-

STONYHURST COLLEGE OBSERVATORY.

R E S U L T S

of

METEOROLOGICAL \& MAGNETICAL 0 BSERVATIONS

WITH REPORT AND NOTES OF THE DIRECTOR, REV. W. SIDGREAVES, S.J., F.R.A.S.
1904.

Clitherof:
Printed by Lord \& Marsland, Times Office, 1905.

TABLE OF CONTENTS.

REPORT AND NOTES.

The meteorological and magnetical continuous records have been carried on as usual, and the instruments have been in good working condition all through the year.

An arrangement has been made for an interchange of mag. netograph curves of greater disturbances, with the Meteorological and Magnetical Observatory of Potsdam : and the quarterly report of magnetic calm days has been sent regularly to the Chief of the Magnetic Service, De Bilt, Holland.

The year, on the whole, has been an average year for barometric pressure and temperature. But the mean daily range of temperature is nearly 4° below the annual average; and generally the highest readings have been lower, and the lowest readings higher than usual throughout the year. The highest reading of the whole year was $78^{\circ} \cdot 4$ in August, and the lowest $21^{\circ} 5$ in December.

The rain fall was $7 \cdot 3$ inches below the annual average, showing a deficit of nearly 16 per cent. June and September were the driest months, and August and October the wettest. On
three days the rainfall exceeded one inch: the amounts were on Oct. 16th, 1.48 in., on November 7 th and 8 th, 1.37 and 1.70 in. July was also a relatively dry month with only a little above the half of its average rain.

There have been no very violent wind storms during the year. On three days the velocity just reached 50 miles an hour : on January 29th at 11 p.m., on April 10th at noon, and on December 30 th at $9 \mathrm{a} . \mathrm{m}$.

The prismatic camera, employed for the spectra of the stars, has been removed from the Perry memorial telescope, and mounted on the polar axis of the "Cross" 7 -inch reflector, of which mention was made in last year's report. The driving clock, which was built for the greater telescope of the Redscar Observatory, has been successfully geared to the smaller one, and runs it very smoothly. The little Observatory, as noticed last year, is a strongly built wooden revolving shed 1 ts chief excellence consists in its double shutter, which is also both door-way and window, and when fully open leaves the telescope objective in the free open air, with a range of motion through nearly 180°, and at the same time sheltered from the wind The shutters are "lean to" at the angle of the latitude. They are carried on small grooved wheels running on steel rails. The shed is 9 feet high, octagonal at the base, and cut down from the roof to the "lean" of the shutters. The whole rests on 5 broad flanged wheels $6 \frac{1}{2}$ inches diameter, and running on a circular rail of $[0$ feet in diameter laid on a concrete bed.

With the instrument in its new gearing, the first photographs were taken on June 26th; and during the rest of the year 100 exposures were made. Many of these were experiments required by the new condition of things. But two series of spectrographs, on β Aurigae, and γ Cassiopeiae have been commenced; and these promise well, but progress has been slow in the almost continuous night-cloudiness.

The Perry memorial telescope is now more free in the early evenings for educational purposes; and on favourable nights both instruments are employed on the same star for the simultaneous spectrographs mentioned in last year's Report.

The solar surface has been observed on 214 days: recorded by 211 drawings of spots and faculae and three blank sheets.

The mean disc area of spots. in units of $1 / 5000$ of the visible surface, appears as $2 \cdot 54$. to compare with the mean range of the magnetic declination 11.9 . And the following table shows the relation in previous years, covering the epoch of minimum solar disturbance.

Year	1898	'99	19(0)	'01	${ }^{\circ} 02$	'03	'04
Spot area	$2 \cdot 5$	$0 \cdot 74$	0.55	$0 \cdot 29$	$0 \cdot 33$	$1 \cdot 93$	$2 \cdot 54$
Declination range	$14 \cdot 7$	$12 \cdot 9$	$9 \cdot 7$	$9 \cdot 1$	9.0	11.8	$11 \cdot 9$

Spectrographs of the larger spots have been taken with the Rowland-grating in the green and violet regions; and experiments have been carried on during the year for the photography of spot spectra in the red region.

PUBLICATIONS

"Spectroscopic Study of the Variations of β Lyrae," Monthly Notices, R.A.S. January, 1904.
" Spectroscopic Studies of Astrophysical Problems." Proceedings Royal Institution, 1904.
" Variation in Latitude of Greater Sun-Spot disturbances 1881-1903." Monthly Notices, June, 1904.
"The Spectra of Sun-Spots in the Red and Yellow regions of the Spectrum." Astrophysical Journal, November, 1904.
"Tenth Report of the Section for the Observations of the Sun." Memoris B.A.A., vol. xii., part ii.

Ftonvburst Observatory. \qquad Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime} \mathrm{N}$. Long. 9 m . 52 s . 68 , W. Height of the Barometer above the sea 381 ft . \qquad METEOROLOGICAL REPORT. JANUARY, 1904.	
Results of Observations taken during the Month	Mean for the last 57 years
Mean Reading of the Barometer inches $29 \cdot 453$	$29 \cdot 458$
Highest , , on the 22nd , $\quad 30 \cdot 338$	$30 \cdot 280$
Lowest , on the 14th ,, 28.352	$28 \cdot 597$
Range of Barometer Readings...... , 1.986	1.683
Highest Reading of a Max. Therm. on the 27 th 50.5	$51 \cdot 4$
Lowest Reading of a Min. Therm. on the 22nd 27.7	20.9
Range of Thermometer Readings.......... 22.8	30.5
Mean of all the Highest Readings.......... . $\mathbf{4 2 \cdot 2}$	$42 \cdot 3$
Mean of all the Lowest Readings 35•7	$32 \cdot 6$
Mean Daily Range. 6.5	$9 \cdot 7$
Deduced Monthly Mean (from Mean of Max. and Min.) . $39 \cdot 0$	37.2
Mean Temperature from Dry Bulb 38.5	$37 \cdot 3$
Adopted Mean Temperature 38.8	$37 \cdot 3$
Mean Temperature of Evaporation $\mathbf{3 7} \cdot 4$	$36 \cdot 1$
Mean Temperature of Dew Point $35 \cdot 6$	33.9
Mean elastic force of Vapourinches $0 \cdot 208$	$0 \cdot 197$
Mean weight of Vapour in a cub.ft.of air grains $\quad \mathbf{2 . 4}$	$2 \cdot 4$
Mean additional weight required for saturation,, 0.5	04
Mean degree of Humidity (saturation 1.00).. 0.89	0.79
Mean weight of a cubic foot of airgrains $547 \cdot 5$	$549 \cdot 7$
Fall of Rain......................... ${ }^{\text {anches }} \mathbf{3 . 9 4 8}$	4.144
Number of days on which rain fell $\because 2$	$20 \cdot 7$

JANUARY, 1904.								
No. of days in the month on which the prevailing wind was	N	NE	E	SE	s	sw	w	NW
	3	1	3	3	6	6	8	1
Mean Velocity in miles per hour	$\stackrel{5}{5} 7$	6.7	$8 \cdot 6$	$17 \cdot 4$	$14 \cdot 4$	12.2	10.6	136
Total No. of miles for each Direction	411	161	622			1757		326

The total number of miles registered during the month was 8680 .
The max. Velocity of the wind was 50 miles per hour, on the 29th, at 11 p.m. Dir. S.S.W.
Mean amount Cloud (an overcast sky being indicated by 10.0) 81
In the Month of January the highest reading of the Barome-
ter during 57 years, was on the 9 th. in 1896, and was ... 30.597
The Lowest $\quad,, \ldots$ 26th, 1884 , 27.803
The highest Temperature .. 7th, 1887 , $\quad 59.9$
The lowest , \quad 15th, 1881 ., $4 \cdot 6$
The highest adopted mean temperature of the month, $1898 \quad 43 \cdot 7$

TABLE OF DIFFERENCES.

The signs + and - mean respectively above and below the monthly average.
Mean barometric pressure - 0.005 inches
Monthly range , + . 303
Mean of highest temperatures - $0 \cdot 1$ degrees
Mean of lowest \quad,.. ... $+3 \cdot 1$,
Mean daily range, - $\mathbf{3 . 2}$,
Adopted mean temperature - 1.5 .,
Total rainfall - 0.196 inches
Ground frost on 1st-4th, 6th, 8th, 9th, 11 th, 15-17th. 21st. 22nd, 24 th, 25 th. 29 th -31 st. Snow on 15th. Hail on 10th. and, 15th. Heavy rain on 12th. Gales of wind on 7 th, 10 th, 14 th, 15 th 29th and 30 th. Fog on 9 th, 18th, 19th, 20th and 24th.

MARCH, 1904.								
Results of Observations taken during the Month.								
Mean Reading of the Barometer inches 29.583								462
Highest	on the 23rd			, 30	$0 \cdot 040$			065
Lowest	on the 29th			, 28	$8 \cdot 762$			646
Range of Barometer Reading					1.278			419
Highest Reading of a Max. Therm. on the 20th					53.7			$7 \cdot 1$
Lowest Reading of a Min. Therm. on the 1st								$2 \cdot 6$
Range of Thermometer Readings					28.0			4.5
Mean of all the Highest Readings					$43 \cdot 3$			7.3
Mean of all the Lowest Readings					$33 \cdot 7$			$4 \cdot 0$
Mean Daily Range								$3 \cdot 3$
Deduced Monthly Mean (from Mean of Max. and Min.)								$9 \cdot 8$
Mean Temperature from Dry Bulb					$37 \cdot 7$			$0 \cdot 0$
Adopted Mean Temperature					$38 \cdot 1$			$9 \cdot 9$
Mean Temperature of Evaporation					36.2			$7 \cdot 9$
Mean Temperature of Dew Point					$33 \cdot 6$			$5 \cdot 4$
Mean Elastic force of Vapourinches					-193			206
Mean weight of Vapour in a cubicft.of air grains								$2 \cdot 4$
Meanadditional weight required forsaturation,,					$0 \cdot 5$			0.5
Mean degree of Humidity (saturation 1.00)..					$0 \cdot 84$. 84
Mean weight of a cubic foot of air grains $\quad \mathbf{5} 50$								$6 \cdot 4$
Fall of Rain.............................inches $2 \cdot 740$						$3 \cdot 296$		
Number of days on which Rain fell......... 18						$18 \cdot 1$		
No. of days in the month on which the prevailing wind was	N	Ne	E	SE	s	sw	w	W
	2	9	4	0	4	7	4	1
Mean Velocity in miles per hour	7.6	$9 \cdot 1$	8.0	0	$10 \cdot 6$	$8 \cdot 0$	$11 \cdot 6$	3.6
Total No. of Miles for each Direction	367	1967	765	0	1014	1337	1114	86
The total number of miles registered during the month was 6650 . The max. Velocity of the wind was 38 miles per hour, on the 28th at $10 \mathrm{p} . \mathrm{m}$. Dir. S.S.E.								

MARCH, 1904.

Mean amount of Cloud (an overcast sky being indicated by $10 \cdot 0$) $\quad \mathbf{7 \cdot 6}$
In the month of March, the highest reading of the Barom-
eter during 57 years, was on the 6th in 1852, and was . . . $30 \cdot 401$
$\begin{array}{lcrrrr}\text { The lowest } & ,, & \text { 3rd, } 1897 & , & . .28 \cdot 157 \\ \text { The highest Temperature } & , & \text { 25th, 1871 } & , & \text {. } & 68 \cdot 0 \\ \text { The lowest } & , & \text {, } & \text { 6th, } 1886 & ,, & \text {. } \\ & & 11.5\end{array}$
$\begin{array}{ll}\text { The highest adopted mean temperature of the month, } 1871 . . & 44.0\end{array}$
The lowest ,, $\quad 1855$ and 1892.. 35.6
Greatest fall of rain during the month in .. $1896 \ldots .7 \cdot 079$ in
Least ., , . . 1852... $0 \cdot 352$ in
Greatest number of days on which rain fell, 1859, 61, 68 \& $72 \quad 28$
Least , , , ... 1852.. 3

TABLE OF DIFFERENCES.

The signs + and - mean respectively above and below the monthly average.
Mean barometric pressure .. $\quad+0.121$ inches
Monthly range ., 0.141 ,
Mean of highest temperatures .. - 4.0 degrees
Mean of lowest , - 0.3 ,,
Mean daily range , . . . - $3 \cdot 7$,
Adopted mean temperature - 1.8 ,
Total rainfall - 0.556 inches
Ground frost on 1 st, 2 nd, 4 th -7 th, 9 th -18 th, 21 st- 31 st. Hoar Frost on 11th. Snow on 1st, 4th, 0 th, 6 th, 14 th, 16 th, 17 th, 25th, 29th and 30th. Hail on 6th, 17th, 25th and 29th. Heavy rain on 20th. Gale of wind on 28th. Fog on 11th and 31st. Lightning on 29 th.

APRIL, 1904.								
Result of Observations taken during the Month.						$\begin{aligned} & \text { Mean for the } \\ & \text { last } \\ & 57 \text { years. } \\ & \hline \end{aligned}$		
Mean Reading of the Barometer inches 29.477						29-484		
Highest , , on	the 19th			29.9		$29 \cdot 966$		
Lowest , ob	on the 13th					28.817		
Range of Barometer Readings , 1.047						$1 \cdot 149$		
Ilighest Reading of a Max. Therm.on 18th \& 19th					$9 \cdot 2$	65.7		
Lowest Reading of a Min. Therm on 12th \& 26th					6.5	$28 \cdot 1$		
Range of Thermometer Readings					$2 \cdot 7$	$37 \cdot 6$		
Mean of all the Highest Readings					$1 \cdot 3$	55.6		
Mean of all the Lowest Readings					1.0	37.7		
Mean Daily Range					$0 \cdot 3$	$17 \cdot 9$		
Deduced Monthly Mean (from Mean of Max. and Min) \qquad					6.2	$44 \cdot 5$		
Mean Temperature from Dry Bu					5.6		$44 \cdot 7$	
Adopted Mean Temperature					5.9	$44 \cdot 6$		
Mean Temperature of Evaporation					$3 \cdot 3$	41.7		
Mean Temperature of Dew Point					$0 \cdot 3$. 2		
Mean elastic force of Vapour inches						0.235		
Mean weight of Vapour in a cub.ft. of air grains					$3 \cdot 0$. 7		
Mean additional weight required for saturation,					$0 \cdot 5$. 7		
Mean degree of Humidity (saturation 100)...					.82	0.79		
Mean weight of a cubic foot of air ... grains.. Fall of Rain. \qquad inches				. 54		$542 \cdot 0$		
				3		$2 \cdot 444$		
Number of days on which Rain fell					22	$15 \cdot 9$		
No. of days in the month on which the prevailing wind was	N	ne	E	SE	s	SW	w	NW
	3	0	1	2	3	5	16	0
Mean Velocity in miles per hour	7.7	0	$8 \cdot 4$	11.7	10.0	18.2	17.7	0
Total No. of miles for each Direction	554	0	201	563	721		6797	0
The total number of miles registered during the month was 11016 The max. Velocity of the wind was 50 miles per hour, on the 10th at Noon. Dir. W. by S.								

17

APRIL, 1904.

TABLE OF DIFFERENCES.

The signs + and - mean respectively above and below the monthly average.
Mean barometric pressure - 0.007 inches
Monthly range , - 0.102 ,,
Mean of highest temperature ... - 4.3 degrees
Mean of lowest ,... \quad. 3.
Mean daily range ,, - $7 \cdot 6$,,
Adopted mean temperature +13 , Total rainfall +1.429 inches

Ground frost on 11th, 12th, 14th, 16th, 18th and 20th. Snow on 3rd and 9th. Hail on 1st, 3rd, 7th, 9th and 26th. Heavy rain on 28th. Gales of wind on 1st, 3rd, 6th, 7th and 10th. Lizhtning on 7 th. Lunar Halo on 21st and 23rd.

19

JULY, 1904.								
Results of Observations taken during the Month.						Mean for the Iast 57 years.		
Mean Reading of the Barometerinches 29.615						$29 \cdot 517$		
Highest * ., on the	on the 18th		,		947	$29 \cdot 890$		
Lowest , , on the	on the 1st			$29 \cdot 324$		$29 \cdot 010$		
Range of Barometer Readings				$0 \cdot 628$		0.880		
Highest Reading of a Max.Therm. on the 11th					$7 \cdot 9$	$78 \cdot 9$		
Lowest Reading of a Min. Therm. on the 8th					$4 \cdot 8$	$42 \cdot 2$		
Range of Thermometer Readings					$3 \cdot 1$	$36 \cdot 7$		
Mean of all the Highest Readings					$7 \cdot 4$	$68 \cdot 0$		
Mean of all the Lowest Readings					3.9	$50 \cdot 8$		
Mean Daily Range						$17 \cdot 2$		
Deduced Monthly Mean (from Mean of Max. and Min.)						- $\quad 57.9$		
Mean Temperature from Dry Bulb.					$0 \cdot 3$	58.0		
Adopted Mean Temperature					$0 \cdot 5$	57.9		
Mean Temperature of Evaporation					$6 \cdot 4$	$54 \cdot 8$		
Mean Temperature of Dew.Point					$2 \cdot 9$	$52 \cdot 1$		
Mean elastic force of Vapour........ inches					00	$0 \cdot 389$		
Mean weight of Vapour in a cub.ft.of airgrains					$4 \cdot 5$	$4 \cdot 5$		
Mean additional weightrequired for saturation,					$1 \cdot 4$	$1 \cdot 1$		
Mean degree of Humidity (saturation 1.00)..					6	0.81		
Mean weight of a cubic foot of airgrains						$527 \cdot 4$		
Fall of Rain. inches						$4 \cdot 024$		
Number of days on which Kain fell						$17 \cdot 7$		
No. of days in the month on which the prevailing wind was	N	NE	E	SE	S	sw	w	NW
	3	3	5	0	4	3	13	0
Mean Velocity in miles per hour	47	$7 \cdot 8$	$9 \cdot 3$	0	9.0	81	85	0
Total No. of miles for each Direction	341	560	1112	0	865	586	2666	0

The total number of miles registered during the month was 6130 .
The max Velocity of the wind was 25 miles per hour, on the 20th at Midnight. Dir. E N.E.

SEPTEMBER, 1904.			
Mean amount of Cloud (an overcast sky being indicated by 10.0) $\quad 7.0$			
In the month of September, the highest reading of the Barometer during 57 years, was on the 15 th, in 1.851 , and was... $30 \cdot 274$			
The lowest ", 25th, 1896 , ...28.314			
Thehighest adopted mean temperature of the month, 1865 ... $59 \cdot 1$			
The lowest , , , .. 1863 ... 50.9			
Greatest fall of rain during the month in .. 1869 9.539in			
Least , . . ., .. 1894 0.801in			
Greatest number of days on which rain fell .. 1866 30			
Least , . ., 1851 and 1894			
table of differences. The signs + and - mean respectively above and below the monthly average.			
Mean barometric pressure +0.137 inches			
Monthly range 0.502			
Mean of highest temperatures - 1.9 degrees			
Mean of lowest , 13			
Mean daily range , - 3.2			
Adopted mean temperature + 0:5			
Total rainfall , - 3.200 inches			

OCTOBER, 1904.

Results of Observations taken during the Month.	$\begin{gathered} \text { Mean for the } \\ \text { last } \\ 57 \text { years } \\ \hline \end{gathered}$
Mean Reading of the Barometerinches 29.698	29433
Highest , on the 13th ., $30 \cdot 122$	30.022
Lowest ., on the 6th .. 28.852	28.655
Range of Barometer Readings, 1.270	$1 \cdot 367$
Highest Reading of a Max. Ther on the 19th 58.6	$64 \cdot 2$
Lowest Reading of a Min. Therm. on the 13th $33 \cdot 5$	291
Range of Thermometer Readings $25 \cdot 1$	$35 \cdot 1$
Mean of all the Highest Readings 53.4	$54 \cdot 6$
Mean of all the Lowest Readings 43.8	$41 \cdot 6$
Mean Daily Range........................ 9.6	13.0
Deduced Monthly Mean (from Mean of Max and Min.)................................ $48 \cdot 6$	$47 \cdot$
Mean Temperature from Dry Bulb 48.2	$47 \cdot 7$
Adopted Mean Temperature 48.4	$47 \cdot 5$
Mean Temperature of Evaporation 46.7	$45 \cdot 3$
Mean Temperature of Dew Point 44.9	$42 \cdot 8$
Mean elastic force of Vapourinches 0.298	$0 \cdot 277$
Mean weight of Vapour in a cub.ft.of air grains $\mathbf{3 . 4}$	$3 \cdot 2$
Mean additional weight required for saturation, 0.5	0.6
Mean degree of Humidity (saturation 1.00) .. 0.88	$0 \cdot 84$
Mean weight of a cubic foot of airgrains $541 \cdot 1$	$537 \cdot 6$
Fall of Raininches 3.725	$5 \cdot 087$
Number of days on which Rain fell 13	$21 \cdot 1$

No. of days in the month on which the prevailing wind was	N	NE	E	SE	s	sw	w	Nw
	1	2	2	2	5	4	13	$\stackrel{2}{2}$
Mean Velocity in miles per hour	$5 \cdot 6$	9.7	68	5.7	53	6.1	10.0	10
Total No. of miles for each Direction	135	466	328	275	637	582	3135	510

The total number of miles registered during the month was 6068.
The max. Velocity of the wind was 48 miles per hour, on the 6th, at 3 a.m. Dir. W.

NOVEMBER, 1904,								
Results of Observations taken during the Month.						$\begin{gathered} \text { Mean for the } \\ \text { last } \\ 57 \text { years. } \\ \hline \end{gathered}$		
Mean Reading of the Barometerinches 29.613						$29 \cdot 478$		
Highest ., on	on the 14th		,	30.		30.073		
Lowest ., of	on the 9th		,	28		28.571		
Range of Barometer Readings........ ,.						1.502		
Highest Reading of a Max. Therm. on the 9th					$4 \cdot 6$	56.0		
Lowest Reading of a Min. Therm. on the 24th						$35 \cdot 4$		
Range of Thermometer Readings						$30 \cdot 6$		
Mean of all the Highest Readings					- 8	$47 \cdot 4$		
Mean of all the Lowest Readings						$36 \cdot 6$		
Mean Daily Range............................. Deduced Monthly Mean (from Mean of Max. and Min.)					8.2	$10 \cdot 8$		
					$1 \cdot 7$	$41 \cdot 6$		
Mean Temperature from Dry Bulb						41.9		
Adopted Mean Temperature					$1 \cdot 5$	$41 \cdot 8$		
Mean Temperature of Evaporation						39.6		
Mean Temperature of Dew Point						38.2		
Mean elastic force of Vapourinches						$0 \cdot 232$		
Mean weight of Vapour in a cub.ft.of air grains					$2 \cdot 6$	2.7		
Mean additional weight required for saturation,,					$0 \cdot 4$	0.4		
Mean degree of Humidity (saturation 1.00..)					88	0.87		
Mean weight of a cubic foot of airgrains				54		$544 \cdot 9$		
Fall of raininches				5		4.390		
Number of Days on which rain fell				18		197		
No. of days in the month on which the prevailing wind was	N	NE	E	SE	s	sw	NW	
	4	1	2	0	2	1	17	3
Mean Velocity in miles perhour	4.4	$5 \cdot 1$	4.7	0	$3 \cdot 4$	$12 \cdot 0$	11.7	$13 \cdot 5$
Total No. of miles for each Direction	421	123	226	0	163	289	4775	975
The total number of miles registered during the month was 6972. The max. Velocity of the wind was 37 miles per hour, on the 9th, at $6 \mathrm{a} . \mathrm{m}$. and 8 p.m. Dir. W.S.W., and W. respectively.								

Fummare of observations,						1904.		
Results of Observations taken during the Ye						$\begin{aligned} & \text { Mean for the } \\ & \text { last } \\ & 57 \text { years. } \end{aligned}$		
Mean Reading of the Barometerinches $29 \cdot 537$						$\cdot 494$		
Highest , on	Jan.	22nd		,,	$30 \cdot 338$	$0 \cdot 286$		
Lowest	Feb.	9th			28.314	$28 \cdot 252$		
Range of Barometer Readings					$2 \cdot 024$. 034		
Highest Reading of a Max. Therm. on Aug. 3rd 78.4						1.8		
Lowest Reading of a Min. Therm.on Dec 21 \& 23					3 21.5	$5 \cdot 4$		
Range of Thermometer Readings						$6 \cdot 4$		
Mean of all the Highest R	Readi	ings				54.8		
Mean of all the Lowest	Readi	ings.			$42 \cdot 0$	$40 \cdot 7$		
Mean Daily Rauge.................................						- 1		
Deduced Yearly Mean (from Mean of Max. and Min)						$46 \cdot 9$		
Mean Temperature from Dry					$46 \cdot 7$	$4 \cdot 8$		
						46.9		
		Mean Temperature of Evaporation				. 5		
Mean Temperature of Dew Point						42		
Mean elastic force of Vapour		...inch		$0 \cdot 274$	$0 \cdot 273$		
Mean weight of Vapourin a cub. ft. of airgrains						3		
Mean additional weightrequired for saturation,						. 7		
Mean degree of Humidity (saturation 1.00) ..						0.83		
Mean weight of a cubic foot of air......grains 540						$539 \cdot 2$		
Total fall of rain in the year inches 39.636						$46 \cdot 938$		
Number of days per month on which Rain fell $17 \cdot 0$						$8 \cdot 4$		
SUMMARY OF WIND.								
No of days in the year on which the prevailing wind was \qquad	${ }^{\mathrm{N}}$	NE	E	SE	s	sw	NW	
	37	37	35	15	51	44	13	
Mean Velocity in miles per hour \qquad	$5 \cdot 7$	$7 \cdot 5$	8.5	$9 \cdot 7$	10.0	$11 \cdot 1$	11	
Total No. of miles for each Direction \qquad	5076	6645	7173	3477	12241	116		
The total No. of miles registered during the year was 86506. The max. Velocity of the wind was 50 miles per hour, on Jan. 29th, at 11 p.m., Apr. 10th, at noon, and Dec. 30th, at 9 a.m. Dir. S.S.W., W.b S., and W., respectively.								

Mean amount of Cloud (an overcast sky being indicated by $10 \cdot 0$) $7 \cdot 5$

Table of Differences, 1904.

The signs + and -- mean respectively above and below the yearly average.

Mean barometric pressure	-	.	$+$	0.043 inches	
Yearly range ,	-	-	-	0.010	,'
Mean of highest temperatures	-	-	-	$2 \cdot 5$ degrees	
Mean of lowest ,	.	-	$+$	$1 \cdot 3$,
Mean daily range	-	.	-	$3 \cdot 8$,'
Adopted mean temperature	-	.	$+$	$0 \cdot 1$	
Total rainfall	-	-	-	$7 \cdot 302$	nches

Extreme Readings in the Last 57 Years.

The Maximum monthly mean height of the Barometer was in February, 1891, and was inches 29.997
The Minimum ,, ,, in December, 1868, and was 28.984
The Maximum yearly mean height of the Barometer was in 1896, and was..
$29 \cdot 584$
The Minimum ,, \quad, in 1886, and was........ 29.389
The greatest monthly range of the Barometer was in

The least ". ". in July, 1852, and was ,, 0.505
The highest reading of the Barometer during 57 years was on January 9 th, 1896, and was inches 30.597
The lowest , , , on December 8th, 1886, and was $27 \cdot 350$
Extreme range .. 3.247
The highest temperature was on July 20th, 1901, and was $89 \cdot 0$
The lowest $\quad, \quad, \quad J a n u a r y ~ 15 t h, 1881 \ldots . . .$.
The highest adopted mean temperature of a month, July, 1901, and was $63 \cdot 2$
The lowest \quad, ,, February, 1855 .. $28 \cdot 6$
The highest adopted mean temperature of a year, $1868 \ldots 49 \cdot 1$
The lowest ,, ,, , , 1879 .. $44 \cdot 1$
The greatest monthly mean weight of vapour
in a cubic foot of air $\ldots \ldots .$. grains $\}$ July, $1852 \quad 5 \cdot 1$
The least ,, February, 1855 and 1895, grains $\quad 1.4$
The greatest fall of rain in a month was in October, 1870, and was .. inches $13 \cdot 437$
The least ", ", May, 1859 ", 0.249
The greatest number of days on which rain fell in one month, January, 1872, October, 1873, December, 186831
The least ,", , , , March, 1852
The greatest fall of rain in one year in 1866 inches $69 \cdot 183$
The least ", ", ", $1887 \ldots . .$.
The greatest number of days in one year on which rain fell .. 1872319
The least

SUMMARY OF SUNSHINE.						
1904.	$\left\lvert\, \begin{gathered} \text { Number of } \\ \text { days on } \\ \text { which } \\ \text { Sunshine } \\ \text { was } \\ \text { recorded. } \end{gathered}\right.$	Amount or Total Number of Hours	$\begin{gathered} \text { Per } \\ \text { centage } \\ \text { of } \\ \text { possible } \\ \text { Sunshine. } \end{gathered}$	Mean for the last 24 Xears.		
				Days.	Amount hours	Per centage of possible Sunshine
January ...	14	$25 \cdot 0$	$10 \cdot 1$	$13 \cdot 8$	$34 \cdot 7$	$14 \cdot 0$
February ...	15	$34 \cdot 6$	$12 \cdot 3$	17-2	57.9	$21 \cdot 1$
March ...	17	$75 \cdot 1$	$20 \cdot 5$	$23 \cdot 8$	$104 \cdot 6$	$28 \cdot 6$
April ...	28	$155 \cdot 2$	$37 \cdot 0$	26.2	$150 \cdot 6$	$35 \cdot 9$
May ...	25	$139 \cdot 8$	$28 \cdot 4$	$27 \cdot 5$	$194 \cdot 0$	$39 \cdot 4$
June ...	30	$226 \cdot 0$	$44 \cdot 5$	$27 \cdot 7$	$194 \cdot 5$	$38 \cdot 3$
July ...	30	$207 \cdot 2$	$40 \cdot 7$	$28 \cdot 3$	$179 \cdot 3$	$35 \cdot 2$
August ...	29	$184 \cdot 8$	$40 \cdot 4$	$27 \cdot 5$	$152 \cdot 4$	$33 \cdot 4$
September	28	$153 \cdot 9$	$40 \cdot 6$	$25 \cdot 4$	$127 \cdot 4$	$33 \cdot 6$
October ...	22	$106 \cdot 3$	$32 \cdot 6$	$22 \cdot 8$	$87 \cdot 6$	26.9
November	16	$51 \cdot 7$	$20 \cdot 2$	16.7	$44 \cdot 8$	17.5
December	13	26.4	$11 \cdot 4$	$12 \cdot 7$	$25 \cdot 2$	10.9
Year	267	1386.0	31*	$269 \cdot 4$	$1352 \cdot 9$	$30 \cdot 0$

OBSERVATIONS OF UPPER CLOUDS (CIRRUS).							
Nate.		G. M. т.	Clond.		Wind.		$\begin{gathered} \text { Direction } \\ \text { of Lower } \\ \text { Clouds. } \end{gathered}$
			Direction.	$\begin{aligned} & \text { V'locitr } \\ & (0 \rightarrow 6 .) \end{aligned}$	Direction.	$\left\lvert\, \begin{gathered} \text { Force } \\ (0-12) \end{gathered}\right.$	
JanuaryFebruary	22	8 a.m.	NW	2	Calm	0	NW
	17	8 a.m.	N	3	NE	1	NE
	23	8 a.rı.	NW	2	W	4	W
March	21	2 p.m.	S	3	WSW		SW
June ${ }^{\prime \prime}$	30	8 a.m.	N	3	W	1	W
	1	8 a.m.	${ }^{\mathrm{N}} \mathrm{W}$	3	WSW	1	W
"	4	9 a.m.	W	2	Calm	0	W
,"	7	8 a.m.	W	2	ENE	3	NE
"	8	9 a.m.	W	2	ENE	1	E
"	9	4 p.m.	SW	$\stackrel{2}{2}$	NE	3	NE
,"	10	$10 \mathrm{a} . \mathrm{m}$.	NW	2	ENE		ENE
"	11	8 p.m.	SW	2	NE	1	SW b S
,	12	9 p.m.	W	2	NE	1	W
"	16	8 a.m.	Sb W	3	SW	5	SW
"	17	8 a.m.	SE	3	SW	2	SW
,	17	330 p.m.	ESE	2	WSW	2	SW
,	22	$530 \mathrm{p} . \mathrm{m}$.	SW	2	W	2	W
"	23	$9 \mathrm{a} . \mathrm{m}$.	S	2	WSW	2	W
,	23	9 p.m.	SW	2	W	Calm.	W
,	26	9 a.m.	W	2	W	1	NW
,	28	9 p.m.	W	2	WNW		W
,	29	8 p.m.	${ }_{\text {W }}^{W}$	$\stackrel{2}{2}$	S	1	SW
	30	$10 \mathrm{a} . \mathrm{m}$.	W	2	SSE	3	SW
July	2	9 a.m.	SW	2	WSW	2	W
"	5	9 a.m.	NW	2	WSW	3	SW
"	7	9 a.m.	WSW	3	W	1	SW
"	12	8 a.m.	SE	2	Eb N	2	ENE
,	13	9 p.m.		2	Calm	0	-
"	14	8 a.m.	S b W	2	SSW	3	S
"	16	9 a.m.	S	2	WSW	1	S
"	17	8 p.m.	S	2	NNW	1	-
"	18	8 a.m.	NW	2	N	1	-
",	19	9 a.m.	$\underset{S}{\text { E b }}$ S	2	Ebs	1	SE
"	21	9 a.m.	SE	2	Calm	0	
August	22	9 a.m.	S	2	W b N	1	$\mathrm{S}^{\text {b }}$ W
	19	${ }_{10}^{9 \mathrm{a} . \mathrm{m} . \mathrm{m}}$.	WNW	1	Walm	0	$\stackrel{N}{\mathbf{N}}$
Soptember	2	9 a.m.	W	1	S W	1	W
"	5	6 p.m.	SE	1	S b E	2	S
,	13	9 a.m.	SE	1	WSW	1	SW
",	14	9 a.m.	N		NE be	1	NE
"	17	$11 \mathrm{a} . \mathrm{m}$.	S	1	SE	3	SE
,	19	9 a.m.	S	1	E	1	-

OBSERVATIONS OF UPPER CLOUDS (Continued).

Date	G. M. T.	Cloud.		Cloud.		Direction of LowerClouds.
		Direction.	$\left\|\begin{array}{c} \nabla^{\prime} \text { locity } \\ (0-6) \end{array}\right\|$	Direction.	$\left.\begin{array}{c} \text { Force } \\ (0-12) \end{array}\right)$	
September 20	$10 \mathrm{a} . \mathrm{m}$.	E	1	E	1	E
,'	$10 \mathrm{a} . \mathrm{m}$.	E	1	E	1	E
",	3 p.m.	E	1	NE	1	NE
",	$10 \mathrm{a} . \mathrm{m}$.	N	1	NE	1	NE
	$4 \mathrm{p} . \mathrm{m}$.	NW	1	Calm	0	W
October	$7.30 \mathrm{a.m}$.	W	1	Calm	0	SW
,	8 a.m.	W	2	Calm	0	-
"	8 p.m.	SW	1	Calm	0	SW
"	7.30 am.	NW	1	W	1	W
"	Noon.	NW	2	NNW	1	WNW
.,	9 a.m.	SW	1	WSW	1	SSW
,	9 a.m.	$\stackrel{N}{\sim}$	1.	NE	1	NE
" 1	2 -30 p.m.	W	3	W	4	SW
"	$9 \mathrm{a} . \mathrm{m}$.	S	2	SW	1	W
, 2	Noon.	WbN	1		3	
Novenier	$11.30 \mathrm{a} . \mathrm{m}$.	WbS	2	Wbs	2	WNW
November	4 p.m.	S	2	WSW	1	-
",	$9 \mathrm{a} . \mathrm{m}$.	NNW	3	Calm	0	N
"	Noon.	NW	2	N	1	\mathbf{N}
	8 n.m.	NW	2	NNW	1	-
December	$9 \mathrm{a} . \mathrm{m}$.	W	3	Calm	0	wSW
"	$9 \mathrm{a} . \mathrm{m}$.	NNW	3	W b S	3	W
",	9 a.m.	W	2	SW b S	3	W
".	Noon.	NW	3	N b W	1	W
,	$9 \mathrm{a} . \mathrm{m}$.	$\stackrel{N}{N}$	2	NNE	1	$\underset{\sim}{N} \mathrm{~b}$ E
"	Noon.	NW	3	W	5	W

Observations of Earth-Magnetism, 1904.

Absolute measures of Horizontal Magnetic Force have been made once each month, by the method of Vibration and Deflection.

In these observations the same Magnet has been employed from the beginning of the series in March. 1863. The weight of the Magnet with its stirrup is 825 grains, and its length 3.94 inches nearly. Its moment of inertia, measured by the method of vibrations. with and without a known increase of the moment. is 5.27303 to the English foot--second--grain units, at the temperature 35° Fahr., and its rate of increase is 0.00073 for increase of 10°.

The temperature corrections have been obtained from the formula $q\left(t^{\circ}-32^{\circ}\right)+q^{\prime}\left(t^{\circ}-32^{\circ}\right)^{2}$ where t° is the observed temperature and $3 ฆ^{\circ}$ Fahr. the adopted standard temperature. The values of the co-efficient q and q^{\prime} are respectively 0.0001128 and 0.000000436 .

The induction co-efficient μ is 0.000244 .
The correction for error of graduation of the Deflection bar at 1.0 foot is +0.00004 ft . at $1.3+0.000064 \mathrm{ft}$.

The observed times of vibration are entered in the Table without corrections.

The time of one vibration has been obtained each month from the mean of twelve determinations of the time of 100 vibrations.

The angles of deflection are each the mean of two sets or readings.

In deducing from these observations the ratio and product of the magnetic moment m of the magnet, and the earth's horizontal magnetic intensity X, the induction and temperature corrections have always been applied, and the observed time of vibration has been corrected for the effect of torsion of the suspending thread; but no correction has been required for the rate of the chronometer, or for the arc of vibration, the former having been always under 1.5^{5} and the latter never over 50^{\prime}.

The average deflection of the magnet caused by a twist of the torsion circle through 90° has been about $11^{\prime} .3$ of arc.
m
In the calculations of the ratio-, the third and subsequent

P Q

terms of the series $1+-+-+\& c$., have always been omitted.
$r 2 r 4$
The value of the constant P was found to be -0.00130 .
The Vertical and Total Forces are deduced from the measures of the Horizontal Force, and the Angle of Inclination or Dip.
All the computations are in English foot-second--grain units; and in the final table the results are given also in C. G. S units, in parallel columns.

The Dip, or angle between the direction of total force, and that of its horizontal component, has been measured with Dover's Circle, No. 159, once each month by two needles, always when possible on the days of vibration and deflection observations.

The Declination has been observed at the beginning of each week, usually on Mondays at 4 p.m and is quoted as the angle between the horizontal direction of force and the Astronomical Meridian, measured from the North Point.

The Differential Instruments, or Photo-Magnetographs, are of the same pattern as those at the Kew Observatory, except that the radial distances between the centres of the magnets and the surfaces of the respective cylinders are shorter, and the clock is not provided with an automatic light-cut-off, for the time scale The "cut-offs" are made by hand at the hours $0,2,20$, and 22 of the astronomical day, to furnish two time marks at each end of the day's curves, the changes being made between 10.30 and $11 \mathrm{a} . \mathrm{m}$., civil time.

The scale value of the Bifilar horizontal force torsion balance, has remained very constant at 0.00051 C . G. S. for one centimetre, during the last twelve years.

The scale value of the Unifilar Declination Magnet is $11^{\prime} 28$ arc per centimetre.

The corrections for diurnal range, employed in the tables, are taken from the Kew Reports 1891-1902.

OBSERVATIONS OF DECLINATION AND DIP.

1904 Month	$\begin{gathered} \text { G.M.T. } \\ \text { Civil Daỳ } \end{gathered}$	West Declination		Magnetic Dip.		
		Observations.	Monthly Mean.		Dip.	$\left\lvert\, \begin{gathered} \text { G.M.T. } \\ \text { CIVIL DAY } \end{gathered}\right.$
Jan.	D. H. M.	\bigcirc	-		- ,	D. H. M.
	$\begin{array}{rrrr}5 & 16 & 0 \\ 11 & 16 & 5\end{array}$	$\begin{array}{ll}17 & 56.7 \\ 17 & 57.8\end{array}$		1	$68 \quad 49 \cdot 3$	161158
	$\begin{array}{lll}11 & 16 & 5 \\ 18 & 16 & 0\end{array}$	$\begin{array}{ll}18 & 0.7\end{array}$	($1759 \cdot 8$	2	$68 \quad 51 \cdot 3$, 1228
	25160	$\begin{array}{ll}18 & 3.9\end{array}$				
Feb.	1160	$18 \quad 2.6$				
	816	$\begin{array}{ll}18 & 0.2\end{array}$		1	$68 \quad 47 \cdot 9$	$\begin{array}{llll}18 & 11 & 3\end{array}$
	15160	$18 \quad 7 \cdot 0$	[18 3.6	2	$68 \quad 48 \cdot 3$,, 1139
	2216	$\begin{array}{ll}18 & 4.7\end{array}$				
March	1160	$\begin{array}{ll}18 & 0.4\end{array}$				
	7160	$17 \quad 59 \cdot 7$		1	$68 \quad 48 \cdot 2$	231123
	141545	$\begin{array}{rrr}18 & 5 \cdot 1 \\ 17 & 58\end{array}$	$\} \begin{array}{ll}18 & 0 \cdot 1\end{array}$	2	$68 \quad 49.9$,, 1223
	$\begin{array}{rrrr}23 & 16 & 10 \\ 28 & 16 & 0\end{array}$	$\begin{array}{ll}17 & 58 \cdot 5 \\ 17 & 56.6\end{array}$				
	28160	$17 \quad 56 \cdot 6$				
Apri	416	$\begin{array}{ll}18 & 6.7\end{array}$				
	11160	$\begin{array}{ll}18 & 3.7\end{array}$		1	$68 \quad 48.5$	181015
	181545	$\begin{array}{lll}17 & 59.8\end{array}$	[$18 \quad 32$	2	$68 \quad 49 \cdot 1$,, 1115
	25160	$\begin{array}{ll}18 & 2.7\end{array}$				
May	216	$\begin{array}{lll}17 & 59 \cdot 2\end{array}$				
	916 0	$18 \quad 0.3$	$18 \quad 0.3$	1	$68 \quad 47 \cdot 4$	261439
	16160	$\begin{array}{ll}18 & 29 \\ 18 & 0.9\end{array}$		2	$68 \quad 47 \cdot 3$, 15
	2316	$\begin{array}{ll}18 & 0.7\end{array}$				
June	30160	$\begin{array}{lll}17 & 58.5\end{array}$				
	616	$18 \quad 1.2$				16129
	$\begin{array}{ll}1316 & 0\end{array}$	$17 \begin{array}{lll}17 & 573\end{array}$	17558	2	$68 \quad 529$,, 1243
	2016 27 27	$\begin{array}{ll}17 & 53 \cdot 6 \\ 17 & 51 \cdot 1\end{array}$				
July	27160	$17 \quad 51 \cdot 1$				
	416	$\begin{array}{lll}17 & 55.7\end{array}$				
	1116	$\begin{array}{ll}17 & 55.7\end{array}$		1	$68 \quad 47.5$	141216
	18160	$\begin{array}{lll}17 & 59 \cdot 0\end{array}$		2	$68 \quad 47 \cdot 4$	1249
	25160	$17 \quad 59 \cdot 3$				

OBSERVATIONS OF DECLINATION AND DIP. (Continued.)						
$\begin{gathered} 1904 \\ \text { MONTH } \end{gathered}$	$\left\|\begin{array}{c} \text { G.M.T. } \\ \text { Civil } \\ \hline \end{array}\right\|$	West Declination		Magnetic Dip.		
		Observations.	$\begin{gathered} \text { Monthly } \\ \text { Mean. } \end{gathered}$		Dip.	$\begin{gathered} \text { G.M.T. } \\ \text { Civil Day } \end{gathered}$
Aug.	D. H. M.	- '			-	D. H. M.
	1160	$\begin{array}{ll}17 & 57.6\end{array}$				
	$\begin{array}{lll}916 & 0\end{array}$	$\begin{array}{lll}17 & 59 \cdot 1\end{array}$	(1754.8	1	$68 \quad 45 \cdot 4$	161156
	$\begin{array}{rrrr}16 & 16 & 5 \\ 26 & 16 & 30\end{array}$	$\begin{array}{\|cc\|}17 & 54 \cdot 2 \\ 17 & 48 \cdot 4\end{array}$	1754	2	$68 \quad 47 \cdot 0$:, 1228
Sept.	191610	$\begin{array}{ll}17 & 55 \cdot 3\end{array}$		1	$68 \quad 46.9$	$\begin{array}{lll}16 & 10 & 46\end{array}$
	$2616 \quad 0$	$\begin{array}{llll}17 & 53\end{array}$	1754.5	2	$68 \quad 49.4$, 1131
Oct.	3160	$17 \quad 55 \cdot 3$				
	10160	$17 \begin{array}{ll}17 & 55.7\end{array}$		1	$68 \quad 472$	141138
	$\begin{array}{llll}17 & 16 & 5\end{array}$	1754.5 17	(1755.6	2	$\begin{array}{ll}68 & 48.0\end{array}$,, 125
	$\begin{array}{lll}24 & 16 & 0 \\ 31 & 16 & 0\end{array}$	$\begin{array}{ll}17 & 55 \cdot 7 \\ 17 & 56.9\end{array}$	-			
Nov.	7160					
	14160	$17 \begin{array}{ll}17 & 50 \cdot 7\end{array}$	17553	1	$68 \quad 46 \cdot 6$	141440
	$\begin{array}{rrrr}22 & 16 & 0 \\ 28 & 16 & 30\end{array}$	$\begin{array}{ll}17 & 58 \cdot 2 \\ 17 & 56.2\end{array}$	- 17553	2	$68 \quad 43 \cdot 0$,, 1512
	281630	$17 \quad 56 \cdot 2$				
Dec.	516 12 12 16	17 566.0		1	$68 \quad 46.6$	131148
	19160	$\begin{array}{llll}17 & 57.8\end{array}$	1757.5		$68 \quad 49.9$,, 1217
	$2616 \quad 0$	$18 \quad 0.4$				
Yearly Mean						
			1758.2		$68 \quad 48 \cdot 2$	

OBSERVATIONS OF VIBRATIONS AND DEFLECTIONS FOR ABSOLUTE MEASURE OF MAGNETIC FORCE.

1904. Month.	$\left\|\begin{array}{c} \text { G. M. T. } \\ \text { (Civil Day) } \end{array}\right\|$	Temp.	$\left\|\begin{array}{c} \text { Time } \\ \text { of one } \\ \text { vibration } \end{array}\right\|$	G. M. т.	Temp.	$\begin{aligned} & \begin{array}{l} \text { Observed } \\ \text { eaflection } \\ \text { at } 1 \cdot 0 \mathrm{ft} . \end{array} \\ & \text { at } 1 \cdot 3 \mathrm{ft} \end{aligned}$	$\begin{aligned} & \text { Value } \\ & \text { of } m . \end{aligned}$
	D. H. M.	-	s.	D. H. M.	-	-	
Jan.	$16 \quad 953$	$46 \cdot 3$	6.0300	$16 \begin{cases}11 & 3 \\ 10 & \text { on }\end{cases}$	$\begin{aligned} & 43 \cdot 6 \\ & 43 \cdot 5 \end{aligned}$	$\begin{array}{\|rr\|r\|} \hline 11 & 33 \cdot 3 \\ 5 & 13 \cdot 7 \end{array}$	$0 \cdot 37858$
Feb.	$18 \quad 822$	$35 \cdot 3$	6.0244	$18 \begin{cases}9 & 53 \\ 9 & 54\end{cases}$	$\begin{aligned} & 44 \cdot 8 \\ & 42.4 \end{aligned}$	$\begin{array}{r} 1131.6 \\ 513.4 \end{array}$	0.3782;
Mar.	$23 \quad 929$	$46 \cdot 3$	6.0274	$23\left\{\begin{array}{lll}10 & 27 \\ 10 & 28\end{array}\right.$	$\begin{aligned} & 49 \cdot 1 \\ & 49 \end{aligned}$	$\left\lvert\, \begin{array}{rrr} 11 & 32 & 5 \\ 5 & 13.8 \end{array}\right.$	0.37873
A pr.	$18 \quad 816$	$46 \cdot 6$	6.0322	$18 \begin{cases}9 & 23 \\ 9 & 25\end{cases}$	$\begin{aligned} & 51 \cdot 4 \\ & 51.2 \end{aligned}$	$\begin{array}{\|rr\|r\|} 11 & 32.7 \\ 5 & 12.1 \end{array}$	0.37842
May	$16 \quad 955$	$57 \cdot 5$	6.0403	$16\left\{\begin{array}{lll}11 & 14 \\ 11 & 14\end{array}\right.$	$\begin{aligned} & 62 \cdot 1 \\ & 6 \% \cdot 1 \end{aligned}$	$\begin{array}{\|rr\|} 11 & 29.4 \\ 5 & 12.8 \end{array}$	037763
June	16109	58.4	6.0492	$16 \begin{cases}11 & 1 \\ 11 & 0\end{cases}$	$\begin{aligned} & 59.0 \\ & 59.0 \end{aligned}$	$\begin{array}{r} 1132 \cdot 1 \\ 514 \cdot 1 \end{array}$	$0 \cdot 37776$
July	$1410 \quad 4$	67.8	6.0411	$14\left\{\begin{array}{lll}10 & 55 \\ 10 & 53\end{array}\right.$	$\begin{aligned} & 69 \cdot 5 \\ & 69.6 \end{aligned}$	$\begin{array}{\|r\|r\|} 11 & 28 \cdot 0 \\ 5 & 12 \div 4 \end{array}$	0.37775
Aug.	$16 \quad 952$	57.8	6.0373	$16 \begin{cases}10 & 49 \\ 10 & 48\end{cases}$	$\begin{aligned} & 59 \cdot 4 \\ & 59.7 \end{aligned}$	$\begin{array}{rr} 11 & 29 \cdot 7 \\ 5 & 12 \cdot 7 \end{array}$	$0 \cdot 37783$
Sept.	$16 \quad 810$	56.7	6.0364	$16\left\{\begin{array}{l} 948 \\ 946 \end{array}\right.$	$\begin{gathered} 59 \cdot 5 \\ 59 \cdot 6 \end{gathered}$	$\begin{array}{r\|r\|} 11 & 30 \cdot 4 \\ 5 & 12 \cdot 8 \end{array}$	$0 \cdot 37817$
$0 \mathrm{ct}$.	$14 \quad 937$	53.2	6.0846	$14 \begin{cases}10 & 38 \\ 10 & 38\end{cases}$	$\begin{aligned} & 57.0 \\ & 57.0 \end{aligned}$	$\begin{array}{r} 1128.9 \\ 5 \quad 12.6 \end{array}$	0.37757
Nov.	141111	55.6	6.0348	$14 \begin{cases}12 & 24 \\ 12 & 25\end{cases}$	$\begin{aligned} & 55 \cdot 0 \\ & 55 \cdot 0 \end{aligned}$	$\begin{array}{rl} 11 & 29 \cdot 1 \\ 5 & 12 \cdot 4 \end{array}$	$0 \cdot 37780$
Dec.	$13 \quad 932$	40.5	6.0338	$13\left\{\begin{array}{l}10 \\ 10 \\ 10\end{array} 28\right.$	$\begin{aligned} & 41 \cdot 5 \\ & 41 \cdot 5 \end{aligned}$	$\begin{array}{rl} 11 & 29 \cdot 1 \\ 5 & 12 \cdot 3 \end{array}$	0.37708

MAGNETIC INTENSITY.

BRITISH				C. G. S. UNITS.		
1904	$\begin{array}{\|c\|} \text { Horizon- } \\ \text { tal } \\ \text { Force. } \end{array}$	Vertical Force.	Total Force.	Horizontal Force.	Vertical Force.	Total Force.
Jan.	$3 \cdot 7711$	$9 \cdot 97416$	$10 \cdot 4460$	$0 \cdot 17388$	0.44916	$0 \cdot 48164$
Feb.	$3 \cdot 7752$	$9 \cdot 17340$	$10 \cdot 4405$	$0 \cdot 17407$	$0 \cdot 44881$	0.48139
Mar.	$3 \cdot 7722$	9-\$7340	10.4393	0.17393	0.44881	0.48133
April	$3 \cdot 7721$	9. 87318	10.4372	$0 \cdot 17392$	0.44871	$0 \cdot 48123$
May	$3 \cdot 7691$	$9 \cdot 87116$	$10 \cdot 4175$	$0 \cdot 17379$	0.44778	$0 \cdot 48032$
June	$3 \cdot 7576$	$9 \cdot \$ 7195$	$10 \cdot 4206$	$0 \cdot 17326$	$0 \cdot 44814$	0.48047
July	$3 \cdot 7729$	9.27228	$10 \cdot 4292$	$0 \cdot 17396$	$0 \cdot 44830$	0.48087
Aug.	$3 \cdot 7719$	9.27092	10.4160	$0 \cdot 17392$	$0 \cdot 44766$	0.48026
Sept.	$3 \cdot 7719$	9.67257	10.4316	$0 \cdot 17391$	0.44843	$0 \cdot 48098$
Oct.	$3 \cdot 7744$	9.27280	10.4345	$0 \cdot 17403$	$0 \cdot 44853$	0.48111
Nov.	$3 \cdot 7777$	9:27130	10.4218	$0 \cdot 17419$	0.44784	$0 \cdot 48052$
Dec.	3•7787	$9 \cdot 97441$	10.4511	$0 \cdot 17422$	0.44928	$0 \cdot 48187$
Means	3•7721	9. 5 \% 63	10*4321	0-17392	0.44845	$0 \cdot 48100$

Horizontal Magnetic Direction, west of north, (from daily measures of the continuous curves.)									
1904	Mean of the highest daily readings. (a)	Mean of the lowest daily readings (b)	Means of a and b. (c)	$\begin{array}{\|c\|} \text { Means of } \\ \text { dailv } \\ \text { readings } \\ \text { at } \\ \text { 4a.m. \& 4p.m. } \\ \text { (d) } \\ \hline \end{array}$	Differences $d-c .$	$\begin{aligned} & \text { Difference } \\ & \text { of } \\ & a \text { and } b, \\ & \text { or } \\ & \text { Mean daily } \\ & \text { range. } \end{aligned}$	Highest reading of the month.	Lowest reading of the month	Monthly range.
	$17^{\circ}+$	$17^{\circ}+$		${ }^{\circ}+$			$18^{\circ}+$	$17^{\circ}+$	
				,	1	,			'
January	630	52.4	$57 \cdot 7$	$58 \cdot 8$	$1 \cdot 1$	$10 \cdot 6$	119	$38 \cdot 4$	33.5
February	$62 \cdot 8$	53.0	$57 \cdot 9$	$58 \cdot 7$	0.8	$9 \cdot 8$	$7 \cdot 9$	$40 \cdot 9$	$27 \cdot 0$
March	644	$52 \cdot 8$	$58 \cdot 6$	$58 \cdot 3$	-0.3	11.6	99	$42 \cdot 9$	$27 \cdot 0$
April	652	50.8	$57 \cdot 9$	$57 \cdot 9$	$0 \cdot 0$	$14 \cdot 4$	$11 \cdot 9$	$39 \cdot 9$	$32 \cdot 0$
May	$64 \cdot 3$	$51 \cdot 1$	$57 \cdot 7$	$57 \cdot 6$	-0.1	13.2	$12 \cdot 9$	$45 \cdot 4$	27.5
June	63.7	497	56.7	56.9	$0 \cdot 2$	14.0	$17 \cdot 9$	39.9	38.0
July	62.2	492	$55 \cdot 9$	$56 \cdot 0$	$0 \cdot 1$	13.0	49	35.9	29.0
August	$63 \cdot 3$	$49 \cdot 7$	$56 \cdot 5$	$55 \cdot 8$	-0.7	$13 \cdot 6$	$9 \cdot 9$	40.9	29.0
September	$61 \cdot 7$	$50 \cdot 1$	559	54.9	-1.0	11.6	$8 \cdot 9$	399	$29 \cdot 0$
October	61.2	48.2	54.7	$55 \cdot 3$	$0 \cdot 6$	130	$9 \cdot 9$	28.9	$41 \cdot 0$
November	59.5	503	549	$55 \cdot 1$	$0 \cdot 2$	$9 \cdot 2$	59	$37 \cdot 9$	28.0
December	589	50.4	$54 \cdot 7$	55.7	1.0	$8 \cdot 5$	$3 \cdot 5$	$29 \cdot 9$	$33 \cdot 6$
Means	62.5	$50 \cdot 6$	$56 \cdot 6$	56.7	$0 \cdot 1$	$11 \cdot 9$	$9 \cdot 6$	$38 \cdot 4$	$31 \cdot 2$
Correction for diurnal range				-0.3					
Mean for the year				$17^{\circ} .56^{\prime} \cdot 4$					

DATES OF MAGNETIC DISTURBANCES， 1904.

The disturbances are divided generally into three classes，small， moderate．and greater ；these are irdicated by the initial letters of the classes，and the letter c denotes calm．Very great disturbances are marked vg．The days are reckoned astronomically from noon to noon

Totals $1 \alpha^{\circ} \infty \text { 日 }$		客
－OCN』		Jan．
○○ー ジャ		Feb．
－○ー¢ ${ }_{\text {® }}^{\sim}$		March
OOMA気		April
OCか島灾		May
ニーッい！		June
		July
$0=-\infty$ N		August
$\bigcirc 000$ Norsor		Sept．
$=-0 \cdot{ }^{-\infty}$		Oct．
001000		Nov．
人Oーの心憂		Dec．

PRESENTS RECEIVED.

Greenwich Observations, 1gor
Greenwich Photo-Heliographic Results,

Astrographic Catalogue, 1goo, Greenwich Section, Vol. I.
Proceedings of the Royal Society, 1904 Obituary Notices of Fellows. Part I. ... Proceedings of the Royal Institution, Vol. XVII. Part II.
Monthly Notices of the Royal Astronomical Society, 1904
... ...
National Physical Laboratory Report for 1903
Report of the Seventy-Third meeting of the British Association for the advancement of Science, held at Southport, 1903 Quarterly Returns of the Registrar General, 1904
The Meteorological Record 1903-1904
Hourly Readings obtained from the Selfrecording Instruments at the four Observatories under the Meteorological Council, New Series, Vol. I. 1goo
Report of the Meteorological Council 1903 and 1904
Report of the International Meteorological Committee, Southport, 1903
Climatological Observations at Colonial and Foreign Stations. No. I. Tropical Africa, 1900, 1901, 1902
Daily, Weekly, Monthly and Quarterly Weather Reports, 1904
The Illustrated Official Journal of Patents, $1904 \ldots$...
Catalogue of Four Hundred and Seventy of the Brighter Stars, classified according to their Chemistry at the Solar Physics Observatory, South Kensington
Publications of the Astronomical Laboratory at Gröningen. Edited by Prof. J. C. Kapteyn. Nos. 12 and 13

Royal Observatory.

$$
3
$$

$$
39
$$

Royal Society. "

Royal Institution.
Royal Astro. Society.
National Phys. Lab.

British Association.
Registrar General. Royal Met. Society.

Meteorological Office.

39

39
"
Patent Office.

Solar PhysicधObsy.

Astro. Lab. Gröningen.

Twenty-ninth Annual Report of the Savilian Professor of Astronomy to the Visitors of the University Observatory for 1903-1904
Reprints of the Oxford Observatory Papers, Nos. 82-102
Report of the Liverpool Observatory Bidston Birkenhead, 1903
Report and Results of Observations, 1903
Records of Meteorological Observations taken at the Observatory Edgbaston 1903 ... $\quad .$.
Report of the Committee of the Blackburn Free Library, Museum and Art Gallery, $1904 \ldots$... ...
Meteorological Observations at Rousdon Observatory, Devon, for the year 1903
Summary of Rainfall Readings at Cemetery Grounds, Colne, 190i-2-3 ...
Annual Report of the Liverpool Astronomical Society, 1904-5
Cambrian Natural Observer, 1903 ...
The Great Magnetic Storm, Oct. 31, 1903
Report of the Medical Officer of Health for the year 1903
Report made to the Solar Physics Committee by Sir Norman Lockyer, K.C.B., F.R.S, and upon the work done in the Solar Physics Observatory, South Kensington, 1903 ...
Further Researches on the Temperature Classification of Stars. By Sir Norman Lockyer, K.C.B., L.L.D., F.R.S.

On the Relation between the Spectra of Sunspots and Stars. By the same
Sunspot Variation in Latitude 186r-1902, By Dr. William J. S. Lockyer, M.A., F.R.A.S.

The Spectra of Antarian Stars in Relation to the Fluted Spectrum of Titanium. By A. Fowler, A.R.C.S.

On the General Circulation of the Atmosphere in Middle and Higher Latitudes. By W. N. Shaw, F.R.S.
On the Large Sun-Spots of 1903, Oct. 4-18 and October 25-November 6, and the Associatel Magnetic Disturbances. By the Astronomer Royal

Oxford Uni. Obs.
"
Liverpool Observatory. Fernley Obs. Southport.

Edgbaston Observatory.
Blackburn Corporation.

Rousdon Observatory.
Colne Corporation.
Liverpool Astro. Soc.
Astro. Soc. of Wales.
Falmouth Observatory.
Dr. Ed. Sergeant .

Solar Phys. Committee.

Author.

9
*)
Ephemeris for Physical Observations ofJupiter, 1904-5. By A. C. D.CrommelinA. C. D.1903, and their association withSun-spots, as recorded at theRoyal Observatory, Greenwich.By E. Walter MaunderAuthor.
The "Great" Magnetic Storms 1875 -The Aurora and Magnetic Disturbance.By William Ellis, F.R.S.
On the probable presence in the Sun of the newly discovered gases of the Earth's Atmosphere. By G. D. Liveing, M.A.
On Differences between the Spectra at Anode and Kathode in certain gases, and on the probable reasons for these differences. By the same.
The Definitive Places of the Standard Stars for the Northern Zones of the "Astronomische Gesellschaft." By Dr. A. M. Downing, F.R.S., etc.
Cosmical Repulsion. ${ }^{\text {... }}$ By E. F. \dddot{J}. Love, M.A., F.R.A.S.
On the Atomic Weight of Radium and on Relationships between the Atomic Weights of the Elements and their Spectra. By W. Marshall Watts
Observations by Means of Kites at Crinan in the Summer of 1903. By W. H. Dines, B.A., F.R.Met.Soc.
A Quartz-Thread Vertical Force Magnetograph. By Dr. W. Watson, A.R.C.S., F.R.S., etc.
On Explosions of Steam Pipes due to Water-Hammers. By C. E. Stromeyer, M.Inst.C.E.
Parallax Determinations by Photography. By the same.
An Inquiry into the Nature of the Relationship between Sun-spot Frequency and Terrestrial Magnetism. By Dr. C. Chree, LL.D., F.R.S., etc.
The Bending of Magnetometer DeflexionBars. By the same

On the Spectrum of Nova Persei and the Structure of its Bands, as photographed at Glasgow. By Dr. Ludwig Becker
The Heavens at a Glance, 1905. By
Arthur Mee, F.R.A.S. ... \ldots.
On the Possible Variation of the Solar
Radiation and its probable effect
on Terrestrial Temperatures. By
Arthur Mee, F.R.A.S. ... \ldots...
On the Possible Variation of the Solar
Radiation and its probable effect
on Terrestrial Temperatures. By
Arthur Mee, F.R.A.S. ... \ldots...
On the Possible Variation of the Solar
Radiation and its probable effect
on Terrestrial Temperatures. By
Arthur Mee, F.R.A.S. ... \ldots...
On the Possible Variation of the Solar
Radiation and its probable effect
on Terrestrial Temperatures. By S. P. Langley

Author.

The Development of a New Method of Research. By Prof. George E. Hale
Meteorology at the British Association. By A. Laurence Rotch
Magne-Crystallic Action and the Aurora. By Dr. M. A. Veeder
Faculties of the Mind Not Understood and Not Used, with Special Reference to the Curability of Epilepsy. By the same The Physical Decomposition of the Earth's Permanent Magnetic Field. By L. A. Bauer
Department of International Research in Terrestrial Magnetism of the Carnegie Institution. By the same
Results of Magnetic Observations made by the Coast and Geodetic Survey between July i, 1902 and June 30 , 1903 and July 1, 1903 and June 30, 1904. By the same

The Lunar Diurnal Variation as obtained at the Cheltenham Magnetic Observatory from a single complete Lunation during February, 1903. By L. A. Bauer and R. E. Nyswander

Authors.
Magnetic Observatories of the United States Coast and Geodetic Survey in operation July x , 1902. By L. A. Bauer and J. A. Fleming

Magnetic Dip and Intensity Observations January 1897 to June $30,1902$. By Daniel L. Hazard and L. A. Bauer

Jesuit Astronomy. By Rev. John Schreiber, S.J. and Rev. F. Rigge, S.J.

The Lick Observatory Bulletins, Numbers 50 to 67 Publications of the Yerkes Observatory. Decennial Papers, Vol. II., 1903 The Spectra of Stars of Secchi's fourth Type ... The 1900 Solar Eclipse Expedition of the Astrophysical Observatory of the Smithsonian Institution	Lick Observatory. Yerkes Observatory. ," Smithsonian Institution.
Annual Report of the Smithsonian Institution for the years 1902 and 1903	
Miscellaneous Scientific. Papers of the Allegheny Observatory, Nos. 15 , 16 and	Allegheny Observatory.
Contributions from the Observatory of Columbia University, No. 21	Columbia Uni. Obsy.
Laws Observatory, University of Missouri. Bulletins, Nos. 2 and 3	Missouri University.
Transactions of the Detroit Observatory,	Michigan University.
Report of the Meteorological Observatory at St. Ignatius College, Cleveland, 1903	St. Ignatius Co
The Cyclones of the Far East. By Rev. José Algué, S.J., Director of the Philippine Weather Bureau	Philippine Weather Bureau.
Report of the Philippine Weather Bureau,	
The Climate of the Philippines ${ }^{1903}$	
The Climate of the Philippines	
Volcanoes and Seismic Centers of the	
the Manila Central Observatory, and Meteorological Results of the Stations, 1002	
Monthly Bulletins, 1903, 1904 ...	
Supplement to Bulletin for August, 1903	,"
Catalogue of British Exhibits at the International Exhibition St. Louis,	
1904 ... \cdots... $\quad .$.	Exhibition Committee.
Rapport Annuel sur l'état de l'observatoire de Paris pour l'année 1903.	
Bulletin Mensuel du Bureau Central	
Météorologique de France 190; 1904. Par E. Mascart	,
Annales de l'observatoire astronomique, magnétique et météorologique de Toulouse. Tome V. Par M. B. Baillaud -••	"

Catalogue Photographique du Ciel. Tomes II., IV., VI., VII. Par le même
Application de la Méthode de M M. P.
et Pr. Henry à la réduction des clichés photographiques du Catalogue International à l'observatoire de Toulouse. Par le même ...
Climat de Toulouse. Par le même ...
Comparaison des catalogues méridiens de
Toulouse et de Leipzig. Par le même A Plication du photomètre à coin à la détermination des grandeurs ohotographiques des Pléiades lla. et son œuvre. Observatoire du Mont-Blanc
,"
Bulletin des Observations Magnétiques et Météorologiques 1903. Observatoire St. Louis, Jersey ...
Bulletin des Observations. Tome XXVII. 190ı. Observatoire Magnétique et Météorologique de Zi^{-} Ka-Wei
"
Perturbations Magnétiques en 1904. Par le même
Bulletin Mensuel de l'observatoire Carlier d' Orthez et des autres stations de la région 1903, 1904
Catalogue Photographique du Ciel. Introduction et Tome I., Tome VI., Tome VII, Observatoire D'Alger
Publications de l'observatoire astronomique et physique de Tachkent, Nos. 4, 5
Annales de l'observatoire astronomique de Tokyo, Université Impériale du Japon, collège des Sciences. Tomes II., III.,

Annales de l'observatoire météorologiquemagnétique de L'Université Im. périale à Odessa, rgor-rgo3
Bulletin de l'observatoire météorologique de L’Université de Kazan, 1903 ...
Perturbation Magnétique, Oct. 31, 1903. Observatoire de Constantin Pavlovsk
Annales de l'observatoire magnétique de

- Copenhague, 1899-1900

Observations Astronomiques, météoro-

 logiques et magnétiques de Tasiusak dans le district D'Angmagsalik 1898-99, faites par L'Expédition Danoise sous la direction de G. C. AmdrupBulletin de la Commission Météorologique du département de la HauteGaronne
Observations Météorologiques Suédoises, publiées par L'Åcadémie Royale de Suéde, rgor, o2, o3
Annuaire de la Société Météorologique de France, 1904
Etudes sur les Dépressions Barométriques à Diverses Hauteurs. Par L. Teisserence de Bort
Travaux de la Station Franco-Scand:nave de Sondages Aériens à Hald, 19021903. Par le même ...

Sur la photographie des diverses couches superposées qui composent l'atmosphère solaire ; Par M. H. Deslanders

La Commission.

L'Académie Royale.
La Société.

L'Auteur.

3 ion entre les taches solaires et le magnétisme terrestre. Utilité de l'enregistrement continu des éléments variables du Soleil; Par le même
Organisation générale des recherches solaires. Enregistrement continu des éléments variables du Soleil; Par le même
Corrections aux Ascensions Droites de quelques étoiles du "Berliner Jahrbuch." Par Compos Rodriguez
Sur l'anomalie magnétique du bassin $\dddot{\text { de }}$ Paris. Par Th. Moureaux
Analyse des mouvements pér:odiques et apériodiques du niveau de la mer. Par J. P. van der Stok …
La prochaine éclipse totale de Soleil. Par A. de la Baume Pluvinel
Sur la distribution de l'heure à distance au moyen de la télegraphie électrique sans fil: Par M. G. Bagourdan
Recherches sur les Solutions périodiques de la troisiéme sorte dans le problème des trois corps. Par H. V. Zeipel

Les variations annuelles de la température dans les lacs suédois. Par S. Grenander

Variation diurne de la déclinaison en Chine. Par J. de Moidrey, S.J.
Observations anciennes de taches solaires en Chine. Par le même
Lampe Nernst-Lampe Cooper Hewitt. Par J. D. Lucas, S.J.
Rayons N-Rayons N. Yar le même. Galilée et Marius. Par J. A. C. Oudemans et J. Bosscha.
Observations d' Eclipses de Lune. Par Compos Rodriguez et Teixeira Bastos.
Photographische Himmelskarte. Katalog Berichtigungen $z u$ den Bänden I., II. and IlI. des Astrophysikalischen Observatoriums zu Potsdam.
Potsdam (Astrophysikalisches Observatorium) des \quad Astrophysikalischen Observatoriums Königstuhl-Heidelberg. Band II. No. I.
Ergebnisse der Meteorologischen Beobachtungen im Reichsland ElsassLothringen im Jahre $1900 .$.
Jahrbücher Her K. Ung. Reichs-Anstalt für Meteorologie und Erdmagnetismus. Band XXXI. Jahrgang, 1901, IV. Theil. Band XXXII. Theil I., II., und III.

L'Auteur.
$"$
"
"
Les Auteurs.
,
Observatorium.
Publikationen des Astrophysikalischen Theil I., II., und IM.
Die Temperaturverhältnisse von Ungarn. Von demselben
Beobachtungen angestellt am Kön.-Ung. Meteorologisch-Magnetischen Observatorium in O-Gyalla, 1904
IV. Bericht 1903. Von demselben ...

Verzeichniss der für die Bibliothek der Königl.-Ung. Reichs-Anstalt für Meteorologie und Erdmagnetismus in den Jahren 1902, 1903 als Geschenk erhaltenen Bücher ...
Regenwaarnemingen in NederlandschIndie 1902, Kon. Mag. en Met. Observatorium te Batavia
Perioden in den Regenval op Java. Door Dr. S. Figee
Iakttagelser vid Meridiancirkeln pä Stockholms Observatorium under åren 1881 och $1883 \ldots$

Bericht über die Tätigkeit des KöniglichPreussischen Meteorologischen Instituts im Jahre 1903. Von Wilhelm von Bezold
Ergebnisse der Wolkenbeobachtungen in
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
Jen
Jahren I 897 und I897.
demselben Von
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
den
Jahren I897 und I897.
demselben Von
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
den
Jahren I897 und I897.
demselben Von
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
den
Jahren I897 und I897.
demselben Von
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
den
Jahren I897 und I897.
demselben Von
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
den
Jahren I897 und I897.
demselben Von
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
den
Jahren I897 und I897.
demselben Von
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
den
Jahren I897 und I897.
demselben Von
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
den
Jahren I897 und I897.
demselben Von
Potsdam und an einigen Hülfssta-
tionen in Deutschland in
den
Jahren I 897 und 1897. Von
Institut.

Deutsches Meteorologisches Jahrbuch für 1903. Preussen und benachbarte Staaten. Von demselben
Über die Kälterückfälle im Juni. Von demselben
Katalog bemerkenswerter Witterungsereignisse von den altesten Zeiten bis zum Jahre 1800 . Von demselben
Jahrbuch des Königlich-Sächsischen meteorologischen Institutes für das Jahre 1900. Herausgegeben vom Direktoren Prof. Dr. Paul Schreiber
Dekaden-Monatsberichte (Vorläufige Mitteilung), 1902, 1903. Von demselben
Archiv des Erdmagnetismus. Heft I. Von Dr. Adolf Schmidt. Kgl. Pr. Met. Institut, Potsdam
Magnetische Störung zu Potsdam 1903, Okt. 31.; 1904, April I, Mai 12-I4. Von demselben
Ergebnisse der Meteorologischen Beobachtungen an den Landesstationen in Bosnien-Herzegovina im Jahre $1900 \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots$
Jahrbücher der K. K. Central-Anstalt für Meteorologie und Erdmagnetismus. Jahrgang 1902

Astronomische Mitteilungen. Vol. V. Nos. XXXI.-LIII. LXXI.-LXXVIII. und Nr. XCV. Von demselben .
Veröffentlichungen des Erdmagnetischen Observatoriums bei der Königlichen Sternwarte in München. Heft. I.
Publicationen der Küffner' schen Sternwarte. Band VI. Theil II., III., IV. Von Dr. Leo de Ball

Sternwarte.
neue Refraktionstafel. V. \cdot n demselben
Monatsbericht der Kaiserlichen Hauptstation für Erdbebenforschung zu Strassburg i/E, 1903
Jahrbuch der Meteorologischen, Erdmagnetischen und Seismischen Beobachtungen des Jahres 1903. Von der Kaiserlichen und Königlichen Kriegsmarine in I'ola
Nächtliche Kimmtiefen-Beobachtungen zu Veıudella. Ausgeführt 1902/03. Von demselben
Meteorologische Termin-Beobachtungen in Pola, Sebenico und Teodo 1904. Von demselben
Resultater af Vandstands-Observationer paa den Norske Kyst. Hefte VI. Norske Gradmaalings-Kommission
Magnetische Störung, Okt. 31, 1903. de Bilt, Utrecht
Bestimmung der jährlichen Parallaxe der Nova Persei. Von Östen Bergstrand
Ueber die Bahn des ersten Uranussatelliten Ariel. Von demselben ...
Untersuchungen über das spektroskopische Doppelsternsystem β Aurigae. Von H. C. Vogel \ldots
Magnetische Störungen infolge des Vulkanausbruches auf Martinique. Von Dr. J. B. Messerschmitt in München

Kommission. Corporation für Magnetismus.
,
Verfasser.

Ueber die Temperaturabnahme mit der Höhe bis zu 10 km nach Ergebnissen der internationalen Ballonaufstiege. Von Dr. Julius Hann ...
Seltenes Kreuz durch den Mond, beobachtet im nördlichen Eismeer zwischen Spitzbergen und Grönland. Mitgeteilt von Prof. A. Schück
Untersuchungen über das Spectrum und die Bahn von δ Orionis. Von Prof. Dr. J. Hartmann Beobachtungen und Photogramme des neuen Sternes Nova Persei. (3. 1901). Von Karl Bohlin
Untersuchungen über den Lichtwechsel des Granatsterns μ Cephei. Von Dr. Joseph Plassmann
Das magnetische Ungewitter vom 3I Okt. 1903. Von J. B. Messerschmitt
Karte der Oberfäche des Mars. Von Leo Brenner
Elemente und Ephemeride des 1 laneten $\left(7^{8}\right)$ Diana für die Opposition 1905. Von A. Mikhailovski
Ueber Konstruktion und Funktion eines einfachen Gewitterregistrators. Von J. Fényi, S.J.
Zur magnetischen Störung am 31 Okt. 1903. Von demselben
Anales del Instituto y Observatorio de Marina de San Fernando 1902, 1903
Almanaque Naútico para el año 1906 ...
Observatorio Belloch. Hojas Meteorológicas 1902, 1903
Boletín Meteorológrico. Observatorio del Colegio de Nuestra Señora del Recuerdo 1903, 1904
Boletín Mensual del Observatorio de Granada 1903, 1904 ..
Observaciones Meteorológicas. Colegio Máximo en Oña, Provincia de Burgos Observaciones Magnéticas y Meteorologicas. Observatorio del Cole. gio de Belén en la Habana 1881, 1903
Anuario del Observatorio Astronómico Nacional de Tacubaya, 1904
Informes presentados á la Secretaría de Fomento por el Director del Observatorio Astronómico Nacional de Tacubaya, 1902-1903
Boletín Mensual del Observatorio Meteorológico Magnético Central de México, 1902

Boletin Mensual 1901, 1902, 1903. Observatorio Meteorológico del Colegio de San Juan Nepomuceno, México
Boletín Mensual del Observatorio Meteorológico del Colegio Católico del Sagrado Corazón de Jesús, Puebla, México, 1903, 1904 ...
Boletín Mensual del Observatorio Meteorológico de León, México, 1903, 1904
De cómo se han de observar las Distancias Lunares. Por el Conde de Cañete del Pinar
Apuntes Historicos acerca del Observatorio del Colegio de Belén, Habana. Por el P. M. GutiérrezLanza, S.J.
Memorias y Revista de la Sociedad Científica "Antonio Alzate," Tomo XVIII, Núms 7y8. Tomo XVIII. N.6. Tomo XlX, Núms 5, 6-7. Tomo 20, Nos. 1-4, 5-10 ...
Calendario Cronológico del Siglo XX. Por el Mismo
Rapporto Annuale dello I. R. Osservatorio Astronomico-Meteorologico di Trieste, 1gor
Pubblicazioni del Reale Osservatorio di Brera in Milano. N.XL. Parte I.
Osservazioni Meteoriche fatte nel R. Osservatorio di Capodimonte, 1903
Osservazioni del Pianeta Eros. Dal medesimo
Bollettino Mensuale Vol. XXIII. Num. 8, 9, 10. Società Meteorologica Italiana, Torino
De nova quadam explicatione transpositionis linearum spectralium in Sole observatae. R. P. J. Fényi, S.J. Auctor.

