STONYHURST COLLEGE OBSERVATORY.

RESULTS

OF

METEOROLOGICAL AND MAGNETICAL OBSERVATIONS,

BY THE
REV. S. J. PERRY, S.J., F.R.S.,
Cor. Mem. of the Accad. Rom. Pont. de' Nuovi Lincei, and of the Soc. Gfog. d'Anvers Hon. Mem. of the Soc. Scient. de Bruxelles.
1884.

MANRESA PRESS, ROEHAMPTON. 1885.
-
-

TABLE OF CONTENTS.

INTRODUCTION.

The meteorological work carried on at this Observatory during the last fifteen years has not been much affected by the alterations made at the commencement of 1884 at the Meteorological Office of the Board of Trade. The Thermograph for wet and dry bulb, and the Barograph have continued their photographic records as before, and there has been no interruption in the continuous curves showing the changes in the direction and velocity of the wind, in the amount and hours of rainfall, and in the duration of sunshine. The observations of the upper and lower clouds, of the solar radiations, of the temperature on the grass, and of the amount of evaporation, are also carried on as previously. The chief alteration consists in the form of the Reports sent to the Meteorological Office. Instead of weekly tabulations of all the meteorological data, the only results now sent weekly are the agricultural report and the tabulated sunshine, but every month a meteorological report is forwarded along with the photographic curves from the barograph and thermograph, and tracings of the anemograms and rain curves. The synchronous report for the U.S. Signal Officer passes through the Meteorological Office, and no change has been made in the results previously sent to other persons.

It may be well to mention in connection with the continuous record of the variations of the elements of terrestrial magnetism, and of their absolute monthly and weekly determinations, that a_{*} comparison of the Declination Magnetograms of Kew and Stonyhurst is being made at present by Dr. Balfour Stewart, and that it already gives promise of interesting results.

The total of 281 drawings of the solar surface on 257 days, along with 88 complete measures of the chromosphere, shows that even in our climate useful solar work may be done. The solar drawings were exhibited at the Soiree of the Royal Society, and also at the June meeting of the Royal Astronomical, where they raised an important discussion on the respective merits of drawings and photographs, a full report of which appeared in the July number of the Observatory and of the Astronomical Register. The accuracy of the drawings has been tested by comparisons with all the drawings and photographs that were available, and the result is very encouraging for future work of the same description. Two glass scales for measuring the area of solar spots and faculæ have been made by J. Beck and presented to the Observatory by J. Roberts, Esq. One consists of two sets of parallel lines, one millemetre apart, ruled at right angles to each other. The other is formed of concentric circles, whose radii vary as the sine of the angular distance from the centre of the visible hemisphere, with lines diverging from the centre 5° apart. The effect of foreshortening can thus be rapidly calculated by aid of tables, and the positions determined with sufficient accuracy for most questions of solar physics. The measurement of the drawings is progressing, and the areas are being computed; but the life history of individual
spots, with the study of the fainter markings and of the connection between spots and faculæ, have occupied most attention during the past year. A paper on this subject was read before a meeting of the American Association at Philadelphia, and afterwards appeared in full in the Astronomical Register.

The spectra of sun spots have been examined on 30 days, and the widening of 200 lines between B and D accurately measured. A short paper on these results was communicated to the British Association during their meeting at Montreal.

The publication of Copernicus having ceased, the results of our daily measures of the chromosphere appear in the Observatory. Wolf's comet was carefully followed during the months of October, November, and December, and fourteen positions were completely reduced, and published in the Monthly Notices of the R.A.S., along with our observations of Jupiter's satellites, and of lunar occultations.

An excellent $33 / 4$ inch achromatic has been constructed by Cooke of York, and attached to the tube of the large equatorial, in order to facilitate the work with the star spectroscope.
-

1
*

Stonyhurst (1)bservatury.

Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime}$ N. Long. $9 m$. 52 s . 68. w. Height of the Barometer above the sea, 38 Ift .

METEOROLOGICAL REPORT.

January, 1884.

\begin{tabular}{|c|c|}
\hline Results of Observations taken during the month. \& Mean for the last 37 years.

\hline Mean Reading of the Barometer29.540 \& 29.434

\hline Highest \quad, on the 16th..............30*212 \& 30'042

\hline Lowest , on the 26th27.803 \& $28 \cdot 573$

\hline Range of Barometer Readings............................. 2.409 \& 1.469

\hline Highest Reading of a Max. Therm*on the 5th........... 52.4 \& 5100

\hline Lowest Reading of a Min. Therm. on the 27th $30 \cdot 2$ \& $21^{\prime 2}$

\hline Range of Thermometer Readings 22.2 \& $30^{\circ} 4$

\hline Mean of all the Highest Readings 46.7 \& 42.2

\hline Mean of all the Lowest..................................... 37.6 \& 32.8

\hline Mean Daily Range 9^{11} \& 9.4

\hline Deduced Monthly Mean (from Mean of Max. and Min.) 4I`9 \& 37.3

\hline Mean Temperature from dry bulb 42.3 \& $37 \cdot 2$

\hline Adopted Mean Temperature $42 \cdot 1$ \& $37 \cdot 3$

\hline Mean Temperature of Evaporation....................... 40.5 \& $36 \cdot 9$

\hline Mean Temperature of Dew Point 38.6 \& 33.9

\hline Mean elastic force of Vapour 0.234 in \& 0.202 in

\hline Mean weight of Vapour in a cubic foot of air $2^{\prime} 7 \mathrm{gr}$ \& $2 \cdot 3 \mathrm{gr}$

\hline Mean additional weight required for saturation......... 0.4 gr \& 0.4 gr

\hline | Mean |
| :--- |
| degree of Humidity (saturation 1.00) 0.84 | \& 0.86

\hline Fall of Rain $545 \cdot 8 \mathrm{gr}$ \& 549.0 gr

\hline Number of days on which Rain fell \& $4^{\circ 260}$ in

\hline Amount of Evaporation $1 \cdot 280 \mathrm{in}$ \& 0.938 in

\hline
\end{tabular}

No. of days in the month on which the prevailing wind was	N	NE	E.	SE	S	sw	w	NW
	0	3	1	0	1	5	19	2
Mean Velocity in miles 'per hour	0	$6 \cdot 3$	$10 * 3$	0	6.2	17.8	177	II'9
Total No. of miles for each Direction	0	451	248	0	148	2138	8064	569

The total number of miles registered during the month was 11618.
The max. Velocity of the wind was 55 miles per hour ; direction S. on the 23 rd at 7 and 8 p.m., and on the 26th at 4 p.m.
Mean amount of Cloud (an overcast sky being indicated by 10.0) $\quad 9.1$
In the month of January, the highest reading of the Barometer
during 37 years, was on the 18th, in 1882, and was 30.480

The lowest	,	,	26 th, 1884	27.803
The highest Temperature	$"$,	7 th, 1877	$59^{\circ} 9$	
The lowest	,	",	15 th, 1881	$4^{.6}$

The highest adopted mean temperature of the month, $1875 \quad 42.5$
The lowest , , " 188I 29.2

The mean reading of the Barometer differed little from the average, but the range was great; the reading on the 26 th was the lowest ever recorded in the month of January. The mean temperature was high, and the range of Thermometer readings small. The Rainfall was more than three inches above the average, and the number of rainy days was large. A remarkable hail-storm occurred at 0.30 p.m. on the 11 th. The prevailing wind was from W.

February, 1884.

Results of Observations taken during the month.								
Mean Reading of the Barometer.........................29'412								
Highest							$30 \cdot 0$	
Lowest							$8 \cdot$	
Range of Barometer Readings............................. 1×246							1	
Highest Reading of a Max. Therm. on the 14th 52.0								
Lowest Reading of a Min. Therm. on the 2nd 22.9								
Range of Thermometer Readings							28	
Mean of all the Highest Readings							4	
Mean of all the Lowest.								
Mean Daily Range								
Deduced Monthly Mean (from Mean of Max. and Min.)								
Mean Temperature from dry bulb								
Adopted Mean Temperature								
Mean Temperature of Evaporation								
Mean Temperature of Dew Point							35	
Mean elastic force of Vapour 0					3			
Mean weight of Vapour in a cubic foot of air 2.6 gr								
Mean additional weight required for saturation 0.4 gr Mean degree of Humidity (saturation 1 . 00) 0.87								
Mean weight of a cubic foot of air \qquad Fall of Rain 545 '9 gr Number of days on which Rain fell 3.899 in \qquad Amount of Evaporation \qquad 1. 699 in								
No. of days in the month on which the prevailing wind was	N	NE	E	SE	s	SW	w	NW
	0	3	6	I	8	5	6	-
Mean Velocity in miles per hour	0	$9 \times$	14.5	$2 \cdot 2$	78	$\cdots 7$	12	0
Total No. of miles for each Direction	0	693		53		2001		0
The total number of miles registered during the month was 8012 . The max. Velocity of the wind was 35 miles per hour; direction S. by E. on the 2Ist at $2 \mathrm{a} . \mathrm{m}$.								

13

March, 1884.

Mean amount of Cloud (an overcast sky being indicated by 10°)...$\quad 8.2$
In the month of March, the highest reading of the Barometer
during 37 years, was on the 6th, in 1852, and was 30'401
The lowest ", 31st, 1860 28•199
The higbest Temperature ,", 25th, 1871 68.0
The lowest , , , 4th, $1866 \ldots \ldots . . .14^{\circ} 5$
The highest adopted mean temperature of the month, 1871 44°
The lowest ", ", 1855 $35^{\circ} 6$

The range of Barometer readings was small. The mean Temperature was rather high, and the range of Thermometer readings large. Rainfall below average. Prevailing Wind from S.S.W.

15

Mean amount of Cloud (an overcast sky being indicated by 10\%)...		
In the month of April, the highest reading of the Barometer during 37 years, was on the 22nd, in 1855 , and was		
The lowest , . , , 20th, $1868 \ldots28 .358$		
The highest Temperature		
The lowest , , 12th, $1862 \ldots . .$.		
The highest adopted mean temperature of the month, $1865 \ldots \ldots .$.		
The lowest ,, ,, 1879......... 40’7		
Although the readings of the Barometer and Thermometer agreed very		
closely with the average for the month, the rainfall was an inch below		
the mean. The prevailing wind was N.E. At a few minutes to 11 a.m. on the morning of the 26 th, the sky in the		
W.S.W. was noticed to be rapidly getting dark. At 11.30 the darkness had become so great that it was found impossible to read bold print close		
by the window. At this time, a dense black cloud, with a slightly yellowish tinge, hung over the S.W. sky; the blackness being. most		
lighter, and at 11.40 rain began to fall. In forty minutes 0.114 in . of rain was collected in our gauges. This rain was almost as black as ink,		
the darkness was very marked, but at $51 / 2$ miles N.E. nothing very par-		

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)... . $6 \cdot 1$
In the month of May, the highest reading of the Barometer
during 37 years, was on the 22 nd, in 1855 , and was $30 \cdot 124$
The lowest , , , 28th, 1877 28.559

The highest Temperature , 19th, 1864........ 82.5
The lowest ", \quad 4th, 1855........ 23.5
The highest adopted mean temperature of the month, $184^{8} \ldots \ldots .$.
The lowest , ", $1855 \ldots . . .$.

The mean Barometer and Thermometer agreed closely with that of previous years. The range of Barometer readings was rather large. The Rainfall was slightly below the average. Prevailing Wind West.

Mean amount of Cloud (an overcast sky being indicated by 10 0)... $\quad 74$
In the month of June, the highest reading of the Barometer
during 37 years, was on the 15 th, in 1874, and was $30 \cdot 219$
The lowest , , \quad 2th, $1862 \ldots$. 28.632
The highest Temperature \quad, \quad 27th, $1878 \ldots87^{\circ 2}$
The lowest ", ", 30th, $1856 \ldots . . .$.
The highest adopted mean temperature of the month, $1858 \ldots \quad 59^{\circ}$
The lowest ," 1856 and $1860 \ldots . . .$.

Barometer readings were rather high, and therange low. . The Mean Temperature was very close to that of previous years, but the range was great. The Rainfall was more than $21 / 2$ inches below the average for the month. Prevailing wind West.

Mean amount of Cloud (an overcast sky being indicated by 10\%)... 8.0
In the month of July, the highest reading of the Barometer
during 37 years, was on the $24^{\text {th, }}$, in 1868, and was $\ldots \ldots \ldots \ldots . .30 \cdot 112$
The lowest , , 15 th, $1877 \ldots28 .564$
The highest Temperature \quad, 22nd, $1873 \ldots \ldots . .88 .2$
The lowest , , \quad Ist, $1857 \ldots \ldots .$. 36.
The highest adopted mean temperature of the month, $1852 \ldots \ldots . .63^{\circ}$
The lowest , , , $1879 \ldots . . .$.

The range of Barometer readings was small. Both the mean Temperature and the range were high. The Rainfall was nearly an inch in excess of the mean of previous years, and the number of rainy days was large.' Wind S.W. by W.

The total number of miles registered during the month was 4060.
The max. Velocity of the wind was 25 miles per hour; direction S. by W. on the 24 th, at 3 p.m.
Mean amount of Cloud (an overcast sky being indicated by 10%)... $5 \cdot 6$
In the month of August, the highest reading of the Barometer during 37 years, was on the 21st, in 1874, and was 30'114
The lowest "
3Ist, 1876 28.555
The highest Temperature , 88.0
The lowest , , , 2Ist, 1864 \& 1869 $3^{\circ} 0$
The highest adopted mean temperature of the month, 1857 \& 1884The lowest
The lowest $\quad, \quad, \quad 1848 \ldots . . .$.

The Mean Barometer was rather high, and the range small. Mean Temperature very high, and range large. The Rainfall was 2 inches below the average. Prevailing wind West.

Mean amount of Cloud (an overcast sky being indicated by 10%)... $\quad 6.5$
In the month of September, the highest reading of the Barometer
during 37 years, was on the 15 th, in 1851 , and was $30 \cdot 274$
The lowest , , \quad 2nd, $1883 \ldots . . .$. . 28.323

The highest Temperature
,"
6th, $1868 \ldots \ldots . . \quad 85^{\circ} 0$
The lowest , ", 6th, $1855 \ldots . . .$. 30\%7
The highest adopted mean temperature of the month, $1865^{\circ} \ldots$.
The lowest , ", $1863 \ldots . . .$. . 50 9

The Thermometer readings were rather high, and the range was also high. Rainfall low. Wind from W.S.W.

October, 1884.

The total number of miles registered during the month was 8409 .
The max. Vellecity of the wind was 49 miles per hour ; direction W. on the 26th at II a.m.

Mean amount of Cloud (an overcast sky being indicated by 10%)... $8 \cdot \mathbf{I}$
In the month of October, the highest reading of the Barometer
during 37 years, was on the 5th, in 1884, and was30.306
The lowest , \quad, 19 th, $1862 \ldots28 \cdot 139$
The highest Temperature $\quad " \quad 9$ th, $1869 \ldots72^{2 \cdot 8}$
The lowest , ", 21st, $1880 \ldots . . .$. 23. 1
The highest adopted mean temperature of the month, 1861 and $1876 \quad 51.6$
The lowest , \quad, $1880 \ldots . . .$.

The Barometer was high, with range close to average. Rainfall more than an inch below average. Prevailing wind West.

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)... 777
In the month of November, the highest reading of the Barometer
during 37 years, was on the 12th, in 1857, and was $30 \cdot 350$
The lowest ", \quad Ist, 1859 28.007
The 'highest Temperature \quad, \quad 6th, 1872 6r.9
The lowest , , , 17th, 1861 19'1
The highest adopted mean temperature of the month, 188 r $\quad 47^{\circ}$
The lowest ", ", 185n......... 36.7

Barometer readings were high, and the range low. The range of thermometer readings was very large. The Rainfall was very small, being more than $21 / 2$ inches below the usual amount for the month. Prevailing wind S.W. by S.

$3 \mathbf{I}$

Mean amount of Cloud (an overcast sky being indicated by 10%). 77
In the month of December, the highest reading of the Barometer during 37 years, was on the 22nd, in 1849, and was 30•378
The lowest ,
5th, 1876 28.028
The highest Temperature 9th, 1876 58•
The lowest
24th, 1860 6.7
The highest adopted mean temperature of the month, 1857 44^{6}
The lowest 39 1878 $3^{\circ} 3$

Barometer readings were slightly below average. Temperature very close to mean for the 37 years. Rainfall was rather great, but the number of rainy days a little below the mean. Prevailing wind W.S.W.

Summary of the (s)bservations

$$
\text { FOR } 1884 .
$$

	Mean for the last 37 years. 37 years.
Mean Reading of the Barometer29'53i	29.482
Highest o, on October 5th $30 \cdot 306$	$30 \cdot 289$
Lowest on January 26th 27.803	28.260
Range of Barometer Readings 2.503	2029
Highest Reading of a Max. Therm. on August IIth... $84^{\circ} \mathrm{O}$	81.6
Lowest Reading of a Min. Therm. on Nov. 19 and 2921.9	15.8
Range of Thermometer Readings 62•I	65^{8}
Mean of all the Highest Readings 56.6	54.8
Mean of all the Lowest.................................... 40.6	$40^{\circ} 9$
Mean Daily Range 16.0	13.9
Deduced Yearly Mean (from Mean of Max. and Min.) 47.6	46^{7}
Mean Temperature of dry bulb 48.2	$46 \cdot 9$
Adopted Mean Temperature 479	$46 \cdot 8$
Mean Temperature of Evaporation $45 \% 2$	44^{6}
Mean Temperature of Dew Point 42.4	42^{1} I
Mean elastic force of Vapour $0 \cdot 279$ in	0.276 in
Mean weight of Vapour in a cubic foot of air $\mathbf{3 . 2 \mathrm { gr }}$	3.3 gr
Mean additional weight required for saturation......... 0.8 gr	$0 \cdot 7 \mathrm{gr}$
Mean degree of Humidity (saturation 1.00) 0.82	0.84
Mean weight of a cubic foot of air 539.8 gr	539.1 gr
Total Fall of Rain in the Year42'265 in	47.734 in
Number of days per Month on which Rain fell......... $16 \cdot 8$	18.4
Amount of Evaporation23.807 in	27.832 in

The Maximum monthly mean height of the Barometer was in January, 1880, and was 29.928
The Minimum $"$ in December 1868, and was ... and was 29.544
The Minimum " ,, ", ", in 1866, and was 29.389
The greatest monthly range of the Barometer was in January, 1884, and was 2.409
The least ,,,\quad in July, 1852, and was $0 \cdot 505$
The highest reading of the Barometer, during 37 years, was on January 18th, 1882 , and was $30 \cdot 480$
The lowest ", on January 26th, 1884, and was 27.803
Extreme range $2 \cdot 677$
The highest temperature was on July 15 th, 1868 , and was 88.2
The lowest • ,, January 1 5th, 188 I 4.6
The highest adopted mean temperature of a month, July 1868 62.4
The lowest , , ", February, 1855 $28 \cdot 6$
The highest adopted mean temperature of a year, 1868 49'I
The lowest ", ", ", 1879 44^{\prime} I
$\left.\begin{array}{l}\text { The greatest monthly mean weight of vapour, } \\ \text { in a cubic foot of air }\end{array}\right\}$ \} July, 1852 $5^{\prime \prime}$
The least February, 1855 I'4
The greatest fall of rain in a month, was in October, 1870 , and was 13.437 inThe least"March, 18520.047
$\left.\begin{array}{l}\text { The greatest number of days on } \\ \text { which rain fell in one month }\end{array}\right\}$ July, 1861, December, 1868 31
The least ,, March, 1852 3

	RAINFALL.		
	1884.	Meàn of 37 years.	Excess in 1884.
January	77516	4.260	$+3.256$
February	3.899	$3 \cdot 741$	+0.158
March ...	$2 \cdot 743$	3•126	--0.383
April	$1{ }^{\circ} 009$	$2 \cdot 337$	-1.328
May.................	$2 \cdot 318$	$2 \cdot 536$	-0.118
June.................	1-223	3776	-2.653
July	5•197	4.285	+0.912
August	2.649	4853	-2.204
September	3.749	4.546	-0.797
October :...........	3.917	$5 \cdot 206$	- 1.235
November .	1.491	$4 \cdot 164$	-2.673
December	$6 \cdot 400$	5.565	+0.835
Means. .	42.265	47'734	- 54.469

The deficiency of the Rainfall in 1884 is due mainly to the smallness of the supply during the Autumn months: the fall in Spring was also considerably below the average.

	Sunshine	Amount of Sunshine	$\begin{gathered} \text { Drawings of } \\ \text { Sun, rosich inch to } \\ \text { diameter on } \end{gathered}$	Other drawings notes on		Chromosphere partially measured	${ }_{\text {Spot spectra }}^{\substack{\text { Sbserved on }}}$
January	ro days	177 hours	II days	1 days	1 days	1 days	1 days
February	19 "	$43 \cdot 8$	17 "	3 "	5 "	1 "	2 "
March	22 ,	74^{6},	22 ,	6 "	2 "	2 "	1
April ...	28 "	130.10	24 "	6 "	7 "	...	4 "
May	30 "	213.6 ,	27 "	2 "	13 "	...	12 "
June	28 "	176.5 "	24 "	3 "	14 ,	...	5 "
July	26 ,	138.7 "	22	5 "	4 "	...	2 "
August	29°,	1917\%	24 "	6 "	13 "	...	3 "
September		${ }^{139}{ }^{\circ} \mathrm{C}$ "	27 "	3	9 "	...	4 "
October		78.7 "	21 ,	...	6 "	...	1 "
November	22 "	60.5 ,	24 "	...	7 "	...	1."
December		20.8 ,	14	...	7	I ,	...

DAY.

$\infty \quad 0 \quad \circ \dot{子}$

OBSERVATIONS OF UPPER CLOUDS (CIRRUS).

Date.	G. M. T.	Cloud Direction.	Velocity. $0-6$.	Wind.		Direction of Lr.Clds.
				Direction.	$\begin{aligned} & \text { Force } \\ & (0-12) . \end{aligned}$	
January II	Noon.	W.	3	W.N.W.	7	W.N.W.
" 12	II a.m.	N. by E.	3	W.N.W.	2	N.W.
" 20	3 p.m.	N.	2	W.S.W.	I	S.W.
, 20	4 p.m.	N.N.W.	I	S.W.	1	S.W.
" 24	If a.m.	S.E.	2	W.	5	W.S.W.
" 24	Noon.	S.S.E.	3	W.	6	S.W.
" 30	2 p.m.	N.	1	W.	5	S.W.
Fe" 30	4 p.m.	N.	2	W.S.W.	3	W.S.W.
February 2	Io a.m.	W.	3	N.	3	N.E.
, 2	4 p.m.	W.	3	N.	1	
" 5	II a.m.	N.W.	2	W.S.W.	2	W.S.W.
" 14	Noon.	S.E.	I	S.	0	S.S.W.
" 14	$2 \mathrm{p} . \mathrm{m}$.	S.E.	1	N.	0	S.W.
" 18	2 p.m.	N.W.	3	N.N.E.	2	E.S.E.
" 18	4 p.m.	N.W.	3	N.E.:	1	E.
" 20	$9.30 \mathrm{a} . \mathrm{m}$.	N.W.	2	S.	4	S.
" 21	$8 \mathrm{a} . \mathrm{m}$.	N.N:W.	1	S.		S.
" 22	$4 \mathrm{p} . \mathrm{m}$.	S. by W.	I	W.S.W.	1	
', 26	$8.30 \mathrm{a} . \mathrm{m}$.	S. by E.	2	N.E.	0	S. by E.
" 26	II a.m.	S.E. by E.	1	N.E.	0	S.E.
March 27	$7.50 \mathrm{a} . \mathrm{m}$.	S.W.	3	E.	1	S.E.
March 2	$10 \mathrm{a} . \mathrm{m}$.	S. by E.	2	N.E.	I	
" 5	3 p.m.	S.W.	2	W.	3	S.W.
" 6	II. $20 \mathrm{a} . \mathrm{m}$.	N.E.	1	S.W.	1	S.W.
" 7	$9 \mathrm{a} . \mathrm{m}$.	S.E.	2	S.W.	1	S.W.
7	Noon.	S. by E.	2	S.	2	S.W.
" 10	II a.m.	W.S.W.	3	W.S.W.	1	S.W.
" 12	$9 \mathrm{a} . \mathrm{m}$.	S. by E.	2	S.E.	2	S. by E.
" 12	$10 \mathrm{a} . \mathrm{m}$.	S. by E.	I	S.S.E.	4	S. by E.
" 12	Noon.	S.E.	I	S.S.E.	4	S.E.
" 15	$10 \mathrm{a} . \mathrm{m}$.	S. by E.	2	S.	2	S.
" 15	Noon.	S.E.	2	S.	3	S.W.
" 15	2 p.m.	S.E.	1	S.S.E.	3	S.W.
", 16	$9 \mathrm{a} . \mathrm{m}$.	S. by E.	1	N.E.	0	S.E.
7 $\%$ 16	$10 \mathrm{a} . \mathrm{m}$.	S. by E.	1	S.	2	
" 16	Noon.	S. by E.	1	S.E.	3	S. by E.
" 17	Noon.	S. by E.	2	S.S.E.	3	
" 19	$9 \mathrm{a} . \mathrm{m}$.	S.W.	1	W.S.W.	2	S.S.W.
" 19	$10 \mathrm{a} . \mathrm{m}$.	S. by W.	2	S.W.	2	
7	Noon.	S.W.	1	S.W.	2	S.W.
", 23	$9 \mathrm{a} . \mathrm{m}$.	W.S.W.	1	W.N.W.	2	W.
(") 23	$10 \mathrm{a} . \mathrm{m}$.	W.	2	W.N.W.	3	W.
	$9 \mathrm{a.m}$.	S.W.	2	E.	0	
$\begin{array}{ll} \text { pril } & 3 \\ \because & 4 \end{array}$	$\begin{aligned} & 2.40 \text { p.m. } \\ & 2 \text { p.m. } \end{aligned}$	$\begin{aligned} & \text { N.W. } \\ & \text { S. } \end{aligned}$	2	E. ${ }_{\text {S. }}$	3 3	S.E.

OBSERVATIONS OF UPPER CLOUDS (Continutd).

Date.		G. M. T.	$\underset{\text { Direction. }}{\text { Cloud }}$	$\begin{aligned} & \text { Velocity. } \\ & \text { o-6. } \end{aligned}$	Wind.,		Directionof Lr.Clds	
		Direction.			$\begin{gathered} \text { Force } \\ (0-12) . \end{gathered}$			
April	9		8.30 am.	S.S.E.	I	E.	1	S.S.E.
, "	9	$5 \mathrm{p} . \mathrm{m}$.	N.	2	E.N.E.	1	W.S.W.	
" 1	11	$3 \mathrm{p} . \mathrm{m}$.	N.	2	S.E.	1	N.	
"	11	7 p.m.	N.N.W.	1	N.W.	1	N.N.W.	
" 1	12	$7.30 \mathrm{a} . \mathrm{m}$.	S.W.	2	N.E.	1	N.E.	
" 1	17	$5.45 \mathrm{p} . \mathrm{m}$.	W.S.W.	3	N.E.	2	N.N.E.	
" 2	22	$11.20 \mathrm{a} . \mathrm{m}$.	N.N.E.	2	E.	1	E.N.E.	
" 2	25	$3.30 \mathrm{p} . \mathrm{m}$. $6 \mathrm{p} . \mathrm{m}$.	W.N.W.	1	N.E.	$\underline{1}$.	E.N.E.	
", 2	28	6.30 p.m.	W.N.W.	2	W.N.W.	$2{ }^{2}$	N.W.	
May	10	$7.15 \mathrm{p} . \mathrm{m}$.	S.S.E.	1	S.S.W.	0		
" 1	11	$9 \mathrm{a} . \mathrm{m}$.	N.W.	2	S.S.E.	2	N.W.	
"	11	4 p.m.	W.N.W.	1	W.	3	N.W.	
"	13	$10.30 \mathrm{a} . \mathrm{m}$.	N.	2	w S.	1	W.E. W .	
, 1	16	${ }^{1} \mathrm{p} . \mathrm{m}$.	N.N.E.	2	W.S.W.	4	W.S.W.	
, 1	17	Noon.	W.S.W.	1	S.W.	4		
" 1	19	8.30 am .	S.S.W.	2	W.S.W.	1	S. S S.	
",	21	9 a.m. Noon.	W.S.W.	1	S. S .	3 3	S.S.W.	
",	26	$9 \mathrm{a} . \mathrm{m}$.	E.	1	E.	1	E.	
	26	4 p.m.	N.E.	1	E.	1		
June	3	2 p.m.	N.E.	1	E.	2	N.E.	
"	3	4 p.m.	N.E.	2	E.	2	N.E.	
"	10	3 p.m.	S. by E.	2	W.S.W.	1	S.W.	
"	14	9 p.m.	S.W.	2	N.N.W.	1	S.W.	
" 1	14	$2 \mathrm{p} . \mathrm{m}$.	S.W.	1	W.	3	S.W.	
" 1		4 p.m. $3.20 \mathrm{p} . \mathrm{m}$	S.W. N.W.	2	N.W.W.	3 3	W.	
"	18	$3.20 \mathrm{p} . \mathrm{m}$. $4 \mathrm{p} . \mathrm{m}$.	W.N.W.	2	W.N.W.	3 3	W.N.W.	
"	23	$2 \mathrm{p} . \mathrm{m}$.	N.W.	1	W.	2	N.W.	
" 2	26	2 p.m.	N.E.	2	W.	2	W.	
" 2	26	$4 \mathrm{p} . \mathrm{m}$.	N.E.	1	W.	2	W.S.W.	
", 2	27	7 p.m.	E.	2	E.	-	W.	
	30	$5 \mathrm{p} . \mathrm{m}$.	N.N.E.	2	W.	1	N.E.	
July		$8 \mathrm{a} . \mathrm{m}$.	N.E.	1	N.E.	\bigcirc	S.E.	
" 1	3 17	${ }_{\text {II }} 5 \mathrm{p}$ a.m. .	W.N.W.	1	W.S.W.	3	S.W.	
",	19	$6 \mathrm{p} . \mathrm{m}$.	W.	1	W.	1	W.	
" 2	25	II a.m.	S. by w.	1	N.N.W.	1	S.W.	
" 2	25	7 p.m.	S.W.	2	W.N.W.	2	S.W.	
	27	4 p.m.	S.	1	N.E.	2	N.W.	
August		$9 \mathrm{a} . \mathrm{m}$.	N.W. ${ }^{\text {N }}$		N.E.	\bigcirc	N.N.W.	
"	1	$10 \mathrm{a} . \mathrm{m}$. 10 p.m.	N.W.	1	E.	-		
",	11	Noon.	N.E.	1	W.	1	N.E.	

OBSERVATIONS OF UPPER CLOUDS (Continued).

AGRICULTURAL NOTES.

Jandary was warm; but throughout the greater part of the month wet, stormy, and gloomy. Owing to the absence of sunshine, only a very few flowers were in blossom by the end of the month.

February was warm and dry, with more sunshine: Ploughing began in most places in the neighbourhood before the end of the third week. Early spring flowers were in moderate abundance by the end of the month.

March.-At the beginning of the month vegetation was looking rather forward ; but the cold during the latter end retarded growth generally. The land was in good condition for working, and oatsowing was commenced about the 26 th.

Aprin.-Although the mean temperature of the month differed little from the average, there were rather sharp frosts during the night for a considerable portion of the month, which did damage to the early fruit trees. Oats were in the ground in most places by the middle of the month, and by the end nearly all the green crops were sown.

May was generally bright and sunny ; but the nights were cold. Rain was much wanted towards the end of the month. Grass looked very poor, and the pastures in many places were quite brown.

June.-This month was very dry, but with little sunshine. Throughout the greater part of the month the drought was felt very much. Wheat, oats, and potatoes were looking fairly well, but grass and crops were very badly in want of rain. A little clover was got in towards the close of the month.

July.-The first four days were hot and dry; but the rest of the month was wet. Haymaking was commenced on the first day of the month, but owing to the continual rain not much was stacked. The crop of hay was very light. The green crops were much improved by the rain. At the end of the month corn was looking very well.

AUGUST.--With the exception of the last week this month was hot and dry, and the want of rain was much felt. Hay was got in by the 14th. It yielded only a very thin crop. Apples and pears were about the average, but stone fruit was almost a failure in most places. Some oats were cut towards the end of the month.

September.-Wheat and oats were got in in most places by the middle of the month. Both yielded a fair average. Green crops were rather poor from the lack of moisture. Potatoes were got in by the end of the month-a very heavy crop, and with very little disease.

October.-Green crops were lifted by the end of the month. They were, generally, small, and yielded only a light crop. A little wheat was sown towards the close of the month.

Novemper. - Wheat was sown in most places by the middle of the month.

December.-During this month agricultural operations were suspended owing to the cold and wet.
OBSERVATIONS OF CROPS.

grain, etc.					green crops.			
Name.	When Sown.	In Flowe	In Ear.	Whercin	Nam	When Sown.	Above froun	Stored.
Wheat Oats Peas Beans	$\begin{aligned} & \text { Nov. } \\ & \text { Mar.-Apl. } \\ & \text { March } \\ & \text { March } \end{aligned}$	June June June 5th June Inth	July Ioth July Ioth	$\begin{array}{\|c\|} \hline \text { Sept. } \\ \text { Aug.-Sept. } \\ \text { August } \\ \text { Sept. } \end{array}$	$\begin{gathered} \text { Potatoes } \\ \text { Tumips } \\ \text { Beet } \\ \text { Mangel } \end{gathered}$	$\begin{aligned} & \text { April } \\ & \text { May } \\ & \text { May } \\ & \text { May } \end{aligned}$		Sept_Oct. October. october. Oct, - Nov.

DATES OF THE. FLOWERING OF PLANTS AT STONYHURST IN 1884 (continued).

geraniacef.		
Geranium Robertianum	Herb Robert geranium	May 15
G. lucidum	Shining geranium	May 5
G. molle	Dove's-foot geranium	May 13
G. ${ }_{\text {G }}$ phæum Oxalis acetosella	Dusky geranium	May 12
Oxalis acetosella	Wood sorrel	April 17
Papilionacee.		
Medicago lupulina	Black medic	May 27
Trifolium repens	White clover	
T. pratense	Purple clover	May 21
Lotus corniculatus Vicia cracca	Common bird's-foot trefoil	May 2
Vicia cracca V. sepium	Tufted vetch Bush vetch	May 18 May 18
Sarothamnus scoparius	Common broom	Feb. 20
Ononis arvensis	Rest harrow	July 20
Lathyrus pratensis	Meadow vetchling	June 14
Rosacem.		
Spiræa ulmaria	Meadow sweet	June 29
Geum urbanum	Common avens	May 16
G. rivale	Water avens	April 21
Fragaria vesca Potentilla tormentilla	Wood strawberry	May 7
Potentilla tormentilla P. anserina	Tormentil potentil Silver weed	May 20 June 6
P. fragariastrum	Strawberry-leaved potentil	May 23
P. verna	Strawberry-leaved ${ }^{\text {Spring potentil }}$	May 22
Alchemilla vulgaris	Lady's mantle	April 2
linacefe. Linum catharticum	Cathartic flax	June 15
SAxifragacere. Saxifraga umbrosa		
Chrysosplenium oppositifolium C. alternifolium	London pride Opposite chrysosplene Alternate chrysosplene	April 12 March 15 March 16
UMBELIIFERe.		
Sanicula europæa Bunium flexuosum	Wood sanicle Tuberous bunium	May II May 15

D

DATES OF THE FLOWERING OF PLANTS AT STONYHURST IN 1884 (continued).

BORAGINEAE.
Myosotis palustris
Symphytum officinale

SQLONACEAE.
Solanum dulcamara

OROBANCHACEA.
Lathræa squamaria
SCROPHULARINEA.
Scrophularia aquatica
S. Nodosa

Digitalis purpurea
Veronica chamædrys
V. officinalis
V. serpyllifolia
V. anagallis

Euphrasia officinalis
Rhinanthus crista-galli
Pedicularis, palustris
P. sylvatica

Verbascum thapsus
LABIATAE.
Nepeta glechoma
iPrunella vulgaris
Ajuga reptans
Lamium purpuream
LENTIBULARICEA.
Pinguicula vulgaris
POLYGONACEE.
Rumex acetosa
R. acetosella

Polygonum bistorta
kuphorbiacee.
Mercurialis perennis
orchidacere.
Listera ovata
Orchis mascula
O. maculata

Habenaria bifolia

THE UPPER GLOWS IN 1884.

The glows preceding sunrise and following sunset were seen from time to time during the whole year, but were often entirely absent for considerable periods. After January 12 th they were of much shorter duration, and their general character feebler than previous to this date. The following is a list of the dates on which they were seen :

January 9, 11, 12, 15, 26, 27, 28.
February 15, 20, 24, 29.
March 2, 18, 2 .
April 7, 9, 1I, 12.
May, none.
June 7, 8, io.
July 25.
August 1, 23, 24.
September 3, 4, 12, 13, 18, 27.
October 1, 3, 5, 11, 14, 26.
November 2, 9, 18, 19, 21, 23-27.
December 6, 9, 14, 21, 22.
The thin stratum of cloud seldom accompanied the glows in 1884, which, on September 3, 13, and 18, took the form of broad radiating pink streamers, while from the 2Ist to the 27th of November no pink at all was seen, but simply an intense white glow, this being very remarkable sometimes for two hours before sunrise and after sunset.

Violet tinted arches opposite these pink displays have frequently been seen very distinctly, and they appear to occur only on occasions when the sun glows are unusually fine. They form just before the pink appears over the position of the sun, and remain till after it has gone, varying meantime in intensity, and sometimes extending along the horizon till they meet the pink display opposite.

The glow encircling the sun during the day has never been entirely absent, though it varied in intensity from time to time, and was once or twice hardly perceptible. Sometimes it was merely a bright silvery glow without any warmth of tint, but more commonly the pink or salmon colour extended from the sun to a distance of 18° or 20°. This colour varied in intensity, and was frequently very remarkable even in a perfectly cloudless sky, with a decided preponderance of the tinted matter in the direction of horizon or south of the sun, and when the sun got low it sometimes extended along the horizon some 180°, like a broad band of warm tinted dust.

The edges of the clouds in vicinity of the sun have frequently been seen tinted with the colours of the spectrum.

A glow exactly similar to the day glow round the sun has been seen encircling the moon on August 4, September 1, 4, 5, 6, 26, October I, November 3, 7, and December 3, 4, and this late at night many hours after sunset.

LIST OF SUN DRAWINGS DURING THE YEARS $1880-1884$.

The necessity of obtaining daily observations of the sun, in order to study accurately the changes that are continually taking place upon its surface, makes it most advisable for all solar observers to publish at an early date a complete catalogue of their photographs and drawings of the sun, so that the unavoidable breaks of continuity in any one series may be filled up, if possible, by the information supplied by others. This should, for convenience sake, be printed in the same form by all, and therefore the form published by the Solar Physics Committee has been adopted in this report. The chief series of Stonyhurst drawings of the sun spots and faculæ are on the scale of $101 / 2$ inches to the solar diameter, and in the following tables the numbers give the G.M.T. to the hundredth of a day reckoned from midnight on which a $101 / 2$ inch sketch was made. The time entered is that at which the outline of the spots was drawn, the details of the umbra and penumbra and the faculæ being added as soon as possible afterwards.
c indicates that observations of the chromosphere were taken at the corresponding date,
d that drawings of the sun were made on a scale differing from $101 / 2$ inches,
n that the solar surface was examined, and notes taken without a drawing, and
s shows that spot spectra were examined.

它	0			0	0	00	Eiv
	To ర	A				or	
安	－	نo	E				
						0	$\underset{0}{E}$
	0	000	0			－	
宝					ט		
－	0						
寅	00	0000	0000		0		0
苞		－				0	0
发					00	00	
宥	0	00			＊		
克				0	0		
0 ∞ ∞ ∞	$\cdots N m+$			No	ON N	N్N N	osm

¢ ¢ E． ¢ U A	
	o u
$\begin{aligned} & \text { © } \\ & \text { § } \\ & \text { O } \\ & 0 \end{aligned}$	
$\begin{aligned} & \dot{4} \\ & \frac{0}{3} \\ & \dot{b} \\ & \dot{4} \end{aligned}$	
$\stackrel{8}{3}$	$\sigma 0^{n} 0$
－¢	
$\sum_{i=1}^{\infty}$	
－	
哭	
完	
㝢	

fitlonthty gitagrotigat (b)bsquations takern at the Colluge (6bsequatorg, Stonuhurst, 1884.

The Horizontal, Vertical, and Total Forces are calculated to English measure ; one foot, one second of mean solar time, and one grain being assumed as the units of space, of time, and of mass.

The Vertical and Total Forces are obtained from the absolute measures of the Horizontal Force and of the Dip.

In the observations of Deflection and Vibration, taken each month for absolute measure of Horizontal Force, the same magnet has always been employed.

The moment of inertia of the magnet with its stirrup, for different degrees of temperature, and the co-efficients in the corrections required for the effects of temperature and of terrestrial magnetic induction on the magnetic moment of the magnet, were determined at the Kew Observatory by the late Mr. Welsh.

The moment of inertia of the magnet with its stirrup, using the grain and foot as the units of mass and of linear measure, is 5.27303 . Its rate of increase for increase of temperature is 0.00073 for every 10° of Fahr.

The weight of the magnet with its stirrup is approximately 825 grains, and the length of the magnet is nearly 3.94 inches. The moment of inertia was determined, independently of the weight and dimensions, by the method of vibration, with and without a known increase of the moment of inertia.

The temperature corrections have always been obtained from the formula $q\left(t^{\circ}-35^{\circ}\right)+q^{\prime}\left(t^{\circ}-35^{\circ}\right)^{2}$, where t° is the observed temperature and 35° Fahr. the adopted standard temperature. The values of the co-efficients q and q^{\prime} are respectively $\cdot 0001128$ and $0 \cdot 000000436$.

The induction co-efficient μ is $0^{\circ} 000244$.
-
The correction for error of graduation of the Deflection bar at $\mathrm{I} \cdot \mathrm{O}$ foot is +0.00004 ft ., at $1 \cdot 3+0.000064 \mathrm{ft}$.

The observed times of vibration are entered in the Table without corrections.

The time of one vibration has been obtained each month from the mean of twelve determinations of the time of 200 vibrations.

The angles of deflection are each the mean of two sets of readings.
In deducing from these observations the ratio and product of the magnetic moment m of the magnet, and the earth's horizontal magnetic intensity X, the induction and temperature corrections have always been applied, and the observed time of vibration has been corrected for the effect of torsion of the suspending thread; but no correction has been required for the rate of the chronometer, or for the arc of vibration, the former having been always under $2^{\prime \prime}$, and the latter never over $50^{\prime \prime}$.

The average deflection of the magnet caused by a twist of the torsion circle through 90°, has been about $8^{\prime} \cdot 5$ of arc.

In the calculations of the ratio $\frac{m}{\mathrm{X}}$, the third and subsequent terms of the series $\mathrm{I}+\frac{\mathrm{P}}{r^{2}}+\frac{\mathrm{Q}}{r^{4}}+\& \mathrm{c}$., have always been omitted.

The value of the constant P was found to be 0.0037654 .
The Declination observations have been taken once a week. Each reading has been corrected by the photographic curves for all irregular disturbances, as well as for daily and monthly range.

OBSERVATIONS OF DEFLECTION FOR ABSOLUTE MEASURE OF HORIZONTAL FORCE.

m represents the Magnetic Moment of the Deflecting Magnet.
X represents the Earth's Horizontal Magnetic Intensity.

VIBRATION OBSERVATIONS FOR ABSOLUTE MEASURE OF HORIZONTAL FORCE.					
Month.	G. M. T.	$\underset{\text { ture. }}{\substack{\text { Tempera- }}}$	Time of one vibra- tion. ton	$\log m \mathrm{X}$	$\begin{aligned} & \text { Value } \\ & \text { of } \mathrm{m} \end{aligned}$
January ...	$\begin{aligned} & \text { D. H. M. } \\ & \text { 16th...Io } 35 \text { a.m. } \end{aligned}$	$4{ }^{1} \times$	5'74910	- 19635	0.42842
February...	18th...10 44 a.m.	$44^{\prime 2}$	5774872	- 19615	0.4283 j
March	17th...II 8 a.m.	52°	574409	- 19729	0.42882
April	15th...10 50 a.m.	$53 \cdot 8$	574531	- 19728	0.4288 r
May........	16th...11 5 am.	616	5'74213	- 19814	0.42910
June	16th...II $10 \mathrm{a} . \mathrm{m}$.	60%	5'74109	- 19799	0.42879
July	18th...11 15 am .	$64 \cdot 6$	5774626	- 19741	0.42866
August ...	20th...10 44 am .	56.5	5774792	- 19676	0.42759
September.	19th... $1014 \mathrm{a} . \mathrm{m}$.	$56 \cdot 6$	577456	- 19737	0.42814
October ...	15th... $934 \mathrm{a} . \mathrm{m}$.	47^{11}	573646	- 19848	0.42886
November.	17th...11 18 a.m.	$39^{\circ} 5$	5'73938	- 19837	0.42847
December.	18th... 1059 am.	42'I	$5 \cdot 37920$	0.19732	0.427^{84}

DIP OBSERVATIONS.				MAGNETIC INTENSITY.		
Month.	G. M. T.	告	Dip.	$\begin{gathered} \text { X. or Hori- } \\ \text { zontal } \\ \text { Force. } \end{gathered}$	$\underset{\text { Vertical }}{\mathbf{Y}, \text { or }}$ Force.	$\underset{\text { Force. }}{\text { Tot }}$
January	$\begin{aligned} & \text { D. H. м. } \\ & \text { 17th...IO } 42 \text { a.m. } \\ & =\ldots \text {..II } 15 \text { а.m. } \end{aligned}$	1	$\begin{array}{ll} 69 & 18 \\ 60 \\ 69 & 1610 \\ \hline 14 \end{array}$	3.6685	97025	10'3731
February.	$\begin{array}{cc} \text { I9th...IO } 33 \text { a.m. } \\ \text { " } & \text {..II } \\ 20 & \text { a.m. } \end{array}$	1	$\begin{array}{lll} 69 & 18 & 32 \\ 69 & 17 & 30 \end{array}$	$3 \cdot 6677$	9•7062	10'3760
March ...	18th... Io to a.m. ". ... 1040 a .m	1	$\begin{array}{lll} 6917 & 21 \\ 6914 & 50 \end{array}$	3.6726	97040	10'3764
April		1	$\begin{aligned} & 6915 \quad 25 \\ & 691515 \end{aligned}$	$3 \cdot 6730$	96976	10’3702
May	17th...II 50 a.m. " ... $020 \mathrm{p} . \mathrm{m}$	1	$\begin{array}{lll} 69 & 14 & 45 \\ 69 & 16 & 10 \end{array}$	3.6777	9.6929	10;3846
June	$\text { 17th... } 1045 \text { a.m. }$ "	1	$\begin{array}{lll} 69 & 15 & 8 \\ 69 & 16 \end{array}$	$3 \cdot 6791$	9*6954	10;3898
July	19th... 1052 a.m. "...II $30 \mathrm{a} . \mathrm{m}$	1	$\begin{array}{ll} 69 & 17 \\ 69 & 15 \\ 69 \end{array}$	3.6754	9'7130	10•3866
August...	$\begin{array}{rlll} 2 \text { Ist } & \text {..II } & 20 \mathrm{a} . \mathrm{m} . \\ \# & \ldots \text { II } & 5 \mathrm{I} \text { a.m. } \end{array}$	1	$\begin{array}{ll} 69 & 15 \\ 69 & 18 \\ 6 & 27 \end{array}$	3.6792	9'7181	10'3914
Sept.	$\begin{gathered} 20 \text { th...II } 30 \mathrm{a} . \mathrm{m} . \\ ", \\ \text {...II } 58 \text { a.m. } \end{gathered}$	1	$\begin{array}{lll} 69 & 16 & 25 \\ 69 & 14 & 32 \end{array}$	3.6795	97161	10'3890
October..	$\begin{array}{ccc} \text { 16th...II } & 5 \mathrm{a} . \mathrm{m} . \\ & \ldots & \ldots \text { II } \\ 40 & \mathrm{a} . \mathrm{m} . \end{array}$	1	$\begin{array}{lll} 69 & 17 & 0 \\ 69 & 16 & 39 \end{array}$	$3 \cdot 6836$	973880	10\%4101
Nov.......	$\begin{array}{\|l\|l} \text { I8th...Io } 24 \mathrm{a} . \mathrm{m} . \\ " & . .1055 \mathrm{a} . \mathrm{m} . \end{array}$	1	$\begin{aligned} & 69 \mathrm{I} 6 \mathrm{II} \\ & 69 \mathrm{I} 5 \mathrm{If} \end{aligned}$	3.6852	9'7378	10'4075
Dec.	19th...10 20 a.m. " ...II 10 a.m.	1	$\begin{array}{lll} 69 & 15 & 52 \\ 69 & 14 & 21 \end{array}$	$3 \cdot 6816$	9'7117	10;3860
Means		...	6916 II	3.6769	9'7111	10.3867

MAGNETIC DISTURBANCES.

Jandary.-The first day of the year 1884 that showed any signs of magnetic disturbance was the 8th, and the curves of the 1 Ith, 13 th, and 19th were somewhat irregular, but with the exception of the night of the 25th and the morning of the 26 th , the month was throughout very quiet. A slight increase of the horizontal component of the intensity was recorded between II p.m. and midnight on the 25th and 26th.

Ferruary. - The afternoon of the ist and the night of the 3 rd were not very regular, and during the afternoon of the 4th there was so much disturbance that it amounted almost to a magnetic storm. From noon on the 23 rd disturbing forces were again at work until the 27 th, and the month closed with some very irregular movements of the H. F. magnet, and a diminution of $27^{\prime} 47^{\prime \prime} .3$ in the W. Declination between 9.32 and 10.5 p.m.

March. - The storm that commenced at the end of February continued until the night of the 3 rd. A very rapid change of the Declination occurred between II a.m. and noon on the ist, the needle moving $28^{\prime} 38^{\prime \prime} .9$ towards the East between 11.5 and 11.27, and returning Westward with equal rapidity. The D. magnet was again disturbed between 6 and $10 \mathrm{p} . \mathrm{m}$. on the 7 th, but was remarkably quiet from the 9th to the 16th. Movements somewhat similar were recorded on the evenings of the 19th and 20th, and a storm commenced about 7 p.m. on the 28 th. The Horizontal Force trace was very irregular during this storm, but the Vertical Force was only slightly affected.

April.-The 4th and 5 th of the month were much disturbed, as was also the night of the 1oth. Similar depressions were recorded on the V.F. magnetogram at about $3 \mathrm{a} . \mathrm{m}$. on the 15 th and 16 th . From the 17th to the 20th there were frequent irregularities in the D. and H.F. curves, and the V.F. magnet was also disturbed on the night of the 17th. Both Components of the Intensity showed signs of the presence of a disturbing force during the night of the $24^{\text {th }}$ and the afternoon of the 26 th.

May.-The magnetic traces were somewhat abnormal during the mornings of the 7 th and 8 th, but there was no very marked irregularity in the movements recorded previous to the roth. On the 12th the magnets again came to rest, and remained very steady until the $22 n d$, when all were affected by a disturbing force.

June.-On the afternoon of the 2nd there was a great increase of the V.F., with irregular changes of the Declination. The V.F. curve was abnormal during the night of the 14th. Between 8 and 9 p.m. on the 18th, and at $2 \mathrm{a} . \mathrm{m}$. on the 19th, the needle moved considerably towards the West, accompanied by an increase of the H.F. and a decrease of the V.F., but at io a.m. the disturbance ceased. At 9 p.m. on the 22nd the commencement of a disturbance is apparent on the D . and H. F. curves, and the needle was vibrating violently between 3 and II a.m. on the 23 rd ; shortly before $4 \mathrm{p} . \mathrm{m}$. the V.F. also became irregular, and was considerably above the mean at 4 p.m. Soon after $8 \mathrm{a} . \mathrm{m}$. on the following day all the magnets were again at rest. A rather rapid Easterly movement of the needle was recorded at $8.40 \mathrm{p} . \mathrm{m}$. on the 28 th, when the V.F. was large.

July.-At $5.17 \mathrm{p} . \mathrm{m}$. on the 2 nd a very rapid rise of the H.F. and fall of the V.F., accompanied by a slight Westerly movement of the Declination, indicated the advent of a disturbing force. At midnight the movements of all the magnets were extended, and between 4 and $6 \mathrm{a} . \mathrm{m}$. the vibrations of the Declination magnet were very rapid but short, whilst the H. F. needle was trembling violently. During the afternoon the disturbance continued, and finally culminated in some very rapid and extended movements of the Declination and H.F. between 8 p.m. and midnight. Between 8.32 and 8.58 p.m. the W. Declination increased $55^{\circ} 30^{\prime \prime} .0$, and immediately afterwards decreased almost as rapidly. The V.F. movement was too extended to be recorded on the cylinder at 10.45 , but returned in 15 minutes sufficiently for photographic record. Its oscillation from 5.55 to 10.46 was at least 0.01334 in British units, while the range of the H. F. was 0.00992 between II p.m. and 12.13. The magnet was considerably to the Westward of its mean position at $4 \mathrm{a} . \mathrm{m}$. on the 6th. - During the night of the 13th the V.F. was considerably affected, and the H.F. and Declination slightly, the minimum of the V.F. was reached at $\mathbf{1 2 . 2 8}$ and that of the Declination at 12.39. The curves were also irregular on the mornings of the 20th and 26th, the V.F. being small at $4 \mathrm{a} . \mathrm{m}$. on the 20 th, and at $3.40 \mathrm{a} . \mathrm{m}$. on the 26 th .

August.-The 8th, 9th, and ioth were disturbed days, the V.F. being most affected during the afternoon of the 8th. A sharp movement Eastward occurred at 9.12 p.m. on the 14th. From noon on the 19th to noon on the 20th the magnetic needle was very quiet, but the range of the Declination was considerably above the average. During the afternoon of the 20th a disturbance began which lasted for two days, but the movements call for no special comment. The remainder of the month was very tranquil.

September.-The morning of the roth was disturbed, and the movements of the magnets remained rather irregular until the morning of the 15 th. An increase of the V.F. was well marked on the afternoons of the 13th and 14th. The night of the 17th was stormy, and some very rapid movements occurred just before midnight and towards 2 a.m. The H.F. increased, but the V.F. fell 0.00385 between 10 and 11.24 . Other great movements were recorded between 8 and 9 and between 10 and 11 the following night, accompanied in each case by an increase of the H.F. and a decrease of the V.F.

October.-A storm began at 9.53 p.m. on the ist with a sudden increase of the H.F., and lasted until $4 \mathrm{a} . \mathrm{m}$. on the 3rd. During the morning of the 2nd the oscillations of the needle were rapid but very short. The greatest Declination changes were recorded between 2 and 4 a.m. and from 3 to $6 \mathrm{p} . \mathrm{m}$. on the 2nd, and from $10 \mathrm{p} . \mathrm{m}$. on the 2 nd to $4 \mathrm{a} . \mathrm{m}$. on the 3rd. The V.F. fell 0.00408 between 2 a.m. and 3.11 on the 2nd, and its range from 5.17 p.m. on the and to 4.7 the next morning was 0.00519 . During the whole of the 7 th the needle was swinging considerably but slowly, the V.F. minimum occurring at $2.30 \mathrm{a} . \mathrm{m}$. and the maximum at $5 \mathrm{p} . \mathrm{m}$. During the whole of the $14^{\text {th }}$ and $15^{\text {th }}$ disturbing forces were at work, and the V.F. was in excess in the afternoons of both days. In the early hours of the afternoon the Declination needle was rather irregular on the 17th, 19th, 20th, and 21st. The whole of the 29 th was much disturbed, and the V.F. increased considerably in the evening.

November.-Some irregularities on the afternoon of the ist were followed by a storm, which lasted throughout the 2nd and the morning of the 3 rd. A very rapid movement, first E. and then W., commenced at 7.3 p.m. on the 2 nd and ended at $\mathbf{7 . 2 2}$, the extent of the oscillation being about $32^{\prime} 14^{\prime \prime}$. On the morning of the 3 rd, between I .42 and 2.11 , the Declination increased by $40^{\prime} 17^{\prime \prime} .2$, and its total range from 1.42 to 5.33 was $57^{\prime} 17^{\prime \prime} .8$. The decrease of the V.F. between 2 and $3 \mathrm{a} . \mathrm{m}$.
was too great to be recorded on the photographic paper. The last rapid change of the Declination occurred between midnight and I a.m. on the 4th. The nights of the 6th, 8th, and 1oth were somewhat disturbed, as were also the afternoons of the 17th, 18th, and 19th. From noon on the 23 rd until the next morning there were evidences of a perturbing force; and the swing of the needle, first E. and then W., was not inconsiderable between 3 and $5 \mathrm{p} . \mathrm{m}$. on the 24th. The movements of the Declination and H.F. magnets were again irregular from midnight until 3 p.m. on the 28th.

December.-On the inth the Declination needle was disturbed throughout the evening, and the V.F. somewhat increased. Again, from 9 to io p.m. on the 14th there was an abnormal movement towards the E. of considerable extent, accompanied by an increase of the V.F. during the afternoon, and followed by a decrease of this component of the intensity the next morning. This change of the V.F. recurred during the next 24 hours. The night of the 2oth was far from tranquil. On the 22nd, between 10.16 and 11.12 p.m., the needle oscillated, first W. and then E., through an angle of $33^{\prime} 25^{\prime \prime} \cdot 4$, the greatest irregularity of the H.F. occurring between io p.m. and midnight, and the V.F. attaining a considerable maximum at $9.46 \mathrm{p} . \mathrm{m}$. The morning of the 28th was again rather irregular.

AURORÆ OBSERVED AT STONYHURST COLLEGE OBSERVATORY, 1884.

February 24th.-During the evening a faint auroral glow was observed in the N.W.

March 21st.-Polar shine in the N. seen from 9.45 to 10.15 G.M.T.
April 24th.-At $8.30 \mathrm{p} . \mathrm{m}$. the sky between N. and. N.W. was observed to be more than ordinarily bright.
At 9.20 the glow was exceedingly intense, and at times of a reddish tint. Shortly afterwards streamers were seen, their altitude being about 30°. The following were the most remarkable:
At 9.50 a faint broad crimson streamer, the western side of which was near the planet Venus. The intensity of the red tint increased and attained a maximum at 9.54 . At this time a fainter and small companion formed at its northern side. Both faded at 9.56. Their height was 25°, and the breadth of both combined was about 12°.
Other streamers were seen up to 11.10, their positions extending in azimuth from Venus to 120° towards N.
At 11.0 five streamers were noticed; altitude 30°.
Many of the streamers seen were of a beautiful crimson hue. The sky was at times half covered with stratus clouds.

September 17th.-Strong polar shine observed from 8.30 to 10.20 p.m. At 8.40 it extended from W. to due N., being most intense about λ, μ Ursa Majoris. Its altitude was 25°.
At 8.45 there was an increase in brilliancy, especially in the W. about Arcturus, where a bright cone of light rose to some 50°.
At 8.53 an increase in intensity for a few moments in the N . by W . The light fluctuated, varying continually in brilliancy.
At 9.20 a strong increase of light in the N. by W., which soon died away, but was succeeded by a similar increase of brilliancy one or two points of the compass more towards the W .

At 10.20 the glow was still remarked, and fairly bright about Cor Caroli ; altitude about 20°.
No streamers were seen.
September 18th.-At 7.30 a pink glow in the N.W., and one streamer seen. The horizon was afterwards covered with a thick haze.

October 3rd. - In bright moonlight at 9.30 long streamers were observed from N. by W. to W., some stretching through the zenith, but apparently not at any great elevation. A large one stretched across Capella. The moonlight prevented any exact determination of the nature of these streamers, but they were perhaps auroral.

October 4th. -From 8.0 to $9.0 \mathrm{p} . \mathrm{m}$. streamers wrre seen radiating from the N . and extending all over the heavens. When the moon was eclipsed, a faint glow in the N. was all that could be distinguished. The streamers however seemed to be auroral. During this time the moon was surrounded by a small patch of brilliant cirrus, which disappeared as she rose higher.

October 16th.-From 8.0 to 9.0 p.m. the northern sky was observed to be lit up with a distinct glow, which showed even through the cirrhus clouds which completely covered the sky, and which sent down a drizzling rain. At times it flashed out brilliantly, and once, about 8.20 , this was most intense. The glow may have been auroral.

Excluding the doubtful appearances of October, only five aurore were observed during 1884, and they are all coincident with a disturbed condition of the solar surface. An outburst began on February 18th, as a triplet of spots of moderate size, which was joined on the 25 th by a similar group which grew rapidly (Aurora observed on February 21st). In the next rotation these groups had become two normal round spots, but a renewal of disturbance took place in the preceding spot on March 19th-21st, which subsided on the 24th, 25th (Aurora, March 2Ist). In the third rotation the preceding spot had vanished, but its companion developed most curiously into a fine group very similar to its original form between April 17th-20th (Aurora, April 24th), which group was followed through another rotation until it died away on May 17th, only to reappear again on June 1st, amid faculæ of vast extent. It finally disappeared on June $\mathbf{1 3}$ th, leaving a great amount of
faculæ in its place. The magnets were disturbed both on February 24th and April 24th, but not on March 21st, although there were irregularities in the curves traced on the 19th and 20th.

The strong Polar shine of September 17th was coincident with the largest spot of the year, which appeared first on September 6th, attained its maximum on September 14th, and was followed through various fluctuations in size till December 6th. The magnets were disturbed on September 17th. The remarks above would seem to strengthen what was said last year, "that there is some evidence to show that the aurore and magnetic storms synchronise rather with particular classes of spots, than with solar disturbances generally."

The zodiacal light was observed on March 18th, and a very fine display on November 14th.

PRESENTS RECEIVED.

Report of the Astronomer Royal . . . from The Royal Observatory.
Kew Observatory, Report of Committee . . The Observatory.
Quarterly Returns of the Registrar General
Daily Weather Report
Registrar General.
Meteorological Office.
Weekly Weather Report .
Monthly Weather Report
Quarterly Weather Report
Hourly Readings at the Seven Observatories of the Meteorological Office
Report of the Meteorological Council to the Royal Society
Memoirs of the Royal Astronomical Society
Monthly Notices of the Royal Astronomical Society .
Astronomical Observations and Researches made at the Dunsink Observatory.
Radcliffe Observations, 188x
Results of Meteorological Observations made at the Radcliffe Observatory .
Proceedings of the Royal Society
Report of the British Association
Royal Society.
Report of the Astronomer to the Marine Committee, Mersey Docks and Harbour Board
Journal of the Scottish Meteorological Society.
The Meteorological Record, by W. Marriott
Transactions of the Liverpool Astronomical Society
Abstracts of Proceedings of the Liverpool Astronomical Society

Astronomical Society.

The Observatory.
The Trustees.

British Association.
The Observatory.
The Society.
" "

A Catalogue of the Magnitudes of 500 Stars, by T. E. Espin
Annual Report of the Chester Society of Natural Sciences
Glasgow Catalogue of Stars, by R. Grant
On the Diurnal Range of Rainfall at the Seven Observatories of the Meteorological Office
British Journal of Photography
Liverpool Astr. Society.

On Magnets, by O. A. L. Pihl .
The Society.
The Observatory.
Meteorological Office.
The Editor.
R. Univ. Norway.

Report of the Chief Signal Officer . . .from U.S.A.War Department.
Monthly Weather Review, by Gen. W. B. Hazen
Meteorological and Physical Observations on the East Coast of British America, by O. T. Sherman
Charts and Tables showing geographical distribution of Rainfall in the United States, by H. Dunwoody

Signal Service Tables of Rainfall and Temperature compared with Crop Production, by H. Dunwoody
The Motions of Fluids and Solids on the Earth's Surface, by W. Ferrel
Popular Essays on the Movements of the Atmosphere, by W. Ferrel
Charts of relative storm frequency
International Meteorological Observations of the Chief Signal Officer.
Report of the Secretary of the Navy on Recent Improvements in Astronomical Instruments, by S. Newcomb
Development of the Perturbative Function, by S. Newcomb .

Co-efficients for correcting Planetary Elements, by S. Newcomb
Investigations of Corrections to Greenwich Planetary Observations, by T. H. Safford
Observations of the Great Comet of 1882 , made at the U.S. Naval Observatory
Smithsonian Report, 1882
U.S. Navy Department.

Abstract of Registers from Self-Recording Instruments at the New York Meteorological Observatory
Annual Report of the Astronomical Observatory of Harvard College, by E. C. Pickering
he Observatory.

Sir W. Herschel's Observations of Variable Stars, by E. C. Pickering

Smithsonian Institution.

Recent Observations of Variable Stars, by E. C. Pickering
Annals of the Astronomical Observatory of Harvard College
Publications of the Washburn Observatory, vol. ii., 1883
", "
Internal Contacts in Transits of the Inferior Planets, by J. R. Eastman

The Author.
Harmonic Motion in Stellar Systems, by P. E. Chase

On the Principal Co-efficients in the Barometric
Formula of Laplace, as applied to the White Mountain Region, by J. Tatlock . from The Author.
Report of the Meteorological Service of the Dominion of Canada, by C. Carpmael .
Report of the Canadian Observations of the
Transit of Venus on December 6, 1882 .
Monthly Weather Review, Meteorological Service, Dominion of Canada
On the Geology of the Line of the Canadian Pacific Railway, by J. W. Dawson
Registers of General Observations in 1883 at Calcutta, Lucknow, Lahore, Nagpur, Bombay, and Madras
Report of the Midnapore and Burdwan Cyclones of October I_{5} and 16,1874 , by W. G. Wilson
Reports of the Meteorological Reporter of the Government of Bengal, H. F. Blanford, 1868 to 1873, and W. G. Wilson, 1874
Indian Meteorological Memoirs, by H. F. Blanford
Report of the Vizagapatam and Backergunge Cyclones of October, 1876, by E. Elliott
Report of the Madras Cyclone of May, 1877, by J. Eliot
Report on the Meteorology of India in 1877, by J. Eliot .

Reports on the Meteorology of India, by H. F. Blanford
Reports on the Administration of the Meteorological Department of the Government of India, by H. F. Blanford
Meteorological Observations recorded at six stations in India, 1879 to 1882, by H. F. Blanford
Rainfall Chart of India, by H. F. Blanford
Meteorological Observations made at Singapore by Captain C. M. Elliot, Madras Engineers, 1841 to 1845 .
Bombay Magnetical and Meteorological Observations, 1879 to 1882
Report of the Colaba Observatory, 1883, 4
Hong Kong Observatory, Government Notification, by W. Doberck .
Report of the Meteorological Commission, Cape of Good Hope
Monthly Record, Melbourne Observatory -
Melbourne Observatory, 18th Report of the Board of Visitors, together with the Annual Report of the Government Astronomer.

Madras Government.
The Observatory.
"
",

The Author.
M. O. Calcutta.

"

The Observatory.
" "
G. Canning.

The Observatory.

Meteorological Observations, Adelaide Observatory, 188ı from The Observatory.
Volcanic Outbursts in the Sunda Strait, from the Log-book of the S.S. Governor-General, London.
Note on a Series of Barometrical Disturbances which passed over Europe between the 27th and the 3 rst of August, 1883, by R. H. Scott
Brief Notes on the History of Thermometers, by R. H. Scott
On the Veiled Solar Spots, by L. Trouvelot
Diary of a Magnetic Survey of a portion of the Dominion of Canada, by J. H. Lefroy
Composite Portraiture adapted to the Reduction of Meteorological and other similar Observations, by G. M. Whipple .

Meteorological Office.

Meteorology of Bradford for 1883, by J. McLandsborough and A. E. Preston
Experimental Researches on the Electric Discharge with the Chloride of Silver Battery, by W. Dela Rue and H. W. Müller

The Author.

Statistics of Lancaster Rainfall, by W. Roper .
Discharge of Streams in relation to Rainfall, N. S. Wales, by T. A. Coghlan

The Wells and Water of Liverpool, by J. Roberts
Boring on East Hoyle Bank, by J. Roberts
Address of the President of the Liverpool Geological Society on Volcanoes and Volcanic Agency .
Experiments on the Filtration of Sea-Water through Triassic Sandstone, by J. Roberts
Notes on the Strata and Water Level at Maghull, by J. Roberts
The Pressure of Wheat stored in elongated cells or bins, by J. Roberts
A new Planet Indicator, by J. Roberts
Returns of Rainfall in Waterwork Districts, by F. Bateman

Inaugural Address of the President of the Society of Telegraph Engineers and Electricians
On the Principal Co-efficients of the Formula of Laplace, by John Tatlock, junr.
Seventeen Years in the Canadian North-West, by A. Begg
The Dominion of Canada, by J. G. Colmar " "

Heliometer Determinations of Stellar Parallax in the Southern Hemisphere, by Gill and Elkin

Rates of Chronometers at Greenwich . . from The Author.
On some Thermal and Volume Changes attending Mixture, by F. Guthrie
Annuaire du Bureau des Longitudes 1884 .
Annuaire de la Société Météorologique de France .
Annales de l'Observatoire Royal de Bruxelles, tomes iv. v.
Annuaires de l'Observatoire Royal de Bruxelles 1882, 1883, 1884
Observations Météorologique faites aux Stations Internationales de la Belgique et des PaysBas 1880
Vade-Mecum de l'Astronome, par J.C. Houzeau
Diagrammes du Météorographe Van Rysselberghe 1879, 1880, 188r, 1882
Exposition Critique de la Méthode de Wrouski pour la résolution des problèmes de Mécanique Céleste, par C. Lagrange, r partie.
Expédition Danoise pour l'observation du Passage de Venus en 1882, par C. F. Pechüle
Sur les variations périodiques des Glaciers, par F. A. Forel

Les variations périodiques des Glaciers des Alpes, par F. A. Forel .
Les rides de fond étudiêes dans le Lac Léman, par F. A. Forel
Observations de l'Eclipse Totale du 6 Mai 1883, à lisle Caroline, par J. Janssen
Etudes sur les mouvements de l'atmosphère, par C. Gulbert et H. Mohn

Sur quelques anomalies apparentes dans la structure des queues cométaires, par Th. Bredichin
Histoire de l'hypothèse des ondes cosmiques, composée pour l'explication des formes cométaires, par Th. Bredichin
Supplement a l'Histoire, \&c.
Théorie Mécanique des Soleils, par E. La Combe Bulletin Mensuel de Zi-Ka-Wei
Sur les anomalies apparentes dans la structure de la grande comète de 1744, par Th. Bredichin
Observations sur les Courants électriques de la terre et leur comparaison avec les variations magnétiques, par H . Wild
Bulletin Astronomique, Janvier 1884
Recherches historiques sur les étalons de Poids et Mesures de l'Observatoire, par M. C. Wolf
"
Obs. de Meudon.
La Société.
L'Observatoire.

```
%
```

 ;
 "
 3)
 \(\%\)
 3
L'Auteur.

```
#
```

**
J. R. Eastman.
R. Univ. Norway.

L'Auteur.
"
"
L'Observatoire.

L'Auteur.

L'Editeur.
L'Auteur.

Quelques Remarques concernant mes recherches sur les Comètes, par Th. Bredichin
Sur la queue du I type dela Comète de 1858 V , par A. Socoloff
Les illuminations crepus, culaires, par J.Thirion
Le Satellite de Venus, par J. Thirion
Les travaux Scientifiques de Joseph Plateau, par J. Delsaulx
Sur la théorie des sons résultants, par J. Delsaulx Un nouveau Géothermomètre, par Knut Angström, Upsala

L'Observatoire.
Extrait des Procès-Verbaux des Séances de la Septième Conference Générale de l'Association internationale tenues à Rome de 15 au 24 Octobre 1883
K. Preuss, G.'I. La Société.
Jahrbuch des Norwegischen Meteorologischen Instituts für 1880 , 188 r , von Dr. H. Mohn .
Annalen des Physikalischen Central-Observatoriums, von H . Wild. Theil r .
Astronomische Mittheilungen, von Dr. Rudolf Wolf
Jahrbücher der K.K. Central-Anstalt für Meteorologie und Erdmagnetismus, Wien, 1880, 188 r
R. Univ. Norway.

Das Observatorium.

Monats und Jahresrésumes der Beobachtungen der Meteorologischen Stationem in Russland
Preussische Statistik, Königlichen Statistischen Bureau in Berlin 1883

Das Bureau.
Jahrbuch des Königl. Sächsischen Meteorologischen Institutes, III. 1883
Die Vermessung des Rhone-Gletschers durch den Schweizer Alpen Club, von F. A. Forel .
Classification der Flächen nach der Trans-formations-gruppe ihrer Geodätischen Curven, von S. Lie
Die Geographische Position der Kalocsaer Sternwarte, von Dr. C. Braun
Ein neuer Uhr-Contact, von Dr. C. Braun
Das Trigonometer, von Dr. C. Braun
Der Verfasser.

Ueber ein verbessertes Prisma à vision directe, von Dr. C. Braun .
Neue Bestimmung der erdmagnetischen Inclination in Göttingen, von Karl Schering
Ueber die Beobachtung der sogenannten Erdströme, von Karl Schering
Das Quadrifilar-Magnetometer, von K. Schering
Die internationale elektrische Ausstellung in Wien, 1883, von R. Handmann, S.J.
R. Univ. Norway.

Der Verfasser.

Grösste Niederschlagsmengen in Deutschland, von Dr. G. Hellman 1884
Forteguelse over den Tilvœxt, som $\operatorname{det} \mathrm{K}$. Frederiks Universitets Bibliothek har erholdt, i A arene 1880-8I .
R. Univ. Norway.

Bollettino mensuale dell'Oss. Centrale del R. Coll. Carlo Alberto in Moncalieri .

L'Osservatorio.
Bollettino Decadico dell'Oss. Centrale del R. Coll. Carlo Alberto in Moncalieri .
"
Pontificia Università Gregoriana, Continuazione del Bulletino Meteorologico dell'Osservatorio del Collegio Romano
Atti dell'Accademia Pontificia de' Nuovi Lincei 1883

L'Accademia.
Sessioni dell'Accademia Pontificia de' Nuovi Lincei
Determinazioni assolute della Declinazione Magnetica nel R. Oss. di Capodimonte dall' Astr. Prof. F. Brioschi
Riassunti decadici e mensili delle osservazione meteorichi fatte nel R. Oss. di Capodimonte 1883
"
Osservatorio meteorico-magnetico di Pesaro
Tavole-Prontuario da 1 à 5000 metri per la misura delle altezze col mezzo del Barometro saggio, di F. Salino

L'Autore.
Boletin del Ministerio de Fomento dela Republica Mexicana.

El Observatorio.
Observatorio Meteorologico-magnetico Central, Mexico.
Anuario del Obs. Astr. Nac. de Tacubaya 1885
Obs. Met. del Col. Cat. del Sacrado Corazon de Jesus en Puebla
Cronica Cientifica
El Director.
Nuevos Métodos Astronómicos y regla geodésica de Longitud invariabile, Rafael Mallen Sur l'écuation personelle, par José Landerer

$:$
$:$

APPENDIX.

RESULTS
OF
METEOROLOGICAL OBSERVATIONS
TAKEN AT
ST. IGNATIUS' COLLEGE, MALTA,

by the
REV. J. SCOLES, S.J.
1884.

Lat. $35^{\circ} 55^{\prime}$ N. Long. $14^{\circ} 29^{\prime}$ E. Barometer Readings reduced to 32° at Sea Level. METEOROLOGICAL REPORT. January-February, 1884.		
Results of Observations taken during the Month.	January.	February.
Mean Reading of Barometer inches	30.224	30'170
Highest , ", ",	30*494	30•448
Lowest , ", ",	29'710	29.858
Range of Barometer Readings ,"	0.784	0.590
Highest Reading of Max. Therm.	$62 \cdot 6$	67.0
Lowest ,, Min. Therm.	$42^{\prime} 7$	41.2
Range of Thermometer Readings	19.9	$25 \cdot 8$
Greatest Range in 24 hours	$16 \cdot 2$	19.5
Mean of all the highest Readings	58•1	6I.2
Mean of all the lowest Readings	47.5	$49^{\circ} 2$
Mean Daily Range ..	$10 \cdot 6$	$12^{\circ} 0$
Mean Temperature (deduced from Max. and Min.)	$52 \cdot 8$	54.5
Mean Temperature (deduced from Dry Bulb)	51.4	53.8
Adopted Mean Temperature	$52 \cdot 1$	54.2
Mean Temperature of Evaporation	$48 \cdot 1$	51.4
Mean Temperature of Dew-point	44°	$48 \cdot 6$
Mean Elastic force of Vapour inches	0.288	0.343
Mean Weight of Vapour in a cubic foot of air...grains	$3 \cdot 3$	3.9
Mean additional weight required for saturation ,"	$1 \cdot 1$	0.8
Mean degree of Humidity	75	8I
Mean Weight of a cubic foot of air grains	545%	'541'3
Fall of Rain inches	$2 \cdot 429$	0.670
Number of days on which Rain fell :...	9	6
Mean amount of Cloud (an overcast sky=10).........	$4^{\circ} 0$	4.I
Total number of miles of Wind indicated	8165	5956
Mean Velocity of Wind per hour miles	11*O	$8 \cdot 5$

March-April.		
Results of Observations taken during the Month.	March.	April.
Mean Reading of Barometer inches	29.995	29.863
Highest , ,, ,"	$30 \cdot 380$	$30 \cdot 077$
Lowest , , , "	29.693	$29^{\circ} 520$
Range of Barometer Readings ,	0.687	0.557
Highest Reading of Max. Therm.	69.2	- 74.2
Lowest , Min. Therm.	$45^{\circ} 8$	$50 \cdot 9$
Range of Thermometer Readings	23.4	23.3
Greatest Range in 24 hours	21.9	217
Mean of all the highest Readings	62.4	$68 \cdot 7$
Mean of all the lowest Reading..........................	51.3	$55^{\circ} 5$
Mean Daily Range ..	11.1	13.2
Mean Temperature (deduced from Max. and Min.)...	55.9	$61 \cdot 1$
Mean Temperature (deduced from Dry Bulb)	$55 \cdot 8$	$60^{\circ} 9$
Adopted Mean Temperature	$55^{\circ} 9$	610
Mean Temperature of Evaporation	53.2	$56 \cdot 8$
Mean Temperature of Dew-point	$50 \cdot 7$	53^{2}
Mean Elastic force of Vapour inches	$0 \cdot 370$	$0 \cdot 406$
Mean Weight of Vapour in a cubic foot of air...grains	4.2	$4 \cdot 5$
Mean additional weight required for saturation ,,	0.8	$1 \cdot 5$
Mean degree of Humidity	84	76
Mean Weight of a cubic foot of air grains	$536 \cdot 3$	526.9
Fall of Rain inches	$1 \cdot 380$	$0 \cdot 344$
Number of days on which Rain fell	8	2
Mean amount of Cloud (an overcast sky = i0)	4.5	$3 \cdot 3$
Total number of miles of Wind indicated	8447	8323
Mean Velocity of Wind per hour miles	11.4	$1{ }_{1} 6$

May-June.		
Results of Observations taken during the month.	May.	June.
Mean Reading of Barometer inches Highest ," Lowest ," Range of Barometer Readings \qquad Highest Reading of Max. Therm. \qquad Lowest ,, Min. Therm. \qquad Range of Thermometer Readings \qquad Greatest Range in 24 hours \qquad Mean of all the highest Readings \qquad Mean of all the lowest Readings \qquad Mean Daily Range \qquad Mean Temperature (deduced from Max. and Min.).. Mean Temperature (deduced from Dry Bulb) \qquad Adopted Mean Temperature \qquad Mean Temperature of Evaporation \qquad Mean Temperature of Dew-point \qquad Mean Elastic force of Vapour \qquad inches Mean Weight of Vapour in a cubic foot of air...grains Mean additional weight required for saturation Mean degree of Humidity \qquad Mean Weight of a cubic foot of air \qquad grains Fall of Rain \qquad inches Number of days on which Rain fell \qquad Mean amount of Cloud (an overcast sky=ro) \qquad Total number of miles of Wind indicated \qquad Mean Velocity of Wind per hour miles		$\begin{array}{r} 29 \cdot 990 \\ 30 \cdot 123 \\ 29 \cdot 725 \\ 0 \cdot 398 \\ 79 \cdot 2 \\ 57 \cdot 4 \\ 21 \cdot 8 \\ 17 \cdot 2 \\ 74 \cdot 9 \\ 62 \cdot 7 \\ 12 \cdot 2 \\ 68 \cdot 1 \\ 67 \cdot 8 \\ 68 \cdot 0 \\ 63 \cdot 4 \\ 59 \cdot 7 \\ 0.51 \cdot 2 \\ 5 \cdot 6 \\ 1 \cdot 9 \\ 75 \\ 522 \cdot 9 \\ 0.539 \\ 4 \end{array}$

July-August.		
Results of Observations taken during the month.	July.	August.
Mean Reading of Barometer inches	$30 \cdot 038$	30.017
Highest " "	30.172	30.124
Lowest "	29.890	29.889
Range of Barometer Readings................... ,	$0 \cdot 282$	0.235
Highest Reading of Max. Therm.	$94 \cdot 6$	$91 \cdot 3$
Lowest ", Min. Therm.	63.2	643
Range of Thermometer Readings	314	27°
Greatest Range in 24 hours	22.9	$24^{\circ} \mathrm{O}$
Mean of all the highest Readings :	83.8	85.2
Mean of all the lowest Readings	68.8	$70 \cdot 6$
Mean Daily Range	$15^{\circ} 0$	14^{6}
Mean Temperature (deduced from Max. and Min.) ...	$75 \cdot 8$	$77 \cdot \mathrm{r}$
Mean Temperature (deduced from Dry Bulb)	75.2	77°
Adopted Mean Temperature	75.5	$77 \cdot 1$
Mean Temperature of Evaporation	$69 \cdot 6$	714
Mean Temperature of Dew-point	65.4	674
Mean Elastic force of Vapour inches	0.626	$0 \cdot 671$
Mean Weight of Vapour in a cubic foot of air...grains	6.7	73
Mean additional weight required for saturation ",	$2 \cdot 8$	$2 \cdot 8$
Mean degree of Humidity	70	- 73
Mean Weight of a cubic foot of air grains	515.4	513.6
Fall of Rain inches	-	-
Number of days on which Rain fell	-	-
Mean amount of Cloud (an overcast sky = 10)	0.5	10
Total number of miles of Wind indicated	6025	5582
Mean Velocity of Wind per hour miles	$8 \cdot 1$	7.5

September-October.		
Results of Observations taken during the month.	September.	October.
Mean Reading of Barometer inches	30'123	30.075
Highest	30•294	$30 \cdot 362$
Lowest " "	29.935	29.780
Range of Barometer Readings ",	- 0359	0.582
Highest Reading of Max. Therm.	$90 \cdot 1$	82.2
Lowest , Min. Therm.	$62 \cdot 2$	56.8
Range of Thermometer Readings	279	$25^{\circ} 4$
Greatest Range in 24 hours	23.9	$16 \cdot 2$
Mean of all the highest Readings	81.2	$74^{\circ} 9$
Mean of all the lowest Readings	67.5	63.4
Mean Daily Range ..	13.7	11.5
Mean Temperature (deduced from Max. and Min.)...	$73 \cdot 5$	$68 \cdot 2$
Mean Temperature (deduced from Dry Bulb)	73.5	677
Adopted Mean Temperature	73.5	68.0
Mean Temperature of Evaporation	$68 \cdot 2$	63.3
Mean Temperature of Dew-point	64.3	59.8
Mean Elastic force of Vapour inches	0.603	0.514
Mean Weight of Vapour in a cubic foot of air...grains	6.6	$5 \cdot 6$
Mean additional weight required for saturation ",	2.4	188
Mean degree of Humidity	73	77
Mean Weight of a cubic foot of air grains	518.9	524.8
Fall of Rain \qquad inches	0.538	1.325
Number of days on which Rain fell	2	5
Mean amount of Cloud (an overcast sky = ro).........	20	3.8
Total number of miles of Wind indicated.	5863	5810
Mean Velocity of Wind per hour miles	8.1	7.8

November-December.			
Results of Observations taken during the month.	November.	December.	Year.
Mean Reading of Barometer inches	30'100	30.060	30.057
Highest ", "	30.293	$30 \cdot 466$	30'494
Lowest ,	29.675	29.361	29.361
Range of Barometer Readings ,,	0.618	1.105	$1 \cdot 133$
Highest Reading of Max. Therm.........	$71 \cdot 6$	66.2	$94 \cdot 6$
Lowest ,, Min. Therm.	49^{2}	44^{6}	41^{12}
Range of Thermometer Readings	22.4	21.6	53.4
Greatest Range in 24 hours	$16 \cdot 3$	$17{ }^{\circ}$	$25^{\circ} 8$
Mean of all the highest Readings	66°	619	$70^{\circ} 9$
Mean of all the lowest Readings	$56 \cdot 8$	$52 \cdot 8$	$58 \cdot 8$
Mean Daily Range	97	$9{ }^{\text {'I }}$	12.1
Mean Temperature (deduced from Max. and Min.) \qquad	$60 \cdot 6$	56.7	$64^{\text {¹ }}$
Mean Temperature (deduced from Dry Bulb) \qquad	$60 \cdot 5$	$56 \cdot 2$	63.7
Adopted Mean Temperature	$60 \cdot 6$	$56 \cdot 5$	63.9
Mean Temperature of Evaporation	55×5	$52 \cdot 8$	$59^{\circ} 6$
Mean Temperature of Dew-point	$55^{\circ} 9$	$50 \cdot 2$	56.2
Mean Elastic force of Vapour ... inches	- 386	$\bigcirc \cdot 364$	$0 \cdot 453$
Mean Weight of Vapour in a cubic foot of air \qquad grains	43		5^{11}
Mean additional weight required for saturation \qquad grains	1.5	009	1.6
Mean degree of Humidity	75	83	77
Mean Weight of a cubic foot of air...grs.	$533 \cdot 3$	$537 \cdot 6$	528.6
Fall of Rain inches	$5 \cdot 236$	4.865	17.968
Number of days on which Rain fell	12	15	68
Mean amount of Cloud (an overcast sky $=10$)	$4 \cdot 8$		3.3 8362
Total number of miles of Wind indicated	6690	8168	833^{62}
Mean Velocity of Wind per hour	$9 \cdot 3$	11°	9×5

NOTES FOR THE SEPARATE MONTHS.

January.
The Dew-point rose from 40° on the 1st to 50° on the 7 th, at which value it remained till the gale of the 14 th carried it down to 30° with a N.W. wind. From this figure it rose steadily to 52° on the 28 th, when the high winds from the W. again lowered it to 37°.

The wind maintained a velocity of 30 miles per hour for 7 hours on the 14 th, and of 33 miles per hour on the 28 th.

In Sunshine the highest readings were 119.2° on the 26 th, and 116.8° on the 25 th.

On the ground the lowest temperatures were 38.4° on the Ist, 38.0° on the 4 th, and 36.0° on the 18th.

The high Barometrical readings of the 1st, 6th, 22nd, and 31st, were accompanied by a noticeable depression of sea-level.

Fine displays of the upper glow after Sunset were seen ; especially on the 4th and 5th.

February.

The Dew-point varied but little on either side of 50° till the 16th, when it rose to 56.3°; but the easterly winds of the 17 th, 18 th, and 19th, carried it steadily downwards till it reached 38.3° on the 22nd ; it then rose steadily to 56.0° on the 29 th. The wind maintained a velocity of 31.5 miles for 4 hours on the 19 th.

In Sunshine the highest temperature was 124.5° on the 24 th. $118 \cdot 2^{\circ}$ was recorded on the 23 rd .

On the ground the lowest temperature was 36.0° on the 23 rd . On no other day did the temperature fall below 40°.

The temperature of the sea oscillated between 59° and 61°.
In some places near to this station the potatoes that had appeared above ground were blackened by frost on the 23 rd.

March.

The Dew-point was very steady till the 20th, moving a little to either side of 50°. On that day it rose to 55°, the Barometer falling
rapidly, and on the following day it reached 56.7° at the same time as the Barometer fell to its lowest. The recovery of the Barometer was attended by a rapid fall of the Dew-point to $42^{\circ} 8^{\circ}$ on the 22nd. From that date to the end of the month both Barometer and Dew-point were very unsteady. In Sunshine the highest temperature was $127^{\circ} 8^{\circ}$ on the 19th, and 126.0° was recorded on the 9th.

On the ground the lowest temperatures were 41.5° on the 3 ist, and $41 \cdot 6^{\circ}$ on the 26 th.

The sea remained steadily at 61°.
On the 18th potatoes in the neighbourhood were blackened by frost.

April.

The Dew-point was very unsteady all through the month, ranging between 46° and 58°. Its highest value was $59^{\circ} 2^{\circ}$ on the 18 th , and its lowest 46.0° on the 3oth.

The wind maintained a velocity of 27 miles per hour during 7 hours on the 28 th.

In Sunshine $133^{\circ} 3^{\circ}$ was recorded on the 26th, and 130° on the 30 th.
On the ground the lowest temperatures were $46 \circ^{\circ}$ on the 6th, and 46.9° on the 21 st.

The sea rose from 61° to 65°.
Potatoes began to suffer badly from blight during the first week, and those plants that were attacked were nearly all destroyed by the end of the month. Some that had been planted later than the rest escaped.

Bee-eaters, fly-catchers, and quails came on the 19th.

May.

The Dew-point was very unsteady during the first half of the month. Starting from $45^{\circ} 2$ on the first it osciliated continually between 50° and 60°, occasionally varying as much as 10° in 4 hours. During the second half of the month it was very steady. The highest value attained was 64.6° on the 24th.

The wind averaged 24 miles per hour on the ist from 8 a.m., to 3 p.m.

In Sunshine $14^{\circ} 5^{\circ}$ was recorded on the 7 th.
On the ground the lowest temperatures were 46.5° on the 5 th, and 48° on the $4^{\text {th }}$.

The sea rose from 65° to $7 \mathrm{r}^{\circ}$.
Date-palms flowered during the first week ; caper, prickly-pear, and oleander in the third week.

Sand-flies appeared on the 27th.

June.

From the ist to the 21st the Dew-point varied continually, ascending and descending between 50° and 65°. After the 23rd it became more steady, but was always above 61°

The highest for the month was 67.5 on the 18th, the lowest $49^{\circ} 6^{\circ}$ on the 20th.

The wind averaged 26 miles per hour from 3 p.m., to 7 p.m., on the rith.

In Sunshine 137.8° was recorded on the 18 th.
On the ground the lowest temperature was 52.5° on the 14 th.
The sea rose from 70° to 74°.
The day temperatures were decidedly lower than last year, the mean of the highest readings being 5° below the value for last year.

The upper glow after Sunset which began last November has not yet ceased. Its colour has become a pale rose, and it is visible half an hour after Sunset.
July.

The Dew-point remained about 63° till the 8 th, when it rose above 70° and reached $74^{\circ} 6^{\circ}$ on the 18 th. On the 21st it again descended, dropping 10° in 24 hours and reached its lowest value 54.7° on the 29th. From the 9th to the 18 th the weather was very oppressive.

The wind averaged 28 miles per hour from noon to $3 \mathrm{p} . \mathrm{m}$., on the 20th.

In Sunshine 142.6° was recorded on the 18 th.
The sea rose to 83° on the 20th and fell to 77° by the 28 th.
The sea and Dew-point temperatures have ranged higher than last year, and Barometric pressure has been less regular.

The mean of maxima in Sunshine was 1365°, last year it was $139^{\circ} 3^{\circ}$.

August.

The Dew-point was very steady with the exception of a sudden drop and recovery of 8° on the 8 th, 9 th, and 13 th. The highest value reached was 72.9° on the 22nd, and lowest 58.0° on the 9 th.

The wind averaged 26 miles per hour from 4 p.m., to $6.30 \mathrm{p} . \mathrm{m}$., on the 30th.

In Sunshine $149^{\circ} 0^{\circ}$ was recorded on the 22nd.
The sea rose again to 82° by the 12 th, then fell to 79° by the end of the month.

The sea and Dew-point temperatures are higher than those of last year.

The upper glow at Sunset still continues in the same form as last month.

SEPTEMBER.

The Dew-point rose to 70° on the 2nd, and remained steadily at 70° till the 5 th, when it fell rapidly to $54^{\circ} 2^{\circ}$. at $3 \mathrm{p} . \mathrm{m}$. It regained its former position by the 13 th, but immediately receded to 60°. On the 25th and 26th it again stood at 70° and reached $72 \cdot \mathbf{I}^{\circ}$ on the 27 th. On the 28 th it dropped rather suddenly to 5°, rising afterwards to 62°.

The wind averaged 23.5 miles per hour from 8 a.m., to 3 p.m., on the 5 th. The sea was very free from disturbance during the month, and salt-water mosquitoes were unusually abundant in consequence of the pools of sea-water on the rocks being left undisturbed.

In Sunshine $14^{\circ} 3^{\circ}$ was recorded on the inth.
On the ground the lowest temperature was $57 \cdot 6^{\circ}$ on the 22nd.
The sea fell from 78° to 76° by the 1oth, and remained at 76° till the end of the month.

A thunderstorm passed on the 13 th at 9 a.m. and lightning was seen on the inth and 12th.

The upper glow after Sunset was seldom seen.

October.

The Dew-point remained at 60° till the 6 th, on the 7 th and 8 th it stood at $7 \mathrm{I}^{\circ}$, and on the 9th it fell rapidly to 55°. On the $14^{\text {th }}$ it was again close to 70°, and on the $15^{\text {th }}$ and 16 th it was down to 52° and $5 \mathrm{I}^{\circ}$ During the rest of the month it made two long oscillations between 63° and $53 .^{\circ}$

The wind averaged 22 miles per hour, from $8 \mathrm{a} . \mathrm{m}$., to noon on the 28th.

In Sunshine 131.9° was recorded on the 2nd.
On the ground the lowest temperature was 51.3° on the $30 t h$.
The sea fell from 77° to 72°.
Thunder and lightning were observed on the 3rd, 6th, 12 th, and 27 th ; lightning alone on the 2 nd, 7 th, 8 th, roth, 21 st, and 23 rd .

On the 7th a terrible cyclone broke on Catania, the disturbance being marked here by two slight depressions on the 7th and 3th, succeeded by an abrupt rise and fall of $0 \cdot 2$ inch; the wind on the 7 th averaging 7 miles per hour and veering from S.E. to N.

The rainfall was very unevenly distributed, good rains falling in the centre of the island and on its south side, and but little on the northeast coast.

November.

The Dew-point rose gradually to $60 \cdot 2^{\circ}$ on the 6th, falling immediately after to 50° on the 13 th and $14^{\text {th }}$; it rose again from 50° to 60°, falling back on the 15 th to 50°. On the 16 th , and again on the

20th, 56° was reached during very heavy rains, and during the last 10 days the oscillations were more rapid, and between 57° and 41.6°.

The wind rose to 42 miles per hour on the 16th from the East, and to 30 miles per hour on the 30 th, from the North West.

In Sushine 118.2° was recorded on the Ist and 12 th
On the ground the lowest temperature was $44^{\circ} 0^{\circ}$ on the $22 n d$.
The sea fell from 72° to 65°.
Thunderstorms passed on the 13th, 16th, and 20th.
Hail fell on the 24th.
The rosy upper glow reappeared after Sunset on the 28th well marked.

December.

The Dew-point touched $58 \cdot 7^{\circ}$ on the 4 th, and from the 6 th to the 16th remained steadily at 51°. After a couple of oscillations it went down to $40 \cdot 1^{\circ}$ on the 23 rd , and recovered its place at 50° at the end of the month.

The wind averaged 32 miles per hour, from 8 a.m., to noon on the 3rd.

In Sunshine 109.4° was recorded on the gth.
On the ground the lowest temperature was 379° on the 23 rd and 27th.

Thunderstorms occurred on the 17 th and 24 th.
Hail fell on the 22 nd and 24 th.
J. Scoles, S.J.

St. Ignatius' College.

