STONYHURST COLLEGE OBSERVATORY.

RESULTS

of

METEOROLOGICAL AND MAGNETICAL

 OBSERVATIONS,by the
REV. S. J. PERRY, S.J., F.R.S.,
Cor. Menn. of the Accad. Rom, Pont. de' Nuovi Lincei, and of the Soc. Géog. d'Anvers Hon. Mem. of the Soc. Scient. de Bruxelles.
1885.

MANRESA PRESS, ROEHAMPTON. 1886.

INTRODUCTION.

The routine work of the Observatory, which has undergone no important change during the past twelve months, is sufficiently described in the introductory remarks of previous reports, and therefore need not be repeated here. The continuous photographic and other automatic records of the meteorological and magnetic changes are complete for the year; and in addition to former publications of results, monthly meteorological tables are now sent to the Naturalist.

The comparison of the magnetic curves of Kew and Stonyhurst formed the subject of a paper read before the Royal Society in December, 1885. Copies of the traces of the magnetic Declination were forwarded to Professor W. G. Adams for collation with the curves from other observatories throughout the world; and a number of absolute magnetic determinations were sent to M. Schürk, of Hamburg, for publication.

A large amount of time has been devoted as usual to solar physics, and the data collected in past years is in course of reduction in view of future distribution. Complete drawings of the solar spots and faculæ have been
made on 230 different days, the scale being invariably $101 / 2$ inches to the diameter. A paper published in the Astronomical Register embodies some of the conclusions deduced from the daily solar drawings, and from a special study of the general surface of the sun.

The series of observations of the Phenomena of Jupiter's satellites, and of occultations of stars by the moon, has been continued; and the comets of Fabry and Bernard, as well as the changes in the new stars of Andromeda and Taurus, have been followed as well as the weather permitted. The Upper glow has been carefully noted by one of the assistants.

A large solar prism by Hilger, with a Dawes eye-piece, has been presented to the Observatory by the President of the Liverpool Astronomical Society, J. Roberts, Esq.; and a stellar spectroscopic eye-piece, consisting of a fine Hoffmann object-vision prism and cylindrical lens, has been added to our list of instruments.

Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime}$ N. Long. 9 m . 52 s. 68 . w. Height of the Barometer above the sea, 38 Ift . METEOROLOGICAL REPORT. danuary, 1885.	
ion	Mean for the last 3^{8} years.
Mean Reading of the Barometer \qquad 29.414 Range of Barometer Readings................................ I•577 Highest Reading of a Max. Therm. on the 29th 52.3 Lowest Reading of a Min. Therm. on the 20th 22.5 Range of Thermometer Readings $29 \cdot 8$ Mean of all the Highest Readings $41^{1} 3$ Mean of all the Lowest... 31•5 Mean Daily Range .. 9^{8} Deduced Monthly Mean (from Mean of Max. and Min.) $36 \cdot 2$ Mean Temperature from dry bulb 36.9 Adopted Mean Temperature 36.6 Mean Temperature of Evaporation......................... 34% Mean Temperature of Dew Point 32.5 Mean elastic force of Vapour 0.185 in Mean weight of Vapour in a cubic foot of air 2.1 gr Mean additional weight required for saturation......... 0.6 gr Mean degree of Humidity (saturation $1 \times \infty$) 0.85 Mean weight of a cubic foot of air $549 \% 9 \mathrm{gr}$ Fall of Rain .. 3.517 in Number of days on which Rain fell $14^{\circ} 0$ Amount of Evaporation \qquad 1.010 in	$\begin{gathered} 29.433 \\ 30 \cdot 039 \\ 28 \cdot 567 \\ 1 \cdot 472 \\ 51 \cdot 6 \\ 21 \cdot 3 \\ 30 \cdot 3 \\ 42 \cdot 2 \\ 32 \cdot 7 \\ 9 \cdot 5 \\ 37 \cdot 8 \\ 37 \cdot 2 \\ 37.6 \\ 36 \circ \\ 33 \cdot 9 \\ 0 \cdot 197 \mathrm{in} \\ 2 \cdot 3 \mathrm{gr} \\ 0.4 \mathrm{gr} \\ 0.86 \\ 549 \cdot 0 \mathrm{gr} \\ 4 \cdot 214 \mathrm{in} \\ 19 \cdot 5 \\ 0 \cdot 484 \mathrm{in} \end{gathered}$

No. of days in the month on which the prevailing wind was	N	NE	$\frac{\mathbf{E}}{9}$	$\frac{\mathrm{SE}}{\mathrm{I}}$	S	$\left\|\frac{s w}{5}\right\|$	$\frac{w}{2}$	$\frac{\mathrm{NW}}{3}$
Mean Velocity in miles per hour	4.2	777	$10 \cdot 6$	3.9	13.4	12.4	14.9	$7{ }^{2}$
Total No. of miles for each Direction			2285	93	1602	1482	717	237
The total number of miles registered during the month was 8336 . The max. Velocity of the wind was 44 miles per hour ; direction S.S.E. on the 3Ist at 1 p.m. Mean amount of Cloud (an overcast sky being indicated by 10%) In the month of January, the highest reading of the Barometer during 38 years, was on the 18 th, in 1882, and was The mean reading of the Barometer was almost identical with the average. The range of Barometer readings was slightly in excess of the average. The mean Temperature of the month was not quite a degree lower, and the range of Temperature was very close to the mean of previous years. The Rainfall was light, and the number of days on which rain fell was small. The prevailing wind was S.S.W.								

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$) $8 \cdot 7$
In the month of February, the highest reading of the Barometer during 3^{8} years, was on the 1 Ith, in 1849 , and was $30 \cdot 45^{2}$
The lowest ,, , 6th, 1867 $28 \cdot 208$
The highest Temperature ,"
8th, 1877 $58 \cdot 3$
The lowest
Ist, 1855 IO•I
The highest adopted mean temperature of the month, 1869 44°
The lowest 93 $28 \cdot 6$
Barometer readings were low, and the range was small. Temperature was rather high. Both the amount of rain and the number of wet days exceeded the average. The prevailing wind was from S.S.W.

Mean amount of Cloud (an overcast sky being indicated by 10%)... 7.9
In the month of March, the highest reading of the Barometer during 38 years, was on the 6th, in 1852, and was $30 \cdot 401$
The lowest ,, 31st, 1860 28•199
The highest Temperature 25th, 1871 68.0
The lowest " "
$4^{\text {th, }} 1866$ 14.5
The highest adopted mean temperature of the month, 1871 $44^{\circ} 0$
The lowest ,, $35 \cdot 6$

Barometer readings agreed closely with the mean of past years. The Temperature was low, and the range of Temperature great. The Rainfall exceeded the average. The prevailing wind was W.

14

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)...			
In the month of April, the highest reading of the Barometer during 3^{8} years, was on the 22nd, in 1855, and was			
he lowest		h,	8
he highest Temperature	,"	14th, 18	4^{1}
he lowest		h, 1885	1 'I
he highest adopted mea		nth, 186	,
he lowest			

Barometer readings were close to average. The mean Temperature was also close to that of previous years; but the range of Temperature during the month was large, and the reading of the minimum Thermometer on the 4 th was the lowest ever recorded for the month of April. The Rainfall exceeded the average. The prevailing wind was from the W .

Mean amount of Cloud (an overcast sky being indicated by $10 \circ 0$)... 89
In the month of May, the highest reading of the Barometer during 38 years, was on the 22nd, in 1855, and was 30•124
The lowest " "
28th, 1877 $28 \cdot 559$
The highest Temperature,"
The lowest " 23.519th, 1864$82 \cdot 5$
The highest adopted mean temperature of the month, 1848 55°
The lowest " 1855
Barometer readings were rather low, and the range small. Temperature was low; the adopted mean Temperature of the month only exceeded the lowest ever recorded by half a degree. Although the number of days on which rain fell was large, the amount of rain was less than the mean for the month. Prevailing wind West.

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)...			
In the month of June, the highest reading of the Barometer during 38 years, was on the 15 th, in 1874, and was			
The lowest		th, 186	
The highest Temperature		27th, 1878	87.2
The lowest		th, 1856	34°
st adopted me			
The lowe		nd 1	

Barometer readings were rather high, and the range large. Mean Temperature was close to that of previous years, but the range of Temperature was rather larger than usual. Rainfall very close to average amount ; but the number of wet days was small. The prevailing wind was from the West.

July, 1885 .

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)... 6.8
In the month of July, the highest reading of the Barometer during 38 years, was on the 24 th, in 1868 , and was $30 \cdot 112$
The lowest ,, ,
The highest Temperature
15th, 1877 $28 \cdot 564$
The lowest ," , ist, 1857 36°
The highest adopted mean temperature of the month, 1852 $63^{\circ} 0$
The lowest , " 1879 $54^{\prime 7}$

Barometer readings were high. The mean Temperature was very nearly identical with the average for July during the past 38 years. The range of Temperature was great. The Rainfall was nearly two inches below the average, and the number of rainy days was very small. The prevailing wind was W. by S.

Mean amount of Cloud (an overcast sky being indicated by $10 \circ$)... 74
In the month of August, the highest reading of the Barometer
during 38 years, was on the 2 Ist, in 1874, and was $30 \cdot 114$
The lowest , ", 3Ist, $1876 \ldots \ldots . .28 \cdot 555$

The highest Temperature ,, 2nd, $1868 \ldots . . .$. . $88^{\circ} 0$
The lowest ", \quad 21st, 1864 \& $1869 \quad 36.0$
The highest adopted mean temperature of the month, $1857 \& 1884 \quad 61^{\circ} 0$
The lowest ," , $1848 \ldots \ldots . .52 .5$

Barometer readings close to average. Temperature low, and range of Temperature great. Rainfall two inches below average, and number of wet days small. Prevailing wind N.E., but the strongest winds were from S.S.W.

September, 1885.

The total number of miles registered during the month was 6886.
The max. Velocity of the wind was 40 miles per hour, direction S. on the 30th at II a.m.

October, 1885.

Results of Observations taken during the month.						$\begin{aligned} & \hline \text { Mean for the } \\ & \text { last } \\ & 38 \text { years. } \end{aligned}$										
Mean Reading of the Barometer.						29.418										
Highest , on	on the r8th.			. 2	804	30.001										
Lowest \quad,Range of Barometer Readings.....	on the 26th					28.647										
	Range of Barometer Readings........................... $1 \cdot 281$					$1 \cdot 354$										
Highest Reading of a Max. Therm. on the 17 th Lowest Reading of a Min. Therm. on the 29th				64.2												
														29.5		
Range of Thermometer Readings					29.9	$34 \cdot 7$										
Mean of all the Highest Readings					. 2	$54 \cdot 6$										
Mean of all the Lowest..					36.7	41.9										
Mean Daily Range					$3 \cdot 5$	16.7										
Deduced Monthly Mean (from Mean of Max. and Min.)					3°	$47 \cdot 3$										
Mean Temperature from dry bulb					$\cdot 2$	$47 \cdot 9$										
Adopted Mean Temperature					43.6	47^{6}										
Mean Temperature of Evaporation					$40 \cdot 8$	$45^{\circ} 4$										
Mean Temperature of Dew Point						$42 \cdot 9$										
Mean elastic force of Vapour 0.219 in						0.278 in										
Mean weight of Vapour in a cubic foot of air 2.59						$3^{\circ} \mathrm{ogr}$										
Mean additional weight required for saturation 0.5 g Mean degree of Humidity (saturation I ${ }^{\circ} 0$) :........... $0 \circ 76$						0.6 gr										
						0.84										
Mean weight of a cubic foot of air						543.2 gr										
Fall of Rain						5.219 in214										
Number of days on which Rain																
						${ }_{1} 736$ in										
No. of days in the month on which the prevailing wind was	N	NE	E	SE	s	sw	w									
	5	10	0	I	o	3	10									
n Velocity in miles per hour	$10 \cdot 3$	$8 \cdot 6$	-	$9 \cdot 2$	-	$1{ }^{\circ}$	15'I	$7 \cdot 6$								
Total No. of			-	220	-											

The total number of miles registered during the month was 8313 .
The max. Velocity of the wind was 35 miles per hour ; direction N.W. on the 27 th at 2 p.m.
Mean amount of Cloud (an overcast sky being indicated by $10 \circ$)... $8 \cdot 3$
In the month of October, the highest reading of the Barometer during 38 years, was on the 5th, in 1884, and was $30 \cdot 306$
The lowest ," 19th, 1862 28•139
The highest Temperature 9th, 1869 $72 \cdot 8$
The lowest
21 st, 1880 23 II
The highest adopted mean temperature of the month, 186 r and 1876 $51^{\circ} 6$
The lowest , 1880 $43^{\prime 1}$

Barometer readings were pretty close to average. Temperature was very low, and range of Temperature small. The Rainfall was large. Prevailing Wind W.S.W.

Mean amount of Cloud (an overcast sky being indicated by $10^{\circ} 0$)... 79
In the month of November, the highest reading of the Barometer during 38 years, was on the 12 th, in 1857, and was $30 \cdot 350$
The lowest ,, ,, 1st, 1859 28.007
The highest Temperature "
6th, 1872 $61 \cdot 9$
The lowest ,
17th, 186 r 19.1
The highest adopted mean temperature of the month, 1881 $47^{\circ} 0$
The lowest , " 1851 367

Both Barometer and Thermometer readings were very close to the average. The fall of Rain and the number of wet days were a little below the mean. The prevailing wind was West.

December, 1885.

The total number of miles registered during the month was 7320.
Whe max. Velocity of the wind was 38 miles per hour; direction W.N.W. at 2 p.m. on the 29 th.
Mean amount of Cloud (an overcast sky being indicated by $10{ }^{\circ}$)... 77
In the month of December, the highest reading of the Barometer during 38 years, was on the 22nd, in 1849, and was $30 \cdot 37^{8}$
The lowest ," ",
The highest Temperature
5th, 1876 28 .028
9th, 1876 $5^{8.1}$
The lowest "
The highest adopted mean temperature of the month, 1857 $44^{\prime} 6$
The lowest "
1878 303
Barometer readings were high. Temperature was rather low, and the range of Temperature great. The Rainfall and number of days on which rain fell was very small.

Summaty of the chbservations

FOR 1885.

	Mean for the last 3^{8} years.
Mean Reading of the Barometer29*510	29.483
Highest , on October 5th30*227	30.288
Lowest on on January 26th28-349	28.263
Range of Barometer Readings 1.878	2.025
Highest Reading of a Max. Therm. on July 26th...... 80.8	$8 \mathrm{I} \cdot 6$
Lowest Reading of a Min. Therm. on Nov. 19 and 291611	15.8
Range of Thermometer Readings 64.7	$65 \cdot 8$
Mean of all the Highest Readings 53.6	$54 \% 7$
Mean of all the Lowest..................................... $\mathbf{3 8}^{8 \cdot 2}$	$40 \cdot 8$
Mean Daily Range 154	13.9
Deduced Yearly Mean (from Mean of Max. and Min.) 44.9	$46 \cdot 8$
Mean Temperature of dry bulb $45^{\circ} 9$	$46 \cdot 9$
Adopted Mean Temperature 45.4	$46 \cdot 9$
Mean Temperature of Evaporation 42.9	44.6
Mean Temperature of Dew Point 40.1	$42^{\text { }}$ I
Mean elastic force of Vapour 0.255 in	0.275 in
Mean weight of Vapour in a cubic foot of air 2.9 gr	$3 \cdot 3 \mathrm{gr}$
Mean additional weight required for saturation......... 0.7 gr	0.7 gr
Mean degree of Humidity (saturation I ${ }^{\circ} 0$) 0.82	0.84
Mean weight of a cubic foot of air \qquad 541Igr	539.2 gr
Total Fall of Rain in the Year41 059 in	47.558 in
Number of days per Month on which Rain fell......... 16.4	$18 \cdot 3$
Amount of Evaporation26. 55.2 in)	$27 \cdot 799$ in
The Maximum monthly mean height of the Barometer was in January, 1880, and was	
The Minimum , ", in December 1868, and was ... 28.984	
The Maximum yearly mean height of the Barometer was in 1858, and was. \qquad 29.544	
The Minimum " , " " in 1866 , and was	... 29'389

The greatest monthly range of the Barometer was in January, 1884, and was 2.409
The least ,, , in July, 1852, and was 0.505
The highest reading of the Barometer, during 3^{8} years, was on January 18th, I882, and was $30: 480$
The lowest ,, ,, on January 26th, 1884, and was 27.803
Extreme range 2.677
The highest temperature was on July 15th, 1868, and was $88 \cdot 2$
The lowest ,, January 15 th, 188 r 4.6
The highest adopted mean temperature of a month, July 1868 62.4
The lowest February, 1855 $28 \cdot 6$
The highest adopted mean temperature of a year, 1868 49° I
The lowest ,, , , , 1879 44°
 5^{\prime} I
The least ," ,, February, 1855 I•4
The greatest fall of rain in a month, was in October, 1870, and was 13.437 in
The least March, 1852 $0 \cdot 047$
$\left.\begin{array}{l}\text { The greatest number of days on } \\ \text { which rain fell in one month }\end{array}\right\}$ July, 186r, December, 1868 31
The least ," 3
DATES

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\times 885\). \& \multicolumn{2}{|l|}{Frost.} \& Hoar frost only. \& Snow. \& Hail. \\
\hline \begin{tabular}{l}
January \\
February March April May June July August September October November December
\end{tabular} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
1-9,11-16,18-25 \\
3-5,7,14-22,28 \\
1,5-18,20-23,27,30,31 \\
1-4,7,8,13-19,23,26,27,29 \\
5-7,9,10-14,18 \\
\\
25-27 \\
6,10,11,19,24,25,29,31 \\
4,5,8,13-18,22,23,28 \\
1,2,4-11,14,15,18,19,21-23,26, \\
28-30
\end{gathered}
\]} \& \[
\begin{gathered}
21,22 \\
3,18,19 \\
1,11,13,14,21,22 \\
1,2,3,12,13 \\
6,12,13,14,18 \\
\\
25,26 \\
12,30 \\
14,15,16,18,22 \\
5,6,7,15,22,30
\end{gathered}
\] \& \[
\begin{gathered}
14 \\
5,17,18 \\
18
\end{gathered}
\]
\[
9,29
\] \& \[
\begin{gathered}
5,18 \\
5,18,21,27 \\
7,8,9,10,11 \\
\\
30 \\
5,28 \\
5 \\
28,29
\end{gathered}
\] \\
\hline 1885. \& Heavy Rain. \({ }^{\text {a }}\) (\({ }^{\text {Fog. }}\) \& Thun \& Lightning. \& Lunar Halo. \& Solar Halo. \\
\hline \begin{tabular}{l}
January \\
February March April May June July August September October November December
\end{tabular} \& \begin{tabular}{l|c}
27 \\
3 I \& \\
15 \& \\
\& \\
\& 6 \\
6,12 \& \(3,14,25\) \\
9,30 \& 18,25 \\
\& 8 \\
\& 17 \\
\& 22,23
\end{tabular} \& 1,2
26
22,2
7
20
6,
4,3 \& \[
\begin{gathered}
3 \mathrm{3I} \\
27 \\
26 \\
22 \\
7 \\
7,12 \\
3,4,30 \\
27
\end{gathered}
\] \& 22
25
25

22 \& 12

\hline
\end{tabular}

SU	OBSERVATIONS					AT	STONYHURST IN 1885.							
	Sunshine recorded on 9 days		Amount of Sunshine recorded. 14.9 hours		$\left\|\begin{array}{c}\text { Drawings of } \\ \text { Sun, ro } 1 / 2 \text { inch to } \\ \text { diameter on }\end{array}\right\|$		Other drawings of Sun and Solar notes on ... days		Entire Chromosphere measured on 5 days		Chromosphere partially measured on ... days		Spot spectra observed on ... days	
January														
February	16		$35^{\circ} 5$		17	,			5	"		"	1	,
March ...	22	"	98°		19	"		"		"	1	"	...	"
April .			135.9	"	21	"		"	8	"		"	2	"
May	29		$153{ }^{\circ}$,	26	,	1	"	3	"	...	"	...	"
June	25		196.5		24	"	2	"		"	...	"	2	"
July	26		216.9	"	24	"	1	"		"	1	"	1	"
August	28	"	131.4	"	21	"	...	"		"		"	1	"
September			$130 \cdot 7$	"	24	"		"		"	\cdots	"	1	"
October .	22	"	63.8	"	16	"		"		"		"		"
November .		"	37°	"		"		"		"		"	2	"
December			$36: 8$							"		,		
Totals	252	,	$1250 \cdot 4$	"	230	-,	,	,	79	,	2		10	
N.B.-Satisfactory sketches of the solar surface can sometimes be made when the card of the sunshine recorder.														

0	0	0	0	in	N	0	∞	0	0	N	j
N	0	0	∞	\dot{N}	0	N					

\cdots| N | 0 | ∞ | m | i | 0 | i | ∞ | 0 | + | i | $i n$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | ∞ | in | i | 0 | 0 | i | | | | | |

OBSERVATIONS OF UPPER CLOUDS (Continut).

AGRICULTURAL NOTES.

January, with the exception of the last few days, was cold and dull, and very little work was done on the land.

February was warm, but wet and dull. Vegetation progressed very slowly. Wheat was well above ground by the roth. Ploughing had begun in most places by the middle of the second week. Very few wild flowers were in blossom before the end of the month.

March was rather cold, and although the first and last weeks were wet, the weather during the month was favourable for working the land. ${ }^{〔}$ Ploughing was finished in most places in the neighbourhood before the 20th, and a good deal of corn was sown by the end of the month.

April.-Rather cold, but dry, and favourable for agricultural operations generally. All the oats were sown by the end of the first week. Potatoes were all in the ground by the 28 th.
$\mathrm{M}_{\text {AY }}$ was dull and cold, with not much sun. Vegetation appeared very backward until very late in the month. Green crops were all sown by the 18th or 20th.

June was brighter and warmer, and by the middle of the month things looked much improved. Towards the end of the third week green fly made its appearance in greater numbers than usual. The turnip fly also did great damage to the plants during this month.

July.-Insect pests did great damage to the fruit trees. Apples, currants, and gooseberries especially suffered from their attacks, and the quantity of fruit was in consequence much smaller than usual. Strawberries, although very late, were quite up to average both in quantity and quality, and raspberries yielded a large quantity of excellent fruit. Hay was first cut early in the month, but was not all housed at the end. Wheat and oats looked well towards the close of the month.

AUGUST.-Most of this month was cloudy and dull, the second week being wet. The last of the hay was got in about the 20th. A few oats were cut towards the end of the month.

September.-This month was very changeable. Wheat and oats were housed in most places by the 21st. The amount of grain was about average, but straw was short.

October.-Cold, but favourable for gathering the crops. Potatoes were lifted by the 12 th, and green crops generally by the 26 th. With the exception of turnips, which were very small, the yield was very good.

November. -Generally favourable for work. Wheat all in the ground by the 18th.

December.-Owing to the severity of the weather very little agricultural work was done.

DATES OF THE FLOWERING OF PLANTS AT STONYHURST IN 1885.

Ranunculaceie.		
Anemone nemorosa	Wood anemone	April 2
Ranunculus Ficaria	Lesser celandine	March 7
R. acris	Meadow crowfoot	May 19
R. repens	Creeping buttercup	May 17
R. bulbosus	Bulbous buttercup	May 29
R. auricomus	Wood crowfoot	May 10
R. lingua	Great spearwort	June 12
R. hederaceus	Ivy-leaved crowfoot	May 25
Caltha palustris	Marsh marigold	April 23
Trollius Europæus	Globe flower	May II
NYMPHEACE\&.		
Nymphæa alba	White water lily	June 2r
Nuphar lutea	Yellow water lily	June 29
papayeraceet. Papaver rhæas Chelidonium majus	Red poppy Common celandine	July 2 June 20
CRUCIFERE.		
Nasturtium officinale	Common watercress	April 30
Arabis hirsuta	Hairy rock cress	April 6
Cardamine amara	Large bitter cress	May 12
C. pratensis	May flower	April 30
C. hirsuta	Hairy bitter cress	March 19
Sisymbrium officinale	Hedge mustard	May $\mathrm{I}^{\text {o }}$
Alliaria officinalis	Garlic mustard	May 12
Brassica campestris	Common wild navew	May 20
Cochlearia Armoracia	Horse radish	June 28
C. officinalis	Scurvy grass	May 18
RESEDACEF. Reseda luteola	Dyer's rocket	June 5
Violacef.		
Viola canina		
V. odorata V. palustris	Sweet violet	March 8
V. palustris	Marsh violet	May 3
POLyGalacefe. Polygala vulgaris	Milkwort	May 6
CARYOPHYLLACEE. Lychnis vespertina L. diurna	Evening campion Red robin	June 15 May 5

DATES OF THE FLOWERING OF PLANTS AT STONYHURST

 IN I885 (continued).L. Githago
L. Flos cuculi

Sagina procumbens
Saponaria officinalis
Arenaria serpyllifolia
A. trinervis

Cerastium vulgatum
Stellaria aquatica
S. nemorum
S. graminea
S. holostea
S. media
S. uliginosa

HYPERICACEÆ.
Hypericum perforatum
H. quadrangulum
H. humifusum
H. Androsæmum
H. pulchrum
H. hirsutum

LINACEA.
Linum catharticum

MALVACE.E.
Malva sylvestris
GERANIACE/E.
Geranium sanguineum
G. Phæum
G. sylvaticum
G. pratense
G. Robertianum
G. lucidum G. molle
G. dissectum

Oxalis acetosella

PAPILIONACEA.
Ononis arvensis
Melicago lupulina
Trifolium pratense
T. repens
T. procumbens

Lotus corniculatus
Vicia cracca

Corn cockle
Ragged robin
Procumbent pearlwort
Common soapwort
Thyme-leaved sandwort
Three-nerved sandwort
Mouse-ear chickweed
Water starwort
Wood starwort
Lesser starwort
Great starwort
Chickweed
Bog starwort

Common St. John's wort
Square-stalked St. John's wort
Trailing St. John's wort Tutsan
Slender St. John's wort
Hairy St. John's wort

Cathartic flax
Common mallow

Bloody crane's-bill
Dusky crane's-bill
Wood crane's-bill
Meadow crane's-bill
Herb Robert
Shining crane's-bill
Dove's-foot crane's-bill
Jagged-leaved crane's-bill
Wood sorrel

Rest harrow
Black medic
Purple clover
White clover
Lesser clover
Bird's-foot trefoil
Tufted vetch

July 10
June 14
June 26
July 19
June 4
May 20
March 6
May 19
May 5
May 20
May 5
Feb. 27
May 23

July 15
July 12
July in
July 10
July 14
July 17

June 4

June 9

May 20
May 15
May 17
July 1
May 29
May 10
June 28
June 20
April 17

July 15
June 4
May 27
June 4
June 6
Iune 4
June I
dates of the flowering of plants at stonyhurst IN 1885 (continued).

V. sepium V. sativa Lathyrus pratensis	Bush vetch Common vetch Meadow pea	May 25 May 24 June 20
ROSaceex.		
Spirea ulmaria	Meadow sweet	July 2
Geum urbanum	Common avens	May 16
G. rivale	Water avens	April 30
G. intermedium	Intermediate avens	May 16
Fragaria vesca	Wood strawberry	May 8
Potentilla fragariastrum	Barren strawberry	Feb. 15
P. reptans	Creeping cinque-foil	June 4
P. tormentilla	Tormentil cinque-foil	May 19
P. verna	Spring cinque-foil	May 29
P. Comarum	Marsh cinque-foil	June 30
P. anserina	Silver weed cinque-foil	June 4
Alchemilla vulgaris	Lady's mantle	April 23
A. arvensis	Parsley piert	June 4
Sanguisorba officinalis	Great burnet	July 8
Poterum sanguisorba	Salad burnet	
Agrimonia eupatoria	Common agrimony	July 25
Pyrus communis Cratægus oxyacantha	Pear Hawthorn	
onagracefe		
Epilobium montanum	Common willow-herb	June ig
E. palustre	Marsh willow-herb	June 21
E. parviflorum	Hoary willow-herb	June 25
E. tetragonum	Square willow-herb	June 25
Circæa lutetiana	Enchanter's nightshade	July 10
lythrarcefe Lythrum salicaria	Purple loosestrife	
Ribesiacefe		
Ribes grossularia	Gooseberry	April 19
R. rubrum	$\left\{\begin{array}{l}\text { Red currant } \\ \text { White currant }\end{array}\right\}$	April 26
R. nigrum	Black currant	April 30
SAxifragacef. Saxifraga hypnoides S. umbrosa	Mossy saxifrage London pride	May 1 May 16
Chrysosplenium oppositifolium	$\left\{\begin{array}{l}\text { Opposite leaved } \\ \text { l }\end{array}\right.$	Mar. 7
C. alternifolium	\{golden saxifrage Alternate leaved	Mar. 15

Dates of the flowering of plants at stonyhurst IN 1885 (continucd).

Dates of the flowering of plants at stonyhurst IN 1885 (continued).

dates of the flowering of plants at stonyhurst IN 1885 (continued).		
solanacef.		
Solanum dulcamara	Bittersweet	June 25
OROBANCHACEFE. Lathrea squamaria	Toothwort	April 17
scrophularinete.		
Verbascum thapsus	Great mullein	June 28
Scrophularia nodosa	Common figwort	June 20
S. aquatica	Water figwort	July 2
Mimulus luteus	Yellow mimulus	June 20
Linaria cymbalaria	Ivy-leaved toadflax	May 16
Digitalis purpurea	Foxglove	June 25
Veronica serpyllifolia	Thyme-leaved speedwell	May 17
V V. officinalis	Common speedwell	June 20
V. anagallis	Water speedwell	
V. beccabunga V. montana	Brooklime speedwell Mountain speedwell	June 5 May 12
V. chamædrys	Germander speedwell	May 18
Bartsia odontites	Red bartsia	July 27
B. alpina	Alpine bartsia	April 3
Euphrasia officinalis	Eyebright	
Rhinanthus crista galli	Yellow rattle	June 6
Pedicularis sylvatica	Lousewort	${ }_{\text {May }} 19$
Melampyrum pratense	Cow-wheat	July 2
labiates.		
Calamintha Clinopodium Nepeta Glechoma	Ground ivy	April 19
Prunella vulgaris	Self-heal	June 25
Stachys betonica	Betony	July ${ }^{12}$
S. sylvatica S. palustris	Hedge woundwort	
Lamium purpureum	Purple dead-nettle	April 25
L. album	White dead-nettle	
Teucrium scorodonia Ajuga reptans	Wood sage Bugle	July 19
plantaginacef. Plantago major P. lanceolata	Greater plantain Ribwort	$\begin{aligned} & \text { June } 19 \\ & \text { May } 6 \end{aligned}$
chenopodiacie Chenopodium bonus Henricus Atriplex patula	Good King Henry Common orache	$\begin{aligned} & \text { June } 8 \\ & \text { July } 2 \mathrm{II} \end{aligned}$

DATES OF THE FLOWERING OF PLANTS AT STONYHURST IN 1885 (continued).

POLYGONACEA.	*	
Rumex obtusifolius	Broad dock	June 14
R. crispus	Curled dock	July 8
R. conglomeratus	Clustered dock	July 20
R. acetosa	Sorrel	May 16
Polygonum aviculare	Knotgrass	July
P. bistorta	Snakeweed	June 5
P. persicaria	Common persicaria	July 20
P. convolvulus	Black bindweed	July 21
EUPHORBIACEE. Mercurialis perennis	Dog's mercury	May 5
URTICACEA. Urtica dioica	Common nettle	June I8
AROIDEE. Arum maculatum	Common arum	May 16
 Potamogeton natans	Broad pondweed	July 5
ALISMACEÆ. Alisma plantago Triglochin palustre	Water plantain Arrow grass	July 2 July 16
ORCHIDACEE. Epipactis Iatifolia		
Epipactis latifolia Listera ovata	Helleborine Twayblade	July 30 June 2
Orchis mascula	Early orchis	May 3
O. maculata	Spotted orchis	
	Pyramidal orchis	June I5
IRIDACEA. Iris pseudacorus Crocus vernus	Yellow iris Spring crocus	June 25 June 24
AMARyllidde.t. Narcissus pseudonarcissus Galanthus nivalis	Daffodil Snowdrop	Mar. 27 Feb. 3
liliaces.		
Paris quadrifolia Scilla nutans Allium ursinum	Herb Paris Bluebell Broad-leaved garlic	May 10 April 30 May 14

THE UPPER GLOWS IN 1885.

The character of these glows in 1885 has been identical with that described in the report of last year, and there has been no falling off in their intensity. In the description of the phenomena seen in 1884 the: following correction was unfortunately omitted. Instead of the words "the pink or salmon colour extended from the sun to a distance of 18° or 20°," read "the pink or salmon colour was present in the outer portion of the glow, which was traceable to a distance of 25° to 30° from the sun."

On two occasions in 1885 a recurrence of the after-glow took place some forty minutes after the first display had wholly disappeared. The: following are the dates on which the fore and after glows were observed:

January 5, 6, 12 .
February 9.
March 6, 9, 11, 12, 22.
April 29.
June 3, 4, 8, 9, 12, 13, 15, 25, 27, 28.
July 5, 9, 13, 25, 26, 28, 29, 30, 31.
August 1, 13, 14, 15, 16, 18, 19, 21, 22, 24, 26.
September 3, 4, 5, 6, 13, 25, 26, 27.
October 4, 7, 12, 13, 14, 15, 24, 26.
November 5, 15, 16, 17, 18, 30.
December I, 4, 8, 10, 1I, 16, 19, 23, 26.
The moon was surrounded by a glow, similar to that which now continuously accompanies the sun, on the following dates: February 2, 28, April 19, August 21, 22, October 24, 26, and November 20, 21.
DATES OF SOLAR DRAWINGS AND OH OBSIERVATIONS OF TIIE CIIROMOSPIIERE AND OF SIOT-SPECTRA

Coollege (6bservatory, stomburst, 1885.

The Horizontal, Vertical, and Total Forces are calculated to English measure; one foot, one second of mean solar time, and one grain being assumed as the units of space, of time, and of mass.

The Vertical and Total Forces are obtained from the absolute measures of the Horizontal Force and of the Dip.

In the observations of Deflection and Vibration, taken each month for absolute measure of Horizontal Force, the same magnet has always been employed.

The moment of inertia of the magnet with its stirrup, for different degrees of temperature, and the co-efficients in the corrections required for the effects of temperature and of terrestrial magnetic induction on the magnetic moment of the magnet, were determined at the Kew Observatory by the late Mr. Welsh.

The moment of inertia of the magnet with its stirrup, using the grain and foot as the units of mass and of linear measure, is 5.27303 . Its rate of increase for increase of temperature is 0.00073 for every 10° of Fahr.

The weight of the magnet with its stirrup is approximately 825 grains, and the length of the magnet is nearly 3.94 inches. The moment of inertia was determined, independently of the weight and dimensions, by the method of vibration, with and without a known increase of the moment of inertia.

The temperature corrections have always been obtained from the formula $q\left(t^{\circ}-35^{\circ}\right)+q^{\prime}\left(t^{\circ}-35^{\circ}\right)^{2}$, where t° is the observed temperature and 35° Fahr. the adopted standard temperature. The values of the co-efficients q and q^{\prime} are respectively 0.0001128 and 0.000000436 .

The induction co-efficient μ is 0.000244 .

The correction for error of graduation of the Deflection bar at $\mathrm{I} \cdot \mathrm{o}$ foot is +0.00004 ft ., at $\mathrm{I} \cdot 3+0.000064 \mathrm{ft}$.

The observed times of vibration are entered in the Table without corrections.

The time of one vibration has been obtained each month from the mean of twelve determinations of the time of 200 vibrations.

The angles of deflection are each the mean of two sets of readings.
In deducing from these observations the ratio and product of the magnetic moment m of the magnet, and the earth's horizontal magnetic intensity X , the induction and temperature corrections have always been applied, and the observed time of vibration has been corrected for the effect of torsion of the suspending thread; but no correction has been required for the rate of the chronometer, or for the arc of vibration, the former having been always under 2 s .5 , and the latter never over 50°.

The average deflection of the magnet caused by a twist of the torsion circle through 90°, has been about 7.'o of arc.

In the calculations of the ratio $\frac{m}{X}$, the third and subsequent terms of the series $\mathrm{I}+\frac{\mathrm{P}}{r^{2}}+\frac{\mathrm{Q}}{r^{4}}+\& \mathrm{c}$., have always been omitted.

The value of the constant P was found to be 0.002319 .
The Declination observations have been taken once a week. Each reading has been corrected by the photographic curves for all irregular disturbances, as well as for daily and monthly range.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{OBSERVATIONS OF DEFLECTION FOR ABSOLUTE MEASURE OF HORIZONTAL FORCE.} \\
\hline Month. \& \& . M. T. \& Distances of centres of Magnets. \& Tem-perature. \& \begin{tabular}{l}
Observed \\
Deflection.
\end{tabular} \& \(\log \frac{m}{\mathrm{X}}\) \\
\hline January ... \& D. 19th , \& \begin{tabular}{l}
H. M. \\
II \(15 \mathrm{a} . \mathrm{m}\). \\
II \(3^{8} \mathrm{a} . \mathrm{m}\).
\end{tabular} \& \[
\begin{gathered}
\text { FOOT. } \\
\text { I.O } \\
\text { I. } 3
\end{gathered}
\] \& \(42^{\circ} \cdot 3\)
\(45 \cdot 1\) \& \(\begin{array}{rrrr}\circ \& 1 \\ \text { 13 } \& 2 \& 3 \& 7 \\ 6 \& 3 \& 5\end{array}\) \& \begin{tabular}{l}
9'06494 \\
\(9 \cdot 06478\)
\end{tabular} \\
\hline February... \& I6th \& \(\begin{array}{rl}\text { If } \& 30 \mathrm{a} . \mathrm{m} . \\ 0 \& 14 \\ \text { a }\end{array}\) \& 10
1.3 \& \(45 \cdot 2\)
\(46 \cdot 2\) \& \(\begin{array}{rrr}13 \& 2243 \\ 6 \& 2 \& 50\end{array}\) \& \[
\begin{aligned}
\& 9 \cdot 06477 \\
\& 9 \cdot 06456
\end{aligned}
\] \\
\hline March ... \& \begin{tabular}{l}
20th \\
"
\end{tabular} \& \(\begin{array}{rl}\text { II } \& 45 \mathrm{a} . \mathrm{m} . \\ 0 \& 20 \mathrm{p} . \mathrm{m} .\end{array}\) \& \(1 \%\)
10 \& \(48 \cdot\)
49 \& \(\begin{array}{rrr}13 \& 22 \& 20 \\ 6 \& 2 \& 15\end{array}\) \& \[
9 \cdot 06488
\]
\[
9 \cdot 06408
\] \\
\hline April \& 22nd \& \[
\begin{aligned}
\& 1150 \mathrm{a} . \mathrm{m} . \\
\& 021 \mathrm{p} . \mathrm{m} .
\end{aligned}
\] \& \(1 \%\)
1.3 \& \(50 \cdot 1\)
53 \& \[
\begin{array}{rrr}
13 \& 22 \& 10 \\
6 \& 2 \& 22
\end{array}
\] \& \[
\begin{aligned}
\& 9 \cdot 06488 \\
\& 9 \cdot 06329
\end{aligned}
\] \\
\hline May \& \[
\begin{aligned}
\& \text { I5th } \\
\& , "
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { II } 59 \text { a.m. } \\
\& \text { o } 20 \text { p.m. }
\end{aligned}
\] \& 10
\(1 \cdot 3\) \& \[
\begin{aligned}
\& 53.2 \\
\& 53.5
\end{aligned}
\] \& \(\begin{array}{rrr}13 \& 21 \& 30 \\ 6 \& 2 \& 28\end{array}\) \& \begin{tabular}{l}
\(9^{0.06476}\) \\
9.064II
\end{tabular} \\
\hline June \& 18th \& \(\begin{array}{rrr}\text { ii } \& 35 \mathrm{a} . \mathrm{m} . \\ 0 \& 4 \& \mathrm{p} . \mathrm{m} .\end{array}\) \& 1*0 \& \[
\begin{aligned}
\& 60 \cdot 6 \\
\& 6 \mathrm{I} \cdot 7
\end{aligned}
\] \& \(\begin{array}{rrr}13 \& 2126 \\ 6 \& 2 \& 26\end{array}\) \& \[
\begin{aligned}
\& 9^{\circ} 06486 \\
\& 9^{\circ} 06552
\end{aligned}
\] \\
\hline July \& 23rd

,\quad \& | II | 5 |
| :--- | ---: |
| II | 3 |
| $8 \mathrm{a} . \mathrm{m}$. | | \& $1 \times$

1. \& $59 \cdot 5$

$60 \cdot 2$ \& $\begin{array}{rrr}13 & 22 & 5 \\ 6 & 2 & 20\end{array}$ \& $$
\begin{aligned}
& 9^{\circ} 06573 \\
& 9^{\circ} 06493
\end{aligned}
$$

\hline August ... \& $$
\begin{aligned}
& \text { I7th } \\
& \text { ", }
\end{aligned}
$$ \& \[

$$
\begin{array}{rl}
\text { II } 52 \mathrm{a.m} . \\
\mathrm{o} & 20 \text { p.m. }
\end{array}
$$
\] \& 1.0

1.3 \& $$
\begin{aligned}
& 6 \mathrm{I} \cdot 0 \\
& 62 \cdot 8
\end{aligned}
$$ \& $\begin{array}{rrr}13 & 21 & 35 \\ 6 & 2 & 29\end{array}$ \& \[

$$
\begin{aligned}
& 9 \cdot 06536 \\
& 9 \cdot 06575
\end{aligned}
$$
\]

\hline September. \& 16th
", \& $\begin{array}{ll}\text { II } & \text { I } 5 \mathrm{a} . \mathrm{m} . \\ \text { II } & 39 \mathrm{arm} .\end{array}$ \& 10
1.3 \& $56 \cdot 5$

$58 \cdot 2$ \& $\begin{array}{rr}13 & 20 \\ 60 \\ 6 & 150\end{array}$ \& $$
9.06454
$$

$$
9^{\circ} 064^{16}
$$

\hline October ... \& | 22nd |
| :--- |
| , | \& $\begin{array}{rll}\text { If } & 53 \mathrm{a} . \mathrm{m} . \\ \mathrm{o} & 19 & \mathrm{p} . \mathrm{m} .\end{array}$ \& 1.0

1.3 \& $51 \cdot 3$

$51 \cdot 8$ \& $\begin{array}{rrr}13 & 21 & 10 \\ 6 & 2 & 7\end{array}$ \& $$
\begin{aligned}
& 9.0644^{6} \\
& 9^{\circ} 06344
\end{aligned}
$$

\hline November. \& 17th

$$
"
$$ \& \[

$$
\begin{aligned}
& \text { II } 10 \text { a.m. } \\
& \text { o } 31 \text { p.m. }
\end{aligned}
$$
\] \& 10

1.3 \& $41 \cdot 2$

$42 \cdot 5$ \& $\begin{array}{rrr}13 & 20 & 17 \\ 6 & 1 & 33\end{array}$ \& $$
\begin{aligned}
& 9.06336 \\
& 9.06272
\end{aligned}
$$

\hline December . \& 2Ist
" \& o $10 \mathrm{p} . \mathrm{m}$.

- 35 p.m. \& 1×0
1.3 \& $44 \% 8$

45% \& $\begin{array}{rrr}13 & 2044 \\ 6 & 1\end{array}$ \& $$
\begin{aligned}
& 9.06407 \\
& 9.0633^{I}
\end{aligned}
$$

\hline \multicolumn{7}{|l|}{| m represents the Magnetic Moment of the Deflecting Magnet. |
| :--- |
| X represents the Earth's Horizontal Magnetic Intensity. |}

\hline
\end{tabular}

VIBRATION OBSERVATIONS FOR ABSOLUTE MEASURE OF HORIZONTAL FORCE.					
Month.	G. M. T.	Temperature.	Time of one vibration.	Log m X	Value of m .
January ...	$\begin{aligned} & \text { D. H. M. } \\ & \text { I9th... Io } 25 \text { a.m. } \end{aligned}$	$4 \stackrel{\circ}{1} \cdot 5$	573998	019732	$0 \cdot 42765$
February...	16th... $1045 \mathrm{a} . \mathrm{m}$.	$45^{\circ} \mathrm{O}$	5*73999	- 19809	$0 \cdot 42794$
March	20th...10 $50 \mathrm{a} . \mathrm{m}$.	$46 \cdot 2$	5'74012	- ${ }^{1} 19758$	$0 \cdot 42759$
April	22nd...II 14 a.m.	$50 \cdot 7$	5\%7400.1	- 19795	0.42758
May.........	15th...II 25 am.	$52^{\circ} \mathrm{O}$	574012	- 19802	0.42777
June	18th...10 41 a am.	$60 \cdot 9$	573920	- 19835	$0 \cdot 42849$
July	23 rd ... $1020 \mathrm{a} . \mathrm{m}$.	$59^{\circ} \mathrm{I}$	$5 \cdot 74002$	0.19838	$0 \cdot 42861$
August ...	17th...II 5 a.m.	$60 \cdot 4$	5*73995	- 19835	0.42551
September.	16th... $1047 \mathrm{a} . \mathrm{m}$.	$55^{\circ} 8$	574012	0.19802	$0 \cdot 42775$
October ...	22nd... II 20 a.m.	$50 \cdot 2$	5'74001	019780	0×42759
November.	17th...10 39 a.m.	$4^{1} 1$	5'74102	0.19714	0.42662
December .	2Ist...II II a.m.	$42^{\circ} \mathrm{O}$	5774053	0'19724	0.42660

DIP OBSERVATIONS.				MAGNETIC INTENSITY.		
Month.	G. M. T.	守	Dip.	$\begin{gathered} \text { X. or Hori- } \\ \text { zontal } \\ \text { Force. } \end{gathered}$	$\begin{gathered} \text { Y, or } \\ \text { Vertical } \\ \text { Force. } \end{gathered}$	Total Force.
January		1 3	$\begin{array}{lll} 0 & 111 \\ 69 & 14 & 38 \\ 69 & 13 & 20 \end{array}$	3.6849	977177	$10 \cdot 3930$
February.		3	$\begin{aligned} & 691610 \\ & 69 \quad 1415 \end{aligned}$	3.6874	977340	$10 \cdot 4092$
March ...	21st...II $50 \mathrm{arm}$.	3	$\begin{array}{lll} 69 & 14 & 40 \\ 69 & 13 & 45 \end{array}$	$3 \cdot 6858$	9'7214	10'3965
April		3	$\begin{aligned} & 691530 \\ & 6912 \\ & 69 \end{aligned}$	3.6907	97342	10.4105
May	16th...11 20 am.	3	$\begin{array}{lll} 69 & 14 & 22 \\ 69 & 12 & 40 \end{array}$	3.6880	973314	10*3975
June		3	$\begin{array}{lll} 69 & 13 & 42 \\ 69 & 12 & 17 \end{array}$	3.6868	9'7142	$10 \cdot 3830$
July		3	$\begin{array}{lll} 69 & 14 & 10 \\ 69 & 12 & 50 \end{array}$	3.6845	977123	$10 \cdot 3877$
August ...	18th...10 37 a.m.	1	$\begin{aligned} & 691330 \\ & 691488 \end{aligned}$	3.6847	977132	10.3864
Sept.	$\left\|\begin{array}{cc} \text { 17th...II } & 5 \mathrm{a} . \mathrm{m} . \\ ", & \ldots \text { II } \\ 35 & \text { a.m. } \end{array}\right\|$	3	$\begin{array}{lll} 69 & 15 & 52 \\ 69 & 12 & 18 \end{array}$	3.6871	97242	$10 \cdot 3765$
October.		3	$\begin{array}{lll} 69 & 14 & 3 \\ 69 & 12 & 33 \end{array}$	$3 \cdot 6879$	977199	10 3957
Nov.	$\begin{gathered} 18 \text { th...IO } 40 \mathrm{a} . \mathrm{m} . \\ , \quad, \ldots \text { II } \\ \hline \end{gathered}$	3	$\begin{aligned} & 691250 \\ & 691315 \end{aligned}$	$3 \cdot 6906$	$9^{\prime} 7242$	10:4012
Dec.	$\begin{array}{ccc} 22 \text { nd...II } & 9 \mathrm{a} . \mathrm{m} . \\ \# & \ldots .1 I & 40 \\ \hline \end{array}$	3	$\begin{array}{lll} 69 & 14 & 35 \\ 69 & \text { II } 40 \end{array}$	$3 \cdot 6871$	9'7190	10*3911
Means		..	691328	3.6871	9•7223	10.394°

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{DECLINATION OBSERVATIONS.} \\
\hline \multirow[b]{2}{*}{Month.} \& \multirow[b]{2}{*}{G. M. т.} \& \multicolumn{2}{|l|}{Uncorrected.} \& \multicolumn{2}{|r|}{Corrected.} \\
\hline \& \& Observation. \& Monthly \& Observation. \& Monthly \\
\hline January ... \& \begin{tabular}{|cccc}
\hline \multicolumn{4}{c}{} \\
D. \& H. M. \\
th... \& 9 \& M \& a.m. \\
12th... \& 8 \& 59 \\
19th... \& 9 \& 3 \\
26th... \& 9 \& 7
\end{tabular} \& \begin{tabular}{rrr}
\hline 0 \& 49 \\
19 \& 49 \\
48 \& 10 \\
48 \& \\
49 \& 30 \\
48 \& 8
\end{tabular} \& 194847 \& \[
\begin{array}{rrr}
19 \& 11 \\
19 \& 49 \& 54 \\
\& 49 \& 18 \\
\& 49 \& 45 \\
\& 49 \& 51
\end{array}
\] \& 194942 \\
\hline February.. \& \begin{tabular}{|ccc}
2nd... \& 9 \& 0 \\
9th... \& 9 \& 3 \\
17 th... \& 9 \& 7
\end{tabular} \& (\(\begin{aligned} \& 48 \\ \& 486 \\ \& 48 \\ \& 48 \\ \& 48 \\ \& 4\end{aligned}\) \& \& \[
\begin{aligned}
\& 4939 \\
\& 4948 \\
\& 49 \quad 53
\end{aligned}
\] \& \\
\hline March ... \& \[
\left\lvert\, \begin{array}{ccc}
23 \text { rd... } \& 9 \text { II } \\
\text { 2nd.. } \& 8 \& 56 \\
9 \text { th... } \& 9 \& 5 \\
16 \text { th... } \& 9 \& 3 \\
23 \text { rd... } \& 9 \& 8
\end{array}\right.
\] \& \begin{tabular}{rr}
47 \& 45 \\
49 \& 6 \\
44 \& 55 \\
47 \& 37 \\
46 \& 5
\end{tabular} \& \(1947{ }^{88}\) \& \[
\begin{array}{ll}
50 \& 37 \\
47 \& 40 \\
49 \& 17 \\
50 \& 2 \\
49 \& 49
\end{array}
\] \& 194959 \\
\hline April \& \[
\left\lvert\, \begin{array}{rrr}
3 \text { oth... } \& 9 \& 7 \\
6 \text { th... } \& 8 \& 59 \\
\text { r3th ... } \& 8 \& 56 \\
\text { 2Ist } \ldots . \& 9 \& 7
\end{array}\right.
\] \& \begin{tabular}{lll}
44 \& 20 \\
45 \& 17 \\
49 \& 52 \\
48 \& 23
\end{tabular} \& 194633 \& \begin{tabular}{l}
5054 \\
49 I \\
4644 \\
5115
\end{tabular} \& 194933
194914 \\
\hline May \& \(\left\lvert\, \begin{array}{cccc}\text { 27th... } \& 9 \& 3 \\ 4 \text { th... } \& 9 \& 1 \\ \text { IIth... } \& 9 \& 9 \\ \text { 18th.. } \& 9 \& 5 \\ \text { 25th... } \& 9 \& 8\end{array}\right.\) \& \begin{tabular}{lll}
47 \& 15 \\
44 \& 55 \\
49 \& 47 \\
42 \& 10 \\
43 \& 27
\end{tabular} \& 194742

194545 \& | 4955 |
| :--- |
| 49.46 |
| 4747 |
| 4827 |
| 4944 | \& 194914

194856

\hline June \& \& | 4213 |
| :--- |
| 4620 |
| 4033 |
| 4215 | \& \& | 4648 |
| :--- |
| 4728 |
| 498 |
| 4540 | \&

\hline July \& $$
\begin{array}{rccc}
29 t h \ldots . . & 9 & 2 \\
\text { 6th... } & 9 & 0 \\
\text { 13th... } & 9 & \text { 1I } \\
\text { 20th... } & 9 & 4
\end{array}
$$ \& \[

$$
\begin{array}{lc}
44 & 10 \\
40 & 7 \\
45 & 10 \\
38 & 50
\end{array}
$$

\] \& 19436 \& \[

$$
\begin{aligned}
& 4718 \\
& 4641 \\
& 46 \\
& 46 \\
& 47 \\
& 47
\end{aligned}
$$
\] \& 194712

\hline
\end{tabular}

DECLINATION OBSERVATIONS (Continued).					
		Uncorrected.		Corrected.	
Month.	G. M. T.	Observation.	Monthly	Observation.	Monthly Mean.
July August ..	$\begin{array}{ccc} \hline \text { D. } & \text { H. M. } \\ 27 \mathrm{th} . . . & 9 & 6 \mathrm{a} . \mathrm{m} . \end{array}$		$\begin{array}{ccc} 19 & 4^{\prime} & \prime \prime \\ 23 \end{array}$		${ }^{\circ}{ }_{19}{ }_{4}^{\prime} 6{ }^{\prime \prime}{ }^{\prime \prime}$
	$3 \mathrm{rd.} .9{ }^{2}$	45 I 3		$\left(\begin{array}{lll}45 & 13\end{array}\right)$	
	roth... 95	4725		(4725)	
	18th... 98	4530		47 r 3	
	25th... 94	4455		46	
	31st... 854	4527	194542	4635	194626
September	8th... 856	4537		4552 4538	
	14th... 9 I	4212		4538 4432	
	21st... 933	4215 4220		44 45 45 II	$1945 \quad 18$
	29th... 97	4220	19436	45 II	1945
October ...	5th... 913	$\begin{array}{rrr}38 & 5 \\ 38 & \\ 38\end{array}$		43 44 44	
	I2th... 93	3837		443	
	20th... 97	3916		4250	
	26th... 96	4439	$1940 \quad 9$	4456	194350
November	2nd.. 99	447		4424	
	9th... 9 I	4 r 3		433^{8}	
	16th... 97	4056		4341	
	$23 \mathrm{rd} . .9$ 10	4043		4226	
	30th... 93	419	194136	4143	$1943{ }^{10}$
December.	7th... 97	4256		4348	
	15th... 9 -	4139		4213	
	21st... 92	41 10		4310	
	28th... 857	428	194158	4215	$194^{2} 5^{2}$
Yearly mean		194426			194659

MAGNETIC DISTURBANCES.

January.-The first day of the year was remarkably quiet, but there were signs of the presence of a disturbing force at $4 \mathrm{a} . \mathrm{m}$. on the 2nd. During the following afternoon, and particularly at night, the oscillations of the Declination Needle were of considerable extent. The Horizontal Force Magnet was irregular in its movements from 6 a.m. on the 2nd to the same hour on the 3 rd ; and the principal disturbance of the Vertical Force Magnet was one long oscillation, the maximum being reached at 7.53 p.m., and the minimum at 3.7 the next morning. The magnets then remained very steady until $5 \mathrm{p} . \mathrm{m}$. on the 8 th, when the V.F. increased gradually and then fell rapidly, the minimum occurring at $3.30 \mathrm{a} . \mathrm{m}$. on the 9 th. The irregularities in the other curves between the 8th and the ith were of no great extent. From the ifth to the 22nd the D. needle always moved abnormally about $10 \mathrm{p} . \mathrm{m}$. , the disturbance between 9 and io on the 20th being reproduced in an exaggerated form on the 21st. On the 22nd the increase in Declination between $8.14 \mathrm{p} . \mathrm{m}$. and 8.3 I was $46^{\prime} 59^{\prime \prime} \cdot \mathrm{o}$, the movements from $4 \mathrm{p} . \mathrm{m}$. to 10 being generally very rapid. The H.F. was most disturbed between 8 and io, and the V.F., increasing gradually at 4 p.m., and very rapidly afterwards, attained its maximum at 7.57 , and the following minimum at 1 a.m., its range being $0 \cdot 00292$ in British units. The whole of the 26 th and the morning of the 27 th were exceedingly quiet, and then a gradual rise and fall of the V.F. magnet occurred during the evening of the 27th, followed on the 29th by a rather sudden fall, commencing about II. 30 p.m.

February.-This month opened with an absolutely quiet magnet, and only very slight irregularities were noticed previous to the afternoon of the 5 th. Between 6 p.m. on the 5 th and $6 \mathrm{a} . \mathrm{m}$. on the following day considerable disturbances of the Declination and H.F. took place. At 4.20 p.m. the V.F. ordinate was increasing, and attained its maximum at 8.18 ; it then fell rather rapidly. The early afternoon and the night of the roth, with the whole of the 12th, were disturbed, the H.F. being much affected on the 12th, and the fall of
the V.F. magnet was exceedingly rapid between 2.30 and 2.45 a .m. The nights of the 18th and 2 Ist were abnormal. Irregularities appeared on the curves of the 27 th, the maximum of the V.F. occurring about $4 \mathrm{p} . \mathrm{m}$. The Range of the V.F. between 7.15 p.m. on the 28 th and $2.40 \mathrm{a} . \mathrm{m}$. the following day was 0.00235 in British units. The Declination was very changeable at the end of the month.

March. --The disturbance gradually subsided on the first day, and a calm succeeded which lasted until the evening of the 12th. The afternoon of the $13^{\text {th }}$ was rather abnormal, and on the morning of the $14^{\text {th }}$ a storm began, which reached its greatest height between $3 \mathrm{p} . \mathrm{m}$. and $6 \mathrm{a} . \mathrm{m}$. of the r 5 th . The most rapid movements of the Declination were a decrease of $36^{\prime} 57^{\prime \prime} .36$ between 4.20 and 4.23 p.m.; followed by an increase of $39^{\prime} 32^{\prime \prime} .05$ from 10 to 1o.9. The total range of the H.F. between 4.20 and II.I5 p.m. was 0.02527 , whilst that of the V.F. was greater than 0.01071 , the maximum between 4.10 and 4.25 p.m. was too great to be photographically recorded, but the minimum occurred at 11.24 p.m. The most rapid movements of the V.F. were recorded between 3.48 and 4.28 , and from 9.57 to 10.8 . The storm died out during the morning of the 16 th . The night of the 20 th was remarkable for large but regular waves of disturbance.

April.-A slight disturbance on the morning of the Ist, when the V.F. fell slightly before 6.30 , and then rose gradually to a maximum at 6 p.m.; another disturbance during the afternoon of the $3^{\text {rd, the }}$ maximum of the V.F. occurring about 5.30 : and a third on the morning of the 8th, the V.F. falling considerably, and only reaching its minimum at 6.8 p.m., were the only irregularities of any moment before the $13^{\text {th }}$, which was somewhat abnormal. One or two disturbed movements on the afternoon of the 15 th, a sudden rise and fall between 4 and $7 \mathrm{a} . \mathrm{m}$. on the 17 th, and a fall and rise about $10 \mathrm{p} . \mathrm{m}$. on the 18 th were the only conspicuous changes in the curve of the Declination between the 13th and 27th. On the morning of the 27th the fall of the V.F. was well marked, and the Declination irregular ; the following morning the oscillations of the D. needle were more rapid but less extended.

May. -This month started quietly, and it was not until the night of the IIth that there were any considerable movements of the Declination magnet, although the H.F. was much disturbed between I and 3 p.m. on the toth, when the V.F. was a good deal diminished. The range of the V.F. was rather large on the 11th, 12th, diminishing 0.00278 between $6.45 \mathrm{p} . \mathrm{m}$. on the I th to $4.20 \mathrm{a} . \mathrm{m}$. on the 12 th . From $6 \mathrm{p} . \mathrm{m}$. on the $1^{\text {th }}$ to $3 \mathrm{a} . \mathrm{m}$. of the following day the presence of a disturbing
force was strongly felt, but there were no oscillations of extreme rapidity. The total range of the Declination was $53^{\prime} 51^{\prime \prime} 49$, and it decreased $34^{\prime} 5^{\prime \prime} 47$ between 9.32 and 9.53 p.m. The H.F. altered 0 oo2179 from 6.18 to $9.42 \mathrm{p} . \mathrm{m} .$, and there were two great movements of the V.F. magnet, the component of the force decreasing very rapidly from about 8.40 p.m. to 9.38 , and from 10.57 to 11.28, the total range was 0.00729 . This short storm was followed by a long period of calm, but between I p.m. and 4 on the $25^{\text {th }}$ there were again signs of the presence of a strong disturbing element. The irregularities of the H.F. trace were very marked, but there was only a slight tremulous motion of the V.F. magnet. During the mornings of the three following days the needle was greatly agitated and displaced, but the most extended movement of the Declination magnet was a decrease of $39^{\prime} 32^{\prime \prime} .05$ from 0.47 to $\mathrm{I} .37 \mathrm{a} . \mathrm{m}$. on the 28 th. A rapid diminution of the H.F., followed immediately by an increase of greater extent, was the most remarkable change of this component of the Intensity that had so far occurred in 1885, the whole range from 7.52 to 8.17 a.m. on the 26 th was 0.02255 . The V.F. curve was very irregular from the 26 to the 28 th, a rapid decrease occurring at 2.6 a.m. on the 26 th , but the general movements of this magnet were more violent on the 27 th and 28 th. The range from $4.42 \mathrm{p} . \mathrm{m}$. on the 27 th to r .17 on the 28 ch was 0.0045 I .

June.-The Declination trace was rather irregular during the whole of the 4th, but resumed its normal appearance in the course of the following morning. The V.F. however was more disturbed in the early part of the afternoon of the 5 th than it had been at the same hour on the 4 th, and the form of the curve was very similar. The night of the roth was slightly abnormal, as were also both the morning and night of the 15 th. Similar movements of the D. needle were recorded on the mornings of the 19th and 2oth, but the latter were about an hour nearer noon than the former. The afternoon of the 20th, and the night of the 22nd were also disturbed. The increase of the H.F. was very rapid between I and $2 \mathrm{p} . \mathrm{m}$. on the 20th, the maximum occurring at I.47. The traces of the D. and H.F. were remarkably similar. The V.F. also increased considerably at the same time on the 20th. On the 22nd this component fell somewhat about midnight. At 10.32 p.m. on the $24^{\text {th }}$ a storm began suddenly, and lasted for about thirtyfour hours. At the commencement of the storm the rise of the H.F. and the fall of the V.F. were both very abrupt. Between $10.42 \mathrm{a} . \mathrm{m}$. and $5.13 \mathrm{p} . \mathrm{m}$. the H.F. increased by 0.01740 . The range of the V.F. was large, the readings during the early morning hours being very low on both the 25 th and 26 th . The fall between $6.2 \mathrm{p} . \mathrm{m}$. on the 25 th and $3.15 \mathrm{a} . \mathrm{m}$. on the 26 th was 0.00718 .

July.-A disturbance began between 5 and 6 on the morning of the ist, and gradually disappeared about $10 \mathrm{p} . \mathrm{m}$. It was felt by the H.F. principally between 2 and 4 p.m., after which the V.F. increased considerably until about $7 \mathrm{p} . \mathrm{m}$. On the morning of the 4th the Declination needle was rather tremulous; on the following day this tremour had increased very much, and was succeeded on the 6th by a very irregular trace. The night of the 17th, and the whole of the 18th, were abnormal. On the afternoon of the 25 th the H.F. was rather irregular, and the V.F. rose for some hours.

August.-On the ist of the month the D. and H.F. showed abnormal curves, and the V.F. trace consisted of one long wave of disturbance, the maximum occurring before $5 \mathrm{p} . \mathrm{m}$., and the minimum after 3 a.m. the next day. The V.F. fell rapidly between 8 and $10 \mathrm{p} . \mathrm{m}$. on the 7 th, with a minimum at 9.30 . On the mornings of the 20 th and 2 ist the presence of a disturbing force was apparent. The night of the $25^{\text {th }}$ was not very quiet, but the first real disturbance of the month began shortly after $10 \mathrm{p} . \mathrm{m}$. on the 27 th. The V.F. commenced falling at 10.26 , but rose again at once to its normal position : between noon however on the 28th, and noon of the 29th, the V.F. curve consisted of one long wave of disturbance. With the exception of a partial lull on the 3oth, the disturbing force was observable until the end of the month.

September.-At 6.43 p.m. on the 4th the D. magnet began to oscillate very rapidly, and continued to move abnormally until noon of the following day, the oscillations being large at first, but after 4 a.m. the magnet merely trembled. Between $11.30 \mathrm{p} . \mathrm{m}$. and 12.15 on the night of the $4^{\text {th }}$ the magnet moved eastwards through $34^{\prime} 3^{\prime \prime \prime} \cdot 4^{1}$. The H.F. felt the disturbing force principally during the afternoon and night of the 4th, whilst the V.F. diminished 0.00467 between 6.22 p.m. and II.36, remained below its average for about four hours, and regained its normal position about $6 \mathrm{a} . \mathrm{m}$. There was a good deal of unsteadiness in the D. needle on the night of the 12 th, and the curve was very irregular from the earliest hours of the 15 th until $2 \mathrm{a} . \mathrm{m}$. on the 17 th. The afternoons of the 15 th and 16 th were the most disturbed times of the H.F. The V.F. movement consisted of one long oscillation, increasing during the afternoon of the 15 th, and then decreasing, at first slowly and regularly, but afterwards very irregularly, smaller waves of disturbance being apparently superposed on the larger one. The movements of the D. magnet from 6 to 9 p.m. on the 22nd and on the 23 rd were very similar, and from noon on the 22nd the trace was very erratic until noon of the 25 th, with the sole exception of the afternoon of the 24th. The abnormal oscillations of the H.F. magnet during the afternoons of the 22nd and 23rd were not very extensive,
and the curves of the V.F. followed the Declination in their similarity to each other on these two days, although the night hours of the 23 rd show greater disturbance of the V.F. On the 27 th the Declination was rather troubled during the afternoon, and there was a rapid fall of the V.F. between 9 and $10 \mathrm{p} . \mathrm{m}$.

October.--The Declination magnet was a little unsteady during the early hours of the 3rd, 9th, and Ioth, and also the late hours of the 11th and 12th. On the 12th the magnitude of the V.F. was somewhat increased. From noon of the 13 th until the afternoon of the 16th there was some disquiet, and during the afternoon of the 18 th the V.F. was above its normal value, the same occurring on the 28 th. From the $22 n d$ to the 25 th was a disturbed period, as were also the last three days of the month.

November.-The disturbance that had been noticed during the last days of October continued on the ist of the present month : from 2 to 6 p.m. the V.F. increased and then diminished, the H.F. being only slightly affected. During the night of the 7 th the disturbing force interfered considerably with the H.F., and the V.F. was much below its normal value. Shortly before $8 \mathrm{p} . \mathrm{m}$. on the 10 th the principal disturbance of the month commenced, and the needle did not come to rest until the morning of the 12 th. The H.F. was most affected during the early hours of the afternoon both on the ioth and the rith. On the Ioth the V.F. increased from noon until about $4 \mathrm{p} . \mathrm{m}$., and then gradually diminished until midnight; on the IIth this component of the intensity was very high during the afternoon. Irregularities again showed them on the curves from io a.m. on the 18 th until the morning of the 20th. The H.F. was most affected between 8 and io p.m. on the 18 th , and from $4 \mathrm{p} . \mathrm{m}$. on the 18 th to $4 \mathrm{a} . \mathrm{m}$. on the 19 th the V.F. was considerably above the mean. The H.F. was unsteady from noon on the 24th until the morning of the 27 th, but the movements were not of any great extent.

December.-On the rst the magnet moved a little westward between 2 and 4 p.m., and then eastward between 8 and 1o. There was a very slight tremour of the needle between 10 and in p.m: on the 5th, and this gradually developed into a storm, which lasted until nearly $2 \mathrm{p} . \mathrm{m}$. on the roth. The V.F. increased very rapidly between 4 and 6 p.m. on the 6th, attaining its maximum about 5.50 . Several very sharp movements of the Declination needle are recorded on the afternoon of the 7 th, but the angular displacement of the magnet was never very large. The afternoon of the 28 th was a little disturbed. The month as a whole was remarkably quiet.

AUROR庣 OBSERVED DURING THE YEAR 1885.

February 5th. -An auroral glow was observed from 9 to io. 30 p.m. Its position was due N., and it reached an altitude of 30°. The scintillation of the stars seen through the glow was very marked.

March 6th.-At 9 p.m. an auroral glow, altitude 30°, was observed in the N.W.

May 14th.-An auroral light in the N.W. at in p.m.
August 13th. -From 9.30 to $10.30 \mathrm{p} . \mathrm{m}$. an auroral glow extended from W. to N.

September irth.-At 6.50 p.m. a cloud of peculiar appearance was noticed N.N.W., from the W. edge of which greenish-white streamers were beginning to ascend.
At 7.5 the streamers appeared more to the W . and reached almost to the zenith. These were succeeded by an auroral glow, the brightest portion being almost due W.
At 8 p.m. more streamers were seen stretching through Ursa Majoris and Cassiopeia, and passing the zenith into Cygnus.

The zodiacal light was well seen on March ith.
Although there are but few observations of auroræ this year to compare with the sun-pictures, yet the comparison serves to strengthen what was stated in previous reports, that aurore are not visible during periods of solar quiet. Thus, after the lull in solar activity which occurred in January, during which no aurore were observed, we find aurore coincident with the solar wave of February and March, and again with the commencement of the greatest disturbance of the year, which extended from May to July. The auroræ of August 13th was seen during a smaller wave of disturbance, and that of September IIth was synchronous with one of the large spots of the year.

PRESENTS RECEIVED.

Greenwich Observations, 1883 from The Royal Observatory.
Greenwich Spectroscopic and Photographic Results, 1883
Report of the Astronomer Royal, 1885
Assumed mean Right Ascension of Clock Stars
Kew Observatory, Report of Committee, 1884.
Quarterly Returns of the Registrar General
Report of the British Association
The Observatory.
Registrar General.
Report of the Meteorological Council of the Royal Society

British Association.
Meteorological Office.
Daily Weather Report
Weekly Weather Report
Monthly Weather Report
Quarterly Weather Report
Hourly Readings
Meteorological Record
Report of the Committee on Solar Physics .
Proceedings of the Royal Society . .
Memoirs of the Royal Astronomical Society
Monthly Notices of the R.A.S. . .
Radcliffe Observations, 1882
Meteorological Office.
R. Met. Society.

The Committee.
Royal Society.
R. Astr. Society.

The Trustees.
Results of the Meteorological Observations
made at the Radcliffe Observatory
Astronomical Observations made at the University Observatory, Oxford
Dun Echt Observatory Publications, Mauritius Expedition
Dun Echt Circulars
Journal of the Scottish Meteorological Society
The Journal of the Liverpool Astronomical Society.
Annual Report of the Committee of the Free Public Library, Liverpool
The Naturalist .
Photographic Almanac
Report of the Superintendent of the United States Naval Observatory, 1884

Board of Visitors.

The Observatory.
" "
Scottish Met. Society.
The Society.
The Librarian.
The Editor.
"
*
The Observatory.

Monthly Weather Report United States Signal Service
Report of the Chief Signal Officer
Bulletin of International Meteorology
International Meteorological Observations
Smithsonian Report, 1883
Annual Report of the Director of the Dearborn Observatory
Annual Report of the Director of the Astronomical Observatory of Harvard College .
Annals of the Astronomical Observatory of Harvard College .
Memoirs of the National Academy of Sciences, Washington .
New York Met. Obs., Abstracts of Registers from Self-recording Instruments by D. Draper
Science Observer
Reports of the International Electrical Exhibition at Philadelphia
Report of the Iowa Weather Service
Proceedings of the American Association
Monthly Weather Review, Toronto Observatory, Canada.
General Meteorological Register, Toronto, Canada.
Observations made at the Magnetical and Meteorological Observatory of Batavia, vol. 6
Report of the Colaba Observatory, by C . Chambers
Magnetical and Meteorological Observations made at the Government Observatory, Bombay, 1883
Results of Meteorological Observations at the Juggarow Observatory, 1884 , Nursing Row .
Magnetical Observations made at the Hon. E. India Company's Magnetical Observatory at Singapore by C. M. Elliot, 1841-45
Indian Meteorological Memoirs by H. Blanford
Registers of General Meteorological Observations at Calcutta, Lucknow, Lahore, Nagpur, Bombay, and Madras
Report of the Meteorology of India, 1882-83 .
Observations and Researches made at the Hong Kong Observatory, 1884, by W. Doberck
Madras Magnetical Observations, 1851 to 1855
St. Francis Xavier's College Observatory, Meteorological Results .
Cape Catalogue of Stars, 1850

War Department.
" \quad "

Smith. Inst.
The Observatory.

National Academy.

The Observatory. The Editor.

Franklin Inst.
American Assoc.
The Observatory.

Madras Obs. Indian Government. Meteorological Office.

The Observatory.

Monthly Record, Melbourne Observatory
Report of the Melbourne Observatory, by R. Ellery
Meteorological Observations made at the Adelaide Observatory, 1882, by C. Todd
Report of the Committee for Comparing and Reducing Magnetic Observations .
Contributions to our Knowledge of the Meteorology of the Arctic Regions.
Hygrometrical Tables
On the Measurement of Sunshine, by R. Scott
The Equinoctial Gales, by R. Scott .
Notes on the Aspect of the Planet Mars in 1884, by O. Boeddicker
On the Changes of the Radiation of Heat from the Moon during the Total Eclipse of 1884, Oct. 4, by O. Boeddicker, with notes by the Earl of Rosse
Report to the Solar Physics Committee on a Comparison between Apparent Inequalities of Short Period in Sun-spot Areas, and in Diurnal Temp. Ranges at Toronto and Kew, by B. Stewart and W. L. Carpenter
Preliminary Inquiry into the Causes of the Variations in the Readings of the Black-bulb Thermometer in Vacuo, by G. M. Whipple .
Researches on Solar Physics, by Delarue, Stewart and Loewy, Nos. I. II. ; series, I. II., appendix

On the Relative Proper Motions of Forty Stars in the Pleiades, by C. Pritchard
Telegraphic Longitude Determinations in India, by N. R. Pogson .
On the Motion of Hyperior, by S. Newcomb .
Lunar Inequalities due to the Ellipticity of the Earth, by G. W. Hill
The Orbits of Oberon and Titania, by A. Hall Orbit of the Satellite of Neptune, by A. Hall .
Researches on Solar Heat, by Langley
Temperature of the Atmosphere and Earth's Surface, by W. Ferrel
Report of a Special Committee to determine the Efficiency and Duration of Incandescent Electric Lamps
Report of a Special Committee of the Franklin Institute on Competitive Tests of DynamoElectric Machines
An Attempt to Photograph the Corona, by E. C. Pickering .

The Observatory.

British Association.
Meteorological Office.

", ",
, "
Lord Rosse.

The Authors.

Author.

Kew Observatory.
Author.
Madras Observatory. U.S. Nat. Alm.
U.". Naval Obs.
U.". Signal Service.

Franklin Inst.

The Author.

Observations of Variable Stars in 1884, by E. C. Pickering .

Theories Regarding the Sun's Corona, by C. A. Young

Spectroscopic Notes, by C. A. Young
Pending Problems in Astronomy, by C. A Young
Stephen Alexander
On the Group " B" in the Solar Spectrum, by W. C. Winlock

An Address on College Mathematics, by H. T. Eddy
On the Effect upon the Earth's Velocity produced by Small Bodies passing near the Earth, by H. A. Newton
Address of H. Howard at M'Gill University
Annual Report of the Harris Institute
Transactions of the Lancaster Philosophical Society
Meteorological Observations at the Rousden Observatory, by C. E. Peek .
Observations upon the Topography and Climate of Crowborough Hall, by C. L. Prince
Observations upon the Drought and Temperature of the past Summer, 1885, by C. L. Prince
Meteorology of Bradford, 1884 , by J. M'Landsborough
Returns of the Rainfall in the Glasgow, Manchester Waterworks Districts by J. Bateman
The Solar Corona, a Discourse by W. Huggins
On Some Results of Photographing the Solar Corona without an Eclipse, by W. Huggins.
On the R.A.s of the Cape Catalogues for $1850-$ 80, by A. Downing
A Catalogue of Suspected Variable Stars, by J. E. Gore

History of the Kew Observatory, by R. Scott .
The Moon and the Weather, by W. L. Browne
Weather Forecasts, by T. Murday
A List of the more remarkable Earthquakes in Great Britain and Ireland, by W. Roper
Nebula and Nova in Andromeda, by J. Roberts
On a new Solar Eye-Piece, by A. Hilger . .
The Fixed Idea of Astronomical Theory, by A. Tischner
On the Depth of the Permanently Frozen Soil in British North America, by J. H. Lefroy
Robert Boyle, by L. Saunders .

The Author.
 The Institute. The Society. The Observatory.

The Author.

Ringwood's Rules : the Law of Storms
What has the Church to do with Science, by J. Rickaby
Rapport annuel sur l'état de l'Observatoire de Paris 1884, par le Contre-Amiral Mouchez
Annales de l'Observatoire de Lyon, par C. André
Annuaire de la Société Météorologique de France
Annales de la Société Scientifique de Bruxelles Bulletin Mensuel de l'Obs. Met. de l'Université d'Upsal
Bulletin Mensuel de l'Obs. de $\mathrm{Zi}-\mathrm{Ka}$-Wei
La cause principale de la direction plongeante du vent, et des calmes tropicaux, par M. F. Folie
De l'influence du magnétisme sur les caractères des Rayes Spectrales, par C. Fierez
Recherches sur le Spectre de Carbone, \&c., par C. Fierez

Les protubérances solaires, par E. Spée
Les nombres et la philosophie, par J. Carbonnelle
Astronomi "
Astromic, par J. Thirion • . . . "
Météorologie, par J. Thirion ",
De l'accord entre les indications des couleurs dans la scintillation des étoiles et les variations atmosphériques, par C. Montigny
Les taches polaires de Venus, par E. L. Trouvelot
Changements observés sur les anneaux de Saturne, par E. L. Trouvelot
Sur la variabilité des anneaux de Saturne, par E. L. Trouvelot

Sur la structure intime de l'enveloppe solaire, par E. L. Trouvelot
Observation d'un essaim de corpuscules noirs passant devant le soleil, par E. L. Trouvelot
Murs énigmatiques à la surface de la lune, par E. L. Trouvelot

La planète Saturne, par E. L. Trouvelot.
Remarquable protubérance solaire, par E. L. Trouvelot
Remarquables protubérances solaires diamétralement opposées, par E. L. Trouvelot
Sur les oscillations des jets d'émission dans les comètes, par T. Bredichin
Révision des valeurs numériques de la force repulsive, par T. Bredichin
Quelques formules de la théorie des comètes, par T. Bredichin

The Author.
, "
L'Observatoire.

La Société.
"
L'Observatoire.

L'Auteur.

Note sur les oscillations barométriques, par C. André
Draguages zoologiques et soudages thermométriques dans les lacs de Savoie, par F. A. Forel
Etudes glaciaires, par F. A. Forel
Etudes Zoologiques dans les lacs de Savoie, par F. A. Forel

Essai sur la température des Glaciers, par F. A. Forel
La Couroune Solaire de l'été de r884, par F. A. Forel
Les tremblements de terre étudiés, par la Commission sismologique Suisse pendant l'année 1881, par F. A. Forel
Les tremblements de terre orogéniques étudiés en Suisse, par F. A. Forel
Rapport au comité météorologique international
Mesures des hauteurs et des mouvements des nuages par M. Ekholm et Hagström
Determination du poids absolu du Gramme et de la densité moyenne de l'éther céleste, par E. La Combe

L'astronomie électrique, par M. Zenger
. .
L'Héliophotographie et la prévision du temps, par M. Zenger
Mouvements des couches élevées de l'atmosphère à Zi-Ka-Wei, par M. Dechevrens
Sur l'équation personnelle, par J. Lauderer
Annalen des Physikalischen Central-Observatoriums, von H. Wild
Monats und Jahresrésumes der Beobachtungen der Meteorologischen Stationen in Russland, 1883
Jahrbücher der K.K. Central-Anstalt für Meteorologie und Erdmagnetismus, Wien, 1883
Publicationen des Astrophysikalischen Observatoriums zu Potsdam, von H. C. Vogel
Jahresbericht von K. Säch. Met. Institut zu Chemitz 1884
Preussiche Statistik, von K. Stat. Bureau in Berlin, Met. Beobacht. 1884
Dekadenbericht des K. Säch. Met. Institutes von P. Schreiber
Karten von Sachsen ; Regen, Temperatur
Astronomische Mittheilungen, von R. Wolf

L'Auteur.

```
,
```

"
"
,,
,

,
,
,

Upsala Univ.

L'Auteur.

```
        ,
```

 "
 "
 "
 Das Observatorium.

Das Inst.

Das Bureau.
Das Inst.
Der Verfasser.

Sammlung der Beobachtungen von Sternbedeckungen während der totalen Mondfinsterniss 1884 Oct. 4, von O. Struve
Ueber gewisse Gesetzmässigkeiten in Wechsel der Witterung aufeinander folgender Jahreszeiten, von G. Hellman
Neue Regen und Schneemesser, von G. Hellmann
Die Wirbelstürme, von A. Schück . . .
Publication der Norwegischen Commission der Europäischen Gradmessung Geodätischen Arbeiten.
Udgivet af den norske Graduaalings Kommission Vanstands observationer, Christiania
Regen waarnemingen in Nederlandsch-Indië door S. Figee, Batavia .
De half-convergente reeks ter lereckening van de integral $\psi(z)=e^{z^{2}} \int_{z}^{\infty} e^{-z^{2}} \mathrm{dr}$ door C. Schols.
Astronomiska Jakttagelser austälda pa Stockholms Obs., af H. Gyldén
A. Haynald-Observatoriumbau $1880-84 \mathrm{Meg}-$ figyelt Napfoltok
Atti del' Accademia Pontificia de Nuovi Lincei, anno 36
Sessioni del' Accademia Pontificia de Nuovi Lincei, anno 38
Bullettino Meteorologico della Pontificia Università Gregoriana
Bolletino Mensuale della Soc. Met. Italiana, Moncalieri
Bolletino Decadico della Soc. Met. Italiana, Moncalieri
Seconda Assemblea Generale della Soc. Met. Italiana, Firenze 1885
Osservazioni delle Meteore luminose 1884-85 .
L'Astronomia, la fisica terrestre, et la Meteorologia all'esposizione generale Italiana in Torino 1884.
Almanaque Nautico para 1886, San Fernando .
Anales del Instituto y Observatorio de Marina de San Fernando 1884
Observaciones astronomicas del Col. Cat. del S. Corazon de Jesus en Puebla 1883-84.

Observatorio Meteorologico del Colegio del Estado de Puebla.
Cronica Cientifica, par R. Roig y Torres.

Das Obs.

Der Verfasser.
" \quad,
" "
A. Schück.

Norw. Com.

Das Obs.

Der Verfasser.
", "
Das Obs.
L'Accademia.
"

L'Osservatorio.
;
"

La Società.
" "
P. Denza.

L'Observatorio.
"
"

Redaccion.

Observaciones meteorologicas hechas en el obs.
Astr. de Santiago, J. J. Vergara, Director, 1873-81

L'Observatairo.
Observaciones magnéticas y meteorólogicas del R. Colegio de Belen Habana

Boletin del Ministerio de Fomento dela Rep. Mex., Obs. Met. Central de México . .
Observatorio Met. Mag. Central, México. Departmento Magnetico "

APPENDIX.

RESULTS

OF

METEOROLOGICAL OBSERVATIONS

TAKEN AT

ST. IGNATIUS' COLLEGE, MALTA,

BY THE
REV. J. SCOLES, S.J.
1885.

ST. IGNATIUS' COLLEGE, MALTA.

Lat. $35^{\circ} 55^{\prime}$ N. Long. $14^{\circ} 29^{\prime}$ E. Barometer Readings reduced to 32° at Sea Level.

METEOROLOGICAL REPORT. January-February, 1885.

Results of Observations taken during the Month.	January.	February.
Mean Reading of Barometer inches	29.959	$30 \cdot 082$
Highest ," ,"	30.189	$30 \cdot 304$
Lowest ," ,",	29.575	$29 \cdot 666$
Range of Barometer Readings ,	0.614	0.638
Highest Reading of Max. Therm.	$65 \cdot 5$	73'5
Lowest , Min. Therm.	407	$42 \cdot 2$
Range of Thermometer Readings	$24 \cdot 8$	$31 \cdot 3$
Greatest Range in 24 hours	$19^{\prime 7}$	$20 \cdot 1$
Mean of all the highest Readings	$57 \cdot 8$	62.8
Mean of all the lowest Readings	$47^{\prime 2}$	51*1
Mean Daily Range ..	$10 \cdot 6$	$11^{\prime 7}$
Mean Temperature (deduced from Max. and Min.)	$5 \mathrm{I} \cdot 8$	56\%
Mean Temperature (deduced from Dry Bulb)	517	$55^{\circ} 9$
Adopted Mean Temperature	$5 \mathrm{I} \cdot 8$	56.0
Mean Temperature of Evaporation	$47 \cdot 8$	51.5
Mean Temperature of Dew-point	44.9	$48 \cdot 8$
Mean Elastic force of Vapour inches	$0 \cdot 298$	$0 \cdot 345$
Mean Weight of Vapour in a cubic foot of air...grains	3.4	39
Mean additional weight required for saturation ,"	0.8	0.8
Mean degree of Humidity	8I	83
Mean Weight of a cubic foot of air grains	$542 \cdot 8$	$539 \cdot 8$
Fall of Rain ... inches	$4 \cdot 277$	$0 \cdot 332$
Number of days on which Rain fell	14	5
Mean amount of Cloud (an overcast sky=10).........	4* 1	$3 \cdot 1$
Total number of miles of Wind indicated	8245	7572
Mean Velocity of Wind per hour miles	II'I	11'3

March-April.		
Results of Observations taken during the Month.	March.	April.
Mean Reading of Barometer inches	29.976	29.872
Highest ,	30.391	30'179
Lowest	29.520	29.460
Range of Barometer Readings	0.871	$0 \cdot 719$
Highest Reading of Max. Therm.	82.2	$74^{\prime 2}$
Lowest , Min. Therm.	$46 \cdot 6$	$47 \cdot 8$
Range of Thermometer Readings	$35 \cdot 6$	26.4
Greatest Range in 24 hours	$28 \cdot 6$	$20 \cdot 7$
Mean of all the highest Readings	657	$67 \cdot 3$
Mean of all the lowest Readings	52'I	53.6
Mean Daily Range	13.6	137
Mean Temperature (deduced from Max. and Min.)...	$58 \cdot 2$	59.4
Mean Temperature (deduced from Dry Bulb)	$56 \cdot 8$	59.5
Adopted Mean Temperature	57.5	59.5
Mean Temperature of Evaporation	$52 \cdot 8$	554
Mean Temperature of Dew-point	493	51^{8}
Mean Elastic force of Vapour inches	$0 \cdot 352$	0. 385
Mean Weight of Vapour in a cubic foot of air...grains	40	43
Mean additional weight required for saturation ,,	$1 \cdot 1$	1×4
Mean degree of Humidity	77	76
Mean Weight of a cubic foot of air grains	$535 \cdot 3$	5303
Fall of Rain inches	$0 \cdot 167$	$0 \cdot 592$
Number of days on which Rain fell	5	6
Mean amount of Cloud (an overcast sky = io)	2.5	3.2
Total number of miles of Wind indicated	7181	7556
Mean Velocity of Wind per hour miles	97	10.5

May-June.		
Results of Observations taken during the month.	May.	Junc.
Mean Reading of Barometer \qquad inches Highest ," Lowest ," Range of Barometer Readings \qquad Highest Reading of Max. Therm. \qquad Lowest ,, Min. Therm. \qquad Range of Thermometer Readings \qquad Greatest Range in 24 hours \qquad Mean of all the highest Readings \qquad Mean of all the lowest Readings \qquad Mean Daily Range \qquad Mean Temperature (deduced from Max. and Min.)... Mean Temperature (deduced from Dry Bulb) \qquad Adopted Mean Temperature \qquad Mean Temperature of Evaporation \qquad Mean Temperature of Dew-point \qquad Mean Elastic force of Vapour \qquad inches Mean Weight of Vapour in a cubic foot of air...grains Mean additional weight required for saturation Mean degree of Humidity \qquad Mean Weight of a cubic foot of air grains Fall of Rain \qquad Number of days on which Rain fell inches Mean amount of Cloud (an overcast sky $=10$) \qquad Total number of miles of Wind indicated \qquad \qquad Mean Velocity of Wind per hour miles	$30 \cdot 012$ $30 \cdot 075$ $29 \cdot 511$ $0 \cdot 564$ $84 \cdot 3$ $51 \cdot 1$ $33 \cdot 2$ $26 \cdot 2$ $74 \cdot 3$ $58 \cdot 2$ $16 \cdot 1$ $65 \cdot 5$ $64 \cdot 5$ $65 \cdot 0$ $59 \cdot 7$ $55 \cdot 3$ 0.437 $4 \cdot 8$	29.986 $30 \cdot 136$ 29.843 0.293 $90 \cdot 4$ $58 \cdot 8$ 31.6 24.6 79.9 64.8 $15 \cdot 1$ 71.6 $70 \cdot 6$ 71.1 $65 \cdot 6$ 61.5 0.546

July-August.		
Results of Observations taken during the month.	July.	August.
Mean Reading of Barometer inches	30.039	29.947
Highest , , ,	30.282	30.040
Lowest ,	29.87 I	29.785
Range of Barometer Readings.................... , ,	0.411	0.255
Highest Reading of Max. Therm.	$94 \cdot 8$	1039
Lowest , Min. Therm.	65°	719
Range of Thermometer Readings	$29 \cdot 6$	$32^{\circ} \mathrm{O}$
Greatest Range in 24 hours	24.7	$28^{\prime} 7$
Mean of all the highest Readings	873	$92^{\circ} 0$
Mean of all the lowest Readings	$69 \cdot 6$	760
Mean Daily Range ..	177	16.0
Mean Temperature (deduced from Max. and Min.) ...	78.0	83.2
Mean Temperature (deduced from Dry Bulb)	77.5	$83 \cdot 1$
Adopted Mean Temperature	778	$83 \cdot 1$
Mean Temperature of Evaporation	$70^{\circ} 7$	75°
Mean Temperature of Dew-point	657	$70 \cdot 5$
Mean Elastic force of Vapour inches	0.633	$0 \cdot 746$
Mean Weight of Vapour in a cubic foot of air...grains	$6 \cdot 8$	$7 \times$
Mean additional weight required for saturation ,"	3.5	4^{2}
Mean degree of Humidity	66	66
Mean Weight of a cubic foot of air grains	513.2	5057
Fall of Rain inches	0.050	$0 \cdot 350$
Number of days on which Rain fell	I	1 1
Mean amount of Cloud (an overcast sky = 10)	0.4	$1 \cdot 5$
Total number of miles of Wind indicated ...	4350	5664
Mean Velocity of Wind per hour miles	$5 \cdot 8$	$7 \cdot 6$

September-October.

Results of Observations taken during the month.	September.	October.
Mean Reading of Barometer inches	30*073	30'009
Highest , ", ",	30•325	30.270
Lowest "	29.837	29.591
Range of Barometer Readings ,	0.488	0.679
Highest Reading of Max. Therm.	95^{\prime} I	$88 \cdot 4$
Lowest , Min. Therm.	63^{1}	$55^{\circ} 7$
Range of Thermometer Readings	$3^{2} 0$	$32^{\circ} 7$
Greatest Range in 24 hours ...	22.9	$20 \cdot 9$
Mean of all the highest Readings	84%	$76 \cdot 4$
Mean of all the lowest Readings	69.3	63.7
Mean Daily Range	147	12.7
Mean Temperature (deduced from Max. and Min.)...	75\%	69°
Mean Temperature (deduced from Dry Bulb)	$76 \cdot 2$	68.4
Adopted Mean Temperature	$76 \cdot$	$68 \cdot 7$
Mean Temperature of Evaporation	$68 \cdot 3$	$63 \cdot 6$
Mean Temperature of Dew-point	$62 \cdot 6$	$59 \cdot 8$
Mean Elastic force of Vapour inches	$0 \cdot 568$	$0 \cdot 514$
Mean Weight of Vapour in a cubic foot of air...grains	6.2	$5 \cdot 6$
Mean additional weight required for saturation ,"	3.6	179
Mean degree of Humidity	63	76
Mean Weight of a cubic foot of air \qquad grains	515.8	523.0
Fall of Rain \qquad inches	$0 \cdot 384$	3.178
Number of days on which Rain fell	2	8
Mean amount of Cloud (an overcast sky $=10$).........	14	$4 * 4$
Total number of miles of Wind indicated.	5730	6815
Mean Velocity of Wind per hour miles	$8 \cdot 0$	$9 \cdot 2$

November-December.			
Results of Observations taken during the month.	November.	December.	Year.
Mean Reading of Barometer inches	30.047	$30 \cdot 110$	30.009
Highest , , ",	30.269	30.463	30'463
Lowest "	29.571	29.529	$29 \cdot 460$
Range of Barometer Readings ,,	$0 \cdot 698$	- 9334	1.003
Highest Reading of Max. Therm.........	$76 \cdot 9$	'69'r	1039
Lowest ,, Min. Therm.	51.2	$40 \cdot 6$	$40^{\circ} 6$
Range of Thermometer Readings	25.7	$28 \cdot 5$	63.3
Greatest Range in 24 hours	18.4	179	28.7
Mean of all the highest Readings	$68 \cdot 3$	$60 \cdot 5$	73°
Mean of all the lowest Readings	57°	5 r -	59.5
Mean Daily Range	113	9.5	135
Mean Temperature (deduced from Max. and Min.) \qquad	6 F 5	55°	$65^{\circ} 4$
Mean Temperature (deduced from Dry Bulb) \qquad	$61 \cdot 1$	547	65°
Adopted Mean Temperature	$6 \mathrm{x} \cdot 3$	54.9	65^{2}
Mean Temperature of Evaporation	57.5	$50 \cdot 4$	$59^{\circ} 9$
Mean Temperature of Dew-point	55°	47°	56.
Mean Elastic force of Vapour ... inches	0.433	$0 \cdot 323$	$0 \cdot 449$
Mean Weight of Vapour in a cubic foot of air \qquad grains	4.9	3.6	5^{11}
Mean additional weight required for saturation \qquad grains	$1 \cdot 2$	1'1	20
Mean degree of Humidity	83	77	74
Mean Weight of a cubic foot of air...grs.	$532 \cdot 3$	$540 \cdot 9$	
Fall of Rain inches	3.801	$2 \cdot 355$	15486 63
Number of days on which Rain fell 9	12	63
Mean amount of Cloud (an overcast $\mathrm{sky}=10)$	4.8 698	5% 8547	29 81911
Total number of miles of Wind indicated Mean Velocity of Wind per hour \qquad	6980 9.7	8547 115	9.3

NOTES FOR THE SEPARATE MONTHS.

Jandary.
Dew-pornt, highest 597° on the 17 th, lowest 304° on the 20th.
The wind attained a velocity of 40 miles per hour on the 25 th.
In Sunshine, highest 117.2° on the 30 th.
On ground, lowest 33.8° on the 15 th.
The sea fell from 63° to 60°.
A thunderstorm passed on the 16 th, and hail fell on the 8th and 16th. On the 22 nd there was a slight fog.

February.

Dew-point, highest $55^{\circ} 9^{\circ}$ on the 2 Ist, lowest $33^{\circ} \mathrm{I}^{\circ}$ on the 14 th.
Wind, highest 35 miles per hour from $8 \mathrm{a} . \mathrm{m}$. to $3 \mathrm{p} . \mathrm{m}$. on the 1 rth.
Sunshine, highest 126.0° on the 18 th and 22 nd.
On ground, lowest 374° on the 15 th.
The sea fell to 58° on the 15 th, but rose again to 62° on the 21 st, and remained at 62° till the end of the month.

Hail fell on the roth.

March.

Dew-point, highest 56.7° on the 13 th, lowest 40.8° on the 26 th.
Wind, highest 37 miles per hour, 2 p.m. to 4 p.m., on the $19 t h$. Sunshine, highest 131.3 on the inth, and $131^{\circ} 2^{\circ}$ on the 22nd.
On ground, lowest $4 I^{\circ} I^{\circ}$ on 17 th, and $4 I^{\circ} 9^{\circ}$ on the 4 th.
The sea fell from 62° to 61°.

April.

Dew-point, the highest 590° on the 3 rd, the lowest 42.2° on the 12 th.

Wind, the highest averaged 26 miles per hour from 8 a.m. to 6 p.m. on the 7 th.

In Sunshine the highest was 130.3° on the 19th.
On ground the lowest was 40.8° on the 2 nd.
The sea rose from 61° to 64°.
A thunderstorm passed on the IIth, and lightning was seen on the $3 \mathrm{rd}, 4 \mathrm{th}$, and 17 th .

May.
Dew-point, the highest $64^{\circ}{ }^{\circ}$ on the 3oth, the lowest $44^{\circ} 2^{\circ}$ on the 16 th.

Wind, the highest 31 miles per hour from 4 to $6 \mathrm{p} . \mathrm{m}$. on the 5 th. Sunshine, the highest 138.0° on the 5th.
On ground the lowest 460° on the 18th.
The sea rose from 64° to 70°.

June.

Dew-point, highest $69^{\circ} \mathrm{I}^{\circ}$ on the 3 oth, lowest $50 \cdot 6^{\circ}$ on the 23^{rd}.
Wind, highest 34 miles per hour from $8 \mathrm{a} . \mathrm{m}$. to $3 \mathrm{p} . \mathrm{m}$. on the 22nd.

Sunshine, highest 140.6° on the 19 th, and 139.7° on the 27 th.
The sea rose from 70° to 77°.
July.
Dew-point, the highest was $73^{\circ} \cdot 0^{\circ}$ on the 5 th, the lowest was $58 \cdot 2^{\circ}$ on the 12 th.

Wind, the average velocity is unusually low.
In Sunshine $147^{\circ} 6^{\circ}$ was reached on the 12 th, add $147^{\circ} 2^{\circ}$ on the 29th.

The sea has risen from 76° to 83°.
A thunderstorm passed on the 8th.
The total rainfall since July, 1884 , is 17.382 inches.
The temperature rose above 90° on ten days during the month.

August.

Dew-point, the highest was 78.7° on the 3 oth, the lowest 574° on the 6th.

The temperature exceeded 100° on two days, the 3 rd and the 8 th.
The highest mean daily temperatures were $89^{\circ} 5$ on the 8th, and 87.5° on the 6th.

In Sunshine 1507° was reached on the 8th.
The sea rose to 85° and afterwards fell to 82°.
A thunderstorm passed on the 16 th.

September.

Dew-point, highest $70^{\circ} 9$ on the 7 th, lowest 50.8° on the 3^{0} th. Wind, highest 20 miles per hour, $8 \mathrm{a} . \mathrm{m}$. to $4 \mathrm{p} . \mathrm{m}$., on the 12 th. In Sunshine, highest 143.9° on the 8th. On ground the lowest was $60^{\circ} 0^{\circ}$ on the 14th. The sea maintained a temperature of 78°.
A thunderstorm passed on the 9th.

October.

Dew-point, the highest $70^{\circ} 4^{\circ}$ on the 16 th , the lowest 473° on the 30th.

The wind averaged 20 miles per hour from $8 \mathrm{a} . \mathrm{m}$. on the 14 th to 8 a.m. on the 15 th, and from noon to $4 \mathrm{p} . \mathrm{m}$. on the 25 th and 30 th.

Sunshine, $137^{\circ} \mathrm{I}^{\circ}$ on the 2nd.
On ground, $49^{\circ} 5^{\circ}$ on the 13 th.
The sea fell from 78° to 73°.
Thunderstorms passed on the 7 th, ioth, and 25 th.
The maximum temperature on the $14^{\text {th }}$ was reached after $8 \mathrm{p} . \mathrm{m}$, during the night.

November.
Dew-point, the highest $65^{\circ} 0^{\circ}$ on the 2nd, the lowest 48.8° on the 24th.

Sunshine, the highest 1260° on the 23rd.
On ground the lowest 46.0° on the ist.
The sea fell from 73° to 66°.
Thunderstorms passed on the 4 th, 7 th, 2 ist, and 23 rd.
Total rainfall since June 7.763 inches; last year it amounted to 7 7099 inches.

December.

Dew-point, the highest was $59^{\circ} 5^{\circ}$ on the 9 th, the lowest 32.7° on the 15 th.

In Sunshine the highest was 118.7° on the 2nd.
On ground the lowest was $34 \cdot 8$ on the $14^{\text {th. }}$
The sea fell from 66° to 61°.
A thunderstorm passed on the 15 th.
Hail fell on the IIth and 15 th.
Total rainfall since June 10'118 inches; last year it measured ${ }^{1 I} 964$ inches.

St. Ignatiuls' College.
J. Scoles, S.J.

