STONYHURST COLLEGE OBSERVATORY.

RESULTS

OF
METEOROLOGICAL AND MAGNETICAL OBSERVATIONS,
by the

- REV. S. J. PERRY, S.J., D.Sc., F.R.S.,

Coc. Ord. of the Accad. Rom. Pont. de' Nuovi Lincei, and of the Soc. Géog. d'Anvers, Hon. Mem. of the Soc. Scient. de Bruxelles.
1886.

MARKET WEIGHTON:
ST. WILLIAM'S PRESS, CATHOLIC REFORMATORY SCHOOL.

1

TABLE OF CONTENTS.

Page
Introduction 5
Monthly Meteorological Reports 9
Yearly Meteorological Summary 33
Dates of Occasional Phenomena 35
Sun Observations 36
Duration of Sunshine 37
Observations of Upper Clouds (Cirrus) 40
Agricultural Notes 43
Observations of Crops 45
Observations of Trees and Shrubs 46
Dates of the Flowering of Plants 47
The Upper Glow preceding Sunrise and following Sunset 54
Dates of Solar Drawings and of Observations of the Chromosphere and of Spot Spectra 55
Magnetic Report-
I. Absolute Values of the Elements of Terrestrial Magnetism 56
2. Magnetic Disturbances 63
Lists of Presents received 69
Appendix. Observations taken at St. Ignatius' College, Malta 70
*
-

INTRODUCTION.

The meteorological and magnetic work was continued here as usual during the past twelve months, and requires no special notice. The self-recording instruments are all in good condition, but the curve of the Vertical Force Magnetograph is never entirely satisfactory. Results were furnished as formerly to the Meteorological Office, to the French Meteorological Society, \&c. Our principal astronomical work was the daily solar observations, which consist :
r. Of a drawing of the sun's whole disk on a scale of mo $\frac{1}{2}$ inches to the diameter, and this includes the most careful delineation of all the spots and faculæ visible.
2. A spectroscopic measurement with a radial slit of the height of the chromosphere and of all the gazeous prominences.
3. A study of the general surface of the sun whenever the definition is unusually good.
4. A sketch of the chromospheric flames with a wide tangential slit, the direction in which they are inclined being most carefully noted.
5. That portion of the spectrum of the solar spots which extends from B to D.

During the year the sun was visible on 235 days and observations were made each day, but the whole disc was drawn only 224 times. The chromosphere was completely measured on roi days, and partially on two others. Dr. Janssen's magnificent photographs formed an excellent guide to the study of the general surface, and it was always noticed that the appearances in any one portion of the surface were undergoing ceaseless changes. The fourth class of observations, which was started for the first time this year, can only be made when the sky is exceptionally clear, but useful results were obtained on 21 different days. On the same number of days a satisfactory examination was made of spot spectra, and on six of these occasions bands were observed in the spectrum. A short paper on these bands was read at the November meeting of the R.A.S. It may be well to mention here that the lines most affected in the spots in 1886 were the ordinary Frannhofer lines, the contrary being the case during the period of maximum sun spots.

The observations of lunar occultations and of the phenomena of Jupiter's satellites have been made as before, and a number of positions of the comets Fabry, Brooks, Barnard, and Finlay were obtained, which will be reduced when the stars of comparison have been accurately determined. Preparations were made to observe positions of Sappho, but the wretched weather at the time of opposition prevented any useful work being done.

The upper glow is still watched with care, and the days on which it was observed are noted in this report. A great part of the spring and early summer was devoted to preparations for the Total Solar Eclipse to be observed in the West Indies on August the 29th. For the observation of the eclipse the College authorities most generously purchased a splendid
$5 \frac{1}{2}$ inch Equatorial by Alvan Clark, an instrument which had done much useful work in the hands of the Rev. Mr. Webbe by furnishing the data for his well known book on Celestial Objects. The definition of the glass is wonderfully good, and when the image of the eclipsed sun was seen on the white enamelled cap of the spectroscope at Carriacou, it conveyed the impression of a perfect picture, the minutest details standing out with remarkable sharpness. The equatorial was fitted by Cooke of York with slow motion gear for the Declination, Mr. Webbe having been contented with slow motion in Right Ascension only; and two spectroscopes were adapted to it, one with two beautiful direct-vision prisms mounted by Hilger expressly for this eclipse, and the other with a Rowland grating of 14438 lines to the inch. A special stand had to be made for the $5 \frac{1}{2}$ inch Equatorial, and another for the 4 inch by Jones, which was taken as a companion instrument and fitted in consequence with a good direct-vision spectroscope by Browning. Scales had to be photographed for determining the position of the spectral lines of the Solar Corona; white enamelled caps had to be graduated and adjusted to the slits of the spectroscopes, for readily observing the exact distance from the centre of the sun of the light passing through the spectroscope ; and many other modifications of the instruments completed, before the telescopes passed out of the hands of the assistants of the observatory. The Report of the Expedition will shortly appear in the transactions of the R.S.

IToneburst Observatore.

Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime} \cdot \mathrm{N}$. Long. 9 m . 52s. 68. w. Height of the Barometer above the sea, $3^{88 \mathrm{ft}}$.

METEOROLOGICAL REPORT.

January, 1886.

Results of Observations taken during the month.	Mean for the last 39 years.
Mean Reading of the Barometer	29.417
Highest , on the Ith........29'714	30'019
Lowest , on the 18th..............28.571	$28 \cdot 566$
Range of Barometer Readings............................ 1×143	1 453
Highest Reading of a Max. Therm. on the 3 rd 51.2	51.6
Lowest Reading of a Min. Therm. on the 18th 15.3	21.1
Range of Thermometer Readings 35.9	$30^{\circ} 5$
Mean of all the Highest Readings 39.7	$42 \cdot 1$
Mean of all the Lowest.................................... 28.2	$32 \cdot 6$
Mean Daily Range 115	9.5
Deduced Monthly Mean (from Mean of Max. and Min.) 33.8	$37 \cdot 2$
Mean Temperature from dry bulb 34.7	$37 \cdot 2$
Adopted Mean Temperature 34.3	37.2
Mean Temperature of Evaporation M	$35^{\circ} 9$
Mean Temperature of Dew Point 30.6	33.9
Mean elastic force of Vapour \qquad 0.171 in	$0 \cdot 196$ in
weight of Vapour in a cubic foot of air $2 \cdot 1 \mathrm{gr}$	2.3 gr
additional weight required for saturation...... 0.4 gr	0.4 gr
Mean degree of Humidity (saturation I (00) 0.85	0.86
Fall of Rain $548 \cdot 6 \mathrm{gr}$	$549{ }^{\circ} \mathrm{ogr}$
Number of ${ }^{\text {a }}$ (.. 7.254 in	4.292 in
Amount of Evs on which Rain fell 22	16.5
(${ }^{\text {a }}$ (0.862 in

No. of days in the month on which the prevailing wind was	N	NE	E	SE	S	sw	w	NW
	I	8	2	2	0	2	II	5
Mean Velocity in miles per hour	11.2	$8 \cdot 7$	6.0	$10 \cdot 5$	0	117	15.5	10%
TotalNo.ofmiles foreach Direct on	269	1665	287	506	0	564	4097	1304

The total number of miles registered during the month was 8692.
The max. Velocity of the wind was 36 miles per hour ; direction S.S.W. on the 16 th at 6 p.m.
Mean amount of Cloud (an overcast sky being indicated by 10\%) $\quad 8.3$
In the month of January, the highest reading of the Barometer
during 39 years, was on the 18th, in 1882, and was 30.480
The lowest ", \quad 26th, 1884 27.803

The highest Temperature , $\quad 7$ th, $1877 \ldots . . .59 .9$
The lowest \quad, \quad I5th, 188 r 4.6

The highest adopted mean temperature of the month, $1875 \ldots \ldots .42 .5$
The lowest , ,, 1881 29.2

Barometer readings were low, and the range of Barometer readings small. Temperature low, and range of Temperature large. Rainfall three inches in excess of the mean for January during the 39 years. The prevailing wind was West.

Mean amount of Cloud (an overcast sky being indicated by 10%)... 7.5
In the month of February, the highest reading of the Barometer during 39 years, was on the IIth, in 1849, and was. $30 \div 45^{2}$
The lowest , 6th, 1867 $28 \cdot 208$
The highest Temperature 8th, 1877 583
The lowest ,
Ist, 1855 $10 \cdot 1$
The highest adopted mean temperature of the month, 1869 $44^{\circ} \mathrm{O}$
The lowest 3) 1855 $28 \cdot 6$
\qquad
Barometer readings were slightly in excess of the mean for 39 years. The Temperature was low, and the Rainfall was more than $2 \frac{1}{2}$ inches below the average. The prevailing wind was from N.E., but the strongest winds were from South and West.

Mean amount of Cloud (an overcast sky being indicated by ro.o)... 8.0
In the month of March, the highest reading of the Barometer during 39 years, was on the 6th, in 1852, and was $30 \cdot 401$
The lowest ", 31st, 1860 28•199
The highest Temperature 25th, 1871 68 \%
The lowest II'5
The highest adopted mean temperature of the month, 1871 $44^{\circ} 0$
The lowest ,, 1855 $35^{\circ} 6$
Barometer readings differed little from the average. The mean Temperature was slightly lower than usual, and the range very great. The minimum on the 6th (1 ± -5), was the lowest ever observed here during March. Rainfall a little above average. The prevailing Wind was N.E., and the heaviest winds from W.S. W.

Mean amount of Cloud (an overcast sky being indicated by $10{ }^{\circ} 0$)... 79
In the month of April, the highest reading of the Barometer
during 39 years, was on the 22 nd, in 1855 , and was $3^{\circ} 191$
The lowest ,
20th, 1868 28.358
The highest Temperature 14th, 1852 $74^{\circ} 1$
The lowest
$4^{\text {th, }} 1885$ $21^{\prime} 1$
The highest adopted mean temperature of the month, 1865 $4^{8 \cdot 5}$
The lowest " ,
1879............ 40 ㄱ
\qquad
Barometer and Thermometer readings were close to average. The range of Temperature was rather great. The Rainfall and number of wet days was in excess of previous years. The prevailing wind was NE, and the strongest from the South and West.

$\begin{array}{ll}\text { Mean amount of Cloud (an overcast sky being indicated by io.0)... } & 8.4\end{array}$
In the month of May, the highest reading of the Barometer
during 39 years, was on the 22nd, in 1855 , and was.
The lowest ,, ", 28th, I877 28.559

The highest Temperature \quad, \quad 19th, $1864 \ldots \ldots . .82 .5$
The lowest ,, \quad 4th, 1855 23.5
The highest adopted mean temperature of the month, $1848 \ldots \ldots .$.
The lowest ,, , $1855 \ldots . . .$.

Barometer and Thermometer did not differ much from the mean for May ; but the Rainfall was more than $3 \frac{1}{2}$ inches above the small average for this month. The prevailing wind was W., and the strongest winds from W.N.W.

Mean amount of Cloud (an overcast sky being indicated by 10\%)... 7.5
In the month of June, the highest reading of the Barometer
during 39 years, was on the 15 th, in 1874 , and was.............. 30.219
The lowest ," ", 12 th, $1862 \ldots . . .28 .632$
The highest Temperature , 27th, $1878 \ldots . .8$
The lowest , ", 30th, $1856 \ldots . .34^{\circ 2}$
The highest adopted mean temperature of the month, $1858 \ldots . . \quad 59^{\circ}$
The lowest ,, \quad I856 and 1860 52.2

Barometer and Thermometer readings very close to average. Rainfall light, and number of rainy days small. The prevailing wind was West.

Mean amount of Cloud (an overcast sky being indicated by 10%)... $\quad 7.8$
In the month of July, the highest reading of the Barometer
during 39 years, was on the 24 th, in 1868, and was
30'112

The range of Temperature was large. The mean Temperature and Barometer close to average. The Rainfall was rather higher than usual. Prevailing wind West.

Mean amount of Cloud (an overcast sky beingindicated by 10%).. 8.2
In the month of August, the highest reading of the Barometer during 39 years, was on the 21 st , in 1874 , and was $3^{\circ} \cdot 114$
The lowest ," $3^{1 \text { rst, }} 1876$ $28 \cdot 555$
The highest Temperature 2nd, 1868. 88.0
The lowest
21st, 1864 \& 1869 36.0
The highest adopted mean tem perature of the month, 1857 \& 1884 $61^{\circ} 0$
The lowest ,,
, 1848. $52 \cdot 5$
Barometer and Thermometer close to average. Range of Thermometer rather large. Rainfall more than two inches below average. Prevailing wind West. Evaporation dish out of order during the month.

The mean reading of the Barometer was almost identical with that of former years. Thermometer readings slightly higher than average. Rainfall close to average. Prevailing wind S.W.

Mean amount of Cloud (an overcast sky being indicated by 10°)... 8.2
In the month of October, the highest reading of the Barometerduring 39 years, was on the 5 th, in 1884, and was$30 \cdot 306$
The lowest "
19th, 1862 28 II 39
The highest Temperature "
9th, 1869. $72 \cdot 8$
The lowest ,
2 Ist, 1880 23^{\prime} I
The highest adopted mean temperature of the month, 1861 and 1876 $51 \cdot 6$
The lowest "
1880 43^{\prime}
The Temperature was rather high, and its range small. Barometer close to average. The Rainfall and number of rainy days were also close to the mean of previous years. Prevailing wind N.E.

Mean amount of Cloud (an overcast sky beingindicated by $10^{\circ}{ }^{\circ}$)... 87
In the month of November, the highest reading of the Barometer
during 39 years, was on the 12 th, in 1857, and was $30 \cdot 350$
The lowest ,, , Ist, 1859 $28 \cdot 007$
The highest Temperature 6th, 1872 619
The lowest I7th, 1861 19'I
The highest adopted mean temperature of the month, 188 I 47°
The lowest ,
1851............ 36.7
\qquad
The range of Barometer readings was rather large. The Temperature was high, and the range of Thermometer readings small. The fall of rain did not differ much from the average, but the number of wet days was large. The prevailing wind was from S.W.

Mean amount of Cloud (an overcast sky being indicated by 10%)... $7^{\circ} 0$
In the month of December, the highest reading of the Barometer
during 39 years, was on the 22 nd in 1849, and was $30 \cdot 37^{8}$
The lowest "
8th, 1886 27350
The highest Temperature "
9th, 1876 5^{-1}
The lowest ", $6 \cdot 7$
The highest adopted mean temperature of the month, 1857 $44^{\circ} 6$
The lowest
1878 $30 \cdot 3$

The Barometer readings were low, and the range of readings very large. The Temperature was low, and the Rainfall heavy. The prevailing wind was West.

The greatest monthly range of the Barometer was in January, 1844, and was 2409
The least ,, ,, in July, 1852, and was 0.505
The highest reading of the Barometer, during 39 years, was on January 18th, 1882, and was $30^{\prime} 480$
The lowest ,, ,, on December 8th, 1886, and was 27.350
Extreme range 3.130
The highest temperature was on July 15 th, $\mathbf{1 8 6 8}$, and was 88.2
The lowest ,, ,, January 15th, r881 $4^{\circ} 6$
The highest adopted mean temperature of a month, July $\mathbf{I} 868$ $62 \cdot 4$
The lowest , ,, February, 1855 $28 \cdot 6$
The highest adopted mean temperature of a year, 1868 49^{1} I
The lowest ,, ", ", 1879 $44^{1 I}$
$\left.\begin{array}{l}\text { The greatest monthly mean weight of vapour, } \\ \text { in a cubic foot of air............................ }\end{array}\right\} \quad$ July, 1852 $5 \cdot 1$
The least ,, ,, " February, 1855 14
The greatest fall of rain in a month, was in October, 1870 , and was $13^{\circ} 437^{\text {in }}$
The least ", ," March, 1852 0.047
The greatest number of days on $\}$ which rain fell in one month) July, 1861, December, 1868 3^{1}
The least , " 3

MONTHLY.																	
Local apparent time.	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-1	I-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
January.................	0	0	0	0	$0 \cdot 1$	34	$6 \cdot 4$	$8 \cdot 3$	$7{ }^{\circ}$	$6 \cdot 7$	49	0.6	0	0	0	0	0
February	0	0	0	0	$2 \cdot 9$	57	7.8	$10 \cdot 3$	$6 \cdot 3$	74	59	23	$0 \% 9$	0	0	0	0
March	0	0	0	14	$6 \cdot 6$	$8 \cdot 9$	II'5	$10 \cdot 8$	$8 \cdot 9$	$8 \cdot 2$	$8 \cdot 9$	$10 \cdot 5$	$6 \cdot 6$	O'I	0	0	0
April	0	23	$6 \cdot 5$	9.5	12.9	II'I	I 1.6	128	13.8	13.9	13.8	14.2	11.6	$8 \cdot 5$	30	0	0
May	\bigcirc	I'9	6.9	9'1	9.8	$9 \cdot 6$	10.4	10.5	11'9	12*8	115	9.8	$7{ }^{\circ} 9$	5.6	72	20	0
June	I. 6	$4^{\circ} 0$	$7{ }^{\circ}$	99	10'1	$12 \cdot 3$	10.9	12.6	12.3	143	$14^{\circ} \mathrm{I}$	13.3	14.6	12.4	94	333	\bigcirc
July	I'5	74	$8 \cdot 4$	10%	13*3	$12{ }^{\circ}$	II'9	134	12.9	15°	149	15.6	14.9	$12 \cdot 8$	$8 \cdot 9$	24	0
August	0	I 2	41	$6 \cdot 2$	$10^{\circ} 0$	$10 \cdot 7$	13.5	$14^{\circ} \mathrm{O}$	147	16.1	15\%2	12.4	II'I	$10^{\circ} 0$	$6 \cdot 8$	0.6	0
September	0	0	I'3	$7{ }^{\circ}$	12.0	14.5	13.0	II'O	10.8	$13^{\circ} 0$	11.2	12.4	$8 \cdot 7$	$8 \cdot 7$	0	0	0
October.	0	\bigcirc	0	0.9	$6 \cdot 3$	10*1	$7 \cdot 5$	10.6	12.3	$9 \cdot 8$	75	5.4	I•3	0	0	\bigcirc	0
November	0	0	0	0	I 2	$6 \cdot 7$	$8 \cdot 3$	77	$9 \cdot 5$	$9 \cdot 6$	$8 \cdot 8$	3.6	0.1	0	0	0	0
December	0	0	0	0	$0 \cdot 2$	54	11.8	12.8	12.3	$9 \cdot 8$	78	0	0	0	0	0	0
Total	$3 \cdot 1$	$16 \cdot 8$	$34^{\circ} 2$	54.2	85.4	1104	124.6	134.8	132.9	136.6	124.5	100:I	777	$5^{8 \cdot 1}$	$35 \cdot 3$	$8 \cdot 3$	0

OBSERVATIONS OF UPPER CLOUDS (Continued).						
Date.	G. M. 'T.	Cloud Direction.	Velocity.$(0-6)$	Wind.		Direction of Lr.Clds.
				Direction.	$\begin{aligned} & \text { Force. } \\ & (0-12) . \end{aligned}$	
May 6	4 p.m.	W.	2	W.N.W.	I	W.
,, 6	6 p.m.	W.	2	W.N,W.	I	W.
, 7	Noon.	S.	1	S.W.	2	N.W.
" 7	2 p.m.	S.S.E.	2	W.N.W.	1	N.W.
" 2I	4 p.m.	W.	3	W.	2	W.
" 22	$9 \mathrm{a} . \mathrm{m}$.	E.	2	N.E.	I	E.
,, 26	$3.30 \mathrm{p} . \mathrm{m}$.	S. by E.	2	W.	I	W.
June 4	$9.30 \mathrm{a} . \mathrm{m}$.	N.N.E.	3	S.E.	I	N.E.
" 5	9 a.m.	N.	2	E.N.E.	I	N.
" 5	$9.30 \mathrm{a} . \mathrm{m}$.	E.	2	S.E.	I	$\stackrel{\text { E. }}{\text { N }}$
, 6	6 p.m.	N.E.	2	W.N.W.	2	N.W.
", 7	6 p.m.	N.E.	1	W. by S.	1	N.E.
, 13	7 p.m.	S.	2	W.	2	N.W.
, 19	1 p.m.	N.N.W.	1	N.	1	N.W.
", 26	4 p.m.	N.N.E.	2	W. by N.	2	W.
", 28	Noon.	N.E.	1	W. by N.	1	W. W .
", 28	$2 \mathrm{p.m}$.	N.N.E.	1	W. by N.	I	N.W. N.W.
July 4	$2.30 \mathrm{p.m}$.	W.S.W.	1	W.	3	...
" 7	4 p.m.	N.W.	2	W. by N .	2	w
, 10	$6.30 \mathrm{p} . \mathrm{m}$.	S.S.W.	2	W.N.W.	1	W.
, 15	$11.15 \mathrm{a} . \mathrm{m}$.	W.	I	W. by N.	4	W.
, 15	3 p.m.	N.N.E.	1	W.	5	W.
, 18	II a.m.	W. by S.	2	S.	5	S.
19	1.30 p.m.	N.	2	W. by S.	1	W.S.W.
" 20	$7.30 \mathrm{a} . \mathrm{m}$.	E.N.E.	2	S.	1	S. W.
" 22	9 a.m.	S.S.W.	3	S.	6	S.S.W.
Au, 28	8 a.m.	S.S.E.	2	W.S.W.	1	N.W.
August 2	$1.30 \mathrm{p} . \mathrm{m}$.	W. by S.	2	W.N.W.	4	W.S.W.
,' 2	6 p.m.	S.	I	N. W. byW.	3	W.S.W.
" 3	II a.m.	W.	I	W.	2	W.
, 4	2 p.m.	N.W.	I	N.E.	0	N.W.
" 7	$3.30 \mathrm{p.m}$.	S.E.	2	W.	4	W.S.W.
$\cdots \quad 15$	Noon.	W.	1	S.S.W.	3	W.
", 17	8 a.m.	S. by E.	2	N.W.	3	W.
Sept. 24	$6.30 \mathrm{p.m}$.	N.N.E.	I	N.E. by N.	I	W. N.W.
", 9	II a.m. $8 \mathrm{a} . \mathrm{m}$.	N.N.E.	2	E. by N. S.S.W.	1	S.W.
, 10	5.30 p.m.	W.N.W.	1	W. by S.	1	W.N.W.
" 14	2 p.m.	N.E.	2	W. by N.	1	W.
" 14	4 p.m.	E.N.E.	3	N.	2	
" 16	4 p.m.	N.W.	2	E. by S.	1	E.
O" 22	$3 \mathrm{p} . \mathrm{m}$.	W.S.W.		N.E.	1	N.E.
Oct. 2	8 a.m.	W.	2	W.S.W.	I	N.W.
', 14	4 p.m.	N. by E.	2	W.S.W.	1	S.E.

OBSERVATIONS OF UPPER CLOUDS (Continued).

Date.	G. M. 「.	Cloud Direction.	$\begin{aligned} & \text { Velocity. } \\ & (0-6) . \end{aligned}$	Wind.		Direction of Lr. Clds.
				Direction.	$\begin{gathered} \text { Force. } \\ (0-12) . \end{gathered}$	
Oct. 22	$7.30 \mathrm{a} . \mathrm{m}$.	E.S.E.	2	W.S.W.	0	S.W.
,, 22	$9 \mathrm{a} . \mathrm{m}$.	E.	1	N.N.W.	0	E.
,", 23	II a.m.	E. by S.	3	E.N.E.	0	S.E.
" 27	4.35 p.m.	N.	2	E.	0	N.N.E.
,', 28	4 p.m.	${ }_{W} \mathrm{~S}$.	2	N.E.	. 1	E. W. by S .
Nov. 7	$9 \mathrm{a} . \mathrm{m}$.	W. by S.	2	$\stackrel{\text { W. }}{\text { N }}$	1	W. by S . E.N.E.
, 11	2 p.m.	E.N.E.	3	N. by E.	0	$\begin{aligned} & \text { E.N.E. } \\ & \text { W. } \end{aligned}$
, 317	$7.30 \mathrm{a} . \mathrm{m}$.	S. by E. S.S.W	I	S. by W.	0	W.
Dec. ${ }^{3}$	1 3 p.m. 3	S.S.W. N.E.	I	N.W.by ${ }_{\text {N.W }}$	2	
Dec. 2	$\begin{aligned} & 3 \text { p.m. } \\ & 11.30 \mathrm{a} . \mathrm{m} . \end{aligned}$	N.N.W.	2	N.W.by N.	I	N.W.
", 6	$10 \mathrm{a} . \mathrm{m}$.	N.W.	1	S.W.	2	\ldots
,, 13	2 p.m.	E.	2	N.E. by N.	I	+
, 16	$2.30 \mathrm{p.m}$.	E.S.E.	3	N.N.E.	I	N.W.

AGRICULTURAL NOTES.

January was dull, wet and cold. No flowers were in blossom during the month. And the ground was too heavy for working.

February : Cold, with very little sun. A little ploughing was done towards the close in some places. Very few flowers were out.

March. -The first half of the month was cold and the ground covered with snow. The latter portion was wet and dull. Agricultural operations were very much interrupted by rain towards the close of the month.

April.-The weather was rather unsettled, but bright and sunny. Vegetation was late, yet things were looking better at the end of the month. Oats were sown in most places by the end of the third week, and a few of the green crops were in the ground before the close of the month.

May.-Although the first few days were fine and warm, the month generally was a bad one for farming, owing to wet and cold. Owing to the broken weather, some of the green crops were not sown before the last few days.

June was at the commencement cold and growth was retarded. The last two weeks were warmer and brighter. Fruit was very late, yet the prospect was better than could have been expected after the unpromising character of the previous month. With the exception of apples and pears there was a good quantity of blossom on the trees.

July opened with fine bright weather, and hay looked well. Oats were very poor. Potatoes showed no sign of disease. The latter part of this month was wet and retarded hay-making.

August was dull and cloudy during the greater part of the month. Hay was got in by about the middle of the month. A few oats were cut towards the close of the last week.

September.-A warmer month. Wheat was cut about the 14th, and housed by the 29th generally. Oats were all gathered by the 23 rd, but only yielded a poor crop.

October.-The commencement of the month was fine, but the middle stormy. Apples were gathered towards the end of the month. Pears were almost a failure. Potatoes were begun on the 6th and yielded a fair crop with very little disease. Barley was cut about the 20th. Crops looked well.

November was mild and rather rainy. A great number of wild flowers were in blossom until the end of the third week. Some wheat was sown early in the month, but was not quite all in the ground at the end. All the green crops were gathered in by about the 25 th.

December was very cold with much snow. Very little work could be done, and in one or two places the wheat was not quite in the ground by the end of the year.

OBSERVATIONS OF TREES AND SHRUBS.							
FOREST TREES, ETC.			FRUIT TREES, ETC.			SHRUBS.	
Name.	In Bud.	In Leaf.	Name.	In Blossom.	Ripe,	Name.	In Blossom.
Field Elm Oak Sycamore Lime Ash Beech Horse Chestnut	May 1oth May 17th Ap. 25th Ap. 19th May 1oth Ap. 29th Ap. 21st	May 27 th May 28th May 17th May 18th May 28th May 16th May 4th	Apple Pear Red Currant Black Currant Strawberry Gooseberry	May 9th Mar. 29th Ap. 25th Ap. 31st May roth Ap. 20th	Aug. 20th Aug. 28th July 23rd July 25th July 14th Aug. 25th	Lilac Laburnum Red Flowering Currant Dog Rose Guelder-Rose Woodbine Elder Yellow Azalea	May 25th May 29th Ap. 17th June 28th June 2Ist June 14th June 17th May 15th

DATES OF THE FLOOWERING OF PLANTS AT STONYHURST IN 1886.

RANUNCULACEA:
Anemone nemorosa
Ranunculus Ficaria R. acris
R. repens
R. bulbosus
R. auricomus
R. lingua
R. hederaceus

Caltha palustris
Trollius Europæus
Aquilegia vulgaris
NYMPHAEACEAE.
Nymphæa alba Nuphar lutea

PAPAVERACEA.
Papaver rhæas
Chelidonium majus
CRUCIFERF..
Nasturtium officinale
Arabis hirsuta
Cardamine amara
C. pratensis
C. hirsuta

Sisymbrium officinale Alliaria officinalis
Brassica campestris
Cochlearia Armoracia
C. officinalis

RESEDACEAE.
Reseda luteola
violacee.
Viola canina
V. odorata
V. palustris
polygalacef.
Polygala vulgaris
CARYOPHYLLACEE.
Lychnis vespertina
L. diurna

Wood anemone
Lesser celandine
Meadow crowfoot
Creeping buttercup
Bulbous buttercup
Wood crowfoot
Great spearwort
Ivy-leaved crowfoot Marsh marigold
Globe flower
Columbine

White water lily
Yellow water lily

Red poppy
Common celandine

Common watercress
Hairy rock cress
Large bitter cress
May flower
Hairy bitter cress
Hedge mustard
Garlic mustard
Common wild navew
Horse radish
Scurvy grass

Horse radish	
Scurvy grass	April 24
Dyer's rocket	June 10
Dog violet Sweet violet Marsh violet	April 14 March 30 May 13
Milkwort	May 30
Evening campion Red robin	June 8 May 5

DATES OF THE FLOWERING OF PLANTS AT STONYHURST IN 1886 (continued).		
L. Githago	Corn cockle	July 11
L. Flos cuculi	Ragged robin	June 15
Sagina procumbens	Procumbent pearlwort	May 30
Silene inflata	Bladder campion	July 3
Arenaria serpyllifolia	Thyme-leaved sandwort	June 76
A. trinervis	Three-nerved sandwort	May 16
Cerastium vulgatum	Mouse-ear chickweed	April 15
Stellaria aquatica	Water starwort	May 22
S. nemorum	Wood starwort	May 15
S. graminea	Lesser starwort	May 26
S . holostea	Great starwort	April 29
S. media	Chickweed	March 15
S. uliginosa	Bog starwort	May 23
HYPERICACEA. Hypericum perforatum H. quadrangulum H. humifusum H. pulchrum H. hirsutum		
	Common St. John's wort	July 11
	Square-stalked St. John's wort	July 14
	Trailing St. John's wort	July 17
	Slender St. John's wort	July 19
	Hairy St. John's wort	July 13
LINACEF.		
Linum catharticum	Cathartic flax	June 13
Malva sylvestris		
	Common mallow	June 10
GERANIACEEA,		
G. Phæum	Dusky crane's-bill	May ${ }^{16}$
G. sylvaticum	Wood crane's-bill	May 18
G. pratense	Meadow crane's-bill	June 17
G. Robertianum	Herb Robert	May 24
G. lucidum	Shining crane's-bill	May 16
Oxalis acetosella	Wood sorrel	April 19
PAPILIONACEE.		
Ononis arvensis	Rest harrow	July 20
Medicago lupulina	Black medic	June 10
Trifolium pratense	Purple clover	May 27
T. repens	White clover	June 10
T. procumbens	Lesser clover	June 8
Lotus corniculatus	Bird's-foot trefoil	June 8
Vicia cracca	Tufted vetch	June 2

DATES OF THE FLOWERING OF PLANTS AT STONYHURST IN 1886 (continuted).

STELLATAE.
Galium cruciatum
G. veruin
G. palustre
G. uliginosum
G. saxatile
G. aparine

Asperula adorata

VALERIANEA.
Valeriana dioica
V. officinalis

DIPSACEA.
Scabiosa arvensis

COMPOSITA.
Eupatorium cannabinum
Tussilago farfara
Tussilago petasites
Chrysanthemum leucanthemum
A. millefolium

Gnaphalium uliginosum
Senecio vulgaris
S. jacobæa

Arctium lappa
Carduus Lanceolatus
A. acanthoides
C. palustris

Centaurea nigra
Leontodon hispidus
Hypochæris radicata Sonchus oleraceus
Taraxacum dens-leonis
Hieracium pilosella
H. murorum
H. umbellatum

Crepis virens
C. paludosa

Lapsana communis
Campanulacee.
Campanula latifolia
C. rapunculoides
C. rotundifolia

Crosswort
Yellow bedstraw
Marsh bedstraw
Swamp bedstraw
Heath bedstraw
Cleavers
Sweet woodruff

Marsh valerian Common valerian

Field scabious

Hemp agrimony
Common colt's-foot
Butterelbur
Ox-eye daisy
Common yarrow
Marsh cudweed
Groundsel
Ragwort
Common burdock
Spear thistle
Welted thistle
Marsh thistle
Black knapweed
Common hawkbit Cat's-ear
Common sow thistle Common dandelion
Mouse-ear hawkweed
Wall hawkweed
Smooth-leaved hawkweed
Smooth crepis
Marsh crepis
Nipplewort

Giant bell-flower Creeping bell-flower Harebell

May 8

May 20
June 14
June 15
May 15

May 15
July 6

June 27

March 22
April 5
June 21
June 29
July 22
Feb. 13
July 20
July 28
July 17
June 29
June 29
July 5
June 17
June ${ }^{10}$
June 28
April 19
June 6
June 20
July 20
June 28
June 21
June 25

July 29
July 28
July 17

DATES OF THE FLOW	NG OF PLANTS AT 86 (continued).	YHUR
ERICACEA,		
Vaccinium myrtillus	Bilberry	April 30
Erica tetralix	Cross-leaved heath	July 1
PRImulacefe.		
Primula vulgaris	Common primrose	Mar. 28
P. veris	Cowslip	May 9
Lysimachia vulgaris	Great yellow loosestrife	May 25
L. nemorum	Yellow pimpernel	May 16
Anagallis arvensis	Pimpernel	July 5
IEntibulariaceat.		
Pinguicula vulgaris	Common butterwort	June 27
APOCYNACEA: Vinca minor		
Vinca minor	Lesser periwinkle	April 6
Menyanthes trifoliata	Common buckbean	June 26
Polmmoniacere.		
Polemonium cœeruleum	Jacob's ladder	June 3
CONVOLVUUACEA.		
Convolvulus sepium	Iarge convolvulus	July 25
boraginacese.		
Myosotis sylvatica	Forget-me-not	April 24
M. arvensis	Field myosote	May 25
Symphytum officinale	Common comfrey	June 8
Borago officinalis	Common borage	June 17
SOI.ANACEAE.		
Solanum dulcamara	Bittersweet	June 23
Orobanchaceat.		
Lathrea squamaria	Toothwort	April 22
SCROPHULARINEA:.		
Verbascum thapsus	Great mullein	June 29
Scrophularia nodosa	Common figwort	June 17
S. aquatica	Water figwort	June 28
Mimulus luteus	Yellow mimulus	June 15
Linaria cymbalaria	Ivy-leaved toadflax	May 18

DATES OF THE FLOWERING OF PLANTS AT STONYHURST IN 1886 (continued).

Digitalis purpurea	Foxglove	June 21
Veronica serpyllifolia	Thyme-leaved speedwell	May 10
V. officinalis	Common speedwell	June 22
V. anagallis	Water speedwell	June 10
V. beccabunga	Brooklime speedwell	June 4
V. chamædrys	Germander speedwell	May 22
Bartia odontites	Red bartsia	July 22
Euphrasia officinalis	Eyebright	July 20
Rhinanthus crista galli	Yellow rattle	June 8
Pedicularis sylvatica	Lousewort	May 22
Melampyrum pratense	Cow-wheat	July :
labiate.		
Calamintha Clinopodium	Wild basil	July 13
Nepeta Glechoma	Ground ivy	April 24
Prunella vulgaris	Self-heat	June 20
S. sylvatica	Hedge woundwort	June 21
Lamium purpurem	Purple dead-nettle	April 29
Ajuga reptans	Bugle	May 20
plantaginaceat.		
Plantago major P. lanceolata	Greater plantain Ribwort	June 15 May 9
CHENOPODIACIAE. Chenopodium bonus Henricus Atriplex patula	Good King Henry Common orache	June 10 July 18
Polygonacefe.		
Rumex obtusifolius	Broad dock	June II
R. R . crispus	Curled dock	June ${ }^{\text {July } 17}$
R. conglomeratus R. acetosa	Clustered dock Sorrel	May 23
Polygonum aviculare	Knotgrass	July 2
P. bistorta	Snakeweed	June 8
P. persicaria	Common persicaria	July 7
P. convolvulus	Black bindweed	July 19
EUPHORBIACEEA.		
Mercurialis perennis	Dog's mercury	March 28
urticaceet.		
Urtica dioica	Common nettle	June 17
aroideze.		
Arum maculatum	Common arum	May ${ }^{20}$

DATES OF THE FLOWERING OF PLANTS AT STONYHURST IN 1886 (continued).

THE UPPER GLOWS IN 1886.

The glow encircling the sun, which has been described in previous reports, diminished very much in intensity during the year. It was often so faint that no trace could be detected, except when the sun was near the horizon.

The fore and after glows were almost as frequent as in 1885, and very similar in every respect. The following are the dates on which they were observed :-

January 7, 8, 9, II, 13. 22.
February 4, 6, 7.
March 5, 6, 11, 12, 17, 18.
April 3, 8, 15, 17, 19.
May 14, 15, 16, 18, 19, 21, 22, 31.
June 4, 5, 6, 7, 16, 18, 20, 26, 29, 30.
July $1,8,9,12,15$.
August 15, 24, 28.
September 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27, 28.
October 23, 24, 25, 26.
November, one or two days not noted, 30.
December , ", 3 r.
On July 15 and 16 the moon was encircled by a similar glow.
The edges of the clouds in the vicinity of the sun were strongly tinted with the colours of the spectrum on many occasions throughout the year.

Fitombly gitagretical Observations taken at the College ©blerbutorg, stomburst, 1886.

The Horizontal, Vertical, and Total Forces are calculated to English measure; one foot, one second of mean solar time, and one grain being assumed as the units of space, of time, and of mass.

The Vertical and Total Forces are obtained from the absolute measures of the Horizontal Force and of the Dip.

In the observations of Deflection and Vibration, taken each month for absolute measure of Horizontal Force, the same magnet has always been employed.

The moment of inertia of the magnet with its stirrup, for different degrees of temperature, and the co-efficients in the corrections required for the effects of temperature and of terrestrial magnetic induction on the magnetic moment of the magnet, were determined at the Kew Observatory by the late Mr. Welsh.

The moment of inertia of the magnet with its stirrup, using the grain and foot as the units of mass and of linear measure is 5.27303 . Its rate of increase for increase of temperature is 0.00073 for every 10° of Fahr.

The weight of the magnet with its stirrup is approximately 825 grains, and the length of the magnet is nearly 3.94 inches. The moment of inertia was determined, independently of the weight and dimensions, by the method of vibration, with and without a known increase of the moment of inertia.

The temperature corrections have always been obtained from the formula $q\left(t^{\circ}-35^{\circ}\right)+q^{\prime}\left(t^{\circ}-35^{\circ}\right)^{2}$, where t° is the observed temperature and $35^{\circ} \mathrm{Fahr}$. the adopted standard temperature. The values of the coefficients q and q^{\prime} are respectively 0.0001128 and 0.000000436 .

The induction co-efficient μ is $0^{\circ} 000244$,

The correction for error of graduation of the Deflection bar at 1.0 foot is +0.00004 ft , at $1 \cdot 3+0.000064 \mathrm{ft}$.

The observed times of vibration are entered in the Table without corrections.

The time of one vibration has been obtained each month from the mean of twelve determinations of the time of 200 vibrations.

The angles of deflection are each the mean of two sets or readings.
In deducing from these observations the ratio and product of the magnetic moment m of the magnet, and the earth's horizontal magnetic intensity X , the induction and temperature corrections have always been applied, and the observed time of vibration has been corrected for the effect of torsion of the suspending thread; but no correction has been required for the rate of the chronometer, or for the arc of vibration, the former having been always under 2s. and the latter never over 50^{\prime}.

The average deflection of the magnet caused by a twist of the torsion circle through 90°, has been about 7.5 of arc.

In the calculations of the ratio $\frac{m}{\mathrm{X}}$, the third and subsequent terms of the series $\mathrm{I}+\frac{\mathrm{P}}{r^{2}}+\frac{\mathrm{Q}}{r^{4}}+\& \mathrm{c}$., have always been omitted.

The value of the constant P was found to be 0.002508 .
The Declination observations have been taken once a week. Each reading has been corrected by the photographic curves for all irregular disturbances, as well as for daily and monthly range.

OBSERVATIONS OF DEFLECTION FOR ABSOLUTE MEASURE OF HORIZONTAL FORCE.					
Month.	G. M. T.	$\left\|\begin{array}{c} \text { Distances of } \\ \text { centres of } \\ \text { Magnets. } \end{array}\right\|$	$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture. } \end{aligned}$	Observed Deflection.	$\log _{\frac{m}{\mathrm{x}}}$
January ...	$\begin{aligned} & \text { D. H. м. } \\ & \text { I7th...II } 20 \text { a.m. } \\ & \text { "...II } 50 \text { a.m. } \end{aligned}$	$\begin{gathered} \text { FOOT. } \\ 10 \\ 1.3 \end{gathered}$	46×4 $46 \cdot 3$		$\begin{aligned} & 9.06369 \\ & 9.06243 \end{aligned}$
February...	$\begin{gathered} \text { 20th...II } 21 \text { a.m. } \\ \text { "...II } 40 \text { a.m. } \end{gathered}$	10 1.3	$\begin{aligned} & 44^{\circ} 2 \\ & 45^{\circ} \end{aligned}$	$\begin{array}{rrr}13 & 20 & 35 \\ 6 & 1 & 48\end{array}$	$\begin{aligned} & 9 \cdot 06373 \\ & 9 \cdot 0632 \mathrm{I} \end{aligned}$
March	$\begin{aligned} & \text { 19th...Ir } 55 \text { a.m. } \\ & \text { ". ... o } 36 \text { a.m. } \end{aligned}$	1.0 1-3	47.5 47.6	$\begin{array}{rrr}13 & 20 \\ 6 & 10 \\ & 1 & 35\end{array}$	$\begin{aligned} & 9.06385 \\ & 9 \cdot 06316 \end{aligned}$
April	18th... o 15 am . "... 040 a.m.	$\xrightarrow{1} 10$	$54 \cdot 6$ 55.6	13 19 6 19 17	$\begin{aligned} & 9.06410 \\ & 9.06336 \end{aligned}$
May........	$\begin{aligned} & \text { 22nd... o ro a.m. } \\ & \quad, \ldots \text { o } 41 \text { a.m. } \end{aligned}$	10 1.3	$\begin{aligned} & 53.4 \\ & 54.0 \end{aligned}$	$\begin{array}{rrrr}13 & 19 & 55 \\ 6 & 1 & 30\end{array}$	$\begin{aligned} & 9 \cdot 06399 \\ & 9 \cdot 06347 \end{aligned}$
June.........	20th...II 20 a.m. " ...II 41 a.m.	$\begin{aligned} & 100 \\ & 10 \end{aligned}$	$\begin{aligned} & 66 \cdot 1 \\ & 68 \cdot 4 \end{aligned}$	$\begin{array}{rrrr}13 & 20 & 17 \\ 6 & 1 & 28\end{array}$	$\begin{aligned} & 9 \cdot 06513 \\ & 9 \cdot 06454 \end{aligned}$
July	$\begin{aligned} & \text { 17th... } 1052 \mathrm{a} . \mathrm{m} . \\ & " \text {...n } 14 \text { a.m. } \end{aligned}$	$\begin{aligned} & 10 \\ & 103 \end{aligned}$	$\begin{aligned} & 65^{\circ} 2 \\ & 65^{\circ} \end{aligned}$	$\begin{array}{rrr}13 & 21 & 44 \\ 6 & 2 & 26\end{array}$	$\begin{aligned} & 9.06580 \\ & 9.06537 \end{aligned}$
August ...	$\begin{aligned} & \text { 22nd...II } 25 \text { a.m. } \\ & " \cdots \text { in } 41 \text { a.m. } \end{aligned}$	10 10	$\begin{aligned} & 55 \cdot 7 \\ & 56 \cdot 3 \end{aligned}$	$\begin{array}{rrrr}13 & 20 & 17 \\ 6 & 1 & 38\end{array}$	$\begin{aligned} & 9 \cdot 06442 \\ & 9.06376 \end{aligned}$
September		10 1.3	$\begin{aligned} & 58 \cdot 2 \\ & 58.6 \end{aligned}$	$\begin{array}{rrr}1318 & 10 \\ 6 & 0 & 59\end{array}$	$\begin{aligned} & 9.06344 \\ & 9.06320 \end{aligned}$
October ...		10 1.3	54.7 554	$\begin{array}{rrrr}13 & 19 & 25 \\ 6 & 0 & 47\end{array}$	$\begin{aligned} & 9 \cdot 06384 \\ & 9 \cdot 06276 \end{aligned}$
November	$\begin{array}{ccc} 15 \text { th.... II } & 3 & \text { a.m. } . \\ " & \ldots . & \text { o } \\ 26 & \text { a.m. } \end{array}$	10 1.0	50.6 50.8	1318 6 6	$\begin{aligned} & 9.06318 \\ & 9.06225 \end{aligned}$
December.	$\begin{aligned} & \text { 19th... II } 20 \mathrm{a} . \mathrm{m} . \\ & ", \ldots \text { II } 4^{2} \mathrm{a} . \mathrm{m} . \end{aligned}$		48% $48 \cdot 3$	13 18 2 6 1 7	$\begin{aligned} & 9.06263 \\ & 9.06267 \end{aligned}$

m represents the Magnetic Moment of the Deflecting Magnet. X represents the Earth's Horizontal Magnetic Intensity.

DIP OBSERVATIONS.				MAGNETIC INTENSITY.			
Month.	G. M. T.		Dip.	$\begin{array}{\|c\|} \text { x. or Hori- } \\ \substack{\text { zontal } \\ \text { Force. }} \end{array}$	$\begin{gathered} \text { Y, or } \\ \text { Vertical } \\ \text { Force. } \end{gathered}$	$\underset{\text { Torcal }}{\text { Tot }}$	
January.	$\begin{gathered} \text { D. H. M. } \\ \text { 18th....io } 35 \text { a.m. } \\ \ldots \ldots \text { aro } 46 \text { a.m. } \end{gathered}$	1	$\begin{array}{ccc} 0_{0}^{0} & 12 & 12 \\ 69 & 10 & 47 \end{array}$	$3 \cdot 6873$	9•7031	103810	
February		1	$\begin{array}{ccc} 69 & 11 & 0 \\ 69 & 12 & 24 \end{array}$	3.6842	9.6950	10•3691	
March ...	$\begin{array}{r} \text { 20th...IO } 35 \text { a.m. } \\ , \ldots \text { IO } 54 \text { a.m. } \end{array}$	$\begin{aligned} & \mathbf{I} \\ & 3 \end{aligned}$	$\begin{array}{lll} 69 & \text { II } 10 \\ 69 & \text { II } & 50 \end{array}$	3.6889	$9^{\prime} 7072$	10; 3847	
April ...		$\begin{aligned} & \mathbf{I} \\ & \mathbf{3} \end{aligned}$	691215 691323	$3 \cdot 6879$	$9 \cdot 7158$	10.3916	
May......	$\begin{array}{r} \text { 23rd...Io 41 a.m. } \\ , \quad \ldots \text { Io } 59 \text { a.m. } \end{array}$	$\begin{aligned} & \mathbf{I} \\ & 3 \end{aligned}$	$69 \quad 922$ 691217	3.6914	9`7072 & 10.3870 \\ \hline June...... & & \[\begin{aligned} & \mathbf{I} \\ & 3 \end{aligned} \] & \[\begin{array}{llr} 69 & 13 & 20 \\ 69 & 10 & 8 \end{array} \] & 3.6862 & 9•7002 & 10'374 \({ }^{8}\) \\ \hline July & \[\begin{array}{r} \text { 18th...Io } 39 \text { a.m. } \\ \text { "...Io } 57 \text { a.m. } \end{array} \] & \[\begin{aligned} & \mathbf{I} \\ & \mathbf{3} \end{aligned} \] & \begin{tabular}{l} 6912 1о \\ 691137 \end{tabular} & \(3 \cdot 6814\) & 9.6897 & 10; 3660 \\ \hline August. & \[\begin{array}{r\|r	} 23 \mathrm{rd} . . .11 & 15 \mathrm{a} . \mathrm{m} . \\ " & \ldots \text { II } 40 \mathrm{a} . \mathrm{m} . \end{array} \] & \[\begin{aligned} & \mathbf{r} \\ & \mathbf{3} \end{aligned} \] & \[\begin{gathered} 69 \\ 69 \\ 69 \end{gathered} \text { II }_{30} 30 \] & 3.6841 & 9`7096	10'3911
Sept. ...		$\begin{aligned} & \mathbf{I} \\ & \mathbf{3} \end{aligned}$	$\begin{array}{rrr} 69 & 10 & 22 \\ 69 & 9 & 15 \end{array}$	3.6884	9.6904	$10 \cdot 3690$	
October.		$\begin{aligned} & \mathbf{I} \\ & 3 \end{aligned}$	$\begin{array}{lll} 69 & 9 & 15 \\ 69 & \text { II } & 13 \end{array}$	3.6948	9•716I	10 3766	
Nov. ...	$\left\lvert\, \begin{array}{r} 16 \mathrm{th} \ldots 1023 \mathrm{a} . \mathrm{m} . \\ " \\ " \end{array}\right.$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{array}{rrr} 69 & 10 & 55 \\ 69 & 9 & 10 \end{array}$	$3 \cdot 6964$	9.7136	103939	
Dec. ...	$\begin{array}{r} \text { 20th...II } 10 \text { a.m. } \\ \text { " } \ldots \text { II } 55 \text { a.m. } \end{array}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$69 \text { 10 } 8$ $69 \quad 945$	$3 \cdot 6927$	9•6993	$10 \cdot 3882$	
Means...		..	69 II 5	3.6886	9:7126	$10 \cdot 3828$	

61

DECLINATION		OBSERVATIONS		(Continued.)	
		Uncorrected.		Corrected.	
Month.	G. M. T.	Observation.	Monthly Mean.	Observation.	Monthly Mean.
July August September October... November December	D. \quad H. M. 26th ... $9 \quad 6$ a.m. 2nd... 95 a.m. 9th... 9 15 a.m. I7th... 857 a.m. $23 \mathrm{rd} . . .852 \mathrm{a} . \mathrm{m}$. 3oth... 97 a.m. 6th ... $830 \mathrm{a} . \mathrm{m}$. I3th ... $842 \mathrm{a} . \mathrm{m}$. 2Ist ... 854 a.m. 27th... 98 a.m. 4th... 93 a.m. 12th... 9 o a.m. 18th... 97 a.m. 25th... 9 II a.m. Ist... 858 a.m. 9th... 9 a.m. 15th... 9 a.m. 22nd .. 96 a.m. 29th ... 9 10 a.m. 6th... $9 \quad 7 \mathrm{am}$. 13th ... 9 io a.m. 2Ist ... 9 I3 a.m. 27th... 98 a.m.	\therefore $\prime 2$ 38 3 37 18 40 20 39 19 40 15 39 37 38 29 38 30 39 15 38 25 37 0 38 17 37 16 36 31 38 17 37 30 37 25 38 36 37 19 36 6 37 32 36 10 37 28	$\begin{array}{lllll} 19 & 39 & 21 \\ 19 & 39 & 22 \end{array}$		
Yearly mean			19395		$1941{ }^{1}$

MAGNETIC DISTURBANCES.

January.-The first movement of any importance was a decrease of W. Declination between 10.45 and Ir. 48 p.m. on the ist, immediately followed by a similar increase, and the magnets were continually disturbed, but not to any great extent, between noon of the 2nd and midnight of the 4 th. The similarity in the oscillations of the Declination magnet at about $6 \mathrm{p} . \mathrm{m}$. on three successive days, namely on Jan. 3, 4, and 5, is rather striking. A short but violent magnetic storm began on the morning of the 9 th, and was at its height between 6 and io p.m. the same day. An increase of more than $\mathrm{I}^{\circ} 1 \mathrm{I}^{\prime} 37^{\prime \prime} \cdot 2$ in the W. Declination took place between 8.35 and 8.43 p.m. The Horizontal Force Magnet was very much disturbed by this storm. A considerable diminution occurred between 9 and io a.m., but the most rapid change was in the evening between 6 and 7 , the intensity of this component of the magnet force increasing by 0.01527 (British units) from 6.36 to 6.45 , and then decreasing 0.02326 before 70^{\prime} clock. Another rather important movement occurred about two hours later. The Vertical component was scarcely affected before $6 \mathrm{p} . \mathrm{m}$., but the change then became very rapid. The disturbance recorded on the V.F. curve consisted almost entirely of an increase of intensity. The maximum was reached at $6.52 \mathrm{p} . \mathrm{m}$. and the minimum at 8.38 p.m., the total range being o.00490 (British units). On the 15 th from 2 p.m. until ${ }^{2}$ a.m. the following day there was a slight increase of the V.F., and similarly on the 19th, but in a less degree. Between 3 p.m. on the 19th and the evening of the 22nd the Declination disturbances were
frequent and well marked. The mornings of the 29th and 30th, and the night of the 30 th, were rather unsettled periods, but nothing occurred calling for special notice.

February. - This month commenced quietly, but the curves became somewhat irregular from $8 \mathrm{a} . \mathrm{m}$. on the 5 th until the following midnight. An Easterly movement of $23^{\prime} 52^{\prime \prime} \cdot 4$ commenced at 7.10 p.m. on the IIth, whilst the H.F. was rather abnormal from 7 to II p.m., and the V.F. diminished slightly early the next morning, and then increasing, remained above its mean value during the greater part of the following afternoon. Both Declination and H.F. were disturbed during the night of the 16 th, and the V.F. was rather higher than the mean in the course of the afternoon. The 18 th and 19 th showed signs of disturbance both during the afternoon and at night. The irregular movements during the late hours of the 2Ist were exaggerated on the 22nd in both Declination and H.F., and this could be traced, though in a less degree, on the V.F. Curve. The month ended with a long steady period.

March. -The absence of all disturbances was very marked until the afternoon of the 15 th, and no movements of any great magnitude occurred previous to the evenings of the 18th and 19th. Between 8.40 and $9.8 \mathrm{p} . \mathrm{m}$. on the 19th the needle moved Westward through an arc of $35^{\prime} 15^{\prime \prime} \cdot 4$, which was the most rapid movement during the disturbance. The H.F. Magnet was similarly affected, being most disturbed on the 19th, but the V.F. does not seem to have felt the action of the disturbing force on either the 18th or 19th, On the 20th the needle trembled a good deal in the middle of the day, and the two succeeding nights were rather stormy. The position of the needle was considerably West of its normal position during the early afternoon of the 23 rd , and somewhat East during the night of the 26th. During the afternoon of the 27 th the V.F. Curve was a little irregular, and there was a slight diminution of the component of the magnetic intensity towards midnight : this latter change was repeated in an exaggerated form on the 29th at $2 \mathrm{a} . \mathrm{m}$. The great storm of the year commenced very suddenly at 7.5^{8} a.m. on the 30 th with an irregular movement of the V.F. needle, but there had previously been a series of small oscillations of the Declination Magnet, which developed shortly after 8 a.m. into a violent and protracted
storm. The swing of the needle was very extended and very rapid, moving Westward through an arc of $\mathbf{1}^{\circ} \mathbf{I} 3^{\prime} 24^{\prime \prime} \cdot 6$ between $\mathbf{1 0 . 1 2}$ a.m. and $\mathbf{1 0 . 2 2}$. The total range was more than $\mathrm{I}^{\circ} 34^{\prime} \mathrm{I}^{\prime \prime}$ between 8.21 and 9.30 , when the point of light left the sensitized paper whilst moving Eastward. The oscillations were very extended and rapid during the afternoon and night of the same day, the increase of West Declination from $10.14 \mathrm{p} . \mathrm{m}$. to 10.20 being $44^{\prime} 45^{\prime \prime} \cdot 7$, and this was immediately preceded and followed by other oscillatory movements rather less in extent but equal in rapidity. The H.F. Magnet was not much affected till $8.22 \mathrm{a} . \mathrm{m}$. on the 30 th; but then it began to swing backwards and forwards very violently, the total range between 9.5 and 10.20 a.m. being ${ }^{\circ}{ }^{\circ} 04143$, and again the same day 0.03352 between 6.8 and 10.8 p.m. The V.F. increased very rapidly at $5 \mathrm{p} . \mathrm{m}$. on the 30 th, and between 5.43 and 7.22 the ordinate was too great to be recorded on the cylinder. Between 9.45 and $10.0 \mathrm{p} . \mathrm{m}$. the Vertical Intensity diminished by $0 \cdot 00467$, and this was followed by a very rapid but not very extended oscillation. At $5 \mathrm{a} . \mathrm{m}$. on the 3 Ist the magnet was returning quietly to its normal position, but it was again greatly disturbed during the whole of the afternoon. The Total Range of the V.F. during the storm was more than 0.00801 , the minimum occurring just before midnight, and the maximum probably at about $6.33 \mathrm{p} . \mathrm{m}$. on the 30 th.

APRIL.-The great storm gradually abated on the $\mathbf{r s t}$. The magnet then remained quiet until the night of the 1 Ith, when irregularities began to appear about 8 p.m. The disturbing force continued at work until noon on the 15 th, but no very marked change of the Declination occurred except between II. 43 p.m. and I. $15 \mathrm{a} . \mathrm{m}$. on the night of the 14th, when the magnet moved $40^{\prime} 35^{\prime \prime \prime} \cdot 1$ towards the East in a double oscillation. The Declination needle was again disturbed during the afternoon of the 16 th and the four following nights, being more quiet during the day hours. The H.F. and V.F. curves shewed signs of the presence of a disturbing force for the four days following the IIth, and were in general rather irregular until the 21st, the H.F. being most affected during the afternoons. A rather rapid but tremulous motion of the Declination was observed on the morning of the 25th, and a marked oscillation of the needle between 1 a.m. and 2 on the 3oth.

May. - The movement of the needle on April 30th was repeated
about two hours later on May ist. From about noon on the 8th until noon of the 12th the magnet was never at rest, but the oscillations were seldom of any great extent. The H.F. was however much more irregular than usual on the first morning of the disturbance, and the V.F. was decreasing very rapidly at $2 \mathrm{a} . \mathrm{m}$. The total range of the V.F. during the night of the 8 th was 0.01869 , the maximum occurring at 8 a.m., and the minimum at 2.9 the next morning. The following days were generally somewhat disturbed, and between 2 and $5 \mathrm{a} . \mathrm{m}$. on the 18th the value of the V.F. was considerably below the average. From the 24th until the end of the month the magnets were very quiet, with the exception of the afternoon of the 27 th, when the H.F. shewed signs of the presence of a disturbing force.

J une.-The quiet period continued until the 12 th when some signs of a disturbance appeared on the curves. On the morning of the 17 th there was some irregularity, and again on the 18th. About II p.m. on the 21st a disturbance began which lasted for a day and a half. The V.F. gradually increased from noon until about 7 p.m. on the 22nd, and then quietly resumed its normal value. During the night of the 24 th there were some large irregular movements of the magnetic needle, but the remainder of the month was quiet.

July.-The morning of the 7th was a little irregular, and this continued for three days, after which the Declination Needle become remarkably quiet, and remained undisturbed to any considerable extent until the afternoon of the 27 th. The H.F. manifested the presence of a slight disturbing force during the afternoons of the 14th, 19th, 20th and 21st ; and the V.F. magnet oscillated slowly once during the afternoon of the $14^{\text {th }}$, and showed an increase of force on the 19th, 20th and 21st. A very unusual oscilliation, consisting of a single rapid movement towards the West, followed almost immediately by a return Eastward, occurred during the slight storm of the 27 th and 28 th, the needle moving through an arc of $55^{\prime} 3^{\prime \prime} \cdot 3$ between 10.24 and 10.35 p.m. on the 27 th. This was accompanied by a considerable decrease of the H.F., and the V.F. decreased so much as to throw the recording dot of light entirely off the recording cylinder, though not sufficiently to destroy the balance of the magnet.

August.-The first disturbance worth recording in this month was a rather rapid Easterly movement of the magnet between io and in p.m. on the 7 th. On the irth at about io p.m. a disturbance began which lasted with very little interruption until the evening of the 20th, but there was no very unusual oscillation during this long period. The slight storm, which began about $8 \mathrm{p} . \mathrm{m}$. on the 23rd, was most marked by the movements of the Declination magnet during the early hours of the $\mathbf{2 4 t h}$; the V.F. was diminished, but not to any considerable extent.

September.-The similarity between the magnetic curves during the late hours of the 9 th, 1oth, 11 th, and 12 th, is too striking to pass as accidental, but the movements of the Declination needle were not very extended. The V.F. increased considerably on each day at the same hours, and an increase was still perceptible on the 14th. During the remainder of this period the Declination needle was trembling continuously, and only came to rest about noon on the 15th. On the 20th disturbing forces were again at work, and the oscillations of the magnet during the night of the 21st were rather large and accompanied by an increase of V.F. The month closed with a slight disturbance, well shown on the V.F. curve.

Остовer.-From noon on the 6th the vibrations of the needle were unusually large, especially as night came on, the H.F. and V.F. being also strongly affected. This continued until the morning of the rith, being especially noticeable during the late hours of each day. The night of the 18th and the afternoon of the 21st were abnormal periods. An unusual movement towards the East took place between 7 and 9 p.m. on the 26 th, and the disturbing forces were active during the afternoons of the three following days.

November.-A storm commenced during the afternoon of the 2nd, which lasted until the morning of the 9th, although it was gradually subsiding on the 7 th and 8 th. The H.F. was most disturbed during the late hours of each day, and the V.F. moved more irregularly on the night of the 2nd than on any of the following days. The Declination curves between 4 and $7 \mathrm{p} . \mathrm{m}$. on the 9 th and between 3 and $6 \mathrm{p} . \mathrm{m}$. on the 1 ith were remarkably similar, the same movement being exaggerated in form on the 12th. The curves on the 12 th and 13 th were rather irregular, and
there was an Easterly movement between II p.m. and I a.m. on the 14 th, and another at about 8 p.m. on the 15 th. A slight storm began on the 23 rd , and continued until the morning of the 26 th. During the afternoon of the 29th the movements of the Declination magnet became very irregular, and this continued until the end of the month. The most rapid change was an Easterly movement of $32^{\prime} 32^{\prime \prime} \cdot$ o between 6.7 and $7.25 \mathrm{p} . \mathrm{m}$. on the 30 th.

December.-The November storm was prolonged through the first week of December, and suffered little interruption until about noon on the 8th. The H.F. was a good deal affected. From the night of the 1 Ith until the morning of the 25 th there was no day without considerable irregularity in the Declination, but none of a very unusual extent. The afternoons from the 26 th to the 29 th were also much disturbed, but the year ended quietly.

PRESENTS RECEIVED.

Greenwich Observations, $\mathbf{1 8 8 4}$. . . from The Royal Observatory.
Greenwich Spectroscopic and Photographic Results, 1884
Measures of Positions and Areas of spots and Faculæ upon the sun's disk, 1884

Assumed mean R. A. of clock stars .
Edinburgh Astronomical Observations 1877 to 1886
The Visual Solar Spectrum in 1884 by C. Piazzi Smyth
Micrometrical Measurements of Gaseous Spectra by C. Piazzi Smyth
Daily Weather Report
Weekly Weather Report
Monthly Weather Report
Quarterly Weather Reports . . .
Hourly Readings, 1883
Report of the Meteorological Council of the Royal Society, 1885
Instructions in the use of Meteorological Instruments by R. Scott, 1885.
Meteorological Observations at Stations of the 2 nd order, 188 I
Quarterly Returns of the Registrar General
Report of the British Association, 1885
Proceedings of the Royal Society
Memoirs of the R. Astronomical Society
Monthly Notices of the R.A.S.
The Meteorological Record by \dot{W}. Marriott
Journal of the Liverpool Astronomical Society
Radcliffe Observations, 1883
Results of Meteorological Observations made at the Radcliffe Observatory, 1883
Magnitudes of a Zone of Equatorial Stars by C. Pritchard
Suppiementary Measures of the Magnitudes of a Zone of Stars by C. Pritchard.
Researches in Stellar Photography by C. Pritchard

Meteorological'Office.
Royal Obs. Edinburgh.

$"$
""
Meteorological'Office
",
",
",
",
,"
,

Registrar General. British Association. Royal Society.
R. Astr. Society.
R. Met. Society.

Liverpool Astr. Soc.
Radcliffe Trustees.

Univer. Observatory.

Report of the Kew Committee, 1885
Variations in readings of Black Bull Thermometers by G. Whipple
Note on the Verification of Thermometers at the freezing point of Mercury by G. Whipple
Dun Echt Circulars
Second Armagh Catalogue of Stars, 1875 .
Symons British Rainfall
Museum of General and Local Archæology, Cambridge. First annual report of the Antiquarian Committee.
The Naturalist
British Journal of Photography
The British Journal Photographic Almanac Astronomical Observations made at Rousdon Observatory, 1882-85 by C. Peek.
Meteorological Observations made at Rousdon Observatory 1885 by C. Peek .
Summary of a Meteorological Journal, Crowborough Observatory, by C. Peek .
Some remarks upon the Temperature of the Winter $1885-86$ by C. Prince.
Photographic Maps of the Stars, J. Roberts
Returns of Rainfall in the Glasgow, \&c., Waterworks districts, J. Bateman
Blackburn Corporation Waterworks, J. Mc Callum
Industries, a Journal of Engineering, some numbers.
Meteorology of Bradford, 1885°, by ${ }^{\circ}$. Mc Landsborough
On the Corona of the Sun, Bakerian Lecture, by W. Huggins
On the forces concerned in producing the Solar diurnal inequalities of terrestrial Magnetism, by B. Stewart.
On the cause of the Solar diurnal variations of terrestrial Magnetism by B. Stewart
On the diurnal period of terrestrial Magnetism, by A. Schuster.
Address to the Chemical section of the British Association, by W. Crooks
The sanitary Inspector's special Report, Burnley, C. Slater .
A Catalogue of suspected variable Stars, by J. Gore

Annals of Mathematics, a collection of formulæ for the area of a plane triangle.
Relation between the thickness and the surface tension of liquid films by A. Rücker

Kew Observatory.
", "
" ${ }^{\prime \prime}$ Lord Crawford. The Observatory. Editor.
A. von Hügel.

Editor.
,
"
The Observatory.

$"$,	
$"$	
$"$	

The Author.

93
,
The Editor.
The Author.
,"
-,
,

9
*

3,

93
3)
M. Baker.

The Author.

Report on the Temperature and the Rainfall of the Croydon district, 1881-1885, by H. Eaton
The descent of the Equator, G. Carruthers.
The distances of the Moon, \&c., Pinnington.
Time's telescópe, 1822
Astronomy by Warsdale
Planet aspects to the Ascendant.
Observations of the International Polar Expeditions 1882-83, Fort Rae, by H. Dawson.
Report of the International Polar Expeditions to Point Barrow, Alaska 1881-83, by P. Ray
Report of the Chief Signal Officer, War Department, U.S. 1884 .
Monthly Weather Review of the Chief Signal Officer, U.S.
Summary and Review of International Meteorological Observations, by the Chief Signal Officer, U.S.
Professional Papers of the Signal Service. Thermometer Exposure, by H. Hazen
Professional Papers of the Signal Service. Tornado Studies for 1884
Report of the superintendent of the U.S. Naval Observatory
On the flexure of Meridional instruments by W. Harkness .

The Orbit of Japetus by A. Hall
The Six Miner Satellites of Saturn by A. Hall
Observations for Stellar parallax by A. Hall
Observations of Minor planets at the U.S. Naval Observatory by E. Frisby
Annular Eclipse of the Sun, 1885, A. Brown and A. Winterhalter
Velocity of light in air and refracting media by S. Newcomb
On certain lunar inequalities due to the action of Jupiter by G. Hill
Smithsonian Report, 1884
Memoirs of the National Academy of Sciences U.S.
Proceedings of the Nat. Acad, of Sc. U.S.
Reports of the Nat. Acad. of Sc. U.S.
Proceedings of the American Association for the advancement of Science, Philadelphia, 1884
International Electrical Exhibition, Philadelphia. Reports of sections

The Author. ,

Washborne. , ,"

Meteorological Office.
U.S. Government.
U.S. War Department.

U.S. Naval Obs.

U.S. Naut. Alm.

Smithsonian "Instit.
National Academy.
", ",

American Association.
Franklin Institute.

Memoir of J. W. Draper, 18if-r882, by G. Barker
New York Meteorological Observatory, Abstract of registers, by D. Draper
Publications of the Washburn Observatory, 1885, by E. Holden
Yale College Observatory, Report by the Board of Managers, $1884-85$
An investigation in stellar photography by E. Pickering .

The Biela Meteors of Nov. 27th, 1885, by H. Newton

The Story of Biela's Comet by H. Newton A group of Circles related to Feuerbach's Circle by M. Baker
Science Observer
Natural Science Bulletin
Monthly Weather Review, Dominion of Canada.
Report of the Meteorological Service of the Dominion of Canada by C. Carpmael
Canadian Economics
The Architecture of Georgetown, Demarara, by J. Scoles
Sketches of African and Indian life in British Guiana by J. Scoles
Report of the administration of the Meteorological Department of the Government of India, $1884-85$.
Report on the Meteorology of India in 1884 by H. Blanford.
Indian Meteorological Memoirs, 1886 , by H. Blanford.
Meteorological Observations at Six Stations in India by H. Blanford.
Magnetical and Meteorological Observations made at the Government Observatory, Bombay, 1884 .
Brief sketch of the Meteorology of the Bombay Presidency in 1883-84 by Pearson
Brief Sketch of the Meteorology of the Bombay Presidency in $1884-85$, by F. Chambers.
Variations of the prices of staple food grains in the Bombay Presidency by F. Chambers.
Results of Meteorological Observations made at the Juggarow Observatory by A. Nursingrow, 1885.
St. Xavier's College Observatory, Calcutta, annual results.
The typhoons of the Chinese Seas, $18 \dot{8}_{5}, \mathrm{Zi}{ }^{\circ}$ Ka-Wei Observatory, by M. Decheverens

D. Draper.

The Observatory.

Harvard Observatory.
The Author. 99

The Editor.

Toronto Observatory.

Montreal Conmittee.
The Author.
\because

Gov. of India.

The Observatory.

Magnetic Observations at Hong Kong Observatiory 1885, by W. Doberck
Observations and researches made at the Hong Kong Observatory, 1885, by W. Doberck
Melbourne Observatory, Astronomical results, 1876-80.
Monthly Record, Melbourne Observatory.
Twentieth Report of the Government Astronomer, Victoria, 1885.
Results of Meteorological Observations, Windsor, N. S. Wales, 1882-85, by J. Tebbutt.
Annals of the Royal Observatory, Cape of Good Hope. Observations of the Great Comet, 1882, II, by D. Gill
Cape Meridian Observations, 1879-81, by D. Gill

Meteorological Report, St. Ignatius' College, Malta
Meteorological Report, Seminary Observatory, Gozo
Journal of the British and American Archæological Society of Rome
Rapport annuel sur l'état de l'Observatoire de Paris, par M. Mouchez
Bulletin Mensuel de l'Observatoire Météorologique de l'université d'Upsal, 1885 , par H. Hildebrandsson

Bulletin Mensuel de l'Observatoire de Zi -Ka-Wei
Annuaire de la Société Méteorologique de France
Annales de la Société Scientifique de Bruxelles
Nouvelles Cartes Magnétiques de la France, par T. Moureaux
Exploration Internationale des R'égions Polaires. Expédition Finlandaise
Les Marées Atmospheriques, par F. Folie
Quelques remarques à propos de la communication faite, par M. le Général Liagre de la note posthume de Baeyer, par F. Folie
Notices Scientifiques sur la Nutation Seculaire de l'axe du monde et sur les dates fixes du froid, par F. Folie
Rapport de M. Folie sur la determination de la direction et de la vitesse de transport du système solaire dans l'espace, par R. Ubaghs
Notice sur l'Observatoire de Cointe, Liège, par P. Ubaghs

The Observatory.

" "

L'Observatoire.
"
"
La Société.
"
L'Auteur.
Meteorological Office. L'Auteur.
"
"
"
L'Observatoire.

L'inclinaison des vents, par M. Dechevrens
Astronomie, la Nébuleuse d'Andromède, par J. Thirion
Mété
Météorologie, par J. Thirion . . .
L'ouragon de Juin, 1885, dans le Golfe de Aden, par G. Cloué
Le Cercle de Bishop, couronne solaire de 1883, par M. Forel
Essai sur l'origine des raies de Fraunhofer, par C. Fievez
Note sur la pluie d'étoiles filantes du 27 Novembre, par F. Terby
Etudes sur l'aspect physique de la planète Jupiter, par F. Terby
Note relative à la gémination des canaux de Mars, par F. Terby
Observations des surfaces de Jupiter et de Venus, par L. de Ball
Mission Scientifique du Cap Horn, 1882-83, Météorologie, par J. Lephay
Sur la tension superficielle dans la théorie de la capillarité, par J. Delsaulx
La cinétique moderne et la dynamisme de l'avenir, par G. Hirn
La certitude dans les sciences, par A. de Lapparent
Sur une nouvelle methode de faire des mesures absolves de la chaleur rayonnante, par K. Augström
Termins-Beobachtungen der Erdmagnetischen Elemente und Erdströme im Observatorium zu Pawlorosk, von H. Wild
Der magnetische bifilar-theodolith, von H . Wild
(1) Monats und Jahresrésumes der Beobachtungen der Met. Stationen in Russland, 1884
Jahrbiicher der K. K. Central-Austalt für Meteorologie und Eromagnetismus, Wien, 1882-84
(1) Ueber die Beziehungen zwishen den Variationen des Eromagnetismus und den Vorgangen auf der Sonne, von H. Wild
Puplicationen des Astrophysikalischen Observatoriums zu Potsdam. 5 Band.
Ueber die tägliche Periode der Gewitter in Mitteleuropa, von Dr. Hellmann
Beitrage zur Kemituiss der Niederschlagsverhältuisse, von Deutschland von Dr. Hellmann
Beitrage zur Statistik der Beitzschläge in Deutchland, von Dr. Hellmann

L'Auteur.

39 -)
"

Das Observatorium.
,

Das Observatorium

Der Verfasser.

Astronomische Mittheilungen, von Dr. R. Wolf
Berliner Zweigverein der Deutschen Meteorologischen Gesellschaft, 1886
Das Deflectoren-Bifilar-Magnetometer, von K. Schering

Kritisches über die auf arktischen stationen tür magnetische messungen, von W. Giese
Beobachtungen des Russischen Polarstation au der Lenamündung, von A. Eiguer
Beobachtungen der Missweisung, Inklination und Schwingungszeit der magnetuadel, von A. Schück
Berichte von dem Haynaldschen Observatorium zu Kalocsa, von C. Braun .
A Haynald-Observatorium, 1884-85, ben Megfigyelt Protuberanchjiák, H. Adolf
A Haynald-Observatorium. Maculæ Solares, 1885 . H. Adolf
Die österreichische Polarstation Jan Mayen, von E. von Wohlgemuth
Analele Institutulin Meteorologic al Romaniei, 1885, de S. Hepites
Acta Mathematica, von G. Mittag-Leffler Bollettino Decadico dell' Osservatorio Centrale, Moncalieri
Bollettino Menstuale dell' Ósservatorio Centrale, Moncalieri
Bollettino Met. dell' Osservatorio del Col . Rom., Pont. Univ. Greg.
Atti del' Accademia Pontificia de' Nuovi Lincei
Sessioni del' Accademia Pontificia de' Nuovi Lincei
Determinazioni assolute della inclinazione magnetica, A. de Gasparis
Riassunti decadici e mensili dell' Osservazioni Meteoriche fatte nel R. oss di Capodimonte, 1883, del F. Brioschi: nota del Direttore, A. de Gasparis
Nuova Teoria del Moto Locale del G. Gallo
Almanaque Nautico, 1887, San Fernando
Anales del Instituto y Observatorio de Marina de San Fernando, por C. Pujazon
Observaciones Magnéticas y Meteorologicas del R. Colegio de Belen, Habana
Observaciones Meteorologicas hechas en ei Obs. Astr. de Santiago, J. Vergara, 1882-84
Anuario del Obs. Astr. Nacional de Tacubaya, 1887

Der Verfasser.

Dr. Hellmann.
Der Verfasser.

> ,
,
"
Das Observatorium.
"
"
K. Akad.

Inst. Met.
Der Verfasser.
L'Osservatorio.

```
#*
```

,

Accad. Pont.
,
L'Osservatorio.

L'Autore. L'Observatorio.

Observaciones Meteorologicas del Col. Cat. del Sagrado Corazon de Jesus en Puebla,
$\underset{B o l e t i n}{1885}$ del Ministerio de Fermento de la República Mexicana. Seccion Meteorologica ${ }^{\circ} \dot{\text { Elips }}$ del 5 de Marzo de 1886 ,
El Eclipse de Sol del 5 de Marzo de 1886, par E. Cappelletti ${ }^{\circ}$. $\dot{\text {. }}$ Estudios de Meteorologia Comparada, par M. Barcena y M. Pérez . . . Cronica Cientifica, R. Roig y Torres .

L'Observatorio. " 93 ;
"
, ,

APPENDIX.

RESULTS
 OF

Mineteorological Observations

TAKEN AT

ST. IGNATIUS' COLLEGE, MALTA,
by the

REV. J. SCHOLES, S.J.
1886.

ST. IGNATIUS' COLLEGE, MALTA. Lat. $35^{\circ} 55^{\prime}$ N. Long. $14^{\circ} 29^{\prime}$ E. Barometer Readings reduced to $32^{\circ} \mathrm{F}$. at sea level. \qquad METEOROLOGICAL REPORT. January-February.		
Results of Observations taken during the Month.	January.	February.
Mean Reading of Barometerinches	29.844	29.972
Highest	30\%356	$30 \cdot 181$
Lowest	$29 \cdot 155$	29.589
Range of Barometer Readings	$1 \cdot 201$	$0 \cdot 592$
Highest Reading of Max. Therm	$65^{\circ} \mathrm{I}^{\text {o }}$	$63.2{ }^{\circ}$
Lowest Reading of Min. Therm	$4 \mathrm{I}^{1} \mathrm{I}^{\circ}$	$43^{\circ}{ }^{\circ}$
Range of Thermometer Readings...................	$24 .{ }^{\circ}$	$20.1{ }^{\circ}$
Greatest Range in 24 hours ..	19.0°	$16.7{ }^{\circ}$
Mean of all the Highest Readings	$59.7{ }^{\circ}$	$59.8{ }^{\circ}$
Mean of all the Lowest Readings	$48.8{ }^{\circ}$	$48.8{ }^{\circ}$
Mean Daily Range	$10.9{ }^{\circ}$	
Mean Temperature (deduced from Max. and Min.)	$53.5{ }^{\circ}$	$53.3{ }^{\circ}$
Mean Temperature (deduced from Dry Bulb.)......	$53.1{ }^{\circ}$	$54.1{ }^{\circ}$
Adopted Mean Temperature	$53.3{ }^{\circ}$	$537{ }^{\circ}$
Mean Temperature of Evaporation...................	$49^{\circ} 0^{\circ}$	$49^{\circ} 8^{\circ}$
Mean Temperature of Dew-point	46.2°	$47^{1} 2^{\circ}$
Mean elastic force of Vapour..................inches	$0 \cdot 313$	$\bigcirc \bigcirc 325$
Mean weight of Vapour in a cubic foot of air grains	3.5	37
Mean additional weight required for saturation ,"	35	$0 \cdot 8$
Mean degree of Humidity.	81	83
Mean weight of a cubic foot of airgrains	$538 \cdot 3$	$540 \cdot 1$
Fall of Raininches	5237	3.387
Number of days on which Rain fell	16	11
Mean amount of Cloud (an overcast sky $=10$) ...	$4^{\circ} 8$	4.8
Total number of miles of Wind indicated	10269	7571
Mean Velocity of Wind per hourmiles	13.8	113

March-April.		
Results of Observations taken during the Month.	March.	April.
Mean Reading of Barometer...........inches	30.040	30'000
Highest ,, ", ",	$30 \cdot 466$	30.483
Lowest ,	29.479	29.573
Range of Barometer Readings..................... , ,	0.987	0.910
Highest Reading of Max. Therm,	66.2°	$71.7{ }^{\circ}$
Lowest Reading of Min. Therm.	40.2°	46.0°
Range of Thermometer Readings	$26.0{ }^{\circ}$	$25.7{ }^{\circ}$
Greatest Range in 24 hours	$20.5{ }^{\circ}$	$20.2{ }^{\circ}$
Mean of all the Highest Readings	$61^{1} \mathrm{I}^{\circ}$	657°
Mean of all the Lowest Readings	49°	$53.4{ }^{\circ}$
Mean Daily Range	$12.1{ }^{\circ}$	$12.3{ }^{\circ}$
Mean Temperature (deduced from Max. and Min.)	$54.3{ }^{\circ}$	$58.6{ }^{\circ}$
Mean Temperature (deduced from Dry Bulb)	$54{ }^{1}{ }^{\circ}$	$59.1{ }^{\circ}$
Adopted Mean Temperature	$54.2{ }^{\circ}$	$58.8{ }^{\circ}$
Mean Temperature of Evaporation....................	$50.6{ }^{\circ}$	$559{ }^{\circ}$
Mean Temperature of Dew-point	47.5°	$53.0{ }^{\circ}$
Mean elastic force of Vapour inches	$0 \cdot 329$	0.403
Mean weight of Vapour in a cubic foot of air...grains	37	47
Mean additional weight required for saturation,	10	I I
Mean degree of Humidity	79	81
Mean weight of a cubic foot of air grains	$539 * 6$	$532 \cdot 9$
Fall of Raininches	0.834	$\bigcirc \cdot 828$
Number of days on which Rain fell	6	8
Mean amount of Cloud (an overcast sky=10)......	5°	5\%
Total number of miles of Wind indicated	7654	6849
Mean Velocity of Wind per hour miles	$10 \cdot 3$	$9 \cdot 5$
-		
- * .		

May-June.		
Results of Observations taken during the Month.	May.	June.
Mean Reading of Barometer....................inches	30.075	29.965
Highest , , ",	30.300	30'193
Lowest ,"	29.611	29.743
Range of Barometer Readings, ,	0.689	0.450
Highest Reading of Max. Therm.	$87.0{ }^{\circ}$	$91.2{ }^{\circ}$
Lowest Reading of Min. Therm.	48.0°	$60.1{ }^{\circ}$
Range of Thermometer Readings	$39^{\circ} 0^{\circ}$	$31.1{ }^{\circ}$
Greatest Range in 24 hours	$24.6{ }^{\circ}$	$23.9{ }^{\circ}$
Mean of all the Highest Readings	71.9°	$78 \cdot{ }^{\circ}$
Mean of all the Lowest Readings	56.9°	$63.7{ }^{\circ}$
Mean Daily Range	150°	150°
Mean Temperature (deduced from Max. and Min.)	$63.4{ }^{\circ}$	$70^{\circ}{ }^{\circ}$
Mean Temperature (deduced from Dry Bulb)	$63.3{ }^{\circ}$	$69.9{ }^{\circ}$
Adopted Mean Temperature	$63.4{ }^{\circ}$	$70.2{ }^{\circ}$
Mean Temperature of Evaporation	$59.4{ }^{\circ}$	$65{ }^{\circ}$
Mean Temperature of Dew-point	$55^{\circ} 6^{\circ}$	$60.9{ }^{\circ}$
Mean elastic force of Vapourinches	0.443	0.535
Mean weight of Vapour in a cubic foot of air...grains	49	$5 \cdot 8$
Mean additional weight required for saturation ,	17	$2 \cdot 3$
Mean degree of Humidity...............................	75	72
Mean weight of a cubic foot of air grains	529.1	519.8
Fall of Rain..................................... inches	$0 \cdot 545$	0.075
Number of days on which Rain fell....................	3	2
Mean amount of Cloud (an overcast sky=10) ...	3.4	24
Total number of miles of Wind indicated...	6326	7212
Mean Velocity of Wind per hourmiles	$8 \cdot 5$	10%

July-August.		
Results of Observations taken during the Month.	July.	August.
Mean Reading of Barometerinches	$30 \cdot 023$	29.990
Highest ,	$30 \cdot 160$	30:238
Lowest "	29.887	29.862
Range of Barometer Readings................... ,	0.273	- 37^{6}
Highest Reading of Max. Therm.	$94.4{ }^{\circ}$	$923{ }^{\circ}$
Lowest Reading of Min. Therm.	$63.2{ }^{\circ}$	$65^{\circ}{ }^{\circ}$
Range of Thermometer Readings	31.2°	$26.9{ }^{\circ}$
Greatest Range in 24 hours	28.2°	$26.8{ }^{\circ}$
Mean of all the Highest Readings	$85.8{ }^{\circ}$	$84 \cdot{ }^{\circ}{ }^{\circ}$
Mean of all the Lowest Readings	68.8°	$69.5{ }^{\circ}$
Mean Daily Range	17.0°	$14^{6} 6^{\circ}$
Mean Temperature (deduced from Max. and Min.)	76.8°	76.0°
Mean Temperature (deduced from Dry Bulb.)......	$76 .{ }^{\circ}$	764°
Adopted Mean Temperature	$76.4{ }^{\circ}$	$76 \cdot 2^{\circ}$
Mean Temperature of Evaporation...................	$69.4{ }^{\circ}$	70.0°
Mean Temperature of Dew-point	$64.3{ }^{\circ}$	654°
Mean elastic force of Vapour...................inches	0.603	$0 \cdot 626$
Mean weight of Vapour in a cubic foot of air ...grains	6.5	67
Mean additional weight required for saturation,	34	3.1
Mean degree of Humidity... ..	66	69
Mean weight of a cubic foot of airgrains	514.3	513.8
Fall of Raininches		
Number of days on which Rain fell...................		
Mean amount of Cloud (an overcast sky = io)	- 7	1.6
Total number of miles of Wind indicated	5421	6180
Mean Velocity of Wind per hourmiles	73	$8 \cdot 3$

September-October.		
Results of Observations taken during the Month.	September.	October.
Mean Reading of Barometer................... inches	$30 \cdot 084$	30.070
Highest ,, , ,	30.366	30.278
Lowest , , ",	29.897	$29 \cdot 723$
Range of Barometer Readings ,	$0 \cdot 469$	0.555
Highest Reading of Max. Therm.	$89.7{ }^{\circ}$	$88.4{ }^{\circ}$
Lowest , Min. Therm.	$64.5{ }^{\circ}$	$62.3{ }^{\circ}$
Range of Thermometer Readings	$25^{\circ} 2^{\circ}$	$26.1{ }^{\circ}$
Greatest Range in 24 hours	$21.4{ }^{\circ}$	$17.1{ }^{\circ}$
Mean of all the highest Readings	81.9 ${ }^{\circ}$	$78.5{ }^{\circ}$
Mean of all the lowest Readings	$69.2{ }^{\circ}$	$67.8{ }^{\circ}$
Mean Daily Range.......................................	$12.7{ }^{\circ}$	$10.7{ }^{\circ}$
Mean Temperature (deduced from Max. and Min.)	$74.6{ }^{\circ}$	$72 \cdot{ }^{\circ}$
Mean Temperature (deduced from Dry Bulb)	$74{ }^{\circ}$	$71.9{ }^{\circ}$
Adopted Mean Temperature.............................	747°	$72.1{ }^{\circ}$
Mean Temperature of Evaporation....................	70.0°	$67.2{ }^{\circ}$
Mean Temperature of Dew-point	$66.5{ }^{\circ}$	$63.7{ }^{\circ}$
Mean Elastic force of Vapour inches	0.650	0.590
Mean Werght of Vapour in a cubic foot of air...grains	70	6.4
Mean additional weight required for saturation ,	2.4	2.0
Mean degree of Humidity	75	75
Mean Weight of a cubic foot of air grains	$516 \cdot 8$	519.9
Fall of Rain \qquad inches	4.087	0.641
Number of days on which Rain fell.	11	4
Mean amount of Cloud (an overcast sky $=10$)	3•I	4%
Total number of miles of Wind indicated	5334	7441
Mean Velocity of Wind per hour miles	$7 \cdot 4$	10\%

November-December.			
Results of Observations taken during the Month.	November.	December.	Year.
Mean Reading of Barometer...... inches	$30 \% 70$	30.039	30.014
Highest ,, ,	$30 \cdot 341$	$30 \cdot 255$	30.483
Lowest ,	29:774	29.655	29.155
Range of Barometer Readings...... ,"	$0 \cdot 567$	0.600	$1 \cdot 328$
Highest Reading of Max. Therm.	$76.8{ }^{\circ}$	$67.8{ }^{\circ}$	944°
Lowest ," Min. Therm.	48.0°	$45^{\circ} 5^{\circ}$	$40^{\prime 2} 2^{\circ}$
Range of Thermometer Readings	$28.8{ }^{\circ}$	$22.3{ }^{\circ}$	542°
Greatest Range in 24 hours	$17^{\prime} 9^{\circ}$	$17.2{ }^{\circ}$	28.2°
Mean of all the highest Readings	$68.6{ }^{\circ}$	$62.3{ }^{\circ}$	715°
Mean of all the Lowest Readings.........	$56.9{ }^{\circ}$	$50 \cdot 8^{\circ}$	$58.6{ }^{\circ}$
Mean Daily Range.........................	11.7°	$11.5{ }^{\circ}$	$12.9{ }^{\circ}$
Mean Temperature (deduced from Max. and Min.) \qquad	$6{ }^{1} \cdot 6^{\circ}$	$55.8{ }^{\circ}$	$64^{.2}$
Mean Temperature (deduced from Dry Bulb) \qquad	$61.2{ }^{\circ}$	550°	$64^{.1}$
Adopted Mean Temperature	$61.4{ }^{\circ}$	$55.4{ }^{\circ}$	64.2°
Mean Temperature of Evaporation	56.9°	$51.3{ }^{\circ}$	
Mean Temperature of Dew-point	$53^{\circ}{ }^{\circ}$	$48.5{ }^{\circ}$	$56 \cdot \mathrm{I}^{\text {e }}$
Mean Elastic force of Vapour	0.415	$0 \cdot 342$	$0 \cdot 451$
Mean Weight of Vapour in a cubic foot of air. \qquad .grains	4.6	3.9	$5 \cdot 1$
Mean additional weight required for saturation \qquad grains	r 3	$0^{\circ} 9$	17 76
Mean degree of Humidity	79	81	76 58.0
Mean Weight of a cubic foot of air...grs.	$532 \cdot 6$	539 I	528.0 5.680
Fall of Rain.	$4^{\circ} 067$	3.979	23.680
Number of days on which Rain fell......	13	15	89
Mean amount of Cloud (an overcast $\text { sky }=10 \text {). }$	$5{ }^{2}$	5.1	
Total number of miles of Wind indicated	6013	7882	$\begin{array}{r} 84152 \\ 9.6 \end{array}$
Mean Velocity of Wind per hour...miles	8.4	$10 \cdot 6$	9.6

NOTES FOR THE SEPARATE MONTHS.

January.
Dew-Point, the highest 580° on the 16 th, the lowest 364° on the 11th.

The Wind reached 34 miles per hour on the Ist noon to 3 p.m.
Sunshine, 1169° on the 25 th.
On ground, $37^{\circ} 2^{\circ}$ on the 15 th and $22 n d$.
Thunderstorm on the irth.
Hail fell on the 11th, 13 th and 21st.
The mean hourly velocity of the wind is unusually high, and the mean reading of the barometer is unusually low.

February.

The Dew-point ranged from 393° on the 9 th to 539° on the 17 th.
The Wind averaged 36 miles per hour from 4 p.m. on the 8 th to 8 a.m. on the 9th. A very heavy sea followed for three days.

In Sunshine, 1210° was reached on the 25 th.
On ground, the lowest was 375° on the 1oth.
Thunderstorms passed on the 5th and 6th, and on the ioth.
Hail fell on the 6th.

March.

The Dew-point has ranged from $35^{\circ} 0^{\circ}$ on the 8 th to 565° on the 15th; and vegetation suffered severely from the cold parching wind of the 7 th and 8 th.

The Wind rose to 33 miles per hour on the 7 th from $8 \mathrm{a} . \mathrm{m}$. to noon.
In Sunshine, $\mathbf{1 2 8 . 9}{ }^{\circ}$ was recorded on the 21st.
On ground, $35^{\circ} 5^{\circ}$ on the 12 th.
A Waterspout was seen on the 2Ist at II a.m., and halos and parhelia on the 27 th at $5 \mathrm{p} . \mathrm{m}$.

The sea-level was unusually low at the end of the month, the barometer standing very high at the same time.

April.

The Dew-point ranged between 58.9° on the 8 th, and 445° on the 13 th.

The Wind averaged $30^{\circ} 5$ miles per hour on the roth from 8 a.m. to $4 \mathrm{p} . \mathrm{m}$.

In Sunshine, 1343° on the 28th.
On ground, 41.8° on the 3 rd.
Thunderstorm on the 29th.

May.

Dew-point varied between 454° on the 5 th, and 64.8° on the 3 rst.
Wind averaged 24 miles per hour from $8 \mathrm{a} . \mathrm{m}$. to noon on the 3 rd .
Highest in Sunshine, $140^{\circ} 5^{\circ}$ on the inth and 29th.
Lowest on ground, $42^{\circ} 7^{\circ}$ on the 21 ist.
Thunderstorm passed on the 1st.

> June.

The Dew-point has ranged from 52.3° on the 21st to 67.7° on the 7 th.
The Wind averaged 37 miles per hour from 8 a.m. to noon on the 9th.

In Sunshine, $138^{\circ} 9^{\circ}$ on the 4th.
On ground, $54 \cdot{ }^{\circ}$ on the 27th.

July.

Dew-point varied between $71^{\circ} 0^{\circ}$ on the roth, and $55^{\circ} 9^{\circ}$ on the IIth. In Sunshine, 146.9° was reached on the 9th.
On ground, the minimum reached was 58.3° on the 14 th.

August.

The Dew-point has ranged between 53.5° on the 20th, and $74 \% 7^{\circ}$ on the 24 th.

In Sunshine, the maximum was 149° on the 12 th.

September.

Dew-point, highest $75^{\circ} \mathrm{I}^{\circ}$ on the 24th, lowest $55^{\circ} 8^{\circ}$ on the 20 th.
In Sunshine, highest $140^{\circ} 7^{\circ}$ on the 1 Ith.
Thunderstorms passed on the 14th, 15th, 16th and 19th.
Lightning was seen also on the 11th, 20th and 25th.
The Rainfall has been unusually heavy.

October.

The Dew-point ranged between $55^{\circ} 2^{\circ}$ on the 30 ,h, and $70^{\circ} 5^{\circ}$ on the 18th, but was in general very steady and above the average.

In Sunshine, the highest was $145^{\circ} 7^{\circ}$ on the 2oth.
On ground, the lowest was $58^{\circ} 0^{\circ}$ on the 16 th.
The sea fell from 78° to 68°.
Thunderstorms on 2nd and 29th.
Lightning on 1st, $4^{\text {th, }}$, 5 th and 6 th.

November.

The Dew-point has varied between 41.8° on the 2oth, and 64.3° on the 3rd.

In Sunshine, the highest was $125^{\circ} 7^{\circ}$ on the 3 rd.
On ground the lowest was $42 \cdot 3^{\circ}$ on the 26 th.
The sea fell from $7 \mathrm{I}^{\circ}$ to 66°.
Thunderstorms passed on the 9th, 16th and 21st.
Hail fell on the 21st.
The total Rainfall since June amounts to 8.795 inches: last year it amounted to 7.763 inches.

December.

The Dew-point has ranged from 390° on the 23 rd to 58.8° on the 2nd.

In Sunshine, the highest was 114.8° on the 2 nd.
On ground the lowest was $40^{\circ} \circ^{\circ}$ on the 6th.
The sea fell from 66.3° to $59^{\circ} 5^{\circ}$.
Thunderstorms passed on the 7 th and 3 1st.
Hail fell on the 2nd, 30th and 31st.
J. Scoles, S.J.

St. Ignatius' College.

