quad 73$
In the month of July, the highest reading of the Barometer during 3I years, was on the 24th, in 1868, and was $30 \cdot 112$

The lowest ,, \quad Ist, $1857 \ldots \ldots . .36$.
The highest adopted mean temperature of the month, $1852 \ldots \ldots . .63^{\circ} 0$
The lowest ,, ," 18.5 I and $1853 \ldots \ldots .$.

The Mercury stood high in both Barometer and Thermometer during the greater part of the month, and the Rainfall was exceedingly small. The wind was West.

Mean amount of Cloud (an overcast sky being indicated by io 0)... $\quad 8.1$
In the month of August, the highèst reading of the Barometer during 3 J years, was on the 215 , in 1874, and was 30'114
The lowest , ", 3Ist, $1876 \ldots \ldots . .28 \cdot 555$
The highest Temperature 2nd, 1868 $88 \cdot$
The lowest ,
"
The highest adopted mean temperature of the month, 1857 $1848 \ldots \ldots . .52 .5$ " The lowest "

The Barometer was very low, and the Thermometer higher than usual. Rain was frequent, and many of the falls very heavy. Much of the wind came from the South.
Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)... 7.2
In the month of September, the highest reading of the Barometer during 31 years, was on the 15 th, in 1851 , and was $30 \cdot 274$
The lowest 99 "
22nd, 1863 28.371
The highest Temperature
6th, 1868 85°
The lowest " 6th, 1855 $30 \cdot 7$
The highest adopted mean temperature of the month, 1865 $59 \cdot 1$
The lowest 3 99 1863 $50 \div 9$

Average temperature and atmospheric pressure, but heavy rain. Direction of wind S.W. by W.

October, 1878.								
Results of Observations taken during the month.						Mean for the last $3 x$ years.		
Mean Reading of the Barometer.........................299271						29.400		
Highest , \quad on	on the 2 nd29•878					29.98I		
Lowest , on	on the roth............28.500					$28 \cdot 652$		
Range of Barometer Readings...... 1•378					1.329		
Highest Reading of a Max. Therm	erm. on the 5th $\ldots . . .69^{\circ} 2$					$64^{\circ} 7$		
Lowest Reading of a Min. Therm	m. on the 3Ist 27.8					29.9		
Range of Thermometer Readings	gs 41.4					34.8		
Mean of all the Highest Readings	gs 56.0					54.8		
Mean of all the Lowest.	44^{1} I					42.4		
Mean Daily Range	1199					12.4		
Deduced Monthly Mean (from Mea	f	x.	M	$49^{1} 1$		$47 \cdot 6$		
Mean Temperature from dry bulb				.. 4	497	$48 \cdot 2$		
Adopted Mean Temperature				49.4		$47{ }^{\circ} 9$		
Mean Temperature of Evaporatio				47°		$45 \cdot 8$		
Mean Temperature of Dew Point				. 4	44.4	$43^{\circ} 4$		
Mean elastic force of Vapour				0.293 in		0.283 in		
Mean weight of Vapour in a cubic	ot	air		...	3.4 g	3.2 gr		
Mean additional weight required for		ati		0.7 gr		0.6 gr		
Mean degree of Humidity (saturatio	$1 \times$		0.84		0.85		
Mean weight of a cubic foot of air				$532 \cdot 2 \mathrm{gr}$		535.9 gr		
Fall of Rain				5.45 I in		$5 \cdot 408$ in		
Number of days on which Rain				1.858 in			$\begin{gathered} 21 \cdot 7 \\ 1 \cdot 603 \text { in } \end{gathered}$	
Amount of Evaporation								
No. of days in the month on which the prevailing wind was	N	NE	E	SE	S	sw	w	NW
	I	I	3	2	10	6	5	3
Mean Velocity in miles per hour	4.8	$3 \cdot 8$	7%	I	114	$9 \cdot 5$	$16 \cdot 9$	$8 \cdot 5$
Total No. of miles for each Direction		92	566	41	2735	13632027		615
The total number of miles registered during the month was 7854. The max. Velocity of the wind was 39 miles per hour ; direction S . on the 9th at 2 p.m., and W. on the 1oth at $9 \mathrm{a} . \mathrm{m}$.								

Mean amount of Cloud (an overcast sky being indicated by 10°)... $8 \cdot 8$
In the month of October, the highest reading of the Barometer during 31 years, was on the 6th, in 1877, and was $30 \cdot 282$
The lowest 19th, 1862 28.139
The highest Temperature 9th, 1869 $72 \cdot 8$
The lowest
2Ist, 1859 25.2
The highest adopted mean temperature of the month, 1861 and 1876 516
The lowest 44^{8}

Barometer low and Thermometer rather high. Rainfall almost identical with the mean. Wind from S. to W.

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)... $8 \cdot 6$
In the month of November, the highest reading of the Barometer during 31 years, was on the 12th, in 1857, and was $30 \cdot 350$
The lowest "
" Ist, 1859 28.007The highest Temperature"6th, 1872619
The lowest "
" 17th, 186r 19'I
The
The
The highest adopted mean temperature of the month, 1877 $44^{2} 2$
The lowest " 1851 36.7

Temperature very low. Barometer and Rainfall both a little below the average for the month. Wind N.W.

Mean amount of Cloud (an overcast sky being indicated by 10%)... 73
In the month of December, the highest reading of the Barometer during 3 I years, was on the 22 nd, in 1849 , and was $30 \cdot 376$
The lowest 5th, 1876 28.028
The highest Temperature 9th, 1876 $58 \cdot 1$
The lowest "
24th, 1860 6.7
The highest adopted mean temperature of the month, 1857 44^{6}
The lowest "
1878 $30 \cdot 3$

The Barometer was much below the mean, and the adopted monthly temperature almost 2° lower than freezing point. This mean temperature is $0^{\circ} \cdot 7$ Fah. lower than any previously recorded for December, that of 1874 having been $31^{\circ} \circ$; but the adopted mean temperature for February, 1855, was $28^{\circ} \cdot 6$. The Rainfall was considerably less than half the mean value for the month. The general direction of the wind was from N.W. to S.W., and none came from the points between E. and S.

§inmmary of the Observations

FOR 1878.

	Mean for the last 31 years.
Mean Reading of the Barometer299463	29.477
Highest , on March I6th ...30.263	30.279
Lowest , on October 10th ...28•500	$28 \cdot 273$
Range of Barometer Readings $1 \cdot 763$	2.006
Highest Reading of a Max. Therm. on June 27th...... 87.2	8 I 9
Lowest Reading of a Min. Therm. on December 24th 13.1	159
Range of Thermometer Readings 74.1	66.0
Mean of all the Highest Readings $55^{\circ} 4$	$54^{\circ} 7$
Mean of all the Lowest..................................... 40.5	41\%
Mean Daily Range 14.9	13.7
Deduced Yearly Mean (from Mean of Max. and Min.) 46.9	$46 \cdot 8$
Mean Temperature of dry bulb 47.3	47°
Adopted Mean Temıperature $47 \cdot 1$	47°
Mean Temperature of Evaporation 44.8	$44^{\circ} 7$
Mean Temperature of Dew Point $4 \mathbf{4 2}^{\prime} \mathrm{I}$	$42 \cdot 2$
Mean elastic force of Vapour 0.282 in	0.277 in
Mean weight of Vapour in a cubic foot of air 3.2 gr	3.2 gr
Mean additional weight required for saturation........ 0.7 gr	0.7 gr
Mean degree of Humidity (saturation 1.00) 0.83	$0 \cdot 84$
Mean weight of a cubic foot of air 538.3 gr	$538 \cdot 6 \mathrm{gr}$
Total Fall of Rain in the Year45.365 in	47.432 in
Number of days per Month on which Rain fell......... 18.0	18.5
Amount of Evaporation27.818 in	27.260 in

[^0]The greatest monthly range of the Barometer was in November, 1859, and was 2.290
The least ,, ", in July, 1852, and was $0 \cdot 505$
In 1859, on November Ist, at I p.m, the Barometer stood at 28.035 , and on November 2nd, at I p.m., it stood at 29.263 , this was the greatest range of the Barometer, in 24 hours, and was 1.228
The highest reading of the Barometer, during 30 years, was on February IIth, 1849, and on March 4th, 1854, and was $30 \cdot 452$
The lowest ,, on July 22nd, 1873, and was 27.939
Extreme range $2 \cdot 513$
The highest temperature was on July 15th, 1868, and was $88 \cdot 2$
The lowest ,, ,, December 24th, 1860 67
The highest adopted mean temperature of a month, July 1868 62.4
The lowest February, 1855 $28 \cdot 6$
The highest adopted mean temperature of a year, 1868 $49^{\circ} \mathrm{I}$
The lowest , , , ", 1855 $44^{\circ} 6$

$\left.\begin{array}{l}\text { The greatest monthly mean weight of vapour, } \\ \text { in a cubic foot of air }\end{array}\right\}$ July, 1852 51
The least ,, ", February, 1855 14
The greatest fall of rain in a month, was in October, 1870 , and was 13.437 in
The least May, 1853, and May, 1859 0.3
The heaviest fall in 24 hours was on November 16th, 1866 3.514
The greatest number of days on which rain fell in one month \} July, 1861, December, 1868 31
The least , March, 1852 3

The Rainfall of the year has been from 2 to 3 inches below the annual depth, and the extreme range of temperature 8° Fah. greater than the average of previous years.

The prolonged frost of December and the cold of November have not made any perceptible change in the adopted mean temperature of the year, because in all the preceding months the mean temperature has invariably been in excess of that of former years.
DATES OF OCCASIONAL PHENOMENA.

AGRICULTURAL NOTES.

Jandary. - During the first part of the month the weather was mild, and a few early flowers were in blossom in shady parts of the gardens. - But the latter part of the month was cold, with sharp frost, which retarded the growth of early onions. Ploughing for oats commenced on the last day of the month.

February. - The first half of the month was cold and frosty, and vegetation was generally thrown back. During the last half of the month the weather was milder, with slight showers of rain. Ploughing was carried on during the greater part of the month.

MARCH. - This month was cold, with sharp frost towards the end of the month. Oats were sown by the middle of the month in most places. Grass looked very late, being parched and withered from want of moisture. There was a little ploughing for green crops.
April.-Although the first few days were frosty, the greater part of this month was fine and very favourable for ploughing. Potatoes were sown about the middle of the month, and a few of the other green crops were got in later. Still things were looking late, and grass had scarcely begun to grow.
MAY.-This month was more favourable for agriculture, the greater part of the month being mild and wet. Grass much improved. Green crops all in the ground before the middle of the month. Stone fruit and currants looked very promising, but apples and pears, it was feared, would be very scarce. The heavy showers in the middle of the month destroyed the blossom of some of the fruit trees.
JUNE.-Grass cut on the 17 th. Weather during the greater part of the month fine. Stone fruit, with the exception of apricots, looked well. A good quantity of hay was housed. Although the quantity was not so great as last year, yet it was of fair average and of very good quality. Potatoes looked well, and there was no sign of disease among them.

July.-Nearly all the hay was got in. Green crops retarded for want of rain. Wheat looking very well. Oats thin. A good crop of currants was gathered. Strawberries were only a light crop. Gooseberries did not promise to be abundant. Peas not quite up to the average, and apples very scarce.

August. - This month was very wet. The rain did good to green crops generally, which were looking much better. No wheat or oats cut yet. Oats looking very bad. Pears gathered in the early part of the month. They are about the average quantity, but small in size. Apples and gooseberries were got in by the end of the month. There is a fair quantity of gooseberries, but the crop of apples is a very poor one.

September. - Wheat was first cut on the 16th, but owing to the heavy rain during the latter part of the month, was not all got in by the end of the month. No oats were got in, and in some places they have entirely failed. Green crops were looking very well, especially potatoes.

October. - The last of the wheat was got in early in the month. Oats were cut on the 3 rd, and housed towards the 15 th. The wheat is an excellent crop, both as to quantity and quality; but oats are poor and below average quantity. A few potatoes were lifted.

November.-The greater part of this month was very cold and frosty. Wheat was sown early in the month. All the green crops housed. Potatoes are very good, very little disease among them, and the quantity is much above the average. Turnips are also good, and fully up to average quantity. Beet and mangel are also of fair average.

December.-Very cold with sharp frost, and agricultural operations all stopped on that account.
OBSERVATIONS OF CROPS AND FLOWERS IN 1878.

$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & n \\ & \underset{\sim}{\infty} \\ & \underset{1}{2} \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \stackrel{a}{p} \\ & \underset{\sim}{u} \\ & \sim \end{aligned}$		䔍 N ざ	$\begin{aligned} & \tilde{0} \\ & \text { O} \\ & \dot{U} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ت } \\ & \text { D } \\ & \text { N } \\ & \text { H } \\ & 0 \end{aligned}$	$$	$\begin{gathered} \text { 末 } \\ \text { O } \\ \dot{0} \\ Z \end{gathered}$						
		$\begin{aligned} & \text { 志 } \\ & \text { O} \\ & \text { ön } \\ & \Xi \\ & \Xi \end{aligned}$		$\begin{aligned} & \text { 志 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { ت্ট } \\ & \text { N } \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & \overrightarrow{\#} \\ & \underset{\sim}{N} \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { 吉 } \\ & \text { 2 } \\ & \text { B } \end{aligned}$					
$\begin{aligned} & \underset{ص}{\square} \\ & \infty \\ & \mapsto \end{aligned}$		$\begin{aligned} & \text { 亗 } \\ & \text { 品 } \end{aligned}$	$\begin{gathered} \text { O } \\ \underset{\sim}{7} \\ \hline \end{gathered}$			$\begin{gathered} \text { 蕆 } \\ \vdots \\ \end{gathered}$							
$\frac{\square}{\text { 四 }}$		号	$\begin{aligned} & \stackrel{4}{4} \\ & \text { N } \\ & \dot{\theta} \\ & \underset{4}{4} \end{aligned}$		$\begin{aligned} & \ddagger \\ & \infty \\ & \stackrel{\rightharpoonup}{\Xi} \\ & \stackrel{1}{5} \end{aligned}$	$\stackrel{ \pm}{\text { ¢ }}$		$\begin{aligned} & \text { 吉 } \\ & \text { N } \\ & \text { 灵 } \end{aligned}$	$\begin{aligned} & \text { 士 } \\ & \text { N } \\ & \text { 秢 } \end{aligned}$	$\begin{aligned} & \tilde{7} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{0}{\Xi} \\ & \underset{\Xi}{n} \end{aligned}$		Sept.-Oct.	$\begin{aligned} & \text { ت } \\ & \stackrel{3}{n} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \end{aligned}$
$\stackrel{Q}{\square}$			$$	$\begin{aligned} & \stackrel{H}{0} \\ & \text { 号 } \\ & \dot{4} \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{\sim}{c}} \\ \underset{\sim}{\dot{\sim}} \\ \dot{~} \end{gathered}$	$\begin{aligned} & \stackrel{I}{4} \\ & \dot{4} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & \text { N } \\ & \dot{4} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { 게 } \\ & \text { N } \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { ت्N } \\ & \text { N } \\ & \dot{\sim} \end{aligned}$		$\begin{gathered} \stackrel{y}{n} \\ \underset{y}{4} \\ \dot{4} \end{gathered}$	$\begin{gathered} \underset{\sim}{ \pm} \\ \underset{\sim}{+} \\ \stackrel{+}{4} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\underset{H}{\rightleftarrows}} \\ & \dot{4} \end{aligned}$
		$\begin{aligned} & \text { 品 } \\ & \text { 先 } \end{aligned}$	$\begin{aligned} & \ddot{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{y y}{c} \end{aligned}$	$\begin{gathered} \text { H゙ } \\ \text { ت゙ } \end{gathered}$	$\begin{aligned} & \text { 首 } \\ & \end{aligned}$	$\underset{\sim}{\text { Hitu }}$				$\begin{aligned} & \overrightarrow{y y} \\ & \text { 至 } \\ & \text { 至 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \tilde{0} \\ & \text { O } \\ & \text { E } \\ & \tilde{\sim} \\ & \hline \end{aligned}$	寻
			岗	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & N \\ & \text { N } \\ & \stackrel{3}{0} \end{aligned}$	$\begin{aligned} & \text { B } \\ & 0 \\ & 0 \\ & \text { H } \\ & 0 \end{aligned}$	$\begin{aligned} & \tilde{Z} \\ & \sim \\ & \sim \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { N } \\ & \text { N } \\ & \text { O } \end{aligned}$		$\begin{aligned} & \text { वु } \\ & \text { N } \\ & \text { 高 } \\ & \text { Z } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3 } \\ & \text { in } \\ & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ज } \\ & 0 \\ & \text { N } \\ & \stackrel{3}{0} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { 吉 } \\ & 0 \\ & 0 \\ & 0 \\ & 7 \end{aligned}$
		¢ H － E		$$	$\begin{aligned} & \text { 吉 } \\ & \text { O } \\ & \dot{4} \\ & \dot{4} \end{aligned}$	$\begin{gathered} \underset{\sim}{\ddagger} \\ \underset{\sim}{\infty} \\ \dot{丸} \\ \dot{4} \end{gathered}$	$\begin{aligned} & \underset{\sim}{0} \\ & \text { N } \\ & \dot{4} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \stackrel{y}{\rightharpoonup} \\ & \underset{\sim}{4} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \frac{\pi}{7} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { 푸 } \\ & \text { B } \\ & \dot{4} \end{aligned}$			$\begin{aligned} & \text { 志 } \\ & \text { n } \\ & \text { 空 } \end{aligned}$
		官			$\begin{aligned} & \vec{\sim} \\ & \text { N } \\ & \dot{\text { a }} \end{aligned}$	$\begin{aligned} & \vec{I} \\ & N \\ & N \\ & \dot{ت} \\ & \dot{ت} \end{aligned}$	$\begin{aligned} & \underset{7}{7} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { 士 } \\ & \text { N } \\ & \text { N } \\ & \text { Hici } \end{aligned}$				$\begin{aligned} & \text { I } \\ & \text { N } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \stackrel{5}{0} \\ & \underset{\sim}{4} \\ & \dot{4} \end{aligned}$
		眇		芑	$\stackrel{\text { U }}{\underset{\sim}{A}}$				$\begin{aligned} & \text { 름 } \\ & \text { 呂 } \\ & \text { 要 } \end{aligned}$		年	$\begin{gathered} \text { H } \\ \stackrel{\rightharpoonup}{\mathbf{3}} \\ \text { an } \end{gathered}$	¢

OBSERVATIONS OF UPPER CLOUDS (CIRRUS).				
Date.	G. M. T.	Cloud Direction.	Direction.	nd. Force o-12
January 24, $0 \quad 26$	11.30 am.	N.W. N. by W.	$\begin{gathered} \text { W. } \\ \text { N.W. } \end{gathered}$	1
	8 a .m.			1
" , 8	4 p.m.	N. by W. N.N.W.	N.W.	2
", 28	$9 \mathrm{a} . \mathrm{m}$.$8 \mathrm{a} . \mathrm{m}$.	W.S.W.	W.	
, 31		N.E.	N.E.	o
" ${ }^{\text {a }}$	io a.m.		N.E.	0
February 11	8 a.m.	E. by N.		1
,, 17	$3 \mathrm{p} . \mathrm{m}$Noon.	N. by W.	S.S.	5
, 19		S.S.W. S.S.W		5
", "	2 p.m.		S.	3
	$4 \mathrm{p} . \mathrm{m}$.	S.S.W. S. by W.	S.W.	13
March 8	$9 \mathrm{a} . \mathrm{m}$.	N.N.W.		
, 10	$11 \mathrm{a} . \mathrm{m}$.	N.N.W.	W.	3
, 12		N.N.E.	N. by E.	1
,, ",	$10 \mathrm{a} . \mathrm{m}$.	N.N.W.	N.E.	I
,, ,"	$\begin{aligned} & 11 \mathrm{a} . \mathrm{m} . \\ & \text { Noon. } \end{aligned}$	N.N.W.	N.E.	1
", ",		N. by W.	E.	0
," 13	Noon. $5.30 \mathrm{p} . \mathrm{m}$.	N.N.E.	N. by E.	1
" 14	10 a.m.	N.N.E.	N.E.	o
,, 18	6 p.m.	N.		2
" 19	Noon.	$\begin{aligned} & \text { N.W. } \\ & \text { N.N.W. } \end{aligned}$		1
" , ${ }^{\prime}$	${ }_{\text {II }} 4 \mathrm{p}$ a.m. .			2
", 21	$11 \mathrm{a} . \mathrm{m}$.	N.N.W. W. by N.	W. W.	5 2
", 23	$9 \mathrm{a} . \mathrm{m}$.	N.N.W.N. by W.	N.W.	3
" " ",	$\begin{aligned} & 10 \mathrm{a} . \mathrm{m} . \\ & \text { io a.m. } \end{aligned}$		N.W.	2
" 24		$\begin{aligned} & \text { N. by W. } \\ & \text { N.W. } \end{aligned}$	S.W.	2
, 29	$\begin{aligned} & \text { IO a.m. } \\ & 8 \mathrm{a} . \mathrm{m} . \end{aligned}$	$\begin{aligned} & \text { S.S.W. } \\ & \text { S.S.W. } \end{aligned}$	N.E.	4
", "	$9 \text { a.m. }$		N.E.	3
" ${ }^{\prime}$		$\begin{aligned} & \text { S.S.W. } \\ & \text { S.S.W. } \end{aligned}$	W.	3
April 2		W.S.W.		4
	$\begin{aligned} & 6 \text { p.m. } \\ & 6.30 \text { p.m. } \end{aligned}$	W. by S. S. by E.		2
", 8	io a.m. Noon.		E.	$\begin{aligned} & 4 \\ & 5 \end{aligned}$
		$\begin{aligned} & \text { S. by E. } \\ & \text { S.S.E. } \end{aligned}$		
" ,"	2 p.m.	E. E.	E.	5
", $\quad 12$	$\begin{aligned} & 4 \text { p.m. } \\ & 9 \mathrm{a} . \mathrm{m} . \end{aligned}$	N.W.	N.N.E.	1
$\begin{array}{ll}3 & 12 \\ \# & 29\end{array}$	9a.m. Noon.	S. by W. S.W. by W.	$\underset{\text { W. }}{\text { E. }}$	3
May 3	4 p.m.			3
" 17	$7 \mathrm{p} . \mathrm{m}$.	S.S.W.	S.W.	
" 18		$\begin{aligned} & \text { S.S.W. } \\ & \text { W.S.W. } \end{aligned}$	S.W.	3
J" 20	$\begin{aligned} & 9.30 \mathrm{a} . \mathrm{m} . \\ & 5.30 \mathrm{p} . \mathrm{m} . \\ & 4 \text { p.m. } \end{aligned}$			3
June 18		S.S.W. E. by S.	W. E.N.E.	2
, 29				

OBSERVATIONS OF UPPER CLOUDS (Continued).				
Date.	G. M. T.	Cloud Direction.	Direction.	nd. Force $0-12$
July 9	$\begin{aligned} & 4 \text { p.m. } \\ & 6 \text { p.m. } \end{aligned}$	S. by W.N. by W.	W.	3
,, 13			W.	3
,, 14	$4.30 \mathrm{p} . \mathrm{m} .$	N.W. N. by W.	W.	3
" 15	$\begin{aligned} & 7 \text { p.m. } \\ & 9 \text { a.m. } \end{aligned}$		N.W.	1
" 17		N. by W. N.W. by W.	W.S.W.	2
," ,"	3 p.m.	N.W. W.N.W.	W. by S.	2
" "	$\begin{aligned} & 4 \text { p.m. } \\ & 9 \text { a.m. } \end{aligned}$		W.	2
, 19		S.W. by W.S.W. by W.	S.W.	1
" "	$10 \mathrm{a} . \mathrm{m}$.		S.W.	1
" ${ }_{26}$	$5.30 \mathrm{p} . \mathrm{m}$.	S.W. by W. S.S.W.	W. by S.	1
", 26	3 p.m.	W. W.N.W.	W. by S.	2
"' ",	4 p.m.		W. by N.	2
"' 29	7 p.m.	W.N.W. N.N.E.	N. by E.	1
August 12	6 p.m.		S.W.	2
, 25	$88 \mathrm{p.m}$.	W.N.W. N.W.	W.S.W.	\bigcirc
Sep," 26		S.W. W.	N.N.W.	0
September 2	6 p.m.		S.W.	1
, 3	$7 \mathrm{a} . \mathrm{m}$.	$\begin{gathered} \text { W. by S. } \\ \text { S.W. by W. } \end{gathered}$	S.S.W.	1
", 7	$9.30 \mathrm{a} . \mathrm{m}$.$8 \mathrm{a} . \mathrm{m}$.		S. W. by S.	o
", 9		W. S. by W.	S.W.by S.	1
", ",	$9 \mathrm{a} . \mathrm{m} .$	N.W.	S.VW.	2
", ",	2 p.m.	$\begin{gathered} \text { N.W. } \\ \text { N.W. by W. } \end{gathered}$	W.S.W.	2
", "	4 p.m.		W. by S.	2
," ,"	6 p.m.	W.	W.S.W.	1
," 13	$\begin{aligned} & 5 \text { p.m. } \\ & 6 \text { p.m. } \end{aligned}$	W. by N.	S.W.	2
" ,"		N.W. S.W.	S.W.byW.	1
," 18	$\begin{gathered} 6 \mathrm{p} . \mathrm{m} . \\ 8.3 \mathrm{a} \text { a.m. } \end{gathered}$		S.W.byW.	4
, 24	6 ¢ 4 p.m.	N. by E. W. by N.	W. by S.	1
October 3			W.S.W.	2
" 13	4 p.m.	W. by N. W.S.W.	S. by W.	2
," 18	$8.30 \mathrm{a} . \mathrm{m}$.		N.E.by E.	1
" $\quad 3$	$\begin{aligned} & 9 \text { a.m. } \\ & 9 \text { a.m. } \end{aligned}$		N.E.by E.	0
" 26		S.S.E.	N. by E.	1
", ${ }^{\prime \prime}$		W. by S.	N. by E.	1
", ${ }^{\prime \prime}$ 28	$\begin{aligned} & 9 \mathrm{a} . \mathrm{m} . \\ & 2 \mathrm{p} . \mathrm{m} . \end{aligned}$	$\begin{aligned} & \text { N.E. by N. } \\ & \text { N.E. } \end{aligned}$	W. by S.	2
November ' 3	$10 \mathrm{a} . \mathrm{m}$.	N.E.	N.	O
, 7	$\begin{aligned} & 10 \mathrm{a} . \mathrm{m} . \\ & 3 \mathrm{p} . \mathrm{m} . \end{aligned}$	N.N.W.	N.W.	
Den ${ }^{28}$			N.E.	3
December 8	$\begin{aligned} & 3 \text { p.m. } \\ & 9 \text { a.m. } \end{aligned}$	N.W. by W.	N.	1
" ${ }^{\prime \prime}$	$10 \mathrm{a} . \mathrm{m}$. 9 a.m.	E.N.E. E. by N.	N.	2

RAINFALL
 OF THE 30 YEARS BETWEEN 1848 AND 1877.

For several years the monthly Rainfall, printed in the reports of Stonyhurst Observatory, was given only to the nearest tenth of an inch, and consequently in the table drawn up in 1870 no quantity less than a tenth is entered. At present the use of three places of decimals, when rain is measured in inches, is generally adopted, and therefore, as our registers enable us to supply the correct amount, I have thought it well to give a complete table to the nearest thousandth of an inch for the last 30 years. The monthly results in this fuller form will be more convenient for future reference. Two tables of the number of days on which rain fell are inserted for the sake of comparison with other stations, as both methods of computing this number are in common use, and give results that are occasionally rather wide apart.

In drawing the curves of the annual variation, the absolute amount of Rain, or the number of days on which rain has fallen, is marked on the first broken line, and the line underneath is obtained from numbers which are the means of five successive values of the line above. From these curves it is obvious that the Rainfall has been on the increase both in frequency and amount for the last 20 years. The number of days on which rain fell in a single year since 1859 , has only twice been below the average for the 30 years, but the annual amount is not so constant. In both curves we find the minimum Rainfall coinciding with the first minimum sun-spot year of the period, but there appears to be no further evidence of an eleven year period, but rather of one that extends over a much greater number of years.

The yearly range is very marked, having only one inflexion: the maximum occurring in October, and the minimum in April and May. In June and July the rainy days are not numerous, but the falls are heary, particularly in July. October is considerably in excess both in amount and in number of days. May has the lightest fall, and the fewest days of Rain; but differs little from April.

A few notes on the instruments used, and on the corrections applied, during the "past 30 years will serve to connect the tables of this report with any data previously printed. The Rainfall observations were commenced at Stonyhurst in August, 1845, a Crosley self-registering gauge of 100 inches area being used until January, 1849. During the year 1848 the rain was also measured by a cylindrical gauge of 37.809 inches area, and, after a year's comparison of the two gauges, the Crosley instrument was discarded on account of its defective working. From February, 1857, down to the present year, another cylindrical gauge, whose receiving area is $99^{\circ} 401$ inches, has been in constant use. In the present table the reading for July, 1848 , is the only one obtained from the Crosley gauge.

The cylindrical gauge now in use was made with the greatest care, the rim of gun-metal being so truly turned that no difference in the diameters can be detected by the most accurate measurement. The glass rod which measures the diameter is preserved in the Observatory, and is precisely in. 250 inches in length, which makes the collecting area 99.40 r square inches. The diameter of this gauge was also determined lately quite independently of the glass rod, and led to identically the same result. As our graduated glass measure is made for a surface of 100 square inches, the amounts so measured require an addition of 6 per thousand. From 1848 to 1868 the measure used required a minus correction of 1 in 20 , on account of the defective graduation of the measure.

The Rain gauge stands at a distance of 60 feet from any trees or buildings, and is due South of the Observatory erected in the centre of the College garden. From 1848 until December II, 1874, the observations were taken at $9 \mathrm{a} . \mathrm{m}$. and $9 \mathrm{p} . \mathrm{m}$., but since the latter date the gauge is emptied at $10 \mathrm{a} . \mathrm{m}$., and the amount entered for the previous day.

The whole of the figures in the subjoined tables have been recomputed from the original journals, and no correction has been applied that was not obviously demanded either by the known errors of the gauge or measure, or by mistakes in copying and in applying corrections.

NUMBER OF DAYS ON WHICH oI OR MORE FELL．														
	嵩			菭		邑	$\stackrel{\dot{\grave{y}}}{\stackrel{1}{\Xi}}$			$\begin{aligned} & \dot{\Delta} \\ & \text {.0. } \\ & \text { O} \end{aligned}$	安	褭	Numb	ber per
1848	9	23	17	14	4	23	18	12	12	13	6	14	165	13.8
1849	20	16	II	12	12	II ${ }^{1}$	19	19	14	15	18	11	178	14.8
1850	7	19	II	17	15	9	16	21	10	23	19	19	186	15.5
1851	22	10	20	8	11	19	19	17	5	18	15	10	174	14.5
1852	20	15	2	3	11	24	11	19	16	18	21	26	186	15.5
1853	19	6	9	17	5	15	22	8	12	20	14	7	154	12.8
1854	13	17	10	5	15	14	13	15	12	13	20	27	174	14.5
1855	8	4	12	8	II	17	16	1 I	7	24	7	9	134	11．2
1856	13	12	4	13	II	17	14	16	17	12	1 I	19	159	13.3
1857	24	12	18	14	10	12	18	11	14	I_{4}	12	19	178	14.8
1858	15	5	14	13	15	14	16	16	17	22	7	24	178	14.8
1859	22	16	24	16	4	15	10	15	22	17	14	14	189	15.8
1860	22	14	24	11	20	25	10	26	15	25	15	16	223	$18 \cdot 6$
1861	14	18	26	8	9	19	25	23	18	13	23	16	212	17.7
1862	17	10	19	18	21	25	21	15	16	25	13	23	223	$18 \cdot 6$
1863	25	21	14	15	16	19	8	24	25	23	19	24	233	19.4
1864	14	10	18	II	15	21	II	16	25	10	17	18	186	15.5
1865	20	18	10	II	18	4	16	14	10	20	16	11	168	14.0
1866	27	22	15	12	8	18	14	22	26	12	22	23	221	18.4
1867	15	18	13	22	14	11	14	18	22	22	12	20	201	$16 \cdot 8$
1868	16	21	22	16	12	9	8	18	10	25	13	27	197	16.4
1869	20	23	11	13	13	10	8	12	23	18	26	18	195	$16 \cdot 3$
1870	19	13	9	11	14	14	8	7	14	23	16	13	161	13.4
1871	13	21	12	19	10	14	26	14	16	21	15	24	205	$17 \cdot 1$
1872	24	25	21	15	20	20	14	18	25	22	24	22	250	20.8
1873	23	8	15	12	18	14	21	25	17	22	15	20	210	17.5
1874	21	12	19	16	17	11	15	21	18	21	18	17	206	17.2
1875	25	10	9	7	20	20	16	16	14	16	16	16	185	15.4
1876	12	22	16	19	8	10	13	16	19	14	14	19	182	15.2
1877	23	21	20	13	12	14	20	24	12	21	22	25	227	18.9
Mns	18.1	15.4	14.8	13.0	13.0	15.6	15.3	17°	$16 \cdot 1$	$18 \cdot 7$	16.0	18.4	1914	15.95

3ffonthty \%ftagnetical ©bsservations tatert at the College ©bservatory, \$tamyurst, 1878.

The Horizontal, Vertical, and Total forces are calculated to English measure; one foot, one second of mean solar time, and one grain being assumed as the units of space, of time, and of mass.

The Vertical and Total forces are obtained from the absolute measures of the Horizontal force and of the Dip.

In the observations of Deflection and Vibration, taken each month for absolute measure of Horizontal force, the same magnet has always been employed.

The moment of inertia of the magnet with its stirrup, for different degrees of temperature, and the co-efficients in the corrections required for the effects of temperature and of terrestrial magnetic induction on the magnetic moment of the magnet, were determined at the Kew Observatory by the late Mr. Welsh.

The moment of inertia of the magnet with its stirrup, using the grain and foot as the units of mass and of linear measure, is 5.27303 . Its rate of increase for increase of temperature is 0.00073 for every 10 of Fahr.

The weight of the magnet with its stirrup is approximately 825 grains, and the length of the magnet is nearly 3.94 inches. The moment of inertia was determined, independently of the weight and dimensions, by the method of vibration, with and without a known increase of the moment of inertia.

The temperature corrections have always been obtained from the formula $q\left(t^{\circ}-35^{\circ}\right)+q^{\prime}\left(t^{\circ}-35^{\circ}\right)^{2}$, where t° is the observed temperature and 35° Fahr. the adopted standard temperature. The values of the co-efficients q and q^{\prime} are respectively 0001128 and $0 \cdot 000000436$.

The induction co-efficient μ is 0.000244 .
The correction for error of graduation of the Deflection bar at $1 \cdot 0$ foot is +0.00004 ft ., at $1 \cdot 3+0.000064 \mathrm{ft}$.

The observed times of vibration are entered in the Table without corrections.

The time of one vibration has been obtained each month from the mean of twelve determinations of the time of 100 or of 200 yibrations.

The angles of deflection are each the mean of two sets of readings.
In deducing from these observations the ratio and product of the magnetic moment m of the magnet, and the earth's horizontal magnetic intensity X, the induction and temperature corrections have always been applied, and the observed time of vibration has been corrected for the effect of torsion of the suspending thread; but no correction has been required for the rate of the chronometer, or for the arc of vibration, the former having been always under $5^{\prime \prime}$, and the latter always under $8 \mathrm{I}^{\prime}$.

The average deflection of the magnet caused by a twist of the torsion circle through 90°, has been about $8^{\prime} \cdot 9$ of arc.
m
In the calculations of the ratio-, the thirl and subsequent terms of the series $\mathrm{I}+\frac{\mathrm{P}}{r^{2}}+\frac{\mathrm{Q}}{r^{4}}+\underset{f}{f}$., have always been omitted.

The value of the constant P was found to be 0.0035056 .
The Declination observations have been taken once a week. Each reading has been corrected by the photographic curves for all irregular disturbances, as well as for daily and monthly range.

OBSERVATIONS OF DEFLECTION FOR ABSOLUTE MEASURE OF HORIZONTAL FORCE.						
Month.		g. M. T.	$\begin{aligned} & \text { Distances } \\ & \text { of } \\ & \text { centres of } \\ & \text { Magnets. } \end{aligned}$	Tem-perature.	Observed Deflection.	$\log \frac{m}{\mathrm{X}}$
January ...	D. 23 rd ,	H. M. $1 \mathrm{I} 56 \mathrm{a} . \mathrm{m}$. $1216 \mathrm{p} . \mathrm{m}$.	$\begin{gathered} \text { FOOT. } \\ \text { I. } \\ \text { I. } 3 \end{gathered}$	\circ $40 \cdot 8$ 41	$\begin{array}{rrrrr}\circ & 1 \\ 13 & 54 & 53 \\ 6 & 17 & 47\end{array}$	$9.081 S_{4}$ 9.08200
February...	19th ",	$\begin{aligned} & 936 \mathrm{a} . \mathrm{m} . \\ & 955 \mathrm{a} . \mathrm{m} . \end{aligned}$	10 1.3	$44^{\circ} 6$ 45.9	$\begin{array}{rrr}13 & 54 & 32 \\ 6 & 17 & 11\end{array}$	9.0S191 9.08161
March	$\begin{gathered} \text { I8th } \\ \text { ", } \end{gathered}$	IO $56 \mathrm{a} . \mathrm{m}$. II $14 \mathrm{a} . \mathrm{m}$.	10 1.3	50% 50%	$\begin{array}{rrrr}13 & 55 & 26 \\ 6 & 17 & 53\end{array}$	9.08273 $9.0 \$ 275$
April	$\begin{gathered} \text { 26th } \\ , \text {, } \end{gathered}$	$\begin{aligned} & \text { II } 58 \mathrm{a} . \mathrm{m} . \\ & \text { I2 } 23 \mathrm{p} . \mathrm{m} \text {. } \end{aligned}$	1% 10	$50 \cdot 1$ $51 \cdot 3$	135320 61655	9.0S166 9.08167
May	$\begin{aligned} & \text { 24th } \\ & \text { ", } \end{aligned}$	Io $48 \mathrm{a} . \mathrm{m}$. II I $\mathrm{a} . \mathrm{m}$.	10 1.3	54% 56%	$\begin{array}{rrr}13 & 54 & 55 \\ 6 & 17 & 17\end{array}$	9.0S275 $9.0 S 241$
June	I4th	$349 \mathrm{p} . \mathrm{m}$. 4 II p.m.	10 1.3	59.4 59.6	135350 6 1653	9.08257 9.08221
July	27th	$943 \mathrm{a.m}$. i $49 \mathrm{a} . \mathrm{m}$.	10 1.3	63.4 64.5	$\begin{array}{rrrr}13 & 48 & 25 \\ 6 & 14 & 2\end{array}$	$9.0500 S$ $9.0792 S$
August ...	$\begin{gathered} \text { 26th } \\ ,, \end{gathered}$	10 $35 \mathrm{a} . \mathrm{m}$. 10 $58 \mathrm{a} . \mathrm{m}$.	10 1.3	63.0 654	$\begin{array}{rrr}134958 \\ 6 & 16 & 12\end{array}$	$9.0 \mathrm{OSO94}$ 9.0 SIS 4
September.	2Ist	II $16 \mathrm{a} . \mathrm{m}$. if 45 am.	10 1.3	55.9 57.7	$\begin{array}{rr}13 & 5044 \\ 6168\end{array}$	$\begin{aligned} & 9 \cdot 0 \mathrm{SO} 74 \\ & 9 \cdot \mathrm{Sil}^{2} \mathrm{O} \end{aligned}$
October ...	21st "	IO 45 am. II 5	10 1.3	57.5 584	$\begin{array}{rrr}13 & 47 & 22 \\ 6 & 14 & 6\end{array}$	$\begin{aligned} & 9.07912 \\ & 9.07 \mathrm{~S} 92 \end{aligned}$
November.	29th ,	Io $33 \mathrm{a} . \mathrm{m}$. Io $59 \mathrm{a} . \mathrm{m}$.	10 10	$36 \cdot 1$ $37 \cdot 2$	$\begin{array}{rrrr}13 & 50 & 3 \\ 6 & 15 & 11\end{array}$	9.07907 9.07575
December .	28th	II $58 \mathrm{a} . \mathrm{m}$. I2 $42 \mathrm{p} . \mathrm{m}$.	$1 *$ 1.3	33.3 34.6	135050 61541	9.07930 907917

VIBRATION OBSERVATIONS FOR ABSOLUTE MEASURE OF HORIZONTAL FORCE.					
Month.	G. M. T.	$\begin{gathered} \text { Tempera- } \\ \text { rature. } \end{gathered}$	Time of one vibration.	$\operatorname{Logm} \mathrm{X}$	Value of m.
January ...	$\begin{array}{ccc} \hline \text { D. } & \text { H. M. } \\ 23 \mathrm{rd} \ldots \text { II } & 8 \mathrm{a} . \mathrm{m} . \end{array}$	$4^{\circ} \cdot 1$	$5 \cdot 66509$	0.20874	0.44191
February...	19th... 849 a.m.	$4{ }^{\circ} \mathrm{O}$	$5 \cdot 6678 \mathrm{I}$	$0 \cdot 20856$	0.44174
March	18th... $940 \mathrm{a} . \mathrm{m}$.	473	$5 \cdot 66983$	$0 \cdot 20832$	0.44211
April	26th... 8 51 a.m.	443	$5 \cdot 66671$	$0 \cdot 20855$	0.44168
May...	24th... 912 a.m.	$49 \cdot 8$	$5 \cdot 66435$	0.20912	0*44244
June	14th...IO $24 \mathrm{a.m}$.	53.9	$5 \cdot 66517$	0.20928	$0 \cdot 44242$
July	26th...II 8 a.m.	$65^{\prime} 7$	$5 \cdot 67669$	0.20819	0'44049
August ...	26th... $84 \mathrm{ra.m}$.	$54 * 2$	$5 \cdot 67444$	$0 \cdot 20789$	0.44121
September.	2Ist ... 924 a.m.	$48 \cdot 6$	$5 \cdot 67887$	$0 \cdot 20692$	0.44052
October ...	2Ist... 947 a.m.	52%	$5 \cdot 67980$	0.20679	0.43945
November.	29th... $946 \mathrm{a} . \mathrm{m}$.	$36 \cdot 3$	$5 \cdot 67692$	0.20631	$0 \cdot 43915$
December.	28th...II 13 a.m.	$36 \cdot 3$	$5 \cdot 67242$	$0 \cdot 20664$	0.43948

Dip Observations.				Magnetic Intensity.		
Months.	G. M. T.	-	Dip.	$\left\|\begin{array}{c} \mathbf{X}, \text { or Hori- } \\ \text { zontal } \\ \text { Force. } \end{array}\right\|$	$\begin{aligned} & \text { Y, or } \\ & \begin{array}{c} \text { Vertical } \\ \text { Force. } \end{array} \end{aligned}$	$\underset{\text { Torce. }}{\text { Tot }}$
January ...			$\left\|\begin{array}{lll} 69 & 19 & 0 \\ 69 & 22 & 53 \end{array}\right\|$	3.6594	9'7095	103765
February.	$\left\lvert\, \begin{array}{rr} 20 t h \ldots \text { II } & 5 \text { a.m. } \\ , & \ldots \text { II } \\ 58 & \text { a.m. } \end{array}\right.$		$\left.\begin{array}{lll} 69 & 28 & 16 \\ 69 & 24 & 51 \end{array} \right\rvert\,$	3.6593	9•7575	10.421I
March	$\left\lvert\, \begin{array}{rlll} \text { 18th...II } & 46 & \text { a.m. } \\ , & \ldots & 12 & 27 \\ \text { p.m. } \end{array}\right.$		$\left\|\begin{array}{lll} 69 & 27 & 11 \\ 69 & 23 & 10 \end{array}\right\|$	3.6542	9'7320	10'3954
April	$\left\lvert\, \begin{array}{rrrr} 27 \text { th... } & 9 & 33 & \text { a.m. } \\ , \ldots & \ldots \text { II } & 5 & \text { a.m. } \end{array}\right.$		$\left\|\begin{array}{lll} 69 & 18 & 55 \\ 69 & 18 & 8 \end{array}\right\|$	3.6597	$9 \cdot 6897$	$10 \cdot 3577$
May			$\left\|\begin{array}{lll} 69 & 19 & 36 \\ 69 & 21 & 30 \end{array}\right\|$	$3 \cdot 6582$	9*7029	10’3696
June	$\begin{array}{r} \text { 15th...IO } 45 \text { a.m. } \\ " \text { "..II } 20 \text { a.m. } \end{array}$		$\left\|\begin{array}{lll\|} 69 & 23 & 26 \\ 69 & 22 & 45 \end{array}\right\|$	3.6597	97287	10.3943
July	29th... II 19 a.m. ", ...Io 37 a.m		692645 692145	$3 \cdot 6665$	97567	10.4229
August	26th...II 55 a.m. ,, ... $1230 \mathrm{p} . \mathrm{m}$	$\begin{aligned} & \mathbf{I} \\ & 3 \end{aligned}$	$\left\|\begin{array}{lll} 69 & 22 & 38 \\ 69 & 23 & 56 \end{array}\right\|$	3'658ı	9'726I	103912
September	$\left\|\begin{array}{ccc} 23 \mathrm{rd} . \ldots \mathrm{II} & 5 & \mathrm{a} . \mathrm{m} . \\ , & \ldots .11 & 4^{2} \\ \mathrm{a} . \mathrm{m} . \end{array}\right\|$		$6925 \quad 50$ 692828	3'6555	9'7524	10.4150
October...	$\begin{array}{rl} \text { 22nd.. } 10 & 50 \\ & \text { a.m. } \\ \# & \ldots \text { II } \\ 46 & \text { a.m. } \end{array}$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{3} \end{aligned}$	$\left\|\begin{array}{lll\|} 69 & 22 & 30 \\ 69 & 27 & 30 \end{array}\right\|$	3^{36634}	9'7549	10.4201
November	$\left[\begin{array}{rll} 25 \text { th...II } & 7 & \text { a.m. } \\ \# & \ldots .12 & \text { 10 } \end{array}\right.$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\left\|\begin{array}{lll\|\|} 69 & 20 & 34 \\ 69 & 20 & 45 \end{array}\right\|$	$3 \cdot 6619$	9'7137	$10 \cdot 3810$
December	30th...II 14 a.m. ,, ... 1159 a.m.	$\begin{aligned} & \mathbf{I} \\ & \mathbf{3} \end{aligned}$	$\left\lvert\, \begin{array}{lll} 69 & 22 & 15 \\ 69 & 19 & 45 \end{array}\right.$	$3 \cdot 6619$	977166	10.3837
	Means.	69231	$3 \cdot 6598$	$9 \cdot 7292$	10,3940

MAGNETIC DISTURBANCES.

Jandary.-A slight movement of the magnetic needle towards the E. occurred between midnight and 2 a.m. on the 2 nd , and then none but very small irregularities are traceable on the photographic curves until the morning of the 24th. The disturbance of the Declination magnet from $8 \mathrm{p} . \mathrm{m}$. on the 2 Ist to $2 \mathrm{a} . \mathrm{m}$. on the 22 nd is perhaps worthy of note: it was accompanied by a slight increase of the Horizontal and a decrease of the Vertical Component of the Intensity between II. 40 p.m. and midnight.

The storm on the 24th began a little before midnight with a slow Easterly motion of the needle. The principal disturbance of the V.F. consisted in a steady decrease from $2.45 \mathrm{a} . \mathrm{m}$. until $5 \mathrm{a} . \mathrm{m}$., followed by a very slow rise. The H.F. was more agitated throughout the day, but no single deflection from the normal value was of any great extent. The most rapid Easterly movement of the magnet occurred between 3.50 a.m. and 4.35 , during which time the Declination decreased $30^{\prime} 48^{\prime \prime}$. The total range of the magnet during the disturbance was $37^{\prime} 4^{\prime \prime}$, the minimum being reached at $5.18 \mathrm{a} . \mathrm{m}$., and the maximum at 8.5 . The movements of the Declination magnet throughout the storm were very bold.

From 5 p.m. on the 25th until midnight the Declination varied considerably, but during the remainder of the month there was very little disturbance.

February.-The first disturbance of February commenced about noon on the ist, lasting for some twelve hours. The rapid movement of the N . end of the needle towards the E. at II p.m. was followed five minutes later by an increase of H.F. and a decrease of V.F.

From the 5th to the $\mathbf{1 2 t h}$ no day was free from magnetic irregularities, the principal disturbance occurring during the afternoon of the 7 th.

From the 14th to the 19th the Declination curves were always irregular between 6 and 8 p.m., but during the remainder of the day were generally undisturbed. With the exception of a slight decrease of W. Declination from 6 to 1o p.m. on the 26th and 28th, the remainder of the month was remarkably quiet.

March.-Throughout this month there was not even an approach to anything that might be called a magnetic storm, but only occasionally slight abnormal movements of the magnet towards the E., and these happened especially between $6 \mathrm{p} . \mathrm{m}$. and midnight. There is a very remarkable similarity between the curves for each day of this month, and this is particularly noticeable on the 12 th and the five succeeding days. On the 12th there is the slightest possible Easterly movement between 9 and ro p.m. ; on the r3th this had developed into a considerable irregularity; on the 14th at the same hours it attained its maximum ; on the 15 th it had considerably diminished, and still more so on the 16 th ; and there was just the least trace of it remaining on the 17 th. As all these similar irregularities on successive days all occurred at invariably the same hour, we have here a very striking instance of the direct action of the sun on the forces which influence the irregular movements of the magnet.

April.-A rather serious disturbance commenced on the 2 nd, by a gradual increase of the W. Declination from noon until 6 p.m.; it then diminished rapidly, but remained near its mean value from 8 p.m. until 7 o'clock next morning, when it again increased, and was very irregular until midnight. The Vertical Component of the Intensity began to increase considerably with the W. Declination, and attained its maximum shortly before $8 \mathrm{p} . \mathrm{m}$. on the 2nd. It then fell slowly, but rose again with the Declination on the 3 rd, attaining its second maximum a little after 6 p.m.

The Declination was above its mean value, and rather irregular, on the afternoon of the 5th, and then remained very steady until the morning of the 16 th. The disturbance was considerable from $2 \mathrm{a} . \mathrm{m}$. until $9 \mathrm{a} . \mathrm{m}$. on the 16 th , and at $9^{\mathrm{h}} .45^{\mathrm{m}} \cdot \mathrm{p} . \mathrm{m}$. the needle started a rapid movement towards the E. of $20^{\prime} 55^{\prime \prime}$ in 23 minutes, returning Westward rather more slowly. The magnet was again disturbed from 8 p.m. on the 17 th until 8 a.m. on the 18th, and there was some irregularity about midnight on the six following nights. The V.F. magnet often fell below the mean position between the 16 th and 23 rd. The H.F. magnet was much less affected during this month by disturbing forces than the V.F. The latter part of the month was very quiet.

MAY.-With the exception of a slight daily disturbance occurring late in the evening, the beginning of the month was remarkably quiet until $6 \mathrm{a} . \mathrm{m}$. on the 14th. The storm, which then broke out, commenced with a tremulous movement of the Declination needle and also of the H.F. magnet, and was felt at, and about, the same absolute time at the observatories of $\mathrm{Zi}-\mathrm{Ka}-\mathrm{Wei}$ in China, of Toronto in Canada, and of Melbourne in Australia, and also on the telegraphic wires of the Persian Gulf. The tremor of the magnets lasted from 6 h. $4^{\text {m. a.m. until } 4 \text { p.m., }}$
when the larger movements began. The storm was at its height about midnight, after which it rapidly died away. Towards midnight all the magnets were much disturbed, and the V.F. trace was completely lost for a time, as the magnet was thrown off its balance by the severity of the shock.

During the latter half of the month there were no irregular movements of any importance, a slow Easterly oscillation of the Declination magnet shortly after $10 \mathrm{p} . \mathrm{m}$. on the 23 rd being the only disturbance worth recording.

June. - The principal storm of this month, and of the year, gave the first tokens of its advent immediately after midnight on the 3 rd, and lasted until $8 \mathrm{a} . \mathrm{m}$. on the 4 th. Some of the movements of the Declination magnet were very rapid, the increase of W. Declination between 8 h .17 m . and 8 h .28 m . being $3 \mathrm{I}^{\prime} 14^{\prime \prime}$, and the immediate decrease almost as rapid, thus forming a very sharp peak in the curve.

Between $2 \mathrm{p} . \mathrm{m}$. and $8 \mathrm{p} . \mathrm{m}$. on the 1 Ith there was a slight irregular movement of the magnets, and the remainder of the month was a perfect calm.

July.-The magnets were not quite so undisturbed during this month as they had been from the roth to the 3oth of June, but there was no irregularity of any very notable extent.

August. - The daily range of the Declination magnet was very well marked throughout this month during the day hours. With the exception of a slight disturbance, which began on the evening of the 6th, and lasted until the morning of the 8th, and also some irregularities on the 31st, there is nothing worthy of any special remark.

September.-A similar Easterly movement of the needle, with a slight increase of H.F., at about the same hour of the evening on the Ist, 2nd, 4th, 6th, and 7th ; and a little more irregularity towards the end of the month than is generally traceable on the curve, is all that demands any notice this month.

October.-Between midnight and 2 a.m. on the 7 th there was a decrease of the Vertical Component of the Force, which then quietly returned to its normal value. The Declination and Horizontal Force were both affected by the same disturbance.

On the 18th, 19th, and 20th, the Declination magnet was much more agitated than usual. A considerable Easterly movement, reaching its maximum at io $\mathrm{p} . \mathrm{m}$. on the 21st, was followed on the 23 rd by a wavy Easterly movement from 5 p.m. to 10 p.m., and the principal irregularities
from 6 to 8 were reproduced at the same hour on the following day, but on a much reduced scale. There is an indication of the same on the H.F. curve. Most of the month was very quiet.

November.-The first disturbance of the month began about $11.45 \mathrm{p} . \mathrm{m}$. on the 3 rd , and continued until $2.20 \mathrm{a} . \mathrm{m}$. on the 5 th. The V.F. increased considerably during the afternoon of the 4 th. The magnets then remained quiet until the morning of the 14 th, when the principal disturbance of the month commenced. From 6.30 p.m. to 2 a.m. on the following day the needle was generally considerably to the East of its mean position. The afternoon of the 15 th was quiet, but towards midnight the needle moved Westward through a large angle. The H.F. curve was never very irregular, and the V.F. was principally affected by the disturbing force between $7 \mathrm{p} . \mathrm{m}$. and midnight on the I4th. An Easterly oscillation shortly before 8 p.m. on the 19th, was repeated a few minutes earlier on the following day.

December.-This month opened with a storm of some magnitude, and lasted with some interruptions until I a.m. on the 4 th. Between 7 p.m. and io p.m. on the Ist, the movements of the Declination magnet were very irregular, and were accompanied by an increase of both Components of the Force. The most rapid oscillation was an Easterly deflection of $23^{\prime} 38^{\prime \prime}$ between 8 h .22 m . and 8 h . 33^{m}. There was not much disturbance on the 2nd, except in the evening. A weak disturbing force was again in action at $7 \mathrm{a} . \mathrm{m}$. on the 12 th , and it was felt for about twenty-four hours. Two similar oscillations of the Declination needle occurred shortly before $8 \mathrm{p} . \mathrm{m}$. on the 13 th and 14 th. The magnets were also moving rather irregularly on the 25 th, and the year closed with a considerable diminution of W. Declination, and abnormal vibrations of the H.F. and V.F. magnets.

PRESENTS RECEIVED.

Greenwich Observations for 1876 . . . from The Royal Observatory. ,, Nine-year Catalogue for 1872

Quarterly Returns of the Registrar General Registrar Gencral.
Hourly Readings of the Instruments of the Meteorological Committee
Daily Weather Charts
Meteorological Office.

Weekly Weather Report
" "

Quarterly Weather Report
" "

Report of the Meteorological Council of the R.S.
Reports to the Permanent Committee of the Meteorological Congress of Vienna
Proceedings of the R.S. Royal Society.
Monthly Notices of the R.A.S.
Memoirs of the R.A.S.
Report of the British Association
British Association.
Kew Committee Report for 1878 The Observatory.
Journal of the Scottish Meteorological Society . Researches on the motion of the moon made at the U.S. Naval Observatory, Washington, by Simon Newcomb
Report on the difference of Longitude between the U.S. Naval Observatory and the Sayre Observatory of Lehigh University, by J. R. Eastman

Naval Observatory, U.S.
Scottish Met. Soc.

Tri-daily Bulletin of the Signal Service, U.S.A. Annual Report of the Chief Signal Officer to the Secretary of War, 1877, Washington	War Department, U.S.
Smithsonian Report.	Smithsonian Institution.
Report of the Meteorological Service of the Dominion of Canada	G. T. Kingston.
Report on the Government Observatory, Colaba	The Observatory.
Report on the Administration of the Meteorological Department in Western India	C. Chambers.
Meteorology of the Bombay Presidency	,
Brief Sketch of the Meteorology of the Bombay Presidency in 1876	F. Chambers.
Meteorological Observations made at the Hon. East India Company's Observatory at Madras in 185 x to 1855	Sec. of State for India.
Meteorological Returns, St. F. Xavier's College, Calcutta	The Observatory.
Meteorological Observations, Juggarow Observatory, Vizagapatam	,
Annual Report of Observatory, Mauritius, for 1876	"
Mauritius Meteorological Results for 1876	"
Monthly Record of the Melbourne Observatory	"
Twelfth Report of Board of Visitors to Melbourne Observatory	H. M. Government.
Results of the Observations in Meteorology, \&c., at Melbourne Observatory, 1875 .	"
Astronomical Observations taken to the end of 1877 at the private Observatory of J. G. Barclay	J. G. Barclay.
Meteorological Report of the Marlborough College Natural History Society	G. J. Symons.
On a new and remarkable variable star in the Constellation Ara, by J. Tebbutt .	The Author.
Proposed correction to the assumed longitude of the Sydney Observatory, J. Tebbutt .	"
Tables for the Reduction of Solar Observations, by Warren De La Rue (No. 2.)	"
Notes and Suggestions to the Observers of the Transit of Mercury, by Lord Lindsay	"
Sunspots and Rainfall, by C. Meldrum .	"

Description of the Observatory at Higher Be-from The Author. bington, Cheshire, by R. C. Johnson
Observations upon the Solar Eclipse of July 29, 1878, by C. A. Young
The Total Solar Eclipse of July 29, 1878, by J. M. Degni .

New Solar Elements, by T. Carruthers
Papers on Physical Science, by H. Lloyd
Plane and Spherical Trigonometry, by F. Lennon.
The Magnetism of the Earth, by Captain F. J. Evans
Diurnal Range of the Magnetic Declination at Trevandrum Observatory, by B. Stewart
Diurnal Range of the Magnetic Declination at Prague Observatory, by B. Stewart
Meteorology of the N. Atlantic during August, 1873, by Captain Toynbee

Meteorological Office.
Report on Observation of Luminous Meteors
Proposed Theory of the Progressive Movement of Storms, by R. Tennent
Creation and Providence, by J. E. Howard
The Daily Inequality of the Barometer, by W. W. Rundell

The Diurnal Variation of the Barometer at the Royal Observatory, Greenwich, by W. Ellis .
Degree of accordance of Mr. Glaisher's and the Kew Thermometer Standards, by W. Ellis .
Results derived from the Sunshine Records at the Royal Observatory, Greenwich, by W. Ellis
Rainfall Returns, by J. F. Bateman .
Influence of the Moon's phases on the Temperature of the Air, by P. A. Bergsma
Relative Duration of Sunshine at Greenwich and Kew, by G. M. Whipple
Comparison of the Standard Barometers of Greenwich and Kew, by G. M. Whipple
J. Glaisher.

The Author. $"$
$"$
$"$
$"$
"

Scale value of a Thomson's Quadrant Electrometer, by G. M. Whipple
On Periodical Changes of Terrestrial Magnetism, by F. W. Schulze
M. Dechevrens.

Metamorphic and Intrusive Rocks of Tyrone, by J. Nolan from The Author.
Note on Terrestrial Magnetism, by J. B. Jenkins
On the Ancient Volcanic District of Slieve Gullion, by J. Nolan
Annales de l'Observatoire Royale de Bruxelles . Observations Météorologiques Faites aux Stations internationales de la Belgique et des Pays Bays, par J. C. Houzeau et C. H. D. Buijs-Ballot
Annales Astronomiques de l'observatoire Royal de Bruxelles, nouvelle sćrie, tome $\mathbf{r}, 2$.
Annuaire de l'observatoire Royal de Bruxelles, 1878, 1879
Catalogue des ouvrages d'Astronomie et de Météorologie, qui se trouvent dans les principales bibliothèqıues de la Belgique
Rulletin Mensuel de l'Observatoire de Montsouris

L'Observatoire.
Annuaire de l'Observatoire de Montsouris
Nouvelles Météorologiques
La Société Météorologique.
Annuaire de la Société Météorologique de France
Bulletin Mensuel de l'Observatoire de $\mathrm{Zi}-\mathrm{Ka}-$ Wei
Observatoire Météorologique de Shien-Shien, Bulletin du Mois

L'Observatoire.

Observatoire Météorologique à Tchang-KiaTchouang près Hien-Hien, Province de Tchely, Bulletin Mensuel
Annales de la Société Scientifique de Bruxelles.
Instruments à employer en voyage, par A. d'Abbadie
Etudes sur la planete Mars, par F. Terby
Un dernier mot en réponse à M. Flammarion, par F. Terby .
Recherches sur les Couleurs des étoiles doubles, par M. I. Niesten
Observations sur l'aspect physique de la planête Mars, par M. L. Niesten
Recherches sur la réfraction astronomique, par M. Kowalski

Observatoire de Katon.

```
Tables des Refractions
                from Observatoire de Katon.
Sur le calcul de l'orbite elliptique d'une planète,
    par M. Kowalski
Recherches sur les variations des Vents à \(\mathrm{Zi}-\mathrm{Ka}\) -
    Wei, par M. Dechevrens
    L'Auteur.
Sur le déplacement de la bulle des niveaux à
    bulle d'air, par M. Plantamour, observations
    de Mons. A. d'Abbadie .
Notice sur les instruments de Météorologie de
    M. Redier
Rapport fait par M. Goulier sur les barométres
    Monumentaux de M. Redier .
Prise et Débâcle des Lacs en Suède, par H. H.
    Hildebrandsson
Le Pére Secchi, par Victor van Tricht
Sur le Psychrométre, par W. Marriott
Sur la demonstration de l'equation \(\Delta \nu=-4 \pi \rho\)
    dans la théorie du Potential, par J. Delsaulx
Bullettino Met. dell' Oss. del Coll. Rom.
Bullettino Met. dell' R. Oss. Astr. di Napoli
Bullettino Mensile dell' Oss. Valerio in Pesaro .
Bullettino Met. dell' Oss. del R. Coll. in Mon-
    calieri
La Corrispondenza Meteorologica Italiana, pel
    P. F. Denza .
Studi sulla climatologia della Valle d'Aosta, pel
    P. F. Denza
In Memoriam, P. A. Secchi
L'Oss. del Coll. Rom.
Meteorologia Romana, pel P. S. Ferrari .
Observatorio Met. del Ateneo Municipal de
Manila
Anales del Observatorio de San Fernando, por
    C. Pujazon, \(1875-6\)
Almanaque Náutico del Observatorio de San
    Fernando, 1879
Observaciones Meteorologicas del Colegio Cato-
        lico del SS. Corazon de Jesus en Puebla,
        1877
Apuntes relativos a los Huracanes de las An-
    tillas, por B. Vines
Monatliche Berichte über die Resultate aus den
        Meteorologischen Brobachtungen augestellt
```

an den Königlich Sächsischen Stationem in Jahre, 1877, von Dr. C. Bruhns . . . from Die Sternwarte.
Veröffentlichungen von der Königlichen Sternwarte zu Göttingen
Jahrbücher der K.K. Central-Anstalt für Meteorologie ünd Erdmagnetismus in Wien, von Ferdinand Asuaghi
Annalen des Physikalischen Central Observatoriums von H. Wild, 1877, St. Petersburg . Monats-und-Jahresresumés des Meteorologischen Stationen in Russland, aus den annalen des Phys. Centr. Obs. 1876-7
Die Triangulation von Java, von J. A. C. Ondides Phys. Centr. Obs. 1876-7
Die Triangulation von Java, von J. A. C. Ondimans zweite abtheilung
J. A. C. Ondemans.

Bericht über die Beobachtung des Venus-Durchgangs von 8 December, 1874, in Luxor von A. Auwers

Theorie des Bifilar-Hygrometers von W. Klinkerfues .
Zeitschrift des Esterreichischen Gesellschaft für Meteorologie von Dr. J. Hann

Das Central-Observ.
A. Auwers.
W. Klinkerfues.

Uber das Meteorologische Bureau fur Witterungsprognosen in Königreich Sachsen von Prof. Dr. C. Bruhns
C. Bruhns.

Berichte des Prof. Dr. C. Bruhns für den Meteorologen Congress in Rom. 1879
Bijdrage tot de Kennis der Weersgesteldheid ter Kuste van Atjed door Dr. Bergsma . . J. Hann. "

Dr. Bergsma.

ANNUAL VARIATION IN AMOUNT OF RAINFALL.

ANNUAL VARIATION IN NUMBER OF DAYS ON WHICH RAIN FELL.

YEARLY RANGE OF RAINFALL.

[^0]: The Maximum monthly mean height of the Barometer was in March 1854, and was $29 \cdot 861$
 The Minimum ,, ,, in December 1868, and was $28 \cdot 984$
 The Maximum yearly mean height of the Barometer was in 1858 ,and was
 29.544
 The Minimum $29 \cdot 389$

