STONYHURST COLLEGE OBSERVATORY.

RESULTS

OF
METEOROLOGICAL AND MAGNETICAL OBSERVATIONS.
1879.

MANRESA PRESS, ROEHAMPTON.

TABLE OF CONTENTS.

Page
Introduction 5
Monthly Meteorological Reports 9
Yearly Meteorological Summary 33
Table of Occasional Phenomena 35
Agricultural Notes 3^{6}
Observations of Crops and Flowers 38
Observations of Trees and Shrubs 39
Observations of Upper Clouds (Cirrus) 40
Magnetic Report-
I. Absolute values of the elements of Terrestrial Magnetism 42
2. Magnetic Disturbances 49
3. Daily Range of the Declination from 1868 to 1879 54
List of presents received 63

INTRODUCTION.

In the course of the year 1879 no change was made in the daily routine meteorological work of the observatory, except the addition of the synchronous meteorological observations which were requested for the French central office. The usual observations for the Board of Trade, and the observatory series of meteorological readings, which has now been continued uninterruptedly for more than thirty years, were both carried on by the same staff of observers as in previous years. The report drawn up at Stonyhurst on the Climate of Kerguelen, has been published by the Meteorological Committee. Three anemometers were sent out to Manila by request of P. Faura, for the use of his observatory.

The monthly and weekly observations of the earth's magnetic elements, and the photographic records of the variations of the Declination and of the two components of the Intensity, have been continued as usual, and much greater progress has been made than heretofore with the reduction of the curves of the self-registering instruments. This renders it possible to add to this report some preliminary results for the Declination, which will, it is hoped, soon be followed by a more complete treatment of the subject.

The astronomical work of the observatory has been carried on this year with increased energy, and several papers have appeared in the Royal Astronomical Society's
monthly notices, and in other scientific publications on the results of the observations of Jupiter's satellites, of the November meteors, and of measures of the chromosphere.

The greatest change this year in the observatory has been the introduction of daily observations of the chromosphere. The large automatic spectroscope, of which mention was made in last year's report, has received numerous additions in the course of the year, which have made it practically serviceable for mapping the solar chromosphere. The instrument returned in its present complete shape from London in October last, and daily observations were started in November. It is encouraging to remark that, even at that season of the year, satisfactory observations of the whole, or of great part, of the chromosphere were made on in days in the first month, and on 8 days in the second.

This automatic spectroscope was constructed by Browning, and has received every attention at his hands. It consists of 6 prisms of 60°, and the same screw which enables the observer to sweep slowly or rapidly along the spectrum, adjusts at the same time all the prisms automatically to the minimum angle of deviation. The rapid movement is managed very conveniently by unclamping the slow-motion piece, and thus allowing the nut to run freely on small ivory rollers along the screw. The path of the pencil of light which traverses the slit may be followed very readily. After passing through the collimator, it falls on a prism of total reflection, and is thus sent through the lower half of the dispersing prisms until it meets a second total reflection prism, which sends the pencil of rays into the upper portion of the last dispersing prism, and then through the upper half of all the battery of prisms, till at last the rays fall on the object-glass of the
telescope used for examining the spectrum. As the second prism of total reflection is moveable, and can be placed in a moment behind any one of the dispersing prisms, the observer can easily examine an object successively with a dispersing power of two, four, six, eight, ten, or twelve prisms of 60°. A dispersion of eight prisms is generally preferred for the study of the chromosphere, but two prisms are amply sufficient to show the chromosphere and prominences. A micrometer is attached for measuring the distance between the lines of the spectrum, and the method adopted for recording each whole revolution of the screw is simple and very effective. A pin on the inside of the micrometer head moves at each revolution one tooth of the wheel of an auxiliary index, and each time the pin acts a click is heard whilst the index advances one number : the whole revolution can therefore be counted by eye or ear. In observing the varying height of the chromosphere, it is found to be much more convenient to use a photographic scale reading to hundredths of a millimetre, than to employ a spider-line micrometer; a very convenient scale has therefore been photographed by an assistant. As it may be found desirable to try to take photographs of solar prominences, or of certain portions of the spectrum, a small photographic camera has been provided, which can, when required, be screwed into the place generally occupied by the eye-telescope.

The spectroscope is attached to the eye end of the large equatoreal by means of an adapter, provided with two screws at right angles to each other, which allow the observer to place the slit of the spectroscope either radial or tangential to the limb of the sun, whilst the sun's centre is at the centre of the field of the telescope. It is then easy by aid of rack and pinion to sweep round the solar
ircumference, and measure the height of the chromosphere and the prominences, without ever removing the sun from the centre of the field. By this means the whole chromosphere is now measured daily, when the sky is clear, between 1 I a.m. and I p.m. Position-circles are attached to both telescope and spectroscope for reading the angular distance of any prominence from the N . or S . point of the sun's disk.

The alterations and additions made to the spectroscope in the course of the year were in some cases of vital importance. Thus the addition of a rack and pinion to the adapter, and a change in the place of the positioncircle, were imperatively necessary; the millimetre scale and the photographic camera are extremely useful, and the various tints of coloured glass and the cylindrical lenses for the eye-piece are needful for experiments.

The readings of the chromosphere taken during the months of November and December, show that the mean height of this solar envelope was then from $5^{\prime \prime}$ to $6^{\prime \prime}$, but on one occasion a prominence was observed which attained the enormous height of $3^{\prime} 43^{\prime \prime}$. This last observation showed the necessity of procuring the additional slit for the collimator, by means of which prominences of exceptional dimensions might more readily be measured.

Two of the larger telescopes, one a Cassegrain reflector of $91 / 2$ inch aperture, exceedingly well mounted as an altazimuth, the other a 4 inch achromatic with equatoreal mounting, including Right Ascension and Declination circles and slow motion screws, now stand permanently in the grounds adjoining the observatory, and can be used for occasional observations, and also habitually for educational purposes.

S. J. Perry.

Stouyhurst (1)bservatory.

Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime}$ N. Long. 9 m .52 s . 68. w. Height of the Barometer above the sea, 38 Ift .

METEOROLOGICAL REPORT.
January, 1879.

Results of Observations taken during the month.	Mean for the last 32 years.
Mean Reading of the Barometer.........................29.613	29.417
Highest , on the 27th30\%074	$30 \cdot 007$
Lowest , on the 3rd29.080	$28 \cdot 568$
Range of Barometer Readings............................. 0.994	1.439
Highest Reading of a Max. Therm. on the 13th and 14th $46^{\circ} \mathrm{O}$	51.6
Lowest Reading of a Min. Therm. on the rith......... 17.3	21.0
Range of Thermometer Readings 28.7	$30 \cdot 6$
Mean of all the Highest Readings 35.9	$42 \cdot 3$
Mean of all the Lowest.................................... 25.0	$33^{\circ} \mathrm{O}$
Mean Daily Range 1009	$9 \cdot 3$
Deduced Monthly Mean (from Mean of Max. and Min.) $30 \cdot 3$	$37 \cdot 5$
Mean Temperature from dry bulb 30'1	$37 \cdot 6$
Adopted Mean Temperature 30.2	$37 \cdot 6$
Mean Temperature of Evaporation....................... 28.7	$36 \cdot 2$
Mean Temperature of Dew Point $24^{\circ} 2$	34^{1}
Mean elastic force of Vapour 0.130 in	$0 \cdot 199$ in
Mean weight of Vapour in a cubic foot of air 1.5 gr	2.3 gr
Mean additional weight required for saturation......... 0.5gr	$0 \cdot 4 \mathrm{gr}$
Mean degree of Humidity (saturation 1×0) 0.77	0.86
Mean weight of a cubic foot of air 560.6gr	$548 \cdot 3 \mathrm{gr}$
Fall of Rain ... $1 \cdot 532$ in	$4 \cdot 205$ in
Number of days on which Rain fell 8	20.8
Amount of Evaporation 0.322 in	$0 \cdot 798$ in

No. of days in the month on which the prevailing wind was	N	NE	E	SE	S	SW	w	Nw
	2	11	10	0	1	3	4	0
Mean Velocity in miles per hour	$5 \cdot 7$	5.9	$12 \cdot 3$	0	1177	$6 \cdot 5$	79	0
Total No.of miles for each Direction	275	1554	2958	\bigcirc	281	469	754	\bigcirc

The total number of miles registered during the month was 629 I .
The max. Velocity of the wind was 29 miles per hour; direction S. on the 14 th at 11 a.m.
Mean amount of Cloud (an overcast sky being indicated by 10%) $\quad 6.9$
In the month of January, the highest reading of the Barometer
during 32 years, was on the 8 th, in 1859 , and was

The mean reading of the Barometer for the month is 0.2 of an inch above the average for January, and as the mercury never fell below 29 inches, the range is half an inch less than the mean of the last 32 years.

The adopted mean Temperature, which is the lowest ever recorded for January, is $7^{\circ} 4$ below the average for the month, and the Dew point is almost 10° lower than the mean value.

The fall of Rain was exceedingly small, and the number of days on which rain or snow fell was scarcely more than one third of the usual number.

The evaporation was very slight, and the prevailing wind was N.E by \mathbf{E}.

Mean amount of Cloud (an overcast sky being indicated by 10%)... 9.5
In the month of February, the highest reading of the Barometer during 32 years, was on the 11 th, in 1849 , and was $30 \cdot 452$
The lowest 6th, 1867 $28 \cdot 208$
The highest Temperature 8th, 1877 $58 \cdot 3$
The lowest , Ist, 1855 10 I
The highest adopted mean temperature of the month, 1869 $44^{\circ} 0$
The lowest " ," 1855 $28 \cdot 6$

During this month the Barometer was more than half an inch lower than in January, and yet the Rainfall did not reach the average in amount, although the number of days on which rain fell was large.

The Temperature was very much higher than in the preceding month, but it still remained almost 3° below the mean for February. Evaporation still very slight.

Wind almost equally from the N.E. and from the S.W.

Mean amount of Cloud (an overcast sky being indicated by $10 \circ$)... $\quad 7.6$
In the month of May, the highest reading of the Barometer
during 32 years, was on the 22 nd, in 1855, and was $30 \cdot 124$
The lowest ", \quad 28th, 1877 28.559

The highest Temperature ", 19th, $8864 \ldots \ldots \ldots$.
The lowest ", \quad, 4th, $1855 \ldots \quad 23^{.5}$
The highest adopted mean temperature of the month, 1848 55° I
The lowest , ", $1855 \ldots \quad 45^{\circ}$

The Barometer agrees well with the mean, but the Thermometer still keeps below the average. The rain fell often but not heavily. The wind was mostly from the West.

19

June, 1879.											
Results of Observations taken during the month.							$\begin{gathered} \hline \text { Mean fir the } \\ \text { last } \\ 32 \text { years. } \\ \hline \end{gathered}$				
Mean Reading of the Barometer						29.521					
Highest ," on	on the 13th........... 29.731					29.894					
Lowest \quad,Range of Barometer Readings	on the 21st......			... 28		29.004					
	Range of Barometer Readings $0 \cdot 743$					0.890					
Highest Reading of a Max. Therm. on the 15th 70×0						$76 \cdot 9$					
Lowest Reading of a Min. Therm. on the 1st					38.0	39.1					
Range of Thermometer Readings					32.0	$37 \cdot 8$					
Mean of all the Highest Readings					73	653					
Mean of all the Lowest					$47 \cdot 9$		$48 \cdot 1$				
Mean Daily Range					$5 \cdot 8$		17.2				
Deduced Monthly Mean (from Mean of Max. and Min.)					54.0		54.9				
Mean Temperature from dry bulb					$53 \cdot 1$	547					
Adopted Mean Temperature					53.6	54.8					
Mean Temperature of Evaporation					$50 \cdot 6$		52.1				
Mean Temperature of Dew Point					477	49°					
Mean elastic force of Vapour $0^{\circ} 330$ in							$0 \cdot 358$ in				
Mean weight of Vapour in a cubic foot of air $\quad 3.7 \mathrm{gr}$ Mean additional weight required for saturation.......... 0.9 gr						3'9gr					
								9gr			
Mean degree of Humidity (saturation $\mathbf{1} \times 0$) 0.80						0.79					
Mean weight of a cubic foot of air							530.9gr				
Fall of Rain						3772 in					
Number of Days on which Rain fell						3.791 in					
Amount of Evaporatio											
No. of days in the month on which the prevailing wind was	N	ne	E	SE	s	sw	w Nw	NW			
		4	2	2	6	12	4	-			
Mean Velocity in miles per hour	-	$7 \cdot 1$	8.0	8.2	12.2	9.6	8.2	-			
Total No.of miles for each Direction	O 0	683	382	394			785	-			
The total number of miles registered during the month was 6763 . The max. Velocity of the wind was 34 miles per hour ; direction S. at 2 and 3 p.m. on the roth.											

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$).. 87
In the month of June, the highest reading of the Barometer during 32 years, was on the 15 th, in 1874, and was $30 \cdot 219$
The lowest , ,, 12th, 1862 28.632
The highest Temperature 27th, 1878 872
The lowest ," 30th, 1856 $34^{\prime 2}$
The highest adopted mean temperature of the month, 1858 59°
The lowest " 1856 and 1860 $52 \cdot 2$

Barometer low and range rather small.
Temperature only slightly below that of previous years.
Rainfall frequent and heavy; in amount an inch above the mean. Wind generally S.W. by S.

Mean amount of Cloud (an overcast sky being indicated by 10%)... $8 \cdot 5$
In the month of August, the highest reading of the Barometer during 32 years, was on the 215 , in 1874 , and was 30'114
The lowest ,, , 3rst, $\mathbf{1 8 7 6}$ $28 \cdot 555$
The highest Temperature 2nd, 1868 88.0
The lowest . " 21st, 1864 \& 1869 $36 \cdot$
The highest adopted mean temperature of the month, 1857 61°
The lowest ", 1848 $52 \cdot 5$
Barometer and Thermometer both rather low. Evaporation keeps small. Wind S.W. Rainfall excessive, the amount being almost double the average. The fall during this and the two preceding months has been 6.5 in . above the mean of these summer months in other years.

Mean amount of Cloud (an overcast sky being indicated by 10%). 73
In the month of September, the highest reading of the Barometer during 32 years, was on the 15 th, in 1851, and was $30 \cdot 274$
The lowest ,
22nd, 1863 28•37 I
The highest Temperature , , 6th, 1868 S50
The lowest "
6th, $1855 \ldots \quad 30^{\circ} 7$
The highest adopted mean temperature of the month, 1865 59.1
The lowest "
1863 50 '9

Barometer and Thermometer differ little from the mean. Rainfall small. Wind from the W.S.W. by S. A strong south wind on the $15^{\text {th }}$.

October, 1879.								
Results of Observations taken during the month.						Mean for the last 32 years.		
Mean Reading of the Barometer..........................29:707						29.411		
Highest \quad, on	on the 8th				.151	29.987		
Lowest ,, on	on the 20th.				. 845	28.658		
Range of Barometer Readings..					-306	1 329		
Highest Reading of a Max. Therm. on the 5th 62.9						$64^{\circ} 7$		
Lowest Reading of a Min. Therm. on the 15th.........					28.0	29.9		
Range of Thermometer Readings					34.9	$34 \cdot 8$		
Mean of all the Highest Readings					53.1	54.8		
Mean of all the Lowest..					$40 \cdot 4$	42.4		
Mean Daily Range					12.7	12.4		
Deduced Monthly Mean (from Mean of Max.and Min.)					$46 \cdot 8$	$47 \cdot 6$		
Mean Temperature from dry bulb					$47 \cdot 5$	$48 \cdot 2$		
Adopted Mean Temperature					$47 \cdot 2$	47%		
Mean Temperature of Evaporation					45^{1}	45%		
Mean Temperature of Dew Point					$42 \cdot 8$	$43 \cdot 3$		
Mean elastic force of Vapour						0.283 in		
Mean weight of Vapour in a cubic foot of air						3.2 gr		
Mean additional weight required for saturation 0.5						0.6 gr		
Mean degree of Humidity (saturation 1×0) 0.86						0.85		
Mean weight of a cubic foot of air .					$2 \cdot 6 \mathrm{~g}$	$537 \cdot 1 \mathrm{gr}$		
Fall of Rain					145	$5 \cdot 369$ in		
Number of days on which Rain fell					20		21.6	
Amount of Evaporation							1.627 in	
No. of days in the month on which the prevailing wind was	N	NE	E	SE	S	sw	w	Nw
	I	5	2	0	1	8	12	2
Mean Velocity in miles per hour	4°	$8 \cdot 2$	$3 \cdot 8$	0	$2 \cdot 3$	73	$10 \cdot 2$	$7 \cdot 2$
Total No. of miles for each Direction	95	987	183	0	55		2926	343

The total number of miles registered during the month was 5987 .
The max. Velocity of the wind was 40 miles per hour; direction W.S.W. at noon on the 19th.

November, 1879.

| | | |
| :--- | :--- | :--- | :--- | :--- |

Mean amount of Cloud (an overcast sky being indicated by io \%)...			
In the month of December, the highest reading of the Barometer during 32 years, was on the 22nd, in 1849, and was 30.378			
The lowest		5th, 1876	28.028
The highest Temperature		9th, $1876 \ldots \ldots .$.	58.1
The lowest		24th, 1860	67
The highest adopted mean	r	month, 1857	44^{6}
The lowest	"	1878	$30^{\circ} 3$
Barometer slightly higher even than last month, and Thermometer much below the mean. Rainfall small. Evaporation above the average. S.W. Winds predominated.			

Gummary of the (observations FOR 1879.	
	Mean for the last 32 years.
Mean Reading of the Barometer29'495	29.478
Highest , on December 12th ...30'338	30.281
Lowest , on February 10th ...28.370	28.276
Range of Barometer Readings 1968	2.005
Highest Reading of a Max. Therm. on August 12th... $77{ }^{\circ}$	81.7
Lowest Reading of a Min. Therm. on December 4th 12.0	15%
Range of Thermometer Readings 65°	66.0
Mean of all the Highest Readings 5177	54.6
Mean of all the Lowest.................................... 38.3	$40 \cdot 9$
Mean Daily Range 134	137
Deduced Yearly Mean (from Mean of Max. and Min.) 44^{11}	46.7
Mean Temperature of dry bulb $44 \cdot 1$	$46 \cdot 9$
Adopted Mean Temperature $44^{1} 1$	$46 \cdot 8$
Mean Temperature of Evaporation 419	44^{6}
Mean Temperature of Dew Point 39.0	42.1
Mean elastic force of Vapour 0.249 in	0.276 in
Mean weight of Vapour in a cubic foot of air 2.9 gr	3.2 gr
Mean additional weight required for saturation........ 0.6 gr	$0 \cdot 7 \mathrm{gr}$
Mean degree of Humidity (saturation 1.00) 0.82	0.84
Mean weight of a cubic foot of air $535{ }^{4.4 g r}$	$538 \cdot 5 \mathrm{gr}$
Total Fall of Rain in the Year42.395 in Number of days per Month on which Kain fell......... $18 \cdot 8$	$47.432 \text { in }$
Amount of Evaporation \qquad $20 \cdot 851$ in	27.059 in
The Maximum monthly mean height of the Barometer was in March 1854, and was	
The Minimum , ,	
The Maximum yearly mean height of the Barometer was in 1858, and was.$29 \cdot 544$	
The Minimum ," ," ," in 1866 , and was	- 29.389

The greatest monthly range of the Barometer was in November, 1859, and was \qquad		9
The least	in July, 1852, and was	0.505
The highest reading of the Barometer, during 32 years, was on February 11th, 1849, and on March 4th, 1854, and was 30452		
The lowest Extreme range	on July 22nd, 1873, and was.	27.939
		2.513
The highest tem	as on July 15th, 1868, and was	S8.2
The lowest	December 24th, 1860	67
The highest adopted mean temperature of a month, July 1868		62.4
The lowest	February, 1855	$28 \cdot 6$
The highest	an temperature of a year, 1868	49^{1}
The lowest	1879	44^{1}
The greatest monthly mean weight of vapour,in a cubic foot of air $\ldots \ldots . ~ J u l y, ~$$1852 \ldots . .$.		$5^{1 /}$
The least	", February, 1855	14
The greatest fall of rain in a month, was in October, 1870, and was 13.437 in		
$\left.\begin{array}{l}\text { The greatest number of days on } \\ \text { which rain fell in one month }\end{array}\right\}$ July, 1861, December, 1868		
		31
The least The greatest f	March, 1852	
The greatest and was.	24 hours was on November 16, 1866,	3.893

The adopted mean temperature of the year is the lowest ever recorded; that of 1855 , which was the previous minimum, is 0.5 higher than the mean for 1879. The months of April and July contributed largely to this result, having mean temperatures $4 \cdot 1$ and $3 \cdot 2$ respectively below the averages for these months. Only two months of the year were entirely free from frost, viz., July and August.

The Rainfall was 5 inches less than the mean of previous years, and the evaporation less by rather more than 6 inches. The heavy rains, with one single exception, fell during the four summer months, June to September, and most of the electric storms occurred in June, July, and August.

AGRICULTURAL NOTES.

January.-Owing to the severity of the weather all agricultural work has been at a standstill.

February.-The greater part of the month has been exceedingly cold. and there has been very little tillage in consequence. The ploughing, in preparation for oats, during the first week had to be suspended.

March.-Still very cold and frosty, yet the ploughing had to be done. and oat sowing commenced during the last week.

APRIL.-Cold still severe. Oats were all sown before the end of the first week, and most of the green crops by the end of the month. Everything late; grass looking quite brown. A few early flowers were in blossom towards the middle of the month.

May.-During the first half of the month, weather cold with frost a: night ; afterwards more genial. Woods leafless, but large quantitic of blossom on the fruit trees gave good promise. Moisture sadly wanted for the grass.

June.-Rain came at last, but little sun. Vegetation very backwan: Grass poor. Potatoes late, and showing symptoms of disease. Stoncfruit good. Apples and pears sadly in want of sun, the newly-formed fruit falling off rapidly.
July.-Wet and cold. Wheat and oats looked bad. Grass cut on the 7th ; crop below average. Strawberries ripe towards end of month but few in number, and inferior in quality. Peas and beans scarce. Early potatoes very small, and diseased. Fruit generally very poor. The worst season for years. Very little hay as yet housed.
August.-Still very wet. No grain; and much grass as yet to cut. Gooseberries rather fewer than usual ; currants fair; apples and pears small and ferr. Green crops greatly in need of warmth.

September.-Weather more favourable, but still wet. Oats and wheat cut on the IIth; oats slightly, and wheat very much, below par as io quality, but oats a very heavy crop, and wheat fairly plentiful.

October.-Wheat and oats mostly got in by end of second week, and potatoes towards end of month. Champion potatoes very good both in quantity and quality; others badly diseased. Plums fair. Peaches and apricots failed generally. Green crops small.

November.-The green crops were all housed by the end of the first week. Wheat was sown during the second week. Sharp frost during great part of month.

December.-Frost too severe for out-door work.

OBSERVATIONS OF CROPS AND FLOWERS.										
GRAIN, ETC.					GREEN CROPS.				FLOWERS.	
Name.	When sown.	In Flower.	In Ear.	When cilt.	Name.	When sown.	Above grnd.	Stored.	Name.	In Blossom.
Wheat Oats Beans Peas	Nov, 1 ith Mar. 29th Mar. 3rd Mar. Ist	June 22nd June 20th June 14th June 9th	July 1oth July Inth	Sep. 11th Sep. 13th Aug. 15th July 23rd	Potatoes Turnips Beet Mangel Onions	April	May 23rd May 25th May 23rd May 23rd May 2nd	Oct. 23rd Nov. (first week) Nov. ," Nov. ,, Oct. 20th	Anemone Wild Hyacinth Primrose Renunculus Wood Violet May Flower Jonquil Snowdrop Crocus Daffodil Forget-me-not Monkshood Sweet William	Ap. 20th May 24th Ap. 20th Ap. 20th May 14th May 23rd May 14th Feb. 12th Mar. 15th Ap. 18th May 23rd July 16th July 15th

$\begin{aligned} & \dot{\rho} \\ & \oplus \\ & \mapsto \\ & \square \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$			$\begin{aligned} & \text { ? } \\ & \text { 己 } \\ & \text { + } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { s } \\ & \text { n } \\ & 0 \\ & 0 \\ & 7 \end{aligned}$									
		E 0 0 0 0 0 \vdots	$\begin{aligned} & \text { 믔 } \\ & \underset{\Xi}{\sim} \\ & \end{aligned}$		$\begin{aligned} & \underset{\sim}{\infty} \\ & \text { N } \\ & \underset{\sim}{\sim} \end{aligned}$		$\begin{aligned} & \stackrel{a}{0} \\ & \text { N } \\ & \dot{4} \end{aligned}$						
		$\begin{gathered} \stackrel{\dot{ே}}{E} \\ \underset{\sim}{Z} \end{gathered}$	号	烒			若						
2244$[1$$[4$$\square$4		㐫				$\begin{gathered} \text { U } \\ \text { On } \end{gathered}$		$\begin{aligned} & \text { 른 } \\ & \text { 苞 } \end{aligned}$	$\begin{aligned} & \stackrel{5}{\infty} \\ & \text { 它 } \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\leq}{\stackrel{\rightharpoonup}{\circ}} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$			$\stackrel{\sim}{0}$
			$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ \stackrel{N}{N} \\ \underset{\sim}{\boldsymbol{N}} \end{gathered}$	$\begin{aligned} & \text { 工 } \\ & \text { ふ } \\ & \text { む } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathbf{g}} \\ & \text { N } \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \stackrel{5}{0} \\ & \text { N } \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{N}{c} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \dot{\sim} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \stackrel{\leftrightarrows}{\infty} \\ & \stackrel{\sim}{\sim} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { 등 } \\ & \text { N} \\ & \text { だ } \end{aligned}$	$\begin{aligned} & \Xi \\ & \underset{N}{4} \\ & \dot{4} \end{aligned}$	喜	$\begin{aligned} & \underset{\sim}{\text { ㅌ }} \\ & \stackrel{\vdots}{6} \end{aligned}$
		$\begin{aligned} & \text { ジ } \\ & \text { ËZ } \end{aligned}$	先	岕	芸	－	$\begin{aligned} & \stackrel{\text { I }}{E} \\ & E \\ & \widetilde{\widetilde{y y}} \end{aligned}$	䓌		$$	$\begin{aligned} & \text { む } \\ & \frac{0}{4} \\ & \tilde{N} \\ & 0 \\ & 0 \end{aligned}$	亭	－
2		\％	$\begin{aligned} & \text { s } \\ & \text { B } \\ & 0 \\ & \text { 呙 } \end{aligned}$		$\begin{aligned} & \text { 志 } \\ & \text { : } \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \sim \\ & \text { N் } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \dot{む} \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	듣			
［1］		$\begin{aligned} & \text { ジ } \\ & \Xi \\ & \Xi \end{aligned}$			$\begin{aligned} & \text { 른 } \\ & \text { 㙳 } \end{aligned}$			$\text { June } 15 \text { th }$		$\begin{aligned} & \text { İ } \\ & \text { U } \\ & \underset{\Xi}{\Xi} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 돟 } \\ & \text { 흘 } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { そ } \\ & \text { en } \end{aligned}$	
$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$		$\begin{aligned} & \dot{\text { ت }} \\ & \Xi \\ & \Xi \end{aligned}$		$\underset{\sim}{\tilde{\omega}}$	$\begin{aligned} & \text { 品 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { c } \\ & \text { ¢ } \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \frac{5}{0} \\ & \dot{\sim} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { ت} \\ & \text { N } \\ & \text { 总 } \end{aligned}$	$\begin{aligned} & \vec{\sim} \\ & \underset{\sim}{x} \\ & \dot{Z} \end{aligned}$	$$	$\begin{aligned} & \text { 号 } \\ & \text { 安 } \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\Delta} \\ \dot{\sim} \\ \dot{\xi} \end{gathered}$	
						$\stackrel{\underset{ت}{E}}{\underset{\sim}{ت}}$	$\underset{\sim}{\text { E }}$	등	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { H } \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \text { U్ల } \\ & \text { M } \end{aligned}$		

OBSERVATIONS OF UPPER CLOUDS (CIRRUS).					
Date.	G. M. T.	Cloud Direction.	Velocity.	Direction.	$\text { arce }(0 \cdot 12)$
	Noon. 10 a.m. 4 p.m. 9 a.m. $10 \mathrm{a} . \mathrm{m}$. $4.30 \mathrm{p} . \mathrm{m}$. 9 a.m. Noon. 9 a.m. Noon. 8 a.m. 9 a.m. 6 p.m. 7 a.m. 8 a.m. $9 \mathrm{a} . \mathrm{m}$. 10 a.m. 6 p.m. 6 p.m. 6 p.m. 7 p.m. $3.30 \mathrm{p} . \mathrm{m}$. $5 \mathrm{p} . \mathrm{m}$. 6 p.m. $5.30 \mathrm{p} . \mathrm{m}$. 5 p.m. 5 p.m. 6 p.m. 6 p.m. 4 p.m. $7 \mathrm{~m} . \mathrm{m}$. 8 a.m. 7 a.m. 8 a.m. 8.30 p.m. $10 \mathrm{a} . \mathrm{m}$. 7 p.m. 6 p.m. 2 p.m. 8 p.m.	W. S.S.E. W. by N. W. S.W. by W. S.S.E. N. by W. N.N.W. S.E. by E. W. by N. S. by W. S.W. S.S.W. S. by W. S.S.W. S.W. by W. W. by S. E.S.E. S. by E. S.W. W.N.W. N. N. by W. S.S.W. N. by W. N.W. S.S.E. N.E. by N. S. by E. S.S.W. S. by W. S.W. by S. S.W. W. E.S.E. S.S.W. W. S.W. by W. W.N.W.	$\begin{aligned} & 5 \\ & \mathbf{3} \\ & \\ & \\ & 5 \\ & 1 \\ & 1 \\ & 3 \\ & 2 \\ & 3 \\ & 1 \\ & 3 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	W. E. N.E. N.N.E. N.N.E. S.W. E. N. S.S. N.E. S.W. S. W. W.N.W. W.N.W. S. by W. S.W.byS. W. S.E. by E. S. by E. S.E. by E. W. by S. W. by S. S.W.by W. W. W. W. by N. N.E. W. N.W. N.N.E. N.E. N.N.E. S.E. S.W. W.S.W. S.W. S.W. W.S.W. S.W.	1 1 4 1 0 0 2 2 0 2 1 5 2 4 1 0 0 0 1 1 1 0 2 4 4 2 1 2 4 1 1 1 1 1

OBSERVATIONS OF UPPER CLOUDS (Continued).					
Date.	G. M. T.	Cloud Direction.	Velocity.	Direction.	ind.
	4 p.m. 2 p.m. 6 p.m. 4 p.m. 2 p.m. 6 p.m. Noon.	N. by E. N.W.	1		1
			1		
			2	W.S.W. S.W.	1
			3	N.N.E.	I
		S. by W.		W. by N.	2
		S.E. by E.	3	E. by N.	1
		W.S.W.	1	S.W.	4
	$1.30 \mathrm{p} . \mathrm{m}$.	S.W.by W.	2	S.W.W. ${ }_{\text {W. }}^{\text {S. }}$	3
	6 p.m.	W.W. ${ }_{\text {W. }}^{\text {S. }}$	3	S.W.by S.	2
	$7 \mathrm{a} . \mathrm{m}$.	S.W. by Sy W.		N.N.W.	0
	Io a.m.	W.S.W.		N. by E.	0
	Noon.	W. by S.	N.		-
	8 am.	W.	N.E. by N.		0
	$5 \mathrm{p} . \mathrm{m}$.	W.S.W.	S.W.by W.		1
	7 m m.	S.iw	N. by E.		1
	$9 \mathrm{a} . \mathrm{m}$.	S.S.W.	3	N.E. by N.	0
	$7.30 \mathrm{a.m}$. $5 \mathrm{p} . \mathrm{m}$.	S.W. by S. S. by E.	2		0
, 17	7 am .	W. by N.		W. by S.	1
" 18	$8 \mathrm{a} . \mathrm{m}$.	N.	3	N.W.by N.	1
" 19	$10.45 \mathrm{a} . \mathrm{m}$.	W.S.W.	2	W. by S.	7
") 27	$4.30 \mathrm{p} . \mathrm{m}$.	E.			2
Nov. 7	$9.15 \mathrm{a} . \mathrm{m}$.	W.S.W.	2	W. by N.	
" "	$10 \mathrm{a} . \mathrm{m}$.	N.W.		S.W.by W.W.S.W.	0
" \quad "	$2 \mathrm{p} . \mathrm{m}$.	W.N.W.	1		1
" ",	$4 \mathrm{p} . \mathrm{m}$.	W.N.W.	2	W. by N .	0
" \quad "	430 p.m.	W.S.W.	3	W. by N.	0
" 12	10 a.m.	W.N.W.	3	W. by N.	2
" "	11 am .	N.W.	4	N.N.W.	2
" 14	Noon.	N.E.	3		
	$3.30 \mathrm{p} . \mathrm{m}$.	N.	1	E. by N.	1
Dec. 12	Noon.	N.N.W.	1	N.N.E.	
" "	4 p.m.	N.			1
" 13		N.E.	2	N. by W.	1
" ",	$2 \mathrm{p} . \mathrm{m}$.	N.E.	1	W.S.W.	1
" 25	2 p.m.	N.	1		0
" 26	1 p.m.	W.	2	$\begin{aligned} & \text { S.S.E. } \\ & \text { S.E. by S. } \end{aligned}$	1
" 29	$3.30 \mathrm{p} . \mathrm{m}$.	S.E.	3	S.W.	3

Houthly filagnetical observations tahen at the College (bbservatory, Stonnhurst, 1879.

The Horizontal, Vertical, and Total forces are calculated 11 English measure; one foot, one second of mean solar time, and onc grain being assumed as the units of space, of time, and of mass.

The Vertical and Total forces are obtained from the absolute measures of the Horizontal force and of the Dip.

In the observations of Deflection and Vibration, taken each month for absolute measure of Horizontal force, the same magnet has always been employed.

The moment of inertia of the magnet with its stirrup, for different degrees of temperature, and the co-efficients in the correction: required for the effects of temperature and of terrestrial magnetic induction on the magnetic moment of the magnet, were determined at the Kew Observatory by the late Mr. Welsh.

The moment of inertia of the magnet with its stirrup, usins the grain and foot as the units of mass and of linear measure, is $5.2730 \mathbf{j}$. Its rate of increase for increase of temperature is 0.00073 for every 10 of Fahr.

The weight of the magnet with its stirrup is approximately 825 grains, and the length of the magnet is nearly 3.94 inches. The moment of inertia was determined, independently of the weight and dimensions, by the method of vibration, with and without a known increase of the moment of inertia.

The temperature corrections have always been obtained from the formula $q\left(t^{\circ}-35^{\circ}\right)+q^{\prime}\left(t^{\circ}-35^{\circ}\right)^{2}$, where t° is the observed temperature and 35° Fahr. the adopted standard temperature. The values of the co-efficients q and q^{\prime} are respectively 0001128 and $0^{\circ} 000000436$.

The induction co-efficient μ is $0^{\circ} 000244$.

The correction for error of graduation of the Deflection bar at 10 foot is +0.00004 ft ., at $1 \cdot 3+0.000064 \mathrm{ft}$.

The observed times of vibration are entered in the Table without corrections.

The time of one vibration has been obtained each month from the mean of twelve determinations of the time of 100 or of 200 vibrations.

The angles of deflection are each the mean of two sets of readings.
In deducing from these observations the ratio and product of the magnetic moment m of the magnet, and the earth's horizontal magnetic intensity X , the induction and temperature corrections have always been applied, and the observed time of vibration has been corrected for the effect of torsion of the suspending thread ; but no correction has been required for the rate of the chronometer, or for the arc of vibration, the former having been always under $3^{\prime \prime} \cdot 5$, and the latter never over 5^{\prime}.

The average deflection of the magnet caused by a twist of the torsion circle through 90°, has been about $8^{\circ} \circ$ of arc.

In the calculations of the ratio $\frac{m}{X}$, the third and subsequent terms of the series $I+\frac{P}{r^{2}}+\frac{Q}{r^{4}}+\& c$. , have always been omitted.

The adopted value of the constant P is $0^{\circ} 0055035$.
The Declination observations have been taken once a week. Each reading has been corrected by the photographic curves for all irregular disturbances, as well as for daily and monthly range.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{OBSERVATIONS OF DEFLECTION FOR ABSOLUTE measure of horizontal force.} \\
\hline Month. \& \& G. M. T. \& \& \[
\begin{gathered}
\text { Tem- } \\
\text { pera- } \\
\text { ture. }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Observed } \\
\& \text { Deflection. }
\end{aligned}
\] \& \({ }^{\log \frac{m}{x}}\) \\
\hline January ... \& D.
29th
" \& \(\begin{array}{ll}\text { H. M. } \\ 4 \& \\ 4 \& \text { p.m. } \\ 4 \& 32 \mathrm{p} . \mathrm{m} .\end{array}\) \& \[
\begin{gathered}
\text { Foot. } \\
10 \\
103
\end{gathered}
\] \& \begin{tabular}{l}
3 \\
35 \\
36.1 \\
\hline
\end{tabular} \& \(\begin{array}{rrrr}\circ \\ 13 \& 46 \& 58 \\ 6 \& 15 \& 15\end{array}\) \& \[
\begin{aligned}
\& 9 \cdot 0783^{\circ} 0 \\
\& 9^{\circ} \mathrm{O} 99 \mathrm{I}^{1}
\end{aligned}
\] \\
\hline February... \& 28th \& 10
11
41
\(4 \mathrm{a} . \mathrm{m} . \mathrm{m}\). \& 10 \& 43.1
44.3 \& 134738
61513 \& \[
\begin{aligned}
\& 900914 \\
\& 9^{\circ} 07976
\end{aligned}
\] \\
\hline March \& \& 9 \(922 \mathrm{am.m}\). \& 10
1.3 \& 49
50
50 \& \(\begin{array}{rr}13 \& 4747 \\ 612\end{array}\) \& \[
\begin{aligned}
\& 9.09661 \\
\& 9.07661
\end{aligned}
\] \\
\hline April \& 25th \& 11
12
12
\(13 \mathrm{a} . \mathrm{m} . \mathrm{m}\). \& 10
1.3 \& 48.4
48.6 \& 134826
61418 \& \[
\begin{aligned}
\& 9 \cdot 07990 \\
\& 9 \cdot 07898
\end{aligned}
\] \\
\hline May . \& 28th \& \(825 \mathrm{a} . \mathrm{m}\).
850 m. \& 10
1.3 \& 52.1
52.9 \& \(\begin{array}{rrr}134546 \\ 614 \& \end{array}\) \& \[
\begin{aligned}
\& 9 \cdot 07878 \\
\& 9.07905
\end{aligned}
\] \\
\hline June . \& 18th \& \begin{tabular}{ll}
12 \& 28 \\
12 \& 28 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 10 \\
\& 1.3
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{6 1 . 2} \\
\& \mathbf{6 2 . 4}
\end{aligned}
\] \& 134740
61514 \& \[
\begin{aligned}
\& 9.08040 \\
\& 9.08102
\end{aligned}
\] \\
\hline July \& 21st \& \& 10
1.3 \& 59.7
59.9 \& 134635
61346 \& \[
\begin{aligned}
\& 9.09773 \\
\& 9 \cdot 07915
\end{aligned}
\] \\
\hline August \& 30th \& 11
12
12
11 \& 10
10 \& \(60 \cdot 4\)
\(60 \cdot 3\) \& 134611
613 \& \[
\begin{aligned}
\& 9.07958 \\
\& 9.07887
\end{aligned}
\] \\
\hline September. \& 24th \& 11
II

$53 \mathrm{am} \mathrm{m} . \mathrm{m}$. \& $$
\begin{aligned}
& 10 \\
& 1 \div 3
\end{aligned}
$$ \& 51.5

52.0 \& | 1346 |
| ---: | ---: | ---: | ---: |
| 6848 |
| 14 | \& \[

$$
\begin{aligned}
& 9.07910 \\
& 907902
\end{aligned}
$$
\]

\hline October ... \& 14th \& 1059 am.

11 \& 10 \& 55.2

56.6 \& ${ }^{13} 43356$ \& $$
\begin{aligned}
& 9.07805 \\
& 9.07^{812}
\end{aligned}
$$

\hline November. \& 12th \& $950 \mathrm{a.m}$.
10 II am. \& 10
10 \& $56 \cdot 8$
576 \& 134420

61258 \& $$
\begin{aligned}
& 9.07828 \\
& 9.07803
\end{aligned}
$$

\hline December. \& 20th \& $1213 \mathrm{p} . \mathrm{m}$.
$1230 \mathrm{p} . \mathrm{m}$. \& $1 \cdot 0$
$1-3$ \& 50.6
$47 \cdot 5$ \& 134531

61255 \& $$
\begin{aligned}
& 9.07854 \\
& 90773^{1}
\end{aligned}
$$

\hline \multicolumn{7}{|c|}{| m represents the Magnetic moment of the Defiecting Magnet. |
| :--- |
| X represents the Earth's Horizontal Magnetic Intensily. |}

\hline
\end{tabular}

VIBRATION OBSERVATIONS FOR ABSOLUTE measure of horizontal force.					
Month.	G. M. T.	Tempera. rature.	Time of one vibration.	$\log \mathrm{m} \times$	Value of m.
January ...	$\begin{aligned} & \text { D. H. M. } \\ & \text { 29th... } 10 \text { a.m. } \end{aligned}$	$30 \cdot 8$	$5 \cdot 66764$	0.20750	0.43950
February...	28th... 1215 p.m.	$43 \cdot 6$	5.67946	0.20614	0×43934
March	28th... 835 a.m.	32.6	$5 \cdot 67429$	0.20681	$0 \cdot 43899$
April	25th... 93^{8} a.m.	41.5	$5 \cdot 68167$	0.20611	$0 \cdot 43932$
May.........	27th... 946 a.m.	51.2	5.67996	$0 \cdot 20683$	0.43942
June ...	18th...11 $11 \mathrm{a} . \mathrm{m}$.	$59^{\circ} \mathrm{O}$	$5 \cdot 69054$	0.20606	0.43993
July	2Ist $\ldots 855 \mathrm{a} . \mathrm{m}$.	57.9	$5 \cdot 68508$	$0 \cdot 20662$	0.43958
August ...	$30 \mathrm{~h} . . .1052 \mathrm{a} . \mathrm{m}$.	$58 \cdot 8$	$5 \cdot 68496$	$0 \cdot 20666$	$0 \cdot 43948$
September.	24th... $942 \mathrm{a} . \mathrm{m}$.	$48 \cdot 8$	$5 \cdot 68700$	0.20572	0.43892
October .	15th... $10 \quad 6 \mathrm{am}$.	57.3	$5 \cdot 68823$	0.20618	$0 \cdot 43867$
November.	12th... $854 \mathrm{a.m}$.	59*1	$5 \cdot 68033$	$0 \cdot 20744$	0×43934
December .	20th...II 5 a.m.	$48 \cdot 0$	$5 \cdot 67993$	$0 \cdot 20674$	$0 \cdot 43887$

Dip Observations.				Magnetic Intensity.		
Month.	G. M. T.	¢	Dip.	X , or HoriForce.	$\begin{gathered} \mathbf{y}, \text { or } \\ \text { Vertical } \\ \text { Force. } \end{gathered}$	$\xrightarrow{\text { Total }}$
January		3	$$	3.6673	97425	10:4099
February	$\begin{array}{\|cccc} 27 \mathrm{th} \ldots & 10 & 48 & \mathrm{a} . \mathrm{m} . \\ " & \ldots \text { II } & 15 & \mathrm{a} . \mathrm{m} . \end{array}$		$\begin{array}{lll} 69 & 19 & 44 \\ 69 & 23 & 47 \end{array}$	3.6589	9'7150	$10 \cdot 3812$
March		3	$\begin{array}{\|lll} 69 & 21 & 3 \\ 69 & 19 & 43 \end{array}$	3.6674	977157	10.3942
April	$\left\lvert\, \begin{array}{rlll} 26 \mathrm{th} \ldots & 10 & 59 & \mathrm{a} . \mathrm{m} . \\ \# & \ldots & 11 & 3^{8} \\ \mathrm{a} \end{array}\right.$		$\begin{array}{lll} 69 & 18 & 58 \\ 69 & 22 & 28 \end{array}$	3.6588	9'7057	10.3726
May	$\left\lvert\, \begin{array}{rrrr} 29 \text { th... } 10 & 45 \text { a.m. } \\ " & \ldots & \text { II } & 25 \\ \text { a.m. } \end{array}\right.$		$\begin{array}{llll} 69 & 19 & 57 \\ 69 & 18 \\ 45 \end{array}$	$3 \cdot 6641$	97082	10.3766
June			$\begin{array}{rrr} 69 & 18 & 43 \\ 69 & 20 & 9 \end{array}$	3.6532	9.6802	10.3466
July	$\left\lvert\, \begin{array}{rlll} 22 n d . .10 & 55 & \mathrm{a} . \mathrm{m} . \\ " & \ldots & \text { II } & 40 \\ \mathrm{a} \end{array}\right.$		692255 692415	3.6610	97362	10.4018
August	$\begin{array}{r\|r\|r} 29 t h \ldots & 11 & 22 \\ \hline & \text { a.m. } \\ \hline & 12 & 5 \\ \hline \end{array}$		$\begin{array}{ccc} 69 & 19 & 14 \\ 69 & 17 & 8 \end{array}$	3.6620	9.6928	$10 \cdot 3615$
September		3	$\begin{array}{lll} 69 & 26 & 2 \\ 69 & 20 & 25 \end{array}$	$3 \cdot 6588$	977273	10.3926
October..			$\begin{array}{lll} 69 & 21 & 17 \\ 69 & 21 & 2 \end{array}$	3.6648	97256	10*3932
November			$\begin{array}{lll} 69 & 20 & 30 \\ 69 & 20 & 59 \end{array}$	3.6699	97353	$10 \cdot 4040$
December		$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{array}{ll} 69 & 24 \\ 69 & 24 \\ 69 \end{array}$	3.6678	9.7488	10.4159
	Means.	...	69219	3.6628	97794	$10 \cdot 3875$

DECLINATION OBSERVATIONS (Continued).					
Uncorrected. Corrected.					
Month.	G. M. T.	Observation.	Monthly Mean.	Observation.	Monthly Mean.
July	H. M. 8th 9 a a.m. 16th 9 5 22nd 9 4 28th 8 58 2	$\begin{array}{rrr}0 \\ 20 & 28 & 16 \\ 26 & 25 \\ 21 & 41 \\ 19 & 19\end{array}$	- ، "	$\begin{array}{rrr}0 & 31 \\ 20 & 32 & 34 \\ 28 & 50 \\ 22 & 50 \\ 23 & 54\end{array}$	
August ... $\left\lvert\, \begin{aligned} & 1 \\ & 20 \\ & 20\end{aligned}\right.$	4th 9 3 $12 t h$ 9 5 20th 8 54 $26 t h$ 9 6	$\begin{array}{lll}26 & 18 \\ 19 & 14 \\ 17 & 54 \\ 24 & 36\end{array}$	$2022 \quad 1$	$\begin{array}{lr} 27 & 27 \\ 21 & 32 \\ 21 & 3 \\ 27 & 12 \end{array}$	202429
September	2nd 9 4 8th 9 13 15th 9 6 23rd 9 6 29th 9 7	$\begin{array}{lr} 22 & 46 \\ 22 & 14 \\ 18 & 37 \\ 20 & 20 \\ 21 & 5 \end{array}$	20210	2429 2323 212 2254 2340	20236
October ... \mid	$\begin{array}{rlr} 6 \text { th } & 8 & 57 \\ 13 \text { th } & 9 & 5 \\ 20 t h & 9 & 2 \\ 28 \text { th } & 9 & 8 \end{array}$	$\begin{array}{ll} 18 & 16 \\ 17 & 54 \\ 24 & 59 \\ 25 & 22 \end{array}$	202138	$\begin{array}{ll} 19 & 59 \\ 20 & 19 \\ 26 & 17 \\ 27 & 22 \end{array}$	202329
November	4th 9 0 10th 9 4 18th 9 8 24th 9 5	$\begin{array}{rr} 20 & 59 \\ 21 & 8 \\ 19 & 21 \\ 24 & 26 \end{array}$	202129	2225 2217 2049 2552	202251
	1st 8 55 8 th 9 5 15 th 9 1 $24 t h$ 9 10 $29 t h$ 9 6	23 23 26 26 19 19 19 19 478	$\frac{20}{20} 4144$	2443 2714 2042 2130 2049	$\left\lvert\, \begin{array}{lll} 20 & 23 & 0 \\ \hline 20 & 28 & 3 \end{array}\right.$

MAGNETIC DISTURBANCES.

January.-An Easterly movement of the Declination magnet at 9 p.m. on the 4 th, was succeeded by a very calm period, which lasted until the evening of the $13^{\text {th }}$, when the magnet was somewhat disturbed between 8 and II p.m. This was followed by slight irregularities on the 14 th from 3 to $4 \mathrm{a} . \mathrm{m}$., on the 15 th from to p.m. to midnight, and towards 8 p.m. on the 17 th.

On the 20th, at 3 p.m., the first recorded storm of the year commenced with an Easterly movement of the needle, and the whole disturbance only lasted about seven hours. The maximum Westerly excursion of the magnet was reached $5 \mathrm{p} . \mathrm{m}$., and the Easterly at 8 h .22 m . The H.F. curve clearly indicated the presence of a disturbing cause, but the irregular movements are not extended. The V.F. showed a gradual increase until $7^{h} 30 \mathrm{~m}$., after which it returned to its normal value.

The magnets then remained very quiet until the evening of the $\mathbf{2 7 t h}$, bat on that and the two following nights there were several slight irregularities in the Declination.

February.-The first disturbance of any moment began shortly after midnight on the 18 th, and continued during the greater part of the morning, but there was never any very considerable departure from the mean. The magnet was also very unsteady from 9 a.m. on the 24 th until the evening of the following day. The rest of the month was remarkably quiet.

March.-This month was much more disturbed than those which preceded it. The first irregularity was a tremulous motion of the Declination magnet, which began at 4.20 a.m. on the 3rd, and continued for
about thirteen hours, accompanied by a gradual increase of Westerly Declination. Two Easterly movements of the needle occurred between 5 and $8 \mathrm{p} . \mathrm{m}$. on the 5 th, and a rather more considerable one from 8 to $10 \mathrm{p} . \mathrm{m}$. on the 7 th. The chief disturbance of the month began about noon on the 9th, and lasted until $4 \mathrm{a} . \mathrm{m}$. of the following day. An irregular movement of the needle towards the East on the evening of the IIth was repeated on the 13 th and 15 th, but was only just perceptible on the intermediate days. The Easterly excursion of the magnet on the $15^{\text {th }}$ was accompanied by a sudden increase of the H.F., and a diminution of the V.F. Another disturbance commenced by a tremulous motion of the magnet shortly after 6 a.m, on the 23 rd, and lasted till midnight. The greatest irregularity occurred towards 7 p.m., when the H.F. rose considerably above its mean value. The V.F. was higher than the mean from $2^{\text {h. }}$ to $7^{\mathrm{h}} .25^{\mathrm{m}}$. The photographic traces of the Declination and H.F. magnets were rather irregular from to p.m. on the 28th to 3 a.m. on the 29 th, and at nine p.m. on the following evening the greatest Easterly excursion of the month differed $15^{\prime} 49^{\prime \prime}$ from the mean.

April.-The Daily Range is strongly marked on the Declination curve throughout the greater part of this month, but no disturbance of any notable extent occurred previously to the morning of the 15 th, when two similar waves followed immediately one the other between midnight and 4 a.m. There is also a successive double undulation in the H.F. and V.F. curves, but not well marked.

On the 19 th, at $8.40 \mathrm{p} . \mathrm{m}$., a magnetic storm commenced with a rapid movement of the needle towards the East. It remained for about six hours East of its main position, and returned Westward only towards the end of the disturbance, when the magnet moved through $20^{\prime} 24^{\prime \prime} 7$ between $2.30 \mathrm{p} . \mathrm{m}$. and $\mathbf{3} .10$. The H.F. trace bears witness to this storm only by an irregular undulation, but the V.F. curve shows a considerable decrease, the minimum being reached at about $3^{\mathrm{h}} .35^{\mathrm{mm}}$ a.m. on the 20th, the Declination needle having attained its maximum Western elongation twent5five minutes earlier. No important irregularity occurred from this time until the end of the month.

May.-On the morning of the 12th a tremulous motion of the Declination magnet denoted the presence of some disturbing cause, and for the next three days there was a good deal of irregularity in the move-
ments of the magnets, but no great storm occurred. The H.F. irregularities were never of any considerable extent. The range on the 20 th was large. Shortly before midnight on the 23 rd a great disturbance began. The motion of the magnet about $4 \mathrm{a} . \mathrm{m}$. on the $24^{\text {th }}$ was very rapid, moving Westward through $19^{\prime} 30^{\prime \prime} .9$ between 3.15 and 4.8 , and then returning Eastward through 21' $7^{\prime \prime} \cdot 6$ before 5 a.m. This was accompanied by a sudden increase of the H.F. The V.F. fell at 2 a.m., and still more rapidly at 4 , and its range was considerable on the evening of the same day, as also at the same time on the 20th.

June.-The month began by a slight disturbance for about four hours; but the magnets were otherwise very quiet until shortly after 8 p.m. on the 8 th, when an irregular movement commenced, which lasted during part of the following morning. A sudden and not inconsiderable deflection towards the West occurred shortly after $3 \mathrm{a} . \mathrm{m}$. on the $\mathbf{1 8 t h}$, the maximum being attained at about $2.30 \mathrm{a} . \mathrm{m}$.; the needle then returned rapidly to its original position. This movement of the Declination magnet was accompanied by a considerable increase of the H.F. ordinate, and a rapid decrease of the V.F., which last did not regain its normal value before $10 \mathrm{a} . \mathrm{m}$. The magnets were unsteady during the night of the $\mathbf{2 6 t h}$, but remained quiet for the remainder of the month.

Jely. - A more than ordinary disturbance began about noon on the $\mathbf{5 t h}$, and lasted for about eighteen hours. The irregularities consisted of a succession of long waves in the Declination curve, and of a long rise and fall of the V.F. magnet, the maximum being attained at $6.40 \mathrm{p} . \mathrm{m}$. The only other perturbation of any great extent was on the morning of the 25th. This began shortly before $3 \mathrm{a} . \mathrm{m}$., and continued until 7. The V.F. ordinate decreased considerably between 3 and 4 a.m. The Daily Range was well marked on the V.F. trace during the month.

AUGUST.-A magnetic storm began at 25 minutes after midnight on the 2 nd , and ended at $10 \mathrm{a} . \mathrm{m}$. On the 4 th . During the greater part of this time the Declination magnet was in a continual state of tremour, and the only change of any great extent was a rapid Easterly movement at 8 p.m. on the 2nd. The H.F. and V.F. magnets were not much affected by this disturbance of the earth's magnetism.

On the evening of the 9th an irregular movement of the Declination
was the beginning of a disturbance which lasted until 10 a.m. of the following day. The next night the magnet was rather unsteady, as it was also on the last two days of the month.

September.-This month opened with a disturbance which considerably increased the V.F. ordinate, and, though the succeeding days were generally tranquil, an irregularity, very noticeable on most days, recurred from the 3 rd to the 8 th, between 6 and $8 \mathrm{p} . \mathrm{m}$. Irregular movements, which began on the morning of the 1oth, continued with little interruption until the $13^{\text {th }}$, the greatest departure from the mean Declination occurring shortly after $10 \mathrm{p} . \mathrm{m}$. on the IIth, when there was also a sudden diminution of the V.F. During the afternoon of the 1oth, the V.F. was somewhat above its mean value. The Declination magnet was rather unsteady and tremulous from the morning of the 25th to that of the 28 th.

October.-At 6.45 p.m. on the 4 th, there was a sudden movement of the needle towards the East, followed by an equally rapid return to its former position. The V.F. decreased rather rapidly between 2 and 3 a.m. on the 5 th. Between 6 p.m. on the 7 th and 8 p.m. on the 8 th, there was considerable disturbance, especially about midnight, the V.F. magnet being remarkably unsteady. During this month the magnet seemed to be more frequently disturbed just before midnight than at any other time. The recurrence of a slight irregularity in the H.F. between ro p.m. and midnight on the 24th, 25th, and 26th, is easily detected on the curves.

November.-The first irregularities of any importance were two successive Easterly movements of the Declination needle between 8 and $10 \mathrm{p} . \mathrm{m}$. on the isth, and a rather larger one between 7 and $8 \mathrm{p} . \mathrm{m}$. on the 13th. Another minimum at about 11 p.m. on the 27 th completes the irregular movements of November, which was remarkably quiet, even the Daily Range being scarcely perceptible.

December. - The month began with a slight Westerly movement, which reached its maximum just after $2 \mathrm{a} . \mathrm{m}$. on the ist. The magnet again showed signs of disturbance on the evening of the 6th. These were somewhat more developed on the following evening, and increased jet more on the afternoon of the 8th.

Shortly before 2 p.m. on the 1oth, the movements of the needle became somewhat irregular, and then followed a storm, which was one of
the most severe of the year. Between 5.5 and 6.25 p.m. on the 11 th, the Declination magnet moved $26^{\prime} 15^{\prime \prime}$ towards the East, and then returned rapidly Westward. The H.F. was not much affected, but there was a marked decrease of the V.F. from 10 to $11 \mathrm{p} . \mathrm{m}$. the same night.

A disturbance, commencing at about 5 a.m. on the 22nd, continued for more than twenty-four hours, the most marked feature being an increase of the V.F. between 4 and II p.m. From shortly after midnight on the 25 th until $10 \mathrm{p} . \mathrm{m}$. on the 28 th, the magnets were subject to 2 succession of slight perturbations.

DAILY RANGE OF THE MAGNETIC DECLINATION FROM 1868 TO 1879.

The observation of the earth's magnetic elements was first undertaken a: Stonyhurst in the year 1858, when, by the advice of Sir Edward Sabine, a set of instruments were purchased for obtaining monthly determinations of the absolute values of the Declination, Dip, and Horizontal Force : but it was not until nearly ten years later that the observatory was completely mounted for the study of terrestrial magnetism. This was effected by the addition of a set of self-recording magnetographs for the photographic registration of every change in the Declination and in the Horizontal and Vertical components of the Intensity.

These magnetographs were constructed by Adie, and the expense wadefrayed by a grant of the Royal Society out of the Government funt placed annually at its disposal. Whilst the instruments were being made. a subterranean chamber was built for their reception, along with a room adjoining, in which all the photographic work connected with the magnetic records could be carried on in the most convenient way possible. From the central room of the observatory a descent of five and twenty steps leads into the chief subterranean chamber in which the magnetographs now stand. The dimensions of this chamber are 20 feet by iS, which affords ample space for the magnetic instruments, and also enablethe barograph to be placed without any inconvenience in one of the corners. The roof is arched, with two rings of brick set in blue lias lime, and the whole covered with $6-\mathrm{lb}$. lead, and then with earth and gravel. The walls are three in number. The inner one is a single-brick wall set in hydraulic lime. Surrounding this is a cavity for air three inches wide, one foot apart, all round the room. Enclosing this is a rubble wall two feet thick. And at the outside of all, as a protection from the surrounding earth, is one foot of loose rubble, which serves admirably for drainageThe flagged floor is built upon piers, and is thus raised eighteen inches above the sand. Owing to these precautions the room keeps remarkabls dry, and the temperature may be considered almost constant, the mean daily range not being more than $0^{\circ} .2$ Fah. This constancy of temperature during each day is of the highest importance as magnets are mos: sensitive to heat, and there must always be a considerable hesitation about
applying temperature corrections, when the whole variation is so small as is generally the case for magnets.

The magnetographs rest on three stone pillars, and a fourth pillar supports the three cylinders on which the continued variations are photographically recorded; the clock which drives these cylinders through an entire revolution in four-and-twenty hours also stands on the fourth pillar. Two additional stone pillars are surmounted by telescopes and scales, by aid of which the observer is able to read at any moment the state of the magnets without interfering with the continuity of the photographic carves.

The suspension of the declination and of the horizontal force magnets is very sensitive, as the former hangs in the magnetic meridian by a silk thread, and the latter is held at right angles to the meridian by the torsion of two parallel lengths of a thin steel wire; but the vertical force magnet appears to be less perfectly mounted, the magnet being fixed to an agate knife-edge which rests on an agate plane.

The method of registration is identical for all three magnetographs. A strong gas light, after passing through a convex lens, falls on two plane semi-circular mirrors. One of these is attached immoveably to the stone pillar, and therefore sends the half of the pencil of light, which falls upon it, always in the same direction towards the revolving cylinder covered with sensitized paper; this half-pencil will therefore describe a straight line on the paper, and serve as a base line. The other semi-circular mirror is fixed to the moveable magnet, and thus sends the second halfpencil of light in directions changing with every variation of the magnet. A curve must consequently be traced by this second half-pencil on the sensitized paper, and the ordinates of this curve, measured from the base line, give the position of the magnet at any moment. The abscissax of the curve depend on the rate of the driving clock, and every two hours a screen is placed by clock-work in front of the pencil of light to mark accurately, by breaks of continuity, the divisions of the time scale.

During remarkably large disturbances the telescopes and scales enable an observer to note changes which are too great to be recorded on the photographic cyclinders. The most rapid change ever perfectly recorded photographical at Stonyhurst, was a disturbance of $2^{\prime \prime} 30^{\prime}$ in the declination, which occupied only nine minutes.

The reduction of the photographic curves necessarily involves much time and labour, as hourly measures have to be taken of each of the threce daily traces, before the hourly, daily, monthly, and yearly means required, can be computed. Up to the present date the task of measuring the ordinates, and of computing the means, has been completed for the declination, and is in an advanced state for the other two elements. The work already done renders it easy to print at once a first instalment of the results in the adjoined table of the Mean Daily Range of the
magnetic declination at Stonyhurst from 1868 to 1879. The method adopted in forming these tables from the measures of the photographic curves has been the following. After eliminating the periods of great disturbance, and also any irregularity greater than 0.12 of an inch, the hourly means are computed for each month, and the differences between these and the Monthly Mean give the values of the Daily Range for each separate month from January, 1868, to December, 1879. As such a table would be too bulky to publish in this report, the resulting figures are first combined so as to give the mean Daily Range for each separate year of the period, and then the mean for each of the twelve months. The ordinates of the curves have been expressed in angular measurement before being entered into Tables I. and II., in order that the comparison with the results of other magnetic stations may be rendered more easy.

The greatest Westerly elongation of the magnetic needle occurs for the first eight months of the year, either a little before, or a little after I. 30 p.m., but for the remaining four months it is seldom much later than I p.m. The Easterly maximum is more irregular, occurring in March and April at about 8 a.m., in May and June at 7.30 a.m., in July and August at 7 a.m., in September going back to 7.30 a m ., and in October to $8 \mathrm{a} . \mathrm{m}$., whilst in Winter there is a complete change, the minimum falling at 10.30 p.m. for November and December, and at 11 p.m. for January and February, although the minimum in February is not anfrequently at $8 \mathrm{a} . \mathrm{m}$. The reason of this alteration of the minimum in the Winter months is the appearance at that season of a slight second inflexion in the daily curve.

Some of the salient points connected with each month are collected in Table III., which shows clearly that the years 1870 and 1871 are those of greatest range, and that 1877 is the centre of the more quiet period. The progression from the one period to the other is very regular. The monthly means show a far less orderly progression, especially in the summer months. From a secondary maximum in August the daily range diminishes until December, and then increases until April, the month of greatest range. Between April and August the variation is bat slight. The activity of summer is well marked, but that of April surpasses any of the summer months either in the mean, or maximum, range, or in the hourly velocity. The mean daily range for April, 1871, was five times that for January, 1878, which is the widest difference on record for the monthly means. The local time at which the magnetic needle passes through its mean position in the evening varies considerably, bat the morning mean is very close to $10 \mathrm{a} . \mathrm{m}$., at which time the velocity of the magnet is always greatest. One consequence of the magnet moving more rapidly when West of its mean position, is that the compass generilly indicates a bearing somewhat less than its true value.

Of the four plates of curves appended to this report, 1 and 3 are graphical representations of the numbers contained in Tables I. and II., and the other two bring out in bolder relief the secular variation and the semi-annual inequality of the daily range. In both the yearly and the monthly curves the tranquillity of the needle during the night hours is very apparent, the N. end of the magnet remaining almost steady, and slightly to the true \mathbf{N}. of its mean position, often for more than twelve hours together.

The plates 1 and 2 show clearly that the secular variation follows some well defined law. The five years from 1869 to 1873 , and also the five from 1875 to $\mathbf{1 8 7 9}$, may well be grouped together on account of their similarity of character, the years of the former group being each as much in excess of the mean range, as those of the latter are below it. The two other years, 1868 and 1874 , the latter of which separates the two groups, appear to be neutral, agreeing well with the mean, although 1868 approaches much nearer the second group than the first. If we take the differences between the mean daily range of the whole period over which the observations extend, and the mean daily range of each separate group of five years, the result, as shown in plate 2 , is very striking.

Plates 3 and 4 are good evidence of the existence of a semi-annual inequality of the daily range, or of the difference in character of the Winter and Summer curves, and this naturally stands out more prominently when the two are brought into juxta-position. The result is even more marked than ever when the equinoctial months are kept separate, as the character of the month of March approaches very closely to the Summer type, whilst that of September resembles more the Winter form.
RANGE OF THE DECLINATION.
苍
空
TABLE I. -YEARLY MEANS OF

	$\begin{aligned} & \text { \& } \\ & \text { Z } \end{aligned}$	$\geqslant 2$	$\underset{\sim}{\underset{\sim}{N}}$	$\begin{array}{cc} \bar{i} & \vdots \\ \mathrm{~N} & \vdots \end{array}$	$\begin{aligned} & 0 \\ & \infty \\ & \text { in } \end{aligned}$	$\stackrel{\text { N }}{\sim}$	＋	N ¢ ＋	in in	\bigcirc	∞ \vdots 0 \sim +	－		－
	こ	3		$\begin{gathered} \stackrel{\infty}{i} \\ \underset{\sim}{i} \\ \underset{N}{n} \end{gathered}$	－	n \sim	N	¢	－	$\stackrel{\sim}{\sim}$	N	－		
	\bigcirc	M	-8	$\begin{array}{ll} \dot{0} & \stackrel{0}{2} \\ 0 & - \end{array}$	$\begin{aligned} & \stackrel{N}{\sim} \\ & \sim \end{aligned}$	－	N	$\stackrel{9}{\dot{q}}$	$\begin{gathered} o \\ \infty \\ 0 \\ 0 \end{gathered}$	i_{i}^{n}	－		m	位
$\begin{aligned} & F \\ & F \\ & \text { F } \end{aligned}$	0	－	N	$\begin{array}{ll} \underset{m}{n} & n \\ \underset{\sim}{n} & m \end{array}$	$\stackrel{N}{\sigma}$	m	m	$\begin{gathered} \infty \\ \underset{m}{\infty} \\ m \end{gathered}$	$\underset{\sim}{\dot{\sim}}$	$\underset{\sim}{\mathbf{N}}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{0}$		N
A	∞	政	in	$\begin{array}{cc} \underset{\sim}{\square} & \stackrel{+}{m} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \ddot{a} \\ & \dot{\sim} \end{aligned}$		$\stackrel{\infty}{\underset{\sim}{n}}$	in	$\begin{aligned} & \because \\ & \ddot{a} \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{W} \\ & m \end{aligned}$	$\underset{\sim}{\underset{\sim}{\infty}}$	$\stackrel{0}{\stackrel{0}{m}}$		$\begin{aligned} & \stackrel{\circ}{\dot{\circ}} \\ & \mathrm{m} \end{aligned}$
	\sim	は		$\begin{array}{ll} 0 & n \\ \vdots & a \\ - & m \end{array}$	$\begin{aligned} & \dot{\sim} \\ & \sim \\ & \sim \end{aligned}$		$\ddot{\sim}$	$\begin{aligned} & \dot{\sim} \\ & \text { n } \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\circ} \\ & \dot{q} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\sim}{\infty} \\ & \text { m } \end{aligned}$	\％	$\underset{\sim}{\text { ¢ }}$		$\begin{gathered} \bar{a} \\ m \end{gathered}$
	\bigcirc	915	－	$\begin{array}{ll} 0 & \dot{J} \\ \dot{m} & \dot{j} \\ - & N \end{array}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{m} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \dot{\sim} \end{aligned}$	$\hat{i n}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\sim} \\ & + \end{aligned}$	$\stackrel{\rightharpoonup}{i}$	－	$\ddot{\sigma}$		$\begin{aligned} & n \\ & \infty \\ & \infty \\ & \hline \end{aligned}$
	n	凹	$\stackrel{\infty}{\infty}$	$\begin{array}{ll} \stackrel{\circ}{\mathrm{o}} \\ - & \stackrel{y}{c} \end{array}$	$\begin{aligned} & 0 \\ & \text { o } \\ & \cdots \end{aligned}$	＋	$\stackrel{\square}{2}$	n	$\begin{aligned} & \stackrel{\infty}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { + } \\ & \text { N } \end{aligned}$	－	$\stackrel{+}{\sim}$	0	$\underset{\sim}{\text { Nen }}$
	＋	仙	-品	$\begin{array}{ll} \stackrel{\circ}{\dot{\beta}} & \stackrel{0}{0} \\ - & \end{array}$	$\stackrel{n}{i}$	i	－	ت்ָ	$\begin{aligned} & m \\ & \underset{\sim}{m} \end{aligned}$	$\underset{\underset{\sim}{\tilde{N}}}{\substack{n}}$	$\stackrel{+}{-}$	$\begin{aligned} & 0 \\ & \dot{\sim} \\ & 0 \end{aligned}$	$\stackrel{+}{0}$	$\begin{aligned} & \text { m } \\ & \dot{\infty} \\ & \mathbf{0} \end{aligned}$
定	∞	囚	ก	$\begin{array}{ll} \because 0 \\ 0 & \dot{0} \\ 0 & 0 \end{array}$	$\overline{\mathrm{i}}$	$\stackrel{0}{0}$	n	$\stackrel{N}{-}$		$\stackrel{\infty}{i}$ \oplus	～	＋		$\frac{0}{m}$
	\cdots	๙	$\stackrel{\square}{0}$		－	∞	－	$\stackrel{+}{\text {－}}$	＋	$\begin{aligned} & 0 \times 0 \\ & \dot{0} \\ & \underset{\sim}{0} \end{aligned}$	＋	9	－	＋
	g a \sim	¢	$\stackrel{\sim}{\infty}$	$\begin{array}{ll} a & n \\ \underset{\sim}{m} & \underset{\sim}{2} \\ \hdashline \end{array}$	$\stackrel{+}{\square}$	$\stackrel{m}{ }$	\bigcirc	\bigcirc	$\underset{\sim}{\underset{\sim}{*}}$	ī	$\stackrel{\square}{i}$	\square	\％	$\stackrel{+}{8}$
				$\begin{gathered} \text { 㐔 } \\ \text { Bu } \\ \hline \end{gathered}$	$\overrightarrow{\mathrm{E}}$	\sum_{2}^{∞}	总	㪯		$\begin{aligned} & \text { E. } \\ & \text { O. } \\ & \text { Oin } \end{aligned}$	\％	$\begin{aligned} & \dot{\text { g }} \\ & \text { O} \\ & \text { Z } \end{aligned}$		

$\begin{aligned} & \text { Z } \\ & 0 \\ & \text { L } \\ & \text { Z } \\ & \text { 름 } \end{aligned}$			in	$\begin{aligned} & \mathbf{m} \\ & \underset{\sim}{\mathbf{N}} \end{aligned}$	$\begin{aligned} & \text { in } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { or } \\ & \text { it } \\ & 0 \end{aligned}$	$\stackrel{m}{i}$	$\begin{gathered} \text { n } \\ \stackrel{\sim}{n} \\ = \end{gathered}$	$\underset{\sim}{i}$	$\begin{aligned} & \text { ヘ̀ } \\ & \text { Ño } \end{aligned}$	$\stackrel{\bullet}{\infty}$		$\underset{\sim}{\sim}$	＋	$\stackrel{\sim}{\text { in }}$
	$\begin{aligned} & \text { 范 } \\ & \text { 完 } \end{aligned}$	¢ ：	－	＋	＋	$\stackrel{0}{\sim}$	$\stackrel{-}{\dot{\circ}} \underset{0}{0}$	$\begin{aligned} & \dot{+} \\ & \dot{+} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{2} \\ & 0 \end{aligned}$	$\stackrel{+}{\sim}$	$\stackrel{\sim}{i}$	$\begin{aligned} & 0 \\ & \dot{\underline{y}} \end{aligned}$		$\xrightarrow{\text { H }}$	$\stackrel{+}{\sim}$	－
	$=$	凶	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{m}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \square \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & n \\ & \text { n } \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{0}{\infty} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & 0 \\ & 0 \end{aligned}$	in	＋			$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	－
$\begin{aligned} & \text { 몰 } \\ & \text { 答 } \end{aligned}$	\bigcirc	か ${ }^{\text {a }}$	$\begin{aligned} & \circ \\ & j \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{q} \end{aligned}$	$\begin{gathered} m \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{0}{2} \end{aligned}$	$\underset{\substack{\underset{\sim}{*} \\ \dot{O} \\ \hline}}{ }$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { m } \\ & 0 \\ & 0 \end{aligned}$		$\underset{\sim}{\underset{\sim}{\circ}}$	$\underset{\sim}{i}$		$\stackrel{\infty}{\text { m }}$	\cdots	
$$	0	$\omega \times$	－	－	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{N}$	$\begin{gathered} \dot{\pi} \\ 0 \end{gathered}$		\%	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\underset{\sim}{\sim}}$		－	$\stackrel{\text { N }}{\text { N }}$	\cdots
$$	∞	以	$\begin{gathered} \stackrel{*}{w} \\ 0 \end{gathered}$	$\begin{aligned} & \text { N } \\ & \text { O} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hdashline \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \dot{m} \\ & 0 \\ & 0 \end{aligned}$	∞	$\stackrel{\sim}{n}$	$4 \stackrel{\circ}{4}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{m} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { ì } \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{j} \\ & \mathbf{j} \\ & 0 \end{aligned}$	$\stackrel{\uparrow}{j}$	－
包	N			${\underset{o}{0}}_{0}^{2}$	$\stackrel{\%}{0}$	$\begin{aligned} & 0 \\ & \dot{\sim} \geqslant \\ & 0 \end{aligned}$	$\begin{gathered} m \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	N－	$$	$\stackrel{0}{0}$	－		$\stackrel{\sim}{2}$	$\stackrel{+}{0}$	－
$\begin{aligned} & \text { 4 } \\ & 0 \\ & 0 \\ & 7 \end{aligned}$	\bullet	$\geqslant-7$	$\stackrel{m}{4}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \text { Non } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { N } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \stackrel{+}{4} \\ & \text { से } \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { in } \\ & 0 \end{aligned}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\underset{\sim}{0}$	m	i	$\begin{aligned} & \text { ח̀ } \\ & \text { ¢ } \end{aligned}$		0 0 0 0	\％	$\stackrel{-}{2}$ 0
$\begin{aligned} & \text { 呆 } \\ & \underset{y y y y}{c} \end{aligned}$	\cdots	\geqslant	\cdots	\circ	in	$\begin{gathered} 0 \\ \ddagger \\ \hline \end{gathered}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{\underset{N}{N}}$	$\underset{\sim}{\underset{\sim}{*}}$	in	¢	$\begin{aligned} & 0 \\ & \text { in } \\ & 0 \end{aligned}$	∞ ∞ - -	－	N	－
	＋	≥ 2			$\underset{\sim}{\dot{\sim}}$	$\begin{aligned} & 0.0 \\ & \dot{\sim} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \underset{\sim}{i} \\ & \underset{m}{n} \end{aligned}$		$\underset{\sigma}{7}$	$\begin{gathered} \stackrel{\oplus}{\mathbf{n}} \\ \mathbf{m} \end{gathered}$	$\stackrel{+}{\square}$	$\stackrel{\sim}{\sim}$		\pm	－	9 \sim \sim \sim
	m			$\begin{aligned} & \dot{+} \\ & \text { m } \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{aligned} & 0 \\ & \text { id } \\ & \text { in } \end{aligned}$	$\underset{~}{\ddagger}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & a \\ & i n \\ & i \end{aligned}$	＋	－	－	－	－	
	\cdots	$\geqslant 20$		$\begin{aligned} & 0 \\ & \text { in } \\ & \dot{+} \end{aligned}$	$\begin{gathered} \tilde{n} \\ \underset{0}{n} \end{gathered}$	$\stackrel{\boldsymbol{\infty}}{\underset{\sim}{\infty}}$	$\stackrel{\sim}{\underset{\sim}{4}}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & i n \\ & 0 \end{aligned}$	0 0	n		＋	N	+ \vdots i
$\begin{aligned} & \text { B } \\ & \text { M } \\ & \text { 華 } \end{aligned}$	$\begin{aligned} & E \\ & \dot{B} \\ & \sim \end{aligned}$				$\begin{aligned} & n \\ & \underset{\sim}{\mathbf{m}} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{N}{n} \\ & \sim \end{aligned}$	$\begin{aligned} & i \\ & i \\ & 0 \end{aligned}$	$\stackrel{N}{\infty}$	$\begin{aligned} & \dot{+} \\ & 0 \end{aligned}$	$\stackrel{\leftrightarrow}{i}$	3 4 0	n	$\stackrel{\circ}{0}$	\bigcirc	＋	
						突	命	$\underset{\sim}{\mathbf{E}}$	$\stackrel{\rightharpoonup}{3}$	$\begin{aligned} & \text { 菏 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \dot{\Xi} \dot{\Xi} \\ & \stackrel{0}{0} \\ & \dot{心} \end{aligned}$	苞		$\dot{5}$ 0 0 号		䂞淢

TABLE III.-MONTHLY MAXIMA AND MINIMA.

MEAN DAILY RANGE OF DECLINATION MAGNET AT STONYHURST (1868-1879).

MEAN DAILY RANGE OF DECLINATION MAGNET AT STONYHURST (1868-1879).

SEMI-ANNUAL INEQUALITY OF THE DAILY RANGE OF THE DECLINATION.

SECULAR INEQUALITY UF THE DAILY RANGE OF DECLINATION.

PRESENTS RECEIVED.

Report on the Royal Observatory, Greenwich, 1879, by Sir G. B. Airy from The Royal Observatory.
Appendix to the Cape Observations, 1874
Astronomical Observations and Researches made at the Dunsink Observatory
Quarterly Returns of the Registrar General
Hourly Readings of the Instruments of the Meteorological Committee

Registrar General.

Daily Weather Charts
Meteorological Office.
Daily Weather Forecasts
Weekly Weather Reports
Quarterly Weather Reports
Contributions to our Knowledge of the Meteorology of the Arctic Regions
Report of the Permanent Committec of the First International Congress at Vienna. Meeting at Utrecht, 1878
Report of the Proceedings of the Second International Meteorological Congress at Rome, 1879
Synchronous Charts of the N. Atlantic during August, 1873
Proceedings of the Royal Society
Monthly Notices of the Royal Astronomical Society.
Memoirs of the R.A.S. 1877-9, vol. 44
Report of the British Association, Dublin, 1878
Journal of the Scottish Meteorological Society
Upsala Meteological Bulletin
Mural Zones, 1846 to 1849, by A. Hall
Royal Society.
Astronomical Society.
British Association. Scottish Mct. Society. The Observatory. U.S. Naval Observatory.

Transit Zones, 1846 to 1849 , by A. Mall
Meridian Circle Zones, 1847 to 1849 , by A. Hall
Equatorial Fundamental Stars, \&c., by S . Newcomb
Corrections to Hansen's Tables of the Moon, by S. Newcomb
Reduction Tables for Transit Observations, by J. R. Eastman
"
Longitude of Saint Louis, Mo., by W. Harkness

Astronomical Papers for the use of the American
Euphemeris and Nautical Almanac, vol. i., part i., Tables of Eclipses. By S. Newcomb from U.S. Bureau of Navigation
Tri-daily Bulletin of the Signal Service, U.S.A.
Annual Report of the Board of Regents of the Smithsonian Institution, 1877
U.S. War Department.

Sketch of the Life and Contributions to Science of Prof. J. Henry .
Annual Report of the New York Meteorological
Observatory, 1878 , by D. Draper
Report of the Meteorological Service of the Dominion of Canada

Smithsonian Institution.

Reports of the Meteorological, Magnetic, and other Observatories of the Dominion of Canada
Report of the Administration of the Meteorological Department in Western India in 1877-78
Report on the Condition and Proceedings of the Government Observatory, Colaba, 1878-9
Views taken from the Colaba Observatory
Brief Sketch of the Meteorology of the Bombay Presidency in 1877
Meteorological Observations, Juggarow Observatory, Vizagapatam, 1878
Meteorological Returns, St. Francis Xavier's College, Calcutta .
Monthly Record of the Melbourne Observatory
Thirteenth Report of the Board of Visitors to the Victoria Observatory, Melbourne
Batavia, Meteorological and Magnetic Observations, vol. 2, 1869 to 73, vol. 3, 1874-75, by Dr. P. A. Bergsma
Cyclone of March 20th to 21st, 1879. Storm Warnings, Mauritius Observatory
Monthly Notices, Meteorological Society of Mauritius
Observations of Nebulæ and Clusters of Stars made with the Six-foot and Three-foot Reflectors at Birr Castle, 1848 to 1878 .
Attempt to deduce the general laws of the Variation of Temperature from Solar and Terrestrial Radiation, by the Rev. H. Lloyd
On the Results of the Magnetic Observations made by the Officers of the Arctic Expeditions, 1875-6, by Captain F. I. O. Evans End-on Illumination in Private Spectroscopy, by P. Smyth

Carbon and Carbo-Hydrogen Spectroscoped and Spectrometed, by P. Smyth . . .
Note on the Spectrum of Brorsen's Comet, by C. A. Young
from The Author.

The very much extended nebulæ of Sir J. Herschel's General Catalogue . . .
A Catalogue of Auroras observed from 1776 to 1784 in Labrador
Dissipation of Electricity in Gases, by D. Boboulieff
An Essay on the Calculus of Enlargement, by E. M'Clintock

Report on Observation of Luminous Meteors Why the Barometer does not indicate the real weight of the Atmosphere. By R. Tennent
Proposed theory of the progressive movement of Barometric Depressions, by R. Tennent
A new determination of the ratio of the ElectroMagnetic to the Electro-Static unit of electric quantity, by W. E. Ayrton and J. Perry
A new theory of Terrestrial Magnetism, by W. E. Ayrton and J. Perry .

Electric Lighting and its practical applications, by J. N. Shoolbred
On the present state of Electric Lighting, by J. N. Shoolbred
C. Abbe.

Author. J. Glaisher.

The Author.

The Authors.

The Author.
Addendum to the contrast between crystallization and life, by J. E. Howard
Elementary Arithmetic, with brief notices of its history, by R. Potts
Annales Météorologiques de l'Observatoire Royale de Bruxelles

L'Obs. Royal.
Observations Météorologiques faites aux Stations internationales de la Belgique et des Pays Bays, par J. C. Houzeau et C. H. D. Buijs-Ballot .
Annuaire de l'Observatoire de Montsouris, 1879
Nouvelles Météorologiques
L'Observatoire.
Annuaire de la Société Météorologique de France.
Bulletin Météorologique du Département des Pyrénées-Orientales, par le Dr. Fines, 1872, 73, 74, 76, 78
De la Pluie dans les Pyrénées-Orientales, par le Dr. Fines.
Vent, sa direction et sa force observées à Perpignan, par le Dr. Fines .
Bulletin Méteorologique du dep. de l'Hérault, 1878

L'Association Française.

Bulletin Mensuel de l'Observatoire Météorologique de l'Université d'Upsal'
H. Hildebrandsson.

Bulletin Mensuel de l'Observatoire de $\mathrm{Zi}-\mathrm{Ka}$ Wei
Observatoire Météorologique à Tchang-KiaTchouang près Hien-Hien, Province de Tchely, Bulletin Mensuel
Annales de la Société Scientifique de Bruxelles
Tables pour la réduction du Baromètre au niveau de la mer
Sur l'oscillation diurne du Baromètre, par M. E. Consté

Théorie de la Grêle, par M. E. Consté
Les Tourbillons Atmosphériques, par M. E. Consté .
Théorie Physico-Dynamique des Météores à Tourbillons, par M. E. Consté
Les Seiches, vagues d'oscillation fixe des lacs, par Dr. F. A. Forel
Les Causes des Seiches, par Dr. F. A. Forel
Les Courants Atmosphériques reproduits autour d'un globe en rotation, par l'Abbé Rougerie
La lunurie Zodiacale, par le P. Dechévrens
Sur la constitution de la surface Solaire, par M. I. Janssen

Sur l'accéleration séculaire du mouvement de la lune, par M. P. Puiseux
Discours de M. A. d'Abbadie sur Arago à Perpignan
Du Moncel, applications de l'Electricité . .
Funerailles de M. Regnault, discours de M. Debray
Grandeur et forme de la terre déterminées par les mesures d'ares et les oscillations du pendule
Notice sur l'Association Internationale de Géodésie
Sur le déplacement des raies des spectres des êtoiles, par l'Abbé Spće
Rapports présentés au deuxième Congrés Météorologique international de Rome, par le Dr. C. Pittei
Sur une propriété des surfaces du second degré dans la théorie de l'Electricité Statique, par le R. P. Delsaulx .
Nouvelle nomenclature géologique du Tertiaire, par Louis Faliés .
Notices historiques descriptives sur Montpellier
Les Alligators de la Chine Centrale, par R. P. C. Rathonis, S.J. .

La Sociéte.
A. Angot.

L'Auteur.
"
"
"
"
"
"
M. d'Abbadie.
R. P. Tailhan.
R. Délébecque.
"
L'Auteur.
"
L'Association Française.

L'Auteur.

```
Jahrbücher der K.K. Central-Anstalt für
    Meteorologie und Erdmagnetismus in Wien,
    von Ferdinand Asuaghi, 1876
    from Das Centrat-Observ.
Meteorologische Beobachtungen in Deutschland
    angestellt an 17 Stationen zweiter ordnung in
    Jahre, 1877 .
    Prüfung eines verbesserten Azimutalcompasses,
        von G. Hellman
            G. Hellmann.
Der zweite internationale Meteorologen Con-
    gress in Rome, von G. Hellmann
Plan für ein Meteorologisches Brobachtung-
    snetz, von G. Hellmann
Die täglischen Veränderungen der Temperatur
    der Atmosphäre in Nord-deutschland, von
    Dr. G. Hellmann .
Die organisation des Met. Dienstes in den
    Hauptstaaten Europa's, von Dr. G. Hellmann
Feuchtigkeit und Bewölkung auf der iberischen
    Halbinsel, von Dr. G. Hellmann .
Die Witterungsverhältnisse in 1877, von Dr. G.
    Hellmann
    Vergleichung der Normal barometer, von Dr.
        G. Hellmann
Oscillationen einer homogenen Flüssigkeits-
        masse infolge ihrer Oberfächenspannung,
        von Dr. A. Giesen
    Zur Theorie der drei ellipsoidischen Gleichge-
        wichtsfiguren frei rotirender homogener Flüs-
        sigkeiten, von J. Hagen, S.J.
    Bullettino Met. dell' Oss. del Coll. Rom.
    Bullettino Met. dell' Oss. del R. Coll. in
        Moncalieri
    Annuario della Società Meteorologica Italiana
    Andamento annuale della Umidità, del Prof.
        D. Ragona
    Congresso internazionale di Meteorologia a
Observaciones Meteorologicas del Colegio Catolico del SS. Corazon de Jesus en Puebla, 1878
Crónica CientificaRoma

Sopra un giudizio del Sig. A. Winnecke intorno all' opera: Le Stelle del P. A. Secchi, pel P. G. S. Ferrari
R. P. Ferrari.

Almanaque Náutico del Observatorio de San Fernando, \(\mathbf{1 8 8 0}\)

El Observatorio.
Observatorio Met. del Ateneo Municipal de Manila.
R. P. Ferrari.

L'Osservatorio.
D. Ragona.
C. Pittei.

El Observatorio.
C. Bruhns.
G. Hellmann.
```

 #,
    ```
```

```
                            #,
```

```

Die täglischen Veränderungen der Temperatur der Atmosphäre in Nord-deutschland, von Dr. G. Hellmann .
Die organisation des Met. Dienstes in den
Feuchtigkeit und Bewölkung auf der iberischen Halbinsel, von Dr. G. Hellmann .
Die Witterungsverhältnisse in 1877, von Dr. G. Hellmann
J. Hagen.
"
,
"'```

