STONYHURST COLLEGE

 OBSERVATORY.
RESULTS

OF
METEOROLOGICAL AND MAGNETICAL OBSERVATIONS.
1880.

MANRESA PRESS, ROEHAMPTON. 1881.

TABLE OF CONTENTS.

Page.
Introduction 5
Monthly Meteorological Reports 7
Yearly Meteorological Summary 3r
Table of Occasional Phenomena 33
Duration of Sunshine 34
Agricultural Notes 37
Observations of Crops and Flowers 39
Observations of Trees and Shrubs 40
Observations of Upper Clouds (Cirrus) $4 r$
Magnetic Report-1. Absolute values of the elements of Terrestrial Magnetism44
2. Magnetic Disturbances 5π
3. Daily Range of the Horizontal Force from 1868 to 1879 56
Lists of presents received 63

INTRODUCTION.

An important addition was made in April 1880 , by the Meteorological Office, to the self-recording instruments, a sunshine recorder having been placed on the S.E. side of the Observatory. This new instrument, besides the direct value of its indications, has afforded ample proof that the sky may often be apparently clear, and admit freely the passage of heat rays, and yet contain vapour that suffices to put a stop entirely to all observations of the chromosphere.

A magnificent fire-ball, and another fine meteor were seen during the year, and short notices of the observations appeared in Nature.

The magnetic work was continued as usual, and the results of twelve years' records of the H.F. magnet are appended to this report.

More attention was given this year to routine astronomical work. The height of the chromosphere at every part of the solar limb was daily measured when possible, and many drawings were made of the solar spots and faculæ. The spectroscope was improved by the addition of a Christie-Hilger half-prism, the maximum dispersion being now equal to 36 prisms of 60°. Observations of the whole chromosphere were made on 45 days, and it was partially examined on nineteen other occasions. The greatest height of any prominence recorded was $2^{\prime} 28^{\prime \prime}$. A second slit was made for the collimator, as the former slit was not long enough to measure the highest prominences.

A few end-on tubes were also procured for the spectroscopic room.

No occasion was missed of taking the usual observations of Jupiter's satellites and of lunar occultations.

The indication of the probable existence of an ultraNeptunian planet from the researches of G. Forbes and D. P. Todd, led to a search for the planet on every fine night. This careful examination of a very restricted portion of the heavens may become of considerable indirect service in detecting the proper motion of stars, and probably adding to the number of variables, \&c.

Clouds prevented this year the watch for November meteors, and also interfered with the observation of the partial solar eclipse, for which preparations had been made for observing chromospheric contacts, and for obtaining a series of photographic pictures of the successive phases.

A 4 in. equatoreal has been mounted this year for the use of students.

In the course of the year instruments were forwarded to the observatories of Manila, Zikawei, Kalosca, and Tarnopol.

Papers appeared this year in the R.A.S notices on the November meteors, Jupiter's satellites, and lunar occulations, and in Nature on comparative curves in terrestrial magnetism, and on Aurora Borealis and magnetic storms. A lecture on the observatory was printed in the Annales de la Sociêté Scientifique de Bruxelles and the Zeitschrift der österrechischen Gesellschaft für Meteorologie contained notices of the Report of the Meteorology of Kerguelen Island, and of the rainfall at Stonyhurst.
S. J. Perry.

Stanylurst (1)bstrvatory.

Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime} \mathrm{N}$. Long. 9 m .52 s . 68. w. Height of the Barometer above the sea, 38 I ft .

METEOROLOGICAL REPORT.

January, 1880.

Results of Observations taken during the month.	Mean for the last 33 years.
Mean Reading of the Barometer.........................29*928	29.436
Highest ,, on the 7th30\%237	30.014
Lowest , \quad, on the Ist29.304	28.590
Range of Barometer Readings 0.933	1.424
Highest Reading of a Max. Therm. on the 3ist $55^{\circ} \mathrm{O}$	517
Lowest Reading of a Min. Therm. on the 19th......... 17\%	$21 \cdot 1$
Range of Thermometer Readings 38.0	$30 \cdot 6$
Mean of all the Highest Readings 39.3	$42 \cdot 2$
Mean of all the Lowest.................................... 29.0	$32 \cdot 9$
Mean Daily Range 10.3	$9 \cdot 3$
Deduced Monthly Mean (from Mean of Max. and Min.) 34.5	37.4
Mean Temperature from dry bulb 34.4	$37 \cdot 9$
Adopted Mean Temperature 34.5	377
Mean Temperature of Evaporation....................... 32.6	$36 \cdot 0$
Mean Temperature of Dew Point 29.4	34%
Mean elastic force of Vapour $0 \cdot 162$ in	$0 \cdot 196$ in
Mean weight of Vapour in a cubic foot of air $1 \cdot 5 \mathrm{gr}$	2.2 gr
Mean additional weight required for saturation........ 0.4 gr	$0 \cdot 4 \mathrm{gr}$
Mean degree of Humidity (saturation 1×0) 0.81	0.86
Mean weight of a cubic foot of air 569\%ogr	5*490gr
Fall of Rain ... $0 \cdot 88 \mathrm{I}$ in	$4^{\cdot 183}$ in
Number of days on which Rain fell 9	20.4
Amount of Evaporation 0.091 in	$0 \cdot 777$ in

No. of days in the month on which the prevailing wind was	N	NE	E	SE	S	SW	w	NW
	0	4	5	0	9	7	3	3
Mean Velocity in miles per hour	0	$2 \cdot 8$	$4^{\circ} 2$	0	573	$10^{\prime} 3$	$8 \cdot 1$	4.9
Total No.of miles for each Direction	0	267	501	0	1158	1731	578	353

The total number of miles registered during the month was 4588.
The max. Velocity of the wind was 34 miles per hour ; direction S.W. by S . on the ist at midnight.
Mean amount of Cloud (an overcast sky being indicated by 10%) $\quad 7 \cdot 1$
In the month of January, the highest reading of the Barometer
during 33 years, was on the 8 th, in 1859 , and was 30.310
The lowest ", ", 15th, 1865 27.939
The highest Temperature ", 7th, $1877 \quad 59.9$
The lowest ,, , 13th, 1867 $9: 2$
The highest adopted mean temperature of the month, 1875 42.5
$\begin{array}{lllll}\text { The lowest } \quad, \quad \text {, } & 1879 & 30.2\end{array}$

The Barometer is exceedingly high, and its range remarkably small owing to the high reading $29^{\circ} 3$ for the minimum for the month.

The adopted mean Temperature is more than 3° below the mean for January.

The Rainfall is only one-fifth of the average, and the evaporation less than $O^{\prime} I$ in.

The general direction of the wind is S.W. by S. and not strong.

Mean amount of Cloud (an overcast sky being indicated by $\mathbf{1} 0^{\circ}$)... $8 \cdot 2$
In the month of February, the highest reading of the Barometerduring 33 years, was on the IIth, in 1849, and was$30 \cdot 452$
The lowest , "
6th, 1867 28.208
The highest Temperature 8th, 1877 $58 \cdot 3$
The lowest , "
Ist, 1855 $10^{\circ} 1$
The highest adopted mean temperature of the month, 1869 44°
The lowest
1855 $28 \cdot 6$
The Barometer is 0.2 in . below the mean.
Temperature rather higher than in previous years, and evaporation considerable.
Wind S.W.; W. and S. less frequent but stronger.

[^0]

Mean amount of Cloud (an overcast sky being indicated by $10 \circ$)... 6.5
In the month of April, the highest reading of the Barometer
during 33 years, was on the 22 nd, in 1855 , and was $\ldots \ldots .30$.....
The lowest , ", 20th, $1868 \ldots . . .$. 28.358
The highest Temperature \quad, . 14th, $1852 \ldots$. 74•1
The lowest , ", 12th, 1862 2477
The highest adopted mean temperature of the month, $1865 \ldots \ldots . . \quad 48.5$
The lowest ,, , $1879 \ldots$.

The Barometer differs little from the mean for former years.
The range of the Thermometer has been small, and the mean temperature very slightly below the average for April.

There has been a falling off in the evaporation.
The S.W. was the windy quarter, but the strongest winds came from the S .

May, 1880.								
Results of Observations taken during the month.						Mean for the last 33 years.		
Mean Reading of the Barometer29•694						29.527		
Highest , on	on the 30th..........330.043					29.947		
Lowest ,, ón	on the 23rd...........29.257					28.975		
Range of Barometer Readings............................. $0 \cdot 786$						0.972		
Highest Reading of a Max. Therm. on the 20th $69{ }^{\circ} 4$						71.6		
Lowest Reading of a Min. Therm, on the 6th						31.4		
Range of Thermometer Readings					$8 \cdot 3$	$40 \cdot 2$		
Mean of all the Highest Readings					$9 \cdot 5$	59.6		
Mean of all the Lowest.					-6	$42 \cdot 2$		
Mean Daily Range					9	174		
Deduced Monthiy Mean (from Mean of Max. and Min.)					$8 \cdot 3$	49.2		
Mean Temperature from dry bulb					$8 \cdot$	49.5		
Adopted Mean Temperature					$8 \cdot 2$	49.4		
Mean Temperature of Evaporation					5°	$46 \cdot 2$		
Mean Temperature of Dew Point						$42 \cdot 8$		
Mean elastic force of Vapour					67	0.276 in		
Mean weight of Vapour in a cubic foot of air $3^{\cdot 1} \mathrm{gr}$						$3^{\circ} \mathrm{Igr}$		
Mean additional weight required for saturation o.9g Mean degree of Humidity (saturation $1 \cdot 00$) 0.78						0.9gr		
						$0 \cdot 77$		
Mean weight of a cubic foot of air 539°						536.9 gr		
Fall of Rain						2.488 in		
Number of days on which Rain fell						$\begin{gathered} 15.3 \\ 3: 580 \mathrm{in} \end{gathered}$		
Amount of Evaporation								
No. of days in the month on which the prevailing wind was	N	NE	E	SE	S	sw	w	NW
	\bigcirc	13	2	0	I	8	7	0
Mean Velocity in miles per hour	0	6.9	3.0	0	$9 * 5$	$8 \cdot 2$	12.8	0
Total No.of miles for each Direction	0		624	0	227		215	0
The total number of miles registered during the month was 6710 . The max. Velocity of the wind was 32 miles per hour; direction W. on the 22nd at noon, and W. by N. on the $24^{\text {th }}$ at 2 p.m.								

Mean amount of Cloud (an overcast sky being indicated by 10%)...			
In the month of May, the highest reading of the Barometer during 33 years, was on the 22nd, in 1855, and was			
The lowest	,	28th, 1877	28.559
The highest Temperature	"	19th, 1864	$82 \cdot 5$
The lowest		4th, 1855	$23 \cdot 5$
The highest adopted mean	rature	onth, 1848	$55^{\text {I }}$
The lowest	"	1855	45°

The Barometer generally stood higher than in previous years, and the range is small.

Temperature and Rainfall about the average.
The strongest winds came from the W., but the most frequent from the N.E.

June, 1880.								
Results of Observations taken during the month.							$\begin{aligned} & \hline \begin{array}{c} \text { Mean for the } \\ \text { laste } \\ 33 \text { years. } \end{array} \\ & \hline \end{aligned}$	
Mean Reading of the Barometer.........................29'501						29.521		
Highest ,	on the ist	 29	928	29.895		
Lowest ," on	on the 7th			.. 29	-124	29.004		
Range of Barometer Readings............................ 0.804						0.89.r		
Highest Reading of a Max. Therm, on the 2nd......... 73'6						$76 \cdot 8$		
Lowest Reading of a Min. Therm. on the 4th					$37 \cdot 3$	$39^{\cdot 1}$		
Range of Thermometer Readings					$36 \cdot 3$	377		
Mean of all the Highest Readings					$66 \cdot 1$	65^{\prime}		
Mean of all the Lowest					48.0	48':		
Mean Daily Range					$18 \cdot 1$	17.2		
Deduced Monthly Mean (from Mean of Max. and Min.)					55.3	54.9		
Mean Temperature from dry bulb					55.2	54.8		
Adopted Mean Temperature					$55 \cdot 3$	54.9		
Mean Temperature of Evaporation					52.1	52.2		
Mean Temperature of Dew Point					49\%	490		
Mean elastic force of Vapour: 0.348 in						$0 \cdot 357$ in		
Mean weight of Vapour in a cubic foot of air 3.9gr						3.9gr		
Mean additional weight required for saturation......... \quad I'Igr Mean degree of Humidity (saturation I $\circ 0$) $\quad 0.86$						0.9gr		
						0.79		
Mean weight of a cubic foot of air 529.7 gr						$530 \cdot 8 \mathrm{gr}$		
Fall of Rain .. 47887						3.803 in		
$\text { Amount of Evaporation } 3.667 \text { in }$							17	
							$3 \cdot 788$ in	
No. of days in the month on which the prevailing wind was	N	NE	E	SE	s	sw	w	NW
	1	6	6	0	2	3	12	-
Mean Velocity in miles per hour	100	97	9.6	0	$6 \cdot 7$	11.5	77	0
Total No.of miles for each Direction		1377	135	-	322	824		-
The total number of miles registered during the month was 6555 . The max. Velocity of the wind was 28 miles per hour ; direction W. at $2 \mathrm{p} . \mathrm{m}$. on the 6 th and 5 p.m. on the 7 th.								

Mean amount of Cloud (an overcast sky being indicated by $10{ }^{\circ} 0$)... 8.0
In the month of June, the highest reading of the Barometer during 33 years, was on the 15 th, in 1874 , and was 30.219
The lowest , ", 12th, 1862 $28 \cdot 632$
The highest Temperature $87 \cdot 2$$\begin{array}{ll}", & 27 \text { th, } 1878 \\ " & 30 \text { th, } 1856\end{array}$
The lowest " 34.2
The highest adopted mean temperature of the month, 1858 59°
The lowest"1856 and 186052.2

The Barometer and Thermometer differ but slightly from the mean, but the Rainfall is almost an inch above the average for June.

The W. wind is the most frequent, but the S.W. the strongest.

Mean amount of Cloud (an overcast sky being indicated by 10\%)... $8 \cdot 7$
In the month of July, the highest reading of the Barometer during 33 years, was on the 24 th, in 1868 , and was $30 \cdot 112$
The lowest , , \quad 15th, $1877 \ldots28 \cdot 564$
The highest Temperature \quad, 22nd, $1873 \ldots \ldots .$. 88.2
The lowest
The highest adopted mean temperature of the month, 1852 63°
The lowest ", 547

The range of the Barometer and Thermometer are both small. The Rainfall is very heavy, being almost 3 in . in excess of the mean; the number of days on which Rain fell was also very large.

The prevailing wind was W. by S., but the N.W. breezes were the stiffest.

Mean amount of Cloud (an overcast sky being indicated by 10%)... $\quad \mathbf{6 9}$
In the month of August, the highest reading of the Barometer
during 33 years, was on the 2 Ist, in 1874, and was $30 \cdot 114$
The lowest ", ", 3ist, $1876 \ldots28 \cdot 555$
The highest Temperature \quad, 2nd, $1868 \ldots . . .$. . 88.0
The lowest , ", 2rst, 1864 \& 1869 360

The highest adopted mean temperature of the month, $1857 \ldots . . .$. . 61.0
The lowest ", $\quad 1848 \ldots . . .$.

Both Barometer and Thermometer were somewhat in excess of the mean.

The Rainfall was remarkably small, being considerably less than half the mean of the last 33 years, and thus balancing the excess of the preceding month.

The wind came mostly from N.E. by E., but there was a strong breeze from the N.W.

September, 1880.								
Results of Observations taken during the month.							$\begin{gathered} \hline \text { Mean for the } \\ \text { last } \\ 33 \text { years. } \\ \hline \end{gathered}$	
Mean Reading of the Barometer29.530						29.506		
Highest ,	on the 28th			.. 30	106		30.034	
Lowest , On	on the 15 th			.. 28	897	28.834		
Range of Barometer Readings............................. 1.209						$1 \cdot 200$		
Highest Reading of a Max. Therm. on the 4th 820						72.4		
Lowest Reading of a Min. Therm. on the 19th			$2 \cdot$	$36 \cdot 9$		
Range of Thermometer Readings					$0 \cdot$	$35 \cdot 5$		
Mean of all the Highest Readings					-8		$62 \cdot 3$	
Mean of all the Lowest.					9.5		$47^{1} 1$	
Mean Daily Range.					$5 \cdot 3$		15%	
Deduced Monthly Mean (from Mean of Max. and Min.)					5.9		53.4	
Mean Temperature from dry bulb					$6 \cdot 6$		54%	
Adopted Mean Temperature							537	
Mean Temperature of Evaporation					3.5		$51 \cdot 1$	
Mean Temperature of Dew Point					*9		$48 \cdot 5$	
Mean elastic force of Vapour $0 \cdot 374$						0.343 in		
Mean weight of Vapour in a cubic foot of air 4.2 gr						3.9 gr		
Mean additional weight required for saturation.......... 0.8 gr Mean degree of Humidity (saturation $\mathrm{I} \circ 0$) 0.82						0.8gr		
						0.82		
Mean weight of a cubic foot of air \qquad 528.4 gr						$53 \mathrm{I} \cdot 8 \mathrm{gr}$		
Fall of Rain \qquad 3.969 in						$\begin{gathered} 4.645 \text { in } \\ 18.6 \end{gathered}$		
Number of days on which Rain fell								
Amount of Evaporation 1-889 in							$2 \cdot 337$ in	
No. of days in the month on which the prevailing wind was	N	NE	E	SE	S	sw	w	NW
	3	0	3	1	2	8	13	0
ty in miles per hour	10.8	0	8.1	5°	74	$5 \cdot 4$	$7 \cdot 2$	0
Total No.of miles for each Direction	n 778	0			57		2241	0
The total number of miles registered during the month was 5172. The max. Velocity of the wind was 28 miles per hour; direction W. by S. at 8 a.m. on the 22nd.								

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)... 79
In the month of September, the highest reading of the Barometer during 33 years, was on the 15 th, in 1851, and was $30 \cdot 274$
The lowest 22nd, 1863 $28 \cdot 371$
The highest Temperature 6th, 1868 85°
The lowest " 6th, 1855 $30 \cdot 7$
The highest adopted mean temperature of the month, 1865 $59^{\circ} 1$
The lowest " 1863 $50 \cdot 9$

The Barometer is almost identical throughout with the mean for the month.
The maximum of the Thermometer is nearly 10° above that of previous years, but the mean temperature of the month is only $2^{\circ} .6$ in excess of the mean for September.
The Rainfall is an exact average for the year, but is small for this month.

Mean amount of Cloud (an overcast sky being indicated by 10%)... 74
In the month of October, the highest reading of the Barometer during 33 years, was on the 6th, in 1877, and was $30 \cdot 282$
The lowest , 19th, 1862 28•139
The highest Temperature "
9th, 1869 $72 \cdot 8$
The lowest ,
The highest adopted mean temperature of the month, $\mathbf{1 8 6 1}$ and $\mathbf{1 8 7 6}$ 51623.1
The lowest " 1880 " 43^{1}
Both the mean Barometer and the range are somewhat in excess of the average.
The Temperature for the month is the lowest on record for October, and the minimum reading of the Thermometer is 2° lower than that of previous years. The Rain deficit is over two inches.
Wind mostly from the N.E., the E. sending the stiffest breezes.

November, 1880.

Mean amount of Cloud (an overcast sky being indicated by 10%). 69
In the month of November, the highest reading of the Barometer during 33 years, was on the 12th, in 1857, and was $30 \cdot 350$
The lowest Ist, 1859 28.007
The highest Temperature 6th, 1872 619
The lowest 39 17th, 1861 19'I
The highest adopted mean temperature of the month, 1877 $44^{\prime 2}$
The lowest , 1851 $36 \cdot 7$

The range of both Barometer and Thermometer are large, but their mean values differ little from the average.

The Rainfall more than balances the deficit of the previous month, being 3 inches in excess of the mean for November.

The S.W. is the prevailing wind, being considerably more than half the total.

December, 1880.											
Results of Observations taken during the month.						$\begin{aligned} & \hline \text { Mean for the } \\ & \text { last } \\ & 33 \text { years. } \\ & \hline \end{aligned}$					
Mean Reading of the Barometer 29.426						29.449					
Highest	on the 7 th $30 \cdot 170$					30.059					
Lowest	on the 29th.				-501	28.611					
Range of Barometer Readings........................... 1 669						1.448					
Highest Reading of a Max. Therm. on the 6th $51 \cdot 1$						52.8					
Lowest Reading of a Min. Therm. on the 30th					26.0	$20 \cdot 3$					
Range of Thermometer Readings					$25 \cdot 1$	$32 \cdot 5$					
Mean of all the Highest Readings					44.4	$42 \cdot 8$					
Mean of all the Lowest.					34.9	33.4					
Mean Daily Range.					$9 \cdot 5$	$\begin{array}{r} 9 \cdot 4 \\ 38 \cdot \mathbf{r} \end{array}$					
Deduced Monthly Mean (from Mean of Max. and Min.)					39.7						
Mean Temperature from dry bulb					$39 \cdot 4$	38.8					
Adopted Mean Temperature					$39 \cdot 6$	$38 \cdot 5$					
Mean Temperature of Evaporation					38.2	37.4					
Mean Temperature of Dew Point					$36 \cdot 4$	35.4					
Mean elastic force of Vapour 0.215 in						0.209 in					
Mean weight of Vapour in a cubic foot of air 2.5 gr						2.4 gr					
Mean additional weight required for saturation......... $\quad 0 \cdot \mathbf{4 g r}$ Mean degree of Humidity (saturation 1.00) 0.89						$0 \cdot 4 \mathrm{gr}$					
						$0 \cdot 88$					
Mean weight of a cubic foot of air 546.4 gr						547.6 gr					
Fall of Rain						$\begin{gathered} 4.552 \text { in } \\ 20.4 \end{gathered}$					
Number of days on which Rain fell........................ 25 Amount of Evaporation r.grr in											
						$0 \cdot 957$ in					
No. of days in the month on which the prevailing wind was	N	NE,	E	SE	s	sw	w	NW			
	1	5	I	-	I	6	14	3			
Mean Velocity in miles per hour	$2 \cdot 3$	7.6	73	-	$12 \cdot 5$	9.5	15.2	$9 \cdot 3$			
Total No.of miles for each Direction	56	916	174	-			51	9			
The total number of miles registered during the month was 8592. The max. Velocity of the wind was 38 miles per hour; direction W. by S. and W. by N. at $8 \mathrm{p} . \mathrm{m}$. on the 1ith and il a.m. on the 12 th.											

The range of the Barometer is rather large, and the Temperature somewhat high.

The Rainfall is enormous, being more than double the high average of the month.

The wind from the W. by S. was very strong during the month, scarcely one-seventh of the total coming from any other quarter.

Sinmary of the ©bservations

$$
\text { FOR } 1880 .
$$

	$\begin{aligned} & \text { Mean for the } \\ & \text { last } \\ & 33 \text { years. } \end{aligned}$
Mean Reading of the Barometer 29.537	29.480
Highest \quad, on January 7th $30 \cdot 237$	30.281
Lowest \#, on November 6th ... $28 \cdot 185$	28.273
Range of Barometer Readings 2.052	2.008
Highest Reading of a Max. Therm. on September 4th 82.0	817
Lowest Reading of a Min. Therm. on January 19th... 17\%0	15.8
Range of Thermometer Readings 655°	$65^{\circ} 9$
Mean of all the Highest Readings 55\%2	54%
Mean of all the Lowest................................... $40 \cdot 4$	$40 \cdot 9$
Mean Daily Range 1488	13.8
Deduced Yearly Mean (from Mean of Max. and Min.) 46.8	$46 \cdot 7$
Mean Temperature of dry bulb 4677	$46 \cdot 9$
Adopted Mean Temperature 46.8	$46 \cdot 8$
Mean Temperature of Evaporation 44.4	44^{6}
Mean Temperature of Dew Point 4177	$42 \cdot 1$
Mean elastic force of Vapour 0.277 in	$0 \cdot 276$ in
Mean weight of Vapour in a cubic foot of air 3.1gr	3.2 gr
Mean additional weight required for saturation......... $\quad 0.6 \mathrm{gr}$	$0 \cdot 7 \mathrm{gr}$
Mean degree of Humidity (saturation 1.00) 0.84	0.84
Mean weight of a cubic foot of air $541 \cdot \mathrm{Igr}$	$539 \cdot \mathrm{gr}$
Total Fall of Rain in the Year 50.261 in	47-517 in
Number of days per Month on which Rain fell......... 17\%	18.4
Amount of Evaporation29\%790 in	27.142 in

The Maximum monthly mean height of the Barometer was in January, 1880, and was 29.928
The Minimum ", ", in December 1868, and was 28.984The Maximum yearly mean height of the Barometer was in 1858,and was.29.544
The Minimum in 1866, and was 29.389

DATES OF OCCASIONAL PHENOMENA.							
1880.	Frost.		Hoar frost only.		Snow.		
		$\begin{aligned} & 9,31 \\ & 3,212-24,26 \\ & 16-28 \\ & 0,3 \mathrm{I} \\ & 17 \\ & \because \\ & \because \\ & \because \\ & 27,29,30 \\ & 14-23 \\ & 7-27,29-31 \end{aligned}$	$\begin{array}{r} 12-15,17,19,2 \\ 1,6,11 \\ 9,18-20,22, \\ 30 \\ 6 \\ \cdots \\ \cdots \\ \cdots \\ 3,20- \\ 1-4,9,15, \\ 18 \end{array}$	$\begin{aligned} & 20-23,27-30 \\ & \text { i, } 24,26,29 \\ & 24-26,29 \end{aligned}$ $\begin{aligned} & 23,29 \\ & 17,20-22 \end{aligned}$	(15, ${ }^{18}$	$\begin{gathered} \hline 15 \\ \ldots \\ 2 \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ 20,27 \\ 18,19,23 \\ 19,22,27, \end{gathered}$	$, 30,31$
888.	Hail.	Heavy Rain.	Fog.	Lightning.	Thunder	Lunar Halo.	Solar Halo.
January			6, 7, 16	\cdots		...	
$\underset{\text { February }}{ }$	${ }^{26}$	26	2, 3, 5, 11, 22, 25		\cdots
$\stackrel{\text { March }}{\text { April }}$	7 (soft), 25,26	16	13, 14,160	3 7		17, 23	...
${ }^{\text {May }}$	7 (soft), 25,26 \ldots	16		...	7, 13, 21, 25	17, 22	13,18
June	4	4, $7,8,19$		10, 22	10, 11, 19, 22	...	1
$\underset{\substack{\text { July } \\ \text { Augst }}}{ }$...	2, 6, 17, ${ }_{\text {5, }} \mathbf{6}$, 24	\ldots	${ }^{13,17,23}$	13, 17, 23		\ldots
September	19	18, 19,22	23, 278,29	5, 18	14, 18, 19	25	...
October November	\ldots		${ }_{\text {17, }}^{22}$	26	\ldots	${ }_{8}^{22}$	\ldots
November December	18, ${ }_{1} 9,20$	12, 13, 14	2, ${ }_{\text {22 }}^{22}, 28$		\ldots		\ldots

HOUR, OF RECORDED SUNSHINE.

AGRICULTURAL NOTES.

January.-No out-door work could be carried on, owing to the severe frost.

February.-During the first week the ploughing in preparation for oats was commenced, and lasted during the greater part of the month. The snowdrop and a few early flowers were in blossom in sheltered sunny spots towards the end of the month.

March. - Rather cold, but often cloudless. The prevalency of E. and N.E. winds was excellent for ploughing, but did not favour growth.

April.-Commencement of month rather wet, but not generally unfavourable. At the end of the month most of the potatoes were in, and prospects were satisfactory.

May.-Ploughing finished early ; potatoes all in by the end of the first week, and green crops by the 20th. Rain much needed towards the close of the month.

June.-Much rain, vegetation backward. The fruit trees, especially the apple and pear trees, promised badly. The small amount of blossom was very conspicuous. Currants and gooseberries were the only fruit that looked well.

July.-Very wet. and stormy. Hay cut on the jrd, and mostly housed by the 20th; quantity fair. Clover very poor. Corn beaten down by heavy rain. Apples and pears few and small. Sun much wanted.

August.-Exceedingly fine. Corn more promising. Good crop of currants and gooseberries, but other fruit failed, except cherries which fell only slightly below the average.

September.-Wheat and oats cut in the first week, and all housed by. the 14th. Oats very good; wheat average in quantity. Green crops looking well. Potatoes very good, crop heavy and very little disease ; a fair quantity housed by the end of the month.

October.-Most of the green crops were taken up. Tumips abundant and excellent. Mangel rather below the average. Some wheat sown during the last week.

November.-All green crops housed towards beginning of month. Nearly all the wheat was sown.

December.-Too cold for any agricultural out-door labour.
OBSERVATIONS OF CROPS AND FLOWERS.

OBSERVATIONS OF UPPER CLOUDS (CIRRUS).					
Date.	G. M. T.	Cloud Direction.	Velocity.	Wind.	
				Direction.	$\begin{aligned} & \text { Force } \\ & \text { (o to 12). } \end{aligned}$
January 2		S.S.W.		S.W.	
January 2	$9.30 \mathrm{a.m}$ $10 \mathrm{a} . \mathrm{m}$.	S.W.	3	S. W.	2
" $\quad 17$	$10.30 \mathrm{a} . \mathrm{m}$.	W.N.W.	3	N.E.	0
", 17	2 p.m.	N.W.	2	W.	1
" 27	$2 \mathrm{p} . \mathrm{m}$.	S. by E.	1	S.	0
" 29	$9 \mathrm{a} . \mathrm{m}$.	W.S.W.	I	S.W.	I
" 29	$10 \mathrm{a} . \mathrm{m}$.	W. ${ }_{\text {W }}$	1	S.S.W.	0
February 7	Noon. Noon.	W.S.W. S. by E.	2	S.W.	3
	Noon.	W.	2	W.	6
" 28	Noon.	W.N.W.	2	W.	5
March I	$10 \mathrm{a} . \mathrm{m}$.	W.	2	S.W.	6
" 2	$11.20 \mathrm{a} . \mathrm{m}$.	W.N.W.	1	W.S.W.	0
" 31	Noon. 2 p.m.	N.W. S.W.	1	$\underset{\text { E. W. }}{\text { W. }}$	6
", 11	2 p.m. 6 p.m.	N.W.	2	E.	3
" 77	8 a.m.	W.	2	E.N.E.	3
" 17	$10 \mathrm{a} . \mathrm{m}$.	W.	2	E.	2
" 17	2 p.m.	N.W.	3	E.	3
" 17	4 p.m.	W.N.W.	2	E.	4
$7 \quad 20$ $" \quad 26$	$9 \mathrm{a.m}$.	N.W.	1	N.N.E.	2
" 27	-8 a.m.	S.S.W.	1	E.N.E.	2
" 27	Io a.m.	S.W.	1	N.E.	2
" 27	Noon.	S.W.	1	E.N.E.	2
" 27	$2 \mathrm{p} . \mathrm{m}$.	W.S.W.	1	E.N.E.	2
" 27	$5.15 \mathrm{p} . \mathrm{m}$. $6 \mathrm{p} . \mathrm{m}$.	W. by S.	1	E.	2
" 27	$6 \mathrm{p} . \mathrm{m}$.	W.W.	2	S. W.	2
" 39	4 p.m.	W.	2	S.S.W.	2
April 1	$5.30 \mathrm{p} . \mathrm{m}$.	N.N.W.	3	W.	2
" 13	${ }_{8} 3$ p.m.	S.E.	1	N.N.E.	1
\% 14	8.40 a . m .	S.S.W.	4	N.N.E.	0
" 14	$10 \mathrm{a} . \mathrm{m}$.	S.W.	4	N.N.E.	\%
" 14	2 poon.	W.W.W.	3	N.N.E. E.N.E.	1
May 4	$\begin{aligned} & 2 \mathrm{p.m.} \\ & 9 \mathrm{am} . \end{aligned}$	W.S.W.	2	N.E.	2
" 5	$5.20 \mathrm{a} . \mathrm{m}$.	N. by E.	3	E.	0
$\begin{array}{rr} " & 6 \\ \# & 13 \end{array}$	Noon. 1 p.m.	w.w.	2 3	E.N.E.	1

OBSERVATIONS OF UPPER CLOUDS (Continutd).					
Date.	G. M. T.	$\underset{\text { Direction. }}{\text { Clo }}$	Velocity.	Wind.	
				Direction.	$\left.\begin{array}{c} \text { Force } \\ \text { (oto } \\ \text { or }) \end{array}\right)$
May 13	2 p.m.	S.W. by w.		E.	2
" 13	4 p.m.	S.W.	4	E.N.E.	2
" 17	$6 \mathrm{a} . \mathrm{m}$.	${ }^{\mathrm{N}}$. ${ }_{\text {d }}$	2	N.N.E.	1
" 18	$10 \mathrm{a} . \mathrm{m}$.	N. by W.	4	$\underset{\mathbf{W}}{\mathbf{E} .}$ -	1
", 19	3.30 p.m.	W.S.W.	4 4	W.	3 5
" 24	$4 \mathrm{p} . \mathrm{m}$.	W.	4	W.	4
" 24	5 p.m.	W.	5	W.S.W.	4
" 24	7.25 p.m.	W. by S.	4	W.S.W.	2
", 25	$10.15 \mathrm{a} . \mathrm{m}$. 11 m.	W. by S.	3 3	S.W.W.	3 3
June I	$11 \mathrm{a} . \mathrm{m}$.	S.E. by S.	2	N.E.	2
" 1	Noon.	${ }_{\text {E }}{ }_{\text {E }}$	1	N.E.	2
" 2	9.30 a.m.	E.N.E.	1	E.N.E.	3
", 2	10 a.m.	E. by N.	2	E.N.E.	3 3
", 5	49 am.	N.E.	1.	N.N.W.	2
" 5	$10 \mathrm{a} . \mathrm{m}$.	N.E.	2	W.	2
"18 18	$9.30 \mathrm{a} . \mathrm{m}$.	E.S.E.	2	N.E.	1
" 18	Noon.	S.E.	1	N.E.	1
" 18	2 p.m.	S.E.	1	N.E.	1
July $\begin{array}{r}26 \\ \\ \hline\end{array}$	$10 \mathrm{a} . \mathrm{m}$.	S.W.	3 2	${ }^{\text {W }}$.	2
" 13	$4 \mathrm{p} . \mathrm{m}$.	S.W.	1	N.E.	1
" 13	$5 \mathrm{p} . \mathrm{m}$.	W.S.W.	1	E.	1
" 13	6 p.m.	S. by W.	2	N.E.	1
", 16	4 \% p.m.	S.W.	3	N.E.	1
", 28	$5 \mathrm{p} . \mathrm{m}$.	W.	3	S.W.	3
$\because 28$	$7 \mathrm{p} . \mathrm{m}$.	W. by S.	2	W.S.W.	1
	4 p.m.	W. by S.	1		
August 1	$2 \mathrm{p} . \mathrm{m}$.	W.S.W.	2	W.	2
"	$3 \mathrm{p} . \mathrm{m}$.	S.W.	2	W.N.W.	$\begin{array}{r}3 \\ 2 \\ \hline\end{array}$
" 13	$9 \mathrm{am.m}$.	E. by S.	1	N.E.	1
" 13	10 am .	E.S.E.	3	E.	1
" 15	9.30 arm .	N.	2	E.	1
", 15	Noon. $3.30 \mathrm{p} . \mathrm{m}$.	E. by N.	1	N.E.	1
" 22	$10 \mathrm{a} . \mathrm{m}$.		3	N.E.	1

OBSERVATIONS OF UPPER CLOUDS (Continued).					
Date.	G. M. T.	Cloud Direction.	Velocity.	Wind.	
				Direction.	$\begin{aligned} & \text { Force } \\ & \text { (o to } 12 \text {). } \end{aligned}$
August 27	$11.30 \mathrm{a} . \mathrm{m}$.	N.N.W.	2	W.	1
" 29	Noon.	S.E.	1	E.	2
" 30	2 p.m.	E. by S.	1	E.S.E.	2
", 30	4 p.m.	E.S.E.	2	E.	2
Sept. 3	$10.30 \mathrm{a} . \mathrm{m}$.	S. by E.	2	S.W.	1
" 3	$11 \mathrm{a} . \mathrm{m}$.	S.S.E.	1	S.W.	0
" 4	2.30 p.m.	S.W.	2	S.	
" 6	9. $30 \mathrm{ar.m}$.	S.S.W.	1	S.W.	3
" 9	$2.30 \mathrm{p.m}$.	S.W	3	W ${ }_{\text {E. }}^{\text {S }}$ W	3
",17 8 18	6 p.m.	S.S.W.	1	W.S.W. W.N.W.	1
October 14	$4 \mathrm{p} . \mathrm{m}$. $4.30 \mathrm{p.m}$.	W. by N .	1	W.N.W. N.W.	1
, $\quad 19$	4.30.m.	W.	3	N.N.E.	1
\% 19	10 a.m.	W.	4	N.N.E.	1
" 19.	Noon.	W.	3	N.E.	0
" 20	$9 \mathrm{a} . \mathrm{m}$.	W.	I	N.	
\# 20	$10 \mathrm{a} . \mathrm{m}$.	W.S.W.	1	N.E.	1
\% 22	7 a.m.	W.S.W.	3	N.N.E.	1
" 22	$9 \mathrm{a} . \mathrm{m}$.	S.W. by W.	2	N.	2
" 22	$10 \mathrm{a} . \mathrm{m}$.	W.S.W.	2	N.E.	1
" 22	Noon.	W.S.W.	3	E.N.E.	3
\% 29	$10 \mathrm{a} . \mathrm{m}$.	N.E.	2	N.W.	3
") 29	Noon.	E.N.E.	1	N.N.W.	3
Nov. 1	$10.30 \mathrm{p} . \mathrm{m}$.	S.E.	1	N.	1
., 3	1.15 p.m.	E.	1	N.E.	$\underline{1}$
" 10	$10 \mathrm{a} . \mathrm{m}$.	W.	1	S.	0
, 10	Noon.	W.	2	S.	0
Dec. 2	$7.30 \mathrm{a} . \mathrm{m}$.	S.	3	W.	1
" 2	$2 \text { p.m. }$	W.S.W.	2	W.	1
" 2	$4 \text { p.m. }$	S.W.	2	W.S.W.	0
" 10	$11.30 \mathrm{a} . \mathrm{m}$.	W. by S.	2	W.	3
" 12	Noon.	W.	2	W.	6
\% 16	I p.m.	E.N.E.	1	N.E.	2
" 21	10.30 a.m.	W.	1	N.	0
" 30	0.30 p.m.	N.E.	3	N.W.	1

Stlonthty 37anmetial ©bsservations taken at the duallege (sbservatory, stonyturst. 1880.

The Horizontal, Vertical, and Total forces are calculated to English measure; one foot, one second of mean solar time, and one grain being assumed as the units of space, of time, and of mass.

The Vertical and Total forces are obtained from the absolute measures of the Horizontal force and of the Dip.

In the observations of Deflection and Vibration, taken each month for absolute measure of Horizontal force, the same magnet has always been employed.

The moment of inertia of the magnet with its stirrup, for different degrees of temperature, and the co-efficients in the corrections required for the effects of temperature and of terrestrial magnetic induction on the magnetic moment of the magnet, were determined at the Kew Observatory by the late Mr. Welsh.

The moment of inertia of the magnet with its stirrup, using the grain and foot as the units of mass and of linear measure, is 5.27303 . Its rate of increase for increase of temperature is 0.00073 for every 10° of Fahr.

The weight of the magnet with its stirrup is approximately 825 grains, and the length of the magnet is nearly 3.94 inches. The moment of inertia was determined, independently of the weight and dimensions, by the method of vibration, with and without a known increase of the moment of inertia.

The temperature corrections have always been obtained from the formula $q\left(t^{\circ}-35^{\circ}\right)+q^{\prime}\left(t^{\circ}-35^{\circ}\right)^{2}$, where t° is the observed temperature and 35° Fahr. the adopted standard temperature. The values of the co-efficients q and q^{\prime} are respectively 0001128 and 0.000000436.

The induction co-efficient μ is 0.000244 .

The correction for error of graduation of the Deflection bar at $\mathrm{r}^{\circ} \mathrm{ofoot}$ is +0.00004 ft ., at $\mathbf{I} \cdot 3+0.000064 \mathrm{ft}$.

The observed times of vibration are entered in the Table without corrections.

The time of one vibration has been obtained each month from the mean of twelve determinations of the time of 100 or of 200 vibrations.

The angles of deflection are each the mean of two sets of readings.
In deducing from these observations the ratio and product of the magnetic moment m of the magnet, and the earth's horizontal magnetic intensity X, the induction and temperature corrections have always been applied, and the observed time of vibration has been corrected for the effect of torsion of the suspending thread; but no correction has been required for the rate of the chronometer, or for the arc of vibration, the maximum value of the former having been $3^{5} \cdot 51$, and the latter never over 50^{\prime}.

The average deflection of the magnet caused by a twist of the torsion circle through 90°, has been about $8^{\prime} \cdot 6$ of arc.

In the calculations of the ratio- $\frac{m}{\mathrm{X}}$, the third and subsequent terms of the series $\mathrm{I}+\frac{\mathrm{P}}{r^{2}}+\frac{\mathrm{Q}}{r^{4}}+\& \mathrm{c}$., have always been omitted.

The adopted value of the constant P is 0.004116 .
The Declination observations have been taken once a week. Each reading has been corrected by the photographic curves for all irregular disturbances, as well as for daily and monthly range.

VIBRATION OBSERVATIONS FOR ABSOLUTE MEASURE OF HORIZONTAL FORCE.					
Month.	G. M. T.	Temperature.	Time of one vibration.	$\underline{\log } \mathrm{m} X$	Value of m.
January ...	$\begin{array}{lll} \text { D. } & \text { H. M. } \\ \text { 2Ist... } & 8 & 56 \text { a.m. } \end{array}$	$\stackrel{\circ}{3} 39$	$5 \cdot 68092$	$0 \cdot 20577$	0.43804
February...	24th...II 18 a.m.	$40 \cdot 6$	5.68502	0.20550	0.43823
March	19th... $1125 \mathrm{a} . \mathrm{m}$.	$47^{\circ} \mathrm{O}$	$5 \cdot 68612$	0.20578	$0 \cdot 43817$
April	27th...II 9 a.m.	50'3	$5 \cdot 69477$	$0 \cdot 20465$	0.43744
May.........	24th... $955 \mathrm{a} . \mathrm{m}$.	5 ${ }^{\prime \prime} 7$	5•69026	0.20557	0.43778
June ..	26th... $1043 \mathrm{a} . \mathrm{m}$.	53.9	5.68994	0.20540	0.43793
July	29th...10 $19 \mathrm{a} . \mathrm{m}$.	61.0	5770000	$0 \cdot 20419$	0.43700
August ...	13th...II 14 a.m.	$70 \cdot 6$	5'70500	0.20406	$0 \cdot 43778$
September.	27th...II $42 \mathrm{a.m}$.	$60 \cdot 7$	5.69510	$0 \cdot 20477$	0.43759
October ...	20th...10 $50 \mathrm{a} . \mathrm{m}$.	$47 \cdot 8$	5.69479	0:20455	0.43690
November.	22nd... 948 a.m.	47.5	$5 \cdot 68942$	- 20544	$0 \cdot 43712$
December .	23rd... 017 p.m.	49.4	5.69508	$0 \cdot 20469$	0.43670

Dip Observations.				Magnetic Intensity.		
Month.	G. M. T.	-	Dip.	$\begin{gathered} \mathbf{X}, \text { or Hori- } \\ \text { zontal } \\ \text { Force. } \end{gathered}$	$\begin{aligned} & \text { Y, or } \\ & \text { Vertical } \\ & \text { Force. } \end{aligned}$	$\underset{\text { Force. }}{\text { Tot }}$
January ..		1	$\begin{array}{lll} 60 & 11 \\ 69 & 18 & 51 \\ 69 & 19 & 15 \end{array}$	3.6667	97724	10'3815
February	$\begin{array}{rrrrr} 27 \text { th...11 } & 32 & \text { a.m. } \\ , " & \ldots & 0 & 2 & \text { p.m. } \end{array}$	$\begin{aligned} & \mathbf{I} \\ & 3 \end{aligned}$	$\begin{array}{ccc} 69 & 21 & 2 \\ 69 & 19 & 15 \end{array}$	3.6627	97114	103790
March	$\begin{array}{r\|} 20 t h . . . I I ~ \\ \hline \end{array}$		691914 691645	3.6657	97006	103700
April	$\left\lvert\, \begin{array}{rrrr} 28 t h & 10 & 32 & \text { a.m. } \\ , & \ldots 11 & 15 & \text { a.m. } \end{array}\right.$		$\left\|\begin{array}{rrr} 69 & 18 & 0 \\ 69 & 18 & 27 \end{array}\right\|$	3.6621	9'6935	10;3621
May	$\begin{array}{rlrl} 25 \text { th } \ldots \text { II } & 42 \text { a.m. } \\ " & \ldots & 0 & 5 \\ \hline \end{array}$		$69 \quad 2019$ 691610	3.6671	97066	103762
June	$\begin{array}{r} 27 \text { th... } 10 \text { 50 a.m. } \\ " \ldots \text { II } 23 \text { a.m. } \end{array}$		691420 691510	3.6644	9.6700	$10 \cdot 3410$
July	$\left\lvert\, \begin{array}{cccc} 30 t h & \text { II } & \text { o a.m. } \\ " & \ldots & \text { o } & \text { I } \\ \hline \end{array}\right.$		$\left\|\begin{array}{lll} 69 & 12 & 51 \\ 69 & 18 & 30 \end{array}\right\|$	3.6620	9.6714	10'3414
August ...	IIth... 1150 a.m. 16th... 1028 a.m.	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\left.\left\|\begin{array}{lll} 69 & 11 & 10 \\ 69 & 23 & 56 \end{array}\right\| \right\rvert\,$	3.6544	$9 \cdot 6672$	10.3348
September	$\left\lvert\, \begin{array}{cccc} 29 \text { th... or } & 7 \text { p.m. } \\ " & \cdots & \text { o } & 40 \\ \hline \end{array}\right.$		691521 691926	3.6619	9.6859	10:3549
October..	$\left\{\begin{array}{ccc} 23 \text { rd...II } 17 \text { a.m. } \\ ", \ldots \text { II } & 40 & \text { a.m. } \end{array}\right.$	1	$\begin{array}{lll} 69 & 16 & 5 \\ 69 & 14 & 0 \end{array}$	3.6660	$9 \cdot 6763$	10:3424
November		1 3	$6916 \quad 5$ 6915	3.6716	9.6954	103673
December		$\left\lvert\, \begin{aligned} & \mathbf{I} \\ & 3 \end{aligned}\right.$	691945 691510	$3 \cdot 6687$	9’7044	10.3985
	Means		691716	3.6644	9.6913	10:3624

MAGNETIC DISTURBANCES.

January.-The year commenced with a quiet month. No disturbance worthy of record occurred before $5 \mathrm{p} . \mathrm{m}$. on the 7 th; and from Io p.m. on that day the Declination magnet varied little from its mean position until the 23rd, when a rather rapid Easterly movement of the needle took place at 8 p.m., which was, however, of no very great extent. The irregularity at $5 \mathrm{p} . \mathrm{m}$. on the 7 th was reproduced at $6.50 \mathrm{p} . \mathrm{m}$. on the 8th, and at $8.55 \mathrm{p} . \mathrm{m}$. on the 9th. The Horizontal Force decreased slightly at $5 \mathrm{p} . \mathrm{m}$. on the 7th, and increased at $9 \mathrm{p} . \mathrm{m}$., whilst the Vertical Force was greatest at about 6 p.m.

February.-On the 6th, 8th, and inth, slightly perturbations were registered towards evening, but the normal state was regained in a few hours. The next disturbed period occurred about midnight of the 22nd, but without any great departure from the mean.

March.-During the evening of the 2nd the Declination magnet was considerably disturbed, and the other magnets only slightly. The range was large during the afternoon of the 7 th. From $9.40 \mathrm{p} . \mathrm{m}$. on the 13 th until 8 o'clock the next morning the needle remained constantly East of its mean position.

The first magnetic storm of the year commenced about noon on the 17th, but there was no very rapid movement before $5.20 \mathrm{p} . \mathrm{m}$., when the magnet moved Eastward through $42^{\prime} 17^{\prime \prime}$ in 30 minutes. The most marked features of the storm were grouped into the seven hours preceding midnight. The Horizontal Force magnet was very irregular in its movements during this storm, but it never departed much from its mean value. The Vertical Force magnet, on the contrary, increased rapidly from 5 p.m., and attained a high maximum at 5.45 : the minimum, which was less remarkable, was reached only at $4 \mathrm{a} . \mathrm{m}$. on the following day.

During the remainder of the month there were occasional departures from the mean, but none of any moment. The most exceptional time
during the latter portion of the month was from the evening of the 26 th to the morning of the 28 th, during which time the magnet was seldom at rest.

APril. -The early hours of the and were rather unsteady, but the first half of the month was remarkably free from all disturbing influence, the exaggerated daily range of this season becoming thus more strongly marked than usual. There was some irregular motion on the 16 th and 19th, and the disturbance amounted almost to a storm between 8 p.m. on the 21 st and $8 \mathrm{a} . \mathrm{m}$. on the 22 nd . The whole of the afternoon of the 28th was again stormy, and the magnet remained unsteady until io a.m. on the 29th. During this interval the Vertical Force increased gradually, attaining its maximum at $7.50 \mathrm{p} . \mathrm{m}$. on the 28 th , and then returning quietly to its mean value.

May.-The month began with a tremulous movement shortly before $6 \mathrm{a} . \mathrm{m}$. on the ist, and the needle was much disturbed until noon of the 3rd. The oscillation of the Declination magnet was most rapid between midnight and $1.15 \mathrm{a} . \mathrm{m}$. on the 2nd, but the irregularities were most frequent from $4 \mathrm{p} . \mathrm{m}$. to 11 o'clock on the same day. The chief perturbation of the Horizontal Force magnet happened somewhat earlier than that of the Declination. The Vertical Force curve indicated twice a very strong action of the disturbing force, the first culminating in a minimum at I a.m. on the 2 nd , and the other producing a maximum at $5.5 \mathrm{p} . \mathrm{m}$. the same day. These were the most remarkable deviations of the V.F. magnet from its mean position since the beginning of the year. The Declination magnet was disturbed again at 3 p.m. on the 14th, and the disturbance lasted 29 hours. At $3 \mathrm{a} . \mathrm{m}$. on the 26th the irregular movements began anew and continued uninterruptedly until the close of the month, but no very rapid or extensive oscillations were recorded on either the Declination or Horizontal Force curves. The Vertical Force magnet shows three very decided minima at about 2 a.m. on the 27 th, 28th, and 29th.

June.-The magnets were very quiet until io p.m. on the 14th, but the next four days were rather unsteady. The 23rd was the next abnormal day, the Easterly movements, which commenced at 5.50 p.m. and at 9.25 , being rather rapid. A considerable increase of the Vertical Force was recorded the same afternoon, the maximum occurring at 6.32.

July.-With the exception of a slight increase of the Vertical Force on the evening of the 2nd, and some irregularities on the morning of the 6th, the magnet was very steady until 9.25 p.m. on the 12 th. Then followed two days of ordinary perturbations, and the nights of the 18th, 19th, and 21st were similarly disturbed. From this date to the end of the month the Declination needle remained fairly quiet, but during this month the Vertical Force was in general less regular than usual.

AUGUST.-During the first nine days of the month the magnet was seldom at rest, especially in the early hours of the morning. The Vertical Force magnet showed an increase of force on the afternoon of the 5th, and a decrease about midnight on the 6th.
At $10.20 \mathrm{a} . \mathrm{m}$. on the I ith, the great storm began with a tremulous movement of the Declination needle, accompanied by a gradual tendency towards the West. The most rapid movement on this afternoon was an increase of $34^{\prime} 23^{\prime \prime}$ in the W. Declination between 8.45 and 9.5 . At the same time the Horizontal Force magnet was much disturbed, and remained in an unquiet state during the whole of the afternoon of the ith. The Vertical Force was at first increased, reaching its maximum a few minutes before 7 p.m., and then diminishing, with a slight interruption and a secondary minimum at 9.15 , until 11.30 when the ordinate of the curve was I-I inch below the reading at $7 \mathrm{p} . \mathrm{m}$. Shortly after midnight the normal position was again regained. There was a lull in the storm in the early hours of the $\mathbf{1 2 t h}$, but this was only a prelude to greater violence. At $2.30 \mathrm{a} . \mathrm{m}$. the Declination magnet again began its tremulous motion, but the storm was at its height only from noon of the 12 th until $6 \mathrm{a} . \mathrm{m}$. on the 13 th. From noon until 4 p.m. the magnets were vibrating most violently, and the Horizontal Force increased considerably, the absolute maximum occurring shortly before $4 \mathrm{p} . \mathrm{m}$. This increase was not steady, but accompanied by very rapid oscillations. The Vertical Force magnet travelled very much, and at the same time showed an increased force from noon to $0.36 \mathrm{p} . \mathrm{m}$., and then a decrease for an hour. This was followed by a quick rise until the V.F. attained its maximum at 4 p.m. Between 7.10 and 7.25 the North end of the needle moved $58^{\prime} 44^{\prime \prime}$ towards the East, and then returned with a double sweep Westward, the reading at 8.14 being $1^{\circ} 26^{\prime} 5^{\prime \prime}$ higher than at 7.25 . From $10 \mathrm{p} . \mathrm{m}$. to $3 \mathrm{a} . \mathrm{m}$. on the 13 th the Vertical Force was on three separate occasions too much below the mean to be recorded on the photographic
sheet, and the motion was most rapid between 10 p.m. and midnight. The variation of the V.F. actually recorded was represented by an ordinate more than 4.7 inches in length. The changes on all the Curves during the evening of the $13^{\text {th }}$ and the early morning of the $14^{\text {th }}$ were very similar to those of the preceding day, and occurred almost at the same hours, but were generally not so extensive. $5 \mathrm{a} . \mathrm{m}$. on the $14^{\text {th }}$ was the middle of the last important movement on all the Curves. This was the most violent magnetic storm recorded at this Observatory since the year 1868 .

On the evening of the 14 th, and the early morning of the -15 th, and throughout the 16th, the needle was unsteady. On the 19th the disturbance was very considerable, having commenced at about $5.15 \mathrm{a} . \mathrm{m}$. It was well marked on all the Curves, and during the afternoon both of the Components of the magnetic force were much increased, and the Declination needle was generally to the Westward of its normal position. On the previous evening there had been strong indications of a coming storm. At 6 a.m. on the 26th another slight perturbation began, and lasted until noon of the 27 th. The month closed with a disturbance commencing at about $9.20 \mathrm{p} . \mathrm{m}$.

Seprember.-The disturbance of August 3Ist lasted until the afternoon of September ist, and then the magnets remained very steady until 0.30 on the morning of the 15 th, when a considerable perturbation began. At 4 p.m. the Declination swept over an arc of more than 40^{\prime} in 12 minutes, the Horizontal Force was very irregular and the Vertical Force ordinate varied 1.4 inches, the maximum being at 4.8 p.m., and the minimum at 2.37 the following morning. A few irregularities of some extent occurred between $9 \mathrm{p} . \mathrm{m}$. of the 21 st and midnight of the 22nd, and the afternoon of the 27 th was stormy, but the Components of the magnetic intensity showed greater inequalities on the following morning.

October.- There was some unsteadiness in the magnet on the morning of the 13th, and the afternoon of the 15th, and during the night of the 16th. From 6 p.m. until midnight of the 22nd the Declination was considerably below the mean, and at about II a.m. on the 23rd a disturbance began which lasted for 24 hours. This was followed by a day of rest, and then the disturbing forces were again at work, and the magnet oscillated almost continuously for about four days. Some 8 minutes after midnight on the 31st a slight storm began, but the needle was almost at
rest at 4 p.m. The Horizontal Component of the intensity was rather more affected than the Vertical Component.

November.-The second most important storm of the year commenced at $10 \mathrm{p} . \mathrm{m}$. on the 2nd, but the most rapid oscillations occurred only from $4.5^{2} \mathrm{p} . \mathrm{m}$. on the 3^{rd} to $2 \mathrm{a} . \mathrm{m}$. on the 4 th . At $6.20 \mathrm{p} . \mathrm{m}$. on the 3rd an increase of $37^{\prime} 15^{\prime \prime}$ took place in 5 minutes. The Vertical Component of the force was much more disturbed than the Horizontal ; a most decided maximum of the former was recorded at $5.40 \mathrm{p} . \mathrm{m}$., and the lowest readings followed at 9.48 and 11.22 on the 3 rd .

A quick Easterly movement was observed at 9.27 p.m. on the 9th, and there were some irregular oscillations between $9.17 \mathrm{p} . \mathrm{m}$. and midnight of the 18th, but the magnet was generally quiet until the morning of the 20th. Throughout the whole of the 20th and 21st the needle was never quiet, but there was no excursion of any great extent. The movements of the three magnets were very similar on the afternoons of the two days. The afternoon of the 27 th and the morning of the 28 th were also disturbed, the Vertical Force being much increased on the 27th. The month ended during an unquiet period, and the Vertical Force again rose above its normal value.

December.-The magnet remained rather unsteady until the morning of the 2nd. From noon on the 2nd it was very quiet for 24 hours, but afterwards no day was free from irregularities until the 15 th. Between 4 p.m. and 4,18 on the 19 th there was a sudden decrease of $24^{\prime} 21^{\prime \prime}$ in the W. Declination. Throughout the 29th the magnet was a great deal disturbed, but the end of the year was very quiet. During December the irregularities of the Vertical Force consisted almost entirely in tendencies to rise for a short time above the normal value.

DAILY RANGE OF THE HORIZONTAL COMPONENT OF THE EARTH'S MAGNETIC INTENSITY FROM г868 то 1879.

In the Report for last year a description was given of the self-recording magnetographs, followed by a discussion of the Declination curves from 1868 to 1879 . The Horizontal Force magnetograms have been reduced this year, and the results are contained in the following tables. The method adopted in the reduction is similar to that for the Declination. From about 100,000 hourly measures of the photographic.curves, the disturbed days, and readings differing $0 \cdot 12$ from the hourly mean, have first been eliminated, and then the differences of the hourly means from the monthly mean tabulated for each month. The means of the values thus obtained are given in the annexed tables, according to years and months, and these are graphically represented in plates I and 2.

The general character of the yearly curves differs very litttle from that of the Declination magnetograms, there being only one inflexion in the daily curve, and the annual results presenting only slight irregularities from year to year. The H.F. curves indicate as clearly as those of the Declination the undisturbed condition of the night hours, and that this is not due to greater equality of temperature during the night than during the day, is clearly shown by the constant temperature of the subterranean magnetic chamber throughout the twenty-four hours. The hours of maximum and minimum occur respectively at $7 \mathrm{p} . \mathrm{m}$. and $10 \mathrm{a} . \mathrm{m}$.

If we compare each yearly curve with the mean of the whole period, we perceive a marked change at the date 1873,4 . Previous to this epoch the curves were more developed than the mean, the maximum being higher and the mininum lower. These were followed by the values of 1873 and 1874, which alter the mean only slightly, and then came five years in which the curves were less open, both maxima and minima being less exaggerated. The years 1868 and 1869 represent a stage intermediate between $1870-3$ and the mean, and are therefore represented by a curve apart in the third plate. The cycle of changes indicated in these results is probably considerably in excess of the period which these observations embrace.

The annual change in the daily range of the Horizontal Force is more clearly marked than the secular variation, but it is somewhat less regular than in the case of the Declination. The range in the winter is small, and large in the summer, and no month coincides at all closely with the mean for the year. March and October approach a little nearer the mean than the other months, but even these are both decidedly of the winter type. The semi-annual inequality is graphically shown in plate 4.

Table III. would be incomplete without a special notice of the winter curves, which present more than one inflexion. Besides the principal times given in the table, the curve for January passes through its mean value at 3 h .26 m . a.m. and at 9 h .40 m . p.m. In February it remains near the mean from 2h. to $3^{\text {h. }}$ am. ; and in December it not only remains at the mean from 3 h . to 4 h . a.m., but again passes through it at $8 \mathrm{~h} .12 \mathrm{~m} . \mathrm{p} . \mathrm{m}$.

The figures in the tables give the differences of ordinates, but the value in British units may be deduced, if necessary, from the value of the coefficient, which is 0.031747 for an inch of the ordinate for the twelve years over which the observations extend.

MEAN DAIEY RANGE OF THE H.F. MAGNET AT STONYHURST (1868-1879).

MEAN DAILY RANGE OF THE H.F. MAGNET AT STONYHURST (1868-1879).

SECULAR INEQUALITY OF THE DAILY RANGE OF THE H.F. MAGNET.

SEMI-ANNUAL INEQUALITY OF THE DAILY RANGE OF THE H.F. MAGNET.

Summer April-Sept.

Winter Oct.-March

March and October

Jan. Feb.
Nov. Dec.

....
-
.

PRESENTS RECEIVED.

Greenwich Observations, 1877, 1878. . . from The Royal Observatory.
Report of the Astronomer Royal to the Board of Visitors of the Royal Observątory, Greenwich, x 8 8ุo
Greenwich Spectroscopic and Photographic Results.

Quarterly Returns of the Registrar General .
Report of the Meteorological Council to the Royal Society, 1879

Meteorological Office.
Daily Weather Reports

State of Weather and Forecasts

Weekly Weather Report
Hourly Readings of the Instruments of the Meteorological Committee
Quarterly Summary of Rainfall and Temperature in the British Islands
Report on the Meteorology of Kerguelen Island, by S. J. Perry
Contributions to our Knowledge of the Meteorology of the Arctic Regions. Part 2.
Meteorological Observations at Stations of the Second Order, 1878
Description of the Card Supporter for Sunshine Recorders, by G. G. Stokes
Aids to the Study and Forecast of Weather, by W. C. Ley

Results of Astronomical Observations made at the Radcliffe Observatory, Oxford, 1876
Proceedings of the Royal Society
Monthly Notices of the Royal Astronomical Society

Radcliffe Trustees. Royal Society.

Astronomica Society.

Memoirs of the Royal Astronomical Society, vol. 41, 45 from Astronomical Society.
Report of the British Association, Swansea, 1879
Report of the Kew Committee, 1879, 1880
Journal and Transactions of the Photographic Society of Great Britain, iv. 4.
Journal of the Scottish Meteorological Society .
Daily Bulletin of Weather Reports
Bulletin of International Meteorological Observations, Washington
Monthly Weather Review, War Department U.S. Chief Signal Office

Reports on Telescopic Observations of the Transit of Mercury, 1878
A Subject-index to the Publication of the U.S. Naval Observatory, 1845-75, by E. S. Holden
Astronomical Papers for the use of the American Ephemeris and Nautical Almanac, vol. r, p. 2. Transformation of Hansen's Lunar Theory by S. Newcomb
Catalogue of the Mean Declination of 2018 Stars, by T. H. Safford, under the direction of Captain G. M. Wheeler
Smithsoniar Report for 1878
British Association.
Kew Observatory.

Scottish Met. Society. U.S. War Department.

Chief Signal Office.
U.S. Naval Observatory.
U.S.Bureau of Navigation.
U.S. Engineer Office. Smithsonian Institution.

Met. Office, Toronto.

The Observatory.
Report to the Trustees of the "James Lick Trust" of Observations made on Mount Hamilton, by S. W. Burnham
Reports of the Comptroller of the Currency U.S., 1878-9 .

Measures of the Polar and Equatorial Diameters of Mars made at Princeton, New Jersey, U.S., by C. A. Young

The Color Correction of certain Achromatic Object-glasses, by C. A. Young
Notes of Experiments upon Mr. Edison's Dynamometer, Dynamo-Machine, and Lamp, by C. F. Brackett and C. A. Young

Solar Parallax from the Velocity of Light, by D. P. Todd

Science Observer

Report on the Administration of the Meteorological Department in Western India, 1879-80, by F. Chambers
from Met. Office, Bombay.
Abnormal Variations of the Barometric Pressure in the Tropics, and their relation to Sunspots, Rainfall, and Famines, by F. Chambers
Brief Sketch of the Meteorology of the Bombay Presidency in 1878, by F. Chambers
Meteorology of the Bombay Presidency in 1879, by F. Chambers
Report on the Condition and Proceedings of the Government Observatory, Colaba, 1880, by C. Chambers

Indian Meteorological Memoirs. The Winds of Kurrachee, by F. Chambers .
Indian Meteorological Memoirs. February and March, 1878 .
Indian Meteorological Memoirs, by H. F. Blanford, vol. 1, p. 3, 1879
Report on the Administration of the Meteorological Department of the Government of India in 1878-79
Report on the Meteorology of India in 1877, by J. Eliot
Report on the Madras Cyclone of May, 1877, by J. Eliot
Registers of Original Observations in 1879, Calcutta
St. Xavier's College Observatory, Calcutta. Meteorological Report, by F. Bruhl
Monthly Record, Melbourne Observatory, 1879
Results of Observations in Meteorology, \&c., Melbourne Observatory, 1876, by R. Ellery .
Results of Astronomical Observations made at the Melbourne Observatory, 1871-5, by R. L. J. Ellery

Longitude of the Sydney Observatory, by J. Tebbutt.
Opposition Magnitudes of Uranus and Jupiter, by J. Tebbutt
Orbit Elements of Comet I. 1880, by J. Tebbutt The Typhoon of July, 1879, by M. Dechevrens Monthly Notices, Meteorological Society, Mauritius, Sun-spots and Rainfall, by C. Meldrum Observations made at the Magnetical and Meteorological Observatory at Batavia, by Dr. P. A. Bergsma, vol. 4

Improved form of Thermometer for observing Earth Temperature, by G. J. Symons .

Colaba Observatory.

Meteorological Office.

The Observatory. H. M. Govt., Victoria.

> The Author.
"
"
"
The Observatory.

The Author.

On the relation existing between the duration of
Sunshine, the amount of Solar Radiation, and the Temperature, by G. M. Whipple . . .
On the relation existing between the height of the Barometer, the duration of Sunshine, and the amount of Cloud, by G. M. Whipple

from The Author.

Meteorology of Bradford for 1879, by J. M'Laudsborough .
The British Journal and Photographic Almanac for 1880 .
Preliminary Report to the Committee on Solar Physics on a method of detecting the unknown inequalities of a series of observations by B. Stewart
\qquad

Preliminary Report to the Committee on Solar Physics on the evidence in favour of the existence of certain short periods common to solar and terrestrial phenomenon, by B. Stewart .
Meteor Showers, by W. F. Denning . . ,"
The Teaching of Technical Physics, by J. Perry
The Contact Theory of Voltaic Action, by W. E. Ayrton and J. Perry .

Determination of the Acceleration of Gravity for Tokio, Japan, by W. E. Ayrton and J. Perry
Six Lectures on Physical Geography, by the Rev. S. Haughton
On the Frost of December, 1879, by W. Marriott
Returns of the Rainfall for 1879, by J. F. Bateman
The Cobham Journals, by E. A. Ormerod "

On Comets and Ultra-Neptunian Planets, by G. Forbes

On some recent improvements made in the mountings of the Telescopes at Birr Castle, by the Earl of Rosse
Quinquennial Report of proceedings in the Health Department, Burnley, by C. Slater
Symon's British Rainfall, 1879 .
Observations of Nebulæ and Clusters of Stars made with the six-foot and three-foot Reflectors at Birr Castle, 1848-1878, by the Earl of Rosse

On the Observations of Rainfall made at the Royal Observatory, Greenwich, 184x to 1879, by W. C. Nash
Results of Meteorological Observations; Vizagapatam, by A. V. Nursingrow, 1879 .

On the Photographic Spectra of Stars, by W. Huggins
On the Spectrum of the Flame of Hydrogen, by W. Huggins
On the Relation between the Diurnal Range of Magnetic Declination and Horizontal Force, and the period of Solar-spot frequency, by W. Ellis t.

Statistics of Rainfall, Lancaster, Caton, and Hest Bank, by W. Roper
The Coming Drought, by E. J. Lowe
Report on the present state of Knowledge of the application of Quadratures and interpolation to actual data, by C. W. Merrifield
The Attraction of Simple Gravity, by G. T. Carruthers
Comparison of Curves of Declination Magnetographs, by W. G. Adams
Address to the Mathematical and Physical Section of the British Association, by W. G. Adams
Results of an inquiry into the periodicity of Rainfall, by G. M. Whipple .
On the rate at which barometric changes traverse the British Isles, by G. M. Whipple
Annales Météorologiques del'Observatoire Royal de Bruxelles, 1879
Observations Mét. faites aux stations internationales de la Belgique et des Pays Bas, par J. C. Houzeau et C. H. D. Buys-Ballot, 1879

Annuaire de la Société Météorologique de France, 1879 .
Association Française, Compte rendu de la 8me session
Bulletin Mensuel de l'Observatoire Météorologique de l'Université d'Upsal, par Dr. H. H. Hildebrandsson
Bulletin Mensuel de l'Observatoire de Zi-kawei, 1879
Bulletin Mensuel de l'Observatoire Météorologique à Tchang-Kia-Tchouang près HienHien, Province de Tchely, 1879
Annales de la Société Scientifique de Bruxelles.
Note sur la tache rouge observée sur la planète Jupiter, par L. Niestens
Conchiliologic Fluviatile, par le R. P. Heude .
Note sur la formule d'Addition dans les fonctions elliptiques par Ph. Gilbert
Publications récentes sur Galilée, par Ph. Gilbert
W. Roper.

The Author.

L'Obs. Royal.

Assoc. Franc.

L'Observatoire.

La Société Scientif.
L'Auteur.
"
from The Author.
"
"
W. Roper.

La Soc. Mét.
"
,
La Societe Scienti.
LAuteur.
"

Le Typhon on 3 I Juillet, 1879, par M. Dechevrens from L'Auteur.
Sur la loi de Force de M. Clausius entre courants élementaires, par J. Delsaulx
Le nom primitif des Aryas, par J.Van den Gheyn
Recherches sur l'intensité relative des raies spectrales de l'Hydrogène et de l'Azote, par Ch. Fievez
Etudes sur la planète Mars, rame notice, par M. F. Terby .

Les Jésuites Astronomes jugés par le Baron de Zach, par J. Thirion
Sur les applications des fonctions elliptiques a l'étude des courbes du premier genre par le R.P. Robert d'Esclaibes

Sur la raie dite de l'Hélium, par M. l'Abbé E. Spée
Mémoire à l'appui des remarquables observations de M. Schiaparelli sur la planète Mars, par M. F. Terby .

Aspect de la planète Mars pendant l'opposition de 1879, par M. F. Terby
Les courants secondaires, par le R. P. Van Tricht
La Météorologie et les stations météorologiques Belges, par le R. P. Van Tricht
De la scintillation des étoiles, par le R. P. Van Tricht
"
Nos oiseaux, par le R. P. Van Tricht . . ,
Notices sur le progres de la Physique, par le R. P. Van Tricht .

Recherches sur le spectre du Magnétism, par Ch. Fievez
Perturbations Magnétiques du 11 au 14, et 18 au 19 Aout 1880, par. M. Dechevrens "
Astronomie, par J. Thirion "
Resultate ans den Meteorologischen Beobachtungen von 25 K. Sächsischen Stationen 1874, 1875, von Dr. C. Bruhns

Der Verfasser.
Monatliche Berichte über die Resultate aus den Meteorologischen Beobachtungen angestellt an den K. Sächsischen Stationen 1878 von Dr. C. Bruhns

Resultate der Meteorologischen Beobachtungen in Leipsig 1878-9, von Prof. C. Bruhns
Bericht über das Meteorologische Bureau für Wetterprognosen in Königreich Sachsen für 1879, von Prof. Dr. C. Bruhns
"

Die organisation des meteorologischen Dienstes in den Hauptstaaten Europa's, von Dr. Gustav Hellmann "
Zeitschrift der österreichischen Gesellschaft für Meteorologie redigirt von Dr. J. Hann . . from Der Verfasser.
Das Geburtsjahr Christi, von F. Riess
Jahrbücher der K. K. Central-Anstalt für Meteorologie und Erdmagnetismus, 1878-9, Wien

Das Observatorium.
Publicationen des Astrophysikalischen Observatoriums zu Potsdam
"
Der neue Kometensucher de Wiener Sternwarte, von E. Schneider

Der Verfasser.
Regenwaarnemingen in Nederlandsch-Indië, 1879, door Dr. P. Bergsma
Iagttagelser over Nordlys af Sophus Tromholt .
Bullettino Met. dell' Oss. del Real Coll. Carlo Alberto in Moncalieri

L'Osservatorio.
Bulletino Met. della Pontificia Università Gregoriana
;
Richerche Fisico-Astronomiche intorno all' uranolito caduto nell' agro Romano il 31 di Augusto, 187_{2}, del P. G. S. Ferrari
Observaciones Meteorologicas del Colegio Catolico del Sacrado Corazon de Jesus en Puebla, 1879

L'Observatorio.
Almanaque Nautico para 188r, 1882, Observatorio de San Fernando .
Crónica Cientifica Roig y Torres.

[^0]: \square
 Mean amount of Cloud (an overcast sky being indicated by 10%)... 6.6
 In the month of March, the highest reading of the Barometer during 33 years, was on the 6th, in 1852, and was $30 \cdot 401$
 The lowest , $3^{15 t}$, 1860 $28 \cdot 199$
 The highest Temperature 25th, 1871 $68 \cdot 0$
 The lowest , $4^{\text {th, }} 1866$ 14.5
 The highest adopted mean temperature of the month, 1871 $44^{\circ} 0$
 The lowest " " 1855 $35^{\circ} 6$

 The mercury stands rather high, and range large. Temperature slightly in excess of former years. Wind from S.W. and E. by N.

