Stonyhurst College Observatory.

Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime} \mathrm{N}$. Long. $9^{\mathrm{m} .} 5^{2 \mathrm{~s} .} 6 \mathrm{~S} \mathrm{~V}$.
Height of the Barometer above the Sea, 381 feet.

Ineteorological ano Sllognetical
Observations, 1907.

With Report and Notes of the Director,

REV. W. SIDGREAVES, S.J., F.R.A.S.

LIVERPOOL :
Philip, Son \& Nephew, Ltd., Printers, South Castle Street. 1908.

CONTENTS.

Plates:-
I. Monthly Barometric Pressure, Temperature, WindForce, and Rainfall of 1907, compared with Mean Values.
II. Recorded Sunshine of 1907, compared with Mean.
III. Annual Variation in Barometric Pressure, Temperature, Wind-Force, and Rainfall, 1848-1907. With comparison curve of Wolf's Sun-Spot numbers.

$$
\begin{aligned}
& 1 \\
& \text { - - } \\
& \text { ——— } \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array} \\
& 1 \\
& \begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array} \\
& 1
\end{aligned}
$$

REPORT AND NOTES.

Meteorological. - The meteorological continuous records have been uninterrupted during the year, excepting only the photographic curve of the thermograph during the evening of October 14 for 4 hours, whilst the acetylene gas was being expelled from the pipes by coal gas. The latter has been found to be the more serviceable for general purposes in the Observatory.

The wind is recorded by a Robinson's Anemograph at about 45 feet above the ground. A velocity of 37 miles per hour and over is called a gale.

Bright sunshine is recorded by a Campbell-Stokes Recorder.

The Rain Gauge is a Beckley Self Recorder. Its receiving surface is 22 inches above the ground, and 377 feet above sea-level. The daily measures are taken at 10 a.m. for the preceding 24 hours. Heavy rain, noted in the monthly tabulations, signifies a fall of $\frac{1}{2}$ inch or more during the day.

The Barometer is a standard barometer of the pattern approved by the Meteorological Office. It is now mounted, with the photo-barograph, in the underground Magnetic chamber. Its cup is 363 feet above the sea-level. Its readings in the monthly tables are quoted for the density of mercury at 32° Fahr., and for the original position of the barometer at 381 feet above sea-level ; and the mean pressures are corrected for diurnal range.

The Thermometers are the property of the Meteorological Office, and are annually compared with the Officestandards. They are mounted at 6 feet above the ground on the north side of the Observatory, enclosed in a Stevenson-Screen. All the readings are corrected for index errors, as determined by the Office-standards.

The monthly mean temperature is derived in two ways: 1st, from the mean of the highest and lowest daily readings corrected by the average difference between this mean and the true mean of the hourly tabulations; and 2nd, from the mean of the readings at $9 \mathrm{a} . \mathrm{m}$. and 9 p.m. corrected in the same manner. Both corrections have been furnished by the Greenwich records, and are taken from the wellknown Glaisher's tables. The Adopted mean temperature is the mean of these two results.

A casual reply to a correspondent, at the beginning of the year, explaining the methods of obtaining the mean temperature of a month, led to the unpleasant discovery that the above corrections had not been applied for some years past, between 1903 and 1906 inclusively. The corrections have, since, been applied ; and the following table is inserted to show an example of the resulting mean temperature as obtained with and without the Glaisher corrections.

The three months, Jan., June, July of the table were taken haphazard; and the results show the nearer approach to the true mean temperature obtained by the combined corrected figures opposite (1) and (3) than by the uncorrected figures of (2) and (4).

The preparation of this table led on to a re-examination of the entire series of meteorological entries of the last 60 years. The whole work has been carried out with the utmost care by Br. W. McKeon, S.J. ; and the following is his voucher for the results :-
"The whole of the period 1903-6 has been carefully revised and corrected, including the hygrometrical table workings from the corrected data, and also the corresponding figures in the column of 60 -year-means. So that now the tabulations of 1907 stand as they would have appeared had these corrections not been omitted,
"Moreover the whole Report has been thoroughly revised. A considerable number of clerical errors, mostly in the quotations of rainfall, and sunshine, and in the sections of Extreme Readings, have been discovered and corrected.
"With regard to the Report in general I may say with confidence that every single error has been expunged, and every figure and statement made, either regarding the year 1907 itself, or the 60 years' period of observation, is perfectly trustworthy."-W. McK.

Some changes will be found in the form of the monthly tables, and several additional items. A 30 years' table of corrected Rainfall (1878-1907) is given at page 38, as a supplement to a similar table (1848-1877) printed
in the Results for 1878. Curves are added showing the annual variation over 60 years of four meteorological elements-viz., Mean Barometric pressure, Total wind mileage, Mean temperature, and total Rainfall, with a curve of Wolf's Sun Spot Relative-numbers, by Prof. Wolfer, Zurich, and printed in the Monthly Weather Review, April, 1902, of the U.S. Department of Agriculture, Washington.

The year has been, on the whole, an average year for Barometric pressure, Temperature, Rainfall and Windforce. There have been no marked extremes of temperature, never above 77° Fahr., nor below 20°. The winter months have had their gales of wind:-two in January, one in February, two in March, one in November, and two in December ; but nothing exceeding 50 miles an hour, which was reached at 11 p.m. on March 16th. In the summer months occasional distant thunder or lightning was heard or seen ; but only one near and severe storm, on July 21, has been recorded.

The rainfall was only 3 inches above the annual average, notwithstanding the heavy fall in June. The wettest months of the year were June, August, December and March; and the finest months were September and April.

June was a most unsummerlike month, with the greatest rainfall, least sunshine, and lowest mean temperature on our June records. It was also a generally windy month, at an average velocity of $11 \frac{1}{2}$ miles an hour-the greatest month-average of the year, and without any velocity greater than 29 miles.

Magnetical.-The magnetographs are of the Kew pattern; but they were built before the introduction of the two-hourly time scale provided now by clock-worked shutters cutting off the light for 4 minutes at the evennumbered hours. For some years, shortly after the instruments were mounted, shutters were provided by an ingenious contrivance of the late Br. Hostage, S.J., worked by a subsidiary weight which was released by the barograph clock at the times of closing the barograph shutter. But it required the inventor to keep the gear in safely working order ; and the apparatus was removed a few years after his death in 1877. The time-scale is now provided with hand screens at 2 p.m., 4 p.m., and 10 a.m., the photographic papers being changed daily at noon.

The value of one centimetre ordinate of the bifilar curve is tested at least once a year by the method of deflections, to keep it at 0.0005 C.G.S. units. It has been for many years quite constant.

On the unifilar curve one centimetre subtends an angular turn of the suspended mirror through $11^{\prime} \cdot 28$ of arc; and the ordinates are read off on a scale of one division to the arc-minute.

Four daily readings are taken from the unifilar and bifilar curves, the highest and lowest, and the readings at 4 a.m. and 4 p.m. ; but the V.F. balance has not yet given results sufficiently reliable for any other quotation than greater or less disturbance.

It has not yet been found possible, with our limited staff, to take hourly readings from the curves, or to observe for absolute measure of force more frequently than once a month.

But the horizontal direction, or Declination, is observed 4 times each month, at approximately equal intervals, and always, when possible, at 4 p.m. These measures have been corrected by the difference between the curve ordinate at the time of observation and the mean of the readings at $4 \mathrm{p} . \mathrm{m}$. The corrections are usually small. They were introduced, beginning with January, in order to eliminate greater variations occasioned by concurrent magnetic storms. The reading of the photographic Baseline is derived monthly from the mean of the 4 p.m. readings compared with the mean of the 4 absolnte measures.

No corrections have been applied to the absolute measures of force. The reading of the bifilar base line has been derived each month from the absolute measure of horizontal force and the general mean of the 4 daily curvereadings. These readings were found to give more concordant results, month by month, than those of the actual time-interval during which the experiments for absolute measure were carried out.

Except for occasional losses through variability of the lights, the magnetograph curves have been satisfactory, enough at least for the tabulation, but not all one could wish to see as photographic records. The instruments were dismounted in the middle of October, and readjusted; and the results since then have become all that could be wished.

On the table of magnetic disturbances (page 48) the following remarks may be of service. There is often some embarrassment in assigning the proper note of magnetic condition to the date. Overlapping of indications cannot
be wholly avoided ; and some allowance must be made for the subjective impressions of the Recorder-a variability of personal equation. But the general intention of the table is that a calm (c) shall mean a smooth curve; small (s) a disturbance noteworthy only as opposed to a calm; moderate (m) a disturbance not to be neglected for any comparison with other phenomena, solar or terrestrial, and worth a reference to the original curve; greater (g) a decided storm ; and very great (v.g) needs no comment.

Corresponding tabulations are sent quarterly to the Meteorological Institute at De Bilt (Holland), for the International Committee on Terrestrial Magnetism. In these the significant notes are restricted to three- $0,1,2$. The general returns from the Bureau show considerable discordance between the interpretations of different authorities ; and. it may be well to state the rule followed at this Observatory. The two important notes are held to be 0 and 2 : the former meaning a true calm, and the latter any disturbance worth comparing with other phenomena; and the intervening note comprises all the rest.

On this list the notes are quoted for the civil day, and may therefore be found occasionally at variance with our own quotations, which are given for the Astronomical day (from noon to noon). It has not been thought well to make any change here ; because the convenience for tabulation is very great, when the curve, started at noon, stands for one day ; and the risk of clerical errors is notably less. For other entries it is only an already established custom that has hindered the adoption of the astronomical day as more suited to registration by curves which can always be started at noon and never at midnight.

Solar and Astro-physical.-The solar surface has been observed on all available days, and 198 drawings of spots and faculæ have been added to our collection. On one day only the surface was found quite free from spots.

The mean disc-area of the spots (in units of $\frac{1}{3000}$ th of the visible surface) appears at $5 \cdot 8$; and the mean daily range of magnetic Declination (in minutes of arc) at 14%. And the following table shows an unexpected revival of solar activity and magnetic disturbance.

Year $\ldots \ldots$.	1902	1903	1904	1905	1906	1907
Spot area $\ldots \ldots \ldots \ldots$.	$0 \cdot 3$	$1 \cdot 9$	2.5	6.8	$4 \cdot 8$	$5 \cdot 8$
Declination range...	$9 \cdot 0$	$11 \cdot 8$	$11 \cdot 9$	$14 \cdot 9$	$14 \cdot 2$	$14 \cdot 7$

The greater spots have also been examined, both visually and photographically, with the large grating and with the 12 prism spectroscope.

Work with the two stellar spectrographs (the Hilger compound prism and the Thorp objective prism) has been suspended, pending an examination of the large collection of plates already obtained. But this examination has been rendered impossible by the long and laborious work, already mentioned, upon the meteorological records.

The new heliostat mentioned in our last report, and also a six-inch portrait lens, the gift of Mr. Whitelow, F.R.A.S., of Southport, have been mounted during the course of the year. But regular work with both instruments has been delayed by impediments experienced in the accurate running of the driving clocks. Sir Howard Grubb is surmounting those of the heliostat clock, and the Director, with the friendly help of Mr. Parkinson, of Blackburn, has so far improved the working of the

Equatorial clock, and the adjustments of the Whitelow camera, that probably no further difficulty will be experienced in long and repeated exposures of the same photographic plate to starry and nebulous regions of the sky.

These and other mechanical improvements have occupied a considerable part of the year; and many clear nights have been devoted to experimental work in connection with them.

The following papers were published during the year :-
"The Spectrum of Mira Ceti in December, 1906, as photographed at Stonyhurst College Observatory." Monthly Notices, R.A.S., 67, 8. June, 1907.
"Note on the Visual Spectrum of Mira Ceti in December, 1906." Ibid.
"On the connection between disturbed areas of the solar surface and the solar corona." Report of the British Association. York, 1906.
"The variability in light of Mira Ceti and the Temperature of Sun-Spots." Astrophysical Journal, 26, 2. September, 1907.
"The Stonyhurst discs for measuring the positions of Sun-Spots." Journal B.A.A., 18, 1. November, 1907.
"Problems of Solar Pyhsics." "The Observatory," No. 380. February, 1907.
walter sidgreaves, S.J., DIRECTOR.
January, 1908.

JANUARY, 1907.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	\ldots	\ldots	\ldots	+0.393 in.	
Monthly range \quad,	\ldots	\ldots	\ldots	\ldots	$+0.286 \quad$,	
Mean of highest temperatures	\ldots	\ldots	\ldots	-	$0 \cdot 1^{\circ}$	
Mean of lowest \quad,		\ldots	\ldots	\ldots	+	$\mathbf{1} \cdot 6^{\circ}$
Mean daily range \quad,		\ldots	\ldots	\ldots	-	$1 \cdot 7^{\circ}$
Adopted mean temperature	\ldots	\ldots	\ldots	\ldots	+	0.9°
Total rainfall \ldots	\ldots	\ldots	\ldots	\ldots	\ldots	$-1 \cdot 140 \mathrm{in}$.

Ground frost on 2 nd-4th, 11th, 18th, 19th, 22nd-31st. Snow on $2 \mathrm{nd}, 3 \mathrm{rd}, 22 \mathrm{nd}-24 \mathrm{th}$, and 26 th . Hail on 2nd, 28th and 29th. Gales of wind on 28th and 29th. Heavy rain on the lst. Fog on 16 th, 19 th- 21 st, and 27 th. Thunder on the 29 th. Lunar halo on 25 th and 27 th.

EXTREME READINGS FOR JANUARY, During 60 Years.

FEBRUARY, 1907.								
Results of Observations taken during the Month.								
Mean Reading of the Barometerinches					$29 \cdot 555$		29.50	505
Highest ", ,, on	on the 2nd ... ,"				$30 \cdot 147$		30.0	078
Lowest ", ", on	on the 20th...			,			28.6621.416	
Range of Barometer Readings					1.777			
Highest Reading of a Max. Therm. on the 27th					$50 \cdot 4$			$2 \cdot 1$
Lowest Reading of a Min. Therm. on the 3rd ...					20.6			$1 \cdot 9$
Range of Thermometer Readings....................					$29 \cdot 8$			$0 \cdot 2$
Mean of all the Highest Readings					40			$4 \cdot 0$
Mean of all the Lowest Readings..					$31 \cdot 1$			3.2
Mean Daily Range					$9 \cdot 6$			$0 \cdot 8$
Deduced Mean Temp. (from mean of Max. and Min.)					$35 \cdot 5$			$8 \cdot 0$
Mean Temperature from Dry Bulb					$35 \cdot 8$			$8 \cdot 1$
Adopted Mean Temperature.					$35 \cdot 7$			$8 \cdot 1$
Mean Temperature of Evaporation					$33 \cdot 9$			$6 \cdot 6$
Mean Temperature of Dew Point.					$31 \cdot 2$			$4 \cdot 4$
Mean elastic force of Vapour.					$0 \cdot 176$			193
Mean weight of Vapour in a cub. ft. of air, grains					$2 \cdot 0$			$2 \cdot 4$
Mean additional weight required for saturation ,, Mean degree of Humidity (saturation 100)					$0 \cdot 4$			0.4
					83			87
Mean weight of a cubic foot of air					$553 \cdot 1$			$9 \cdot 1$
Mean amount of Cloud (0-10)					7			$7 \cdot 6$
Fall of Rain					3.515		$3 \cdot 4$	453
Greatest Rainfall in one day (16th)........ ,"					1.070		$0 \cdot 747$	
No. of days on which ${ }^{\circ} 005 \mathrm{in}$. or more Rain fell...					13		16.6	
No. of days in the month on which the prevailing Wind was	N	NE	E	SE	S	sw	w	NW
	6	2	1	0	3	5	9	2
Mean Velocity in miles per hour		$5 \cdot 0$	$9 \cdot 9$	0	6.5	$13 \cdot 7$	$14 \cdot 4$	$15 \cdot 6$
Total No. of miles for each Direction		240	238	0	471	1645	3102	751
Total No. of miles registered Greatest hourly velocity ($19 \mathrm{th}, 9 \mathrm{p} . \mathrm{m}$. and mid. Dir. W.)					7420		Mean.*	
					7586.5			
					45	$42 \cdot 2$		

[^0]
MARCH, 1907.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	\ldots	\ldots	\ldots	$+0 \cdot 224 \mathrm{in}$.
Monthly range \quad,	\ldots	\ldots	\ldots	\ldots	$+0 \cdot 124$,
Mean of highest temperatures	\ldots	\ldots	\ldots	+	$1 \cdot 3^{\circ}$
Mean of lowest \quad,		\ldots	\ldots	\ldots	+
Mean daily range \quad,		\ldots	\ldots	\ldots	$+7^{\circ}$
Adopted mean temperature	\ldots	\ldots	\ldots	\ldots	$+6^{\circ}$
Total rainfall $\ldots \quad \ldots$	\ldots	\ldots	\ldots	\ldots	$+2 \cdot 282 \mathrm{in}$.

The amount of Bright Sunshine, $168 \cdot 6$ hours, is the greatest on record for this month, being six-and-a-half hours above the previous record of March, 1893.

Ground frost on 1st, 3rd-7th, 9th—12th, 14th, 21st, 23rd—31st. Snow on 8th-llth, and 13th. Hail on 8th and 13th. Gales of wind on 17 th and 18 th. Heavy rain on the 9 th, $12 \mathrm{ch}, 15 \mathrm{th}, 16 \mathrm{th}$ and 19th. Fog on 4th.

EXTREME READINGS FOR MARCH, During 60 Years.

APRIL, 1907.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	\ldots	...	-0.124 in .	
Monthly range ",		
Mean of highest temperatures	-	
Mean of lowest		+	
Mean daily range	\ldots	\ldots		-	$5 \cdot$
Adopted mean temperature	...	\ldots		-	
Total rainfall	\ldots	...			$0 \cdot 649$

Ground frost on 1st, 4th, 5th, 7th-10th, 15th, 17th-20th, 22nd, 25th-28th, and 30th. Snow on 7th and 27th. Hail on 2nd, 7th and 27 th. Thunder on 2 nd and 17 th.

EXTREME READINGS FOR APRIL, During 60 Years.

MAY, 1907.								
Results of Observations taken during the Month.								$\begin{aligned} & \text { nitor } \\ & \text { last } \\ & \text { lars. } \end{aligned}$
Mean Reading of the Barometerinches 29.439							29	521
Highest , ," on	on the 17th.		...		$29 \cdot 8$		29	959
Lowest , ,, on	on the 2 nd				$28 \cdot 6$		28.	931
Range of Barometer Readings					12			028
Highest Reading of a Max. Therm. ou the				th	71	-		1.6
Lowest Reading of a Min. Therm. on the 22nd..					32	- 7		1.5
Range of Thermometer Readings..					39	$\cdot 1$		$0 \cdot 1$
Mean of all the Highest Readings					55	-		$9 \cdot 5$
Mean of all the Lowest Readings					43	2		-1
Mean Daily Range					12	$\cdot 1$		$7 \cdot 4$
Deduced Mean Temp. (from mean of Max. and Min.)					47	6		$9 \cdot 0$
Mean Temperature from Dry Bulb					49	$\cdot 1$		$9 \cdot 6$
Adopted Mean Temperature.					48	- 4		$9 \cdot 3$
Mean Temperature of Evaporation					46	-		$6 \cdot 1$
Mean Temperature of Dew Point...					43	6		$2 \cdot 5$
Mean elastic force of Vapour................inches					0.2			75
Mean weight of Vapour in a cub. ft. of air, grains						-2		$3 \cdot 1$
Mean additional weight required for saturation ,						6		$0 \cdot 9$
Mean degree of Humidity (saturation 100)........						84		76
Mean weight of a cubic foot of airgrains					536			$7 \cdot 3$
Mean amount of Cloud ($0-10$)......................						$\cdot 9$		$7 \cdot 1$
Fall of Raininches					$3 \cdot 63$			643
Greatest Rainfall in one day (30th) ,,					0.92			624
No. of days on which $\cdot 005 \mathrm{in}$. or more Rain fell...					21		$14 \cdot 4$	
No. of days in the month on which the prevailing Wind was	N	NE	E	SE	s	sw	w	NW
	2	9	5	1	3	2	7	2
Mean Velocity in miles per hour	72	65	$9 \cdot 4$	$5 \cdot 8$	$19 \cdot 7$	$15 \cdot 7$	$9 \cdot 6$	$11 \cdot 3$
Total No. of miles for each Direction		1406	1133	140	1417	752	1615	542
							Mea	
Total No. of miles registered					734		7224	
Greatest hourly velocity (9th, 2 p.m.			S.			35		\cdots

[^1]
MAY, 1907.

DIFFERENCES.

The signs + and - nean respectively above and below the Monthly average.

Ground frost on 5th, 16th-18th, 20th-22nd, and 29th. Hail on 2nd and 4th. Heavy rain on 30th. Thunder on 9th, 12th and 24th. Lightning on 12th.

EXTREME READINGS FOR MAY, During 60 Years.

[^2]
JUNE, 1907.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots		$0 \cdot 185 \mathrm{in}$.
Monthly range ,	\ldots	\ldots	\ldots		$0 \cdot 065$,
Mean of highest temperatures	\ldots	-	$7.6{ }^{\circ}$
Mean of lowest , ,	\ldots	-	$0.6{ }^{\circ}$
Mean daily range ,"	\ldots	\ldots	..	-	7.0°
Adopted mean temperature	\ldots	...		-	$3.7{ }^{\circ}$
Total rainfall			$5 \cdot 244 \mathrm{in}$.

The Rainfall in June, $8 \cdot 705$ inches, is the greatest on record for this month. It exceeds by 1.580 in. the previous record of June, 1848.

The Mean Temperature, and the amount of Bright Sunshine, are also the lowest on record for June.

Heavy rain on 2nd, 4th, 5th, 11th, 19th and 24th. Thunder on 5th, 12th and 29th. Thunder and lightning on the 9th and 10 th.

> EXTREME READINGS FOR JUNE, During 60 Years.

JULY, 1907.

Results of Observations taken during the Month.								
Mean Reading of the Barometerinches $29 \cdot 608$								521
Highest , , on the 16th..								894
Lowest , ,, on the 4th ... ," 29								019
Range of Barometer Readings ,								875
Highest Reading of a Max. Therm. on the 17th						-2		78.7
Lowest Reading of a Min. Therm. on the 1st ...								$42 \cdot 2$
Range of Thermometer Readings....................						$\cdot 9$		$36 \cdot 5$
Mean of all the Highest Readings....................						$\cdot 9$		67.9
Mean of all the Lowest Readings...............						$\cdot 7$		$50 \cdot 8$
Mean Daily Range						$\cdot 2$		17•1
Deduced Mean Temp. (frommean of Max. and Min.)						- 4		57.8
Mean Temperature from Dry Bulb								57.8
Adopted Mean Temperature.........................,						- 4		57.9
Mean Temperature of Evaporation						6		54.8
Mean Temperature of Dew Point...						$\cdot 9$		$52 \cdot 1$
Mean elastic force of Vapour. \qquad inches								389
						-		$4 \cdot 4$
Mean additional weight required for saturation ,, Mean degree of Humidity (saturation 100)						. 9		1.0
						83		81
Mean weight of a cubic foot of airgrains								$27 \cdot 5$
Mean amount of Cloud (0-10)						- 4		$7 \cdot 5$
Fall of Rain								981
Greatest Rainfall in one day (4th)								868
No. of days on which 005 in . or more Rain fell...						7		6.6
No. of days in the month on which the prevailing Wind was	N	NE	E	SE	S	sw	w	NW
	2	7	2	0	3	5	11	1
Mean Velocity in miles per hour	$5 \cdot 5$	$4 \cdot 9$	6.5	0	5	5	$9 \cdot 6$	12
Total No. of miles for each Direction	265	816	314	0	38	652	2538	307
Total No. of miles registered							656	
Greatest hourly velocity (31st, 4 p.m. Dir. W.)						25		$9 \cdot 6$

* For the last 40 years.

JULY, 1907.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	\ldots	\ldots	\ldots	+0.087 in.
Monthly range \quad,	\ldots	\ldots	\ldots	\ldots	+0.118,
Mean of highest temperatures	\ldots	\ldots	\ldots	-	$5 \cdot 0^{\circ}$
Mean of lowest \quad,		\ldots	\ldots	\ldots	-
Mean daily range	,		\ldots	\ldots	\ldots

Ground frost on 1st and 11 th. Heavy rain on the 4th and 21 st. Thunder and lightning on 4th. Violent thunderstorm on the 21 st.

EXTREME READINGS FOR JULY, During 60 Years.

[^3]

[^4]
AUGUST, 1907.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots		0.009 in .
Monthly range ,,	\ldots		$0 \cdot 157$,"
Mean of highest temperatures		...	\ldots	...	-	$6.2{ }^{\circ}$
Mean of lowest ,"		-	10°
Mean daily range "		\ldots	\ldots	...	-	52°
Adopted mean temperature	\ldots	\ldots	\ldots	\cdots		$2.5{ }^{\circ}$
Total rainfall		$1 \cdot 130 \mathrm{in}$.

Heavy rain on the 7 th, 8 th, 14 th, 15 th and 22 nd. Solar halo on the 23 rd and 24th.

EXTREME READINGS FOR AUGUST, During 60 Years.

Highest reading of Barometer	1874 (21st)	. $30 \cdot 114 \mathrm{in}$.
Lowest , , ...	1903 (15th) $28 \cdot 492$,
Highest temperature	1868 (2nd)	$88.0{ }^{\circ}$
Lowest	1887 (13th)	$33.4{ }^{\text {o }}$
Highest adopted mean temperature.	1899	61.7°
Lowest ,	1848	$52.5{ }^{\circ}$
Greatest fall of rain	1891	$9 \cdot 869 \mathrm{in}$.
Least ,	1871	$2 \cdot 085$
Greatest fall of rain in one day........	1857 (7th)	$2 \cdot 333$
Greatest No. of days on which 005 in. or more rain fell	1891	27
Least ", ",	1880	... 6
*Greatest hourly velocity of the wind ...	1903 (31st). 45 mls .
*Greatest No. of miles registered	1903	8486
*Least , , ",	1884	4060

[^5]

[^6]
SEPTEMBER, 1907.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	\ldots	\ldots	\ldots	$+0 \cdot 165 \mathrm{in}$.	
Monthly range \quad,	\ldots	\ldots	\ldots	\ldots	$-0 \cdot 066 \quad$,	
Mean of highest temperatures	\ldots	..	\ldots	-	$0 \cdot 5^{\circ}$	
Mean of lowest \quad,		\ldots	\ldots	\ldots	+	$1 \cdot 1^{\circ}$
Mean daily range \quad,		\ldots	\ldots	\ldots	-	$1 \cdot 6^{\circ}$
Adopted mean temperatures	\ldots	\ldots	\ldots	+	$0 \cdot 7^{\circ}$	
Total rainfall \ldots	\ldots	\ldots	\ldots	\ldots	\ldots	$-3 \cdot 208 \mathrm{in}$.

Heavy rain on the 4th. Fog on the 8th, 13th, 19th, 20th and 21st. Thunder on the 26 th . Solar halo on the 3 rd and 4 th.

EXTREME READINGS FOR SEPTEMBER, During 60 Years.

[^7]

[^8]

DECEMBER, 1907.								
Results of Observations taken during the Month.								
Mean Reading of the Barometerinches 29:276							$29 \cdot 4$	
Highest ," ," on	on the lst ..				30.012			80
Lowest , ," on	on the 13th...		...		28.246		28.5	557
Range of Barometer Readings					1.766			523
Highest Reading of a Max. Therm. on the 20th...					51.0			1
Lowest Reading of a Min. Therm. on the 15th ...					28.3			20.6
Range of Thermometer Readings....................					$22 \cdot 7$			$32 \cdot 5$
Mean of all the Highest Readings					$43 \cdot 4$			$43 \cdot 2$
Mean of all the Lowest Readings....................					$35 \cdot 7$			$33 \cdot 2$
Mean Daily Range					$7 \cdot 7$			$10 \cdot 0$
Deduced MeanTemp. (frommean of Max. and Min.)					$39 \cdot 6$			$38 \cdot 2$
Mean Temperature from Dry Bulb					$40 \cdot 0$			$38 \cdot 8$
Adopted Mean Temperature					$39 \cdot 8$			$\cdot 5$
Mean Temperature of Evaporation					$38 \cdot 4$			$37 \cdot 0$
Mean Temperature of Dew Point..					$36 \cdot 6$			$35 \cdot 1$
Mean elastic force of Vapour................inches					$0 \cdot 217$			206
Mean weight of Vapour in a cub. ft. of air, grains					2.5			$2 \cdot 4$
Mean additional weight required for saturation,					$0 \cdot 3$			$0 \cdot 4$
Mean degree of Humidity (saturation 100)........					89			87
Mean weight of a cubic foot of air...........grains					$543 \cdot 0$			$47 \cdot 8$
Mean amount of Cloud (0-10)					$9 \cdot 0$			$7 \cdot 6$
Fall of Rain					$5 \cdot 758$			486
Greatest Rainfall in one day (7th)............ , No. of days on which 005 in. or more Rain fell...					$1 \cdot 047$		$0 \cdot 847$	
					$\because 20$			$19 \cdot 4$
No. of days in the month on which the prevailing Wind was	N	NE	E	SE		sw	w	
	1	3	7	0	6	10	3	1
Mean Velocity in miles per hour	3	$5 \cdot 1$	12.9	0	$11 \cdot 3$	11.0	11.3	17
Total No. of miles for each Direction			2160	0	1631	2636	810	42
							Mean.*	
Total No. of miles registered					8105		7814.4	
Greatest hourly velocity (4th, 2 p.m. Dir. S. by E.) \qquad 40								3.0

DECEMBER, 1907.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	\ldots	\ldots	\ldots	$-0 \cdot 175 \mathrm{in}$.
Monthly range \quad, \quad	\ldots	\ldots	\ldots	\ldots	$+0 \cdot 243$

Ground frost on 1st, 7th, 12th, 13th, 15th, 16th, 24th-31st. Hoar frost on the 6th, 12th and 15th. Snow on 7th, and 27th31st. Hail on the 3rd-7th, on 25 th and 27 th. Heavy rain on 7 th, 19th and 20th. Gales of wind on the 4 th and 14 th. Fog on 23rd and 24th. Lightning on 3rd and 4th. Solar halo on the 7th.

EXTREME READINGS FOR DECEMBER. During 60 Years.

Fummary of Observations, 1907.

Results of Observations taken during the Year.		Mean for the last 60 years.
Readings of Baromeier in inches.		
Mean of the Year	29-508	$29 \cdot 496$
Highest Monthly Mean (January)	29.862	$29 \cdot 748$
Lowest ,, ," (October)	$29 \cdot 205$	29-228
Highest Reading (January 23rd)	$30 \cdot 553$	$30 \cdot 295$
Lowest ," (December 13th)	28.246	$28 \cdot 251$
Range	$2 \cdot 307$	$2 \cdot 044$
Thermometer, Fahrenheit.		
Highest Monthly Mean Temperature (July)	$55 \cdot 4$	58.6
Lowest , , , (Feb.)	$35 \cdot 7$	$35 \cdot 2$
Highest Reading of a Max. Therm. (July 17th)...	77×2	81.7
Lowest ", Min. , (Jan. 25th)	$20 \cdot 1$	$15 \cdot 7$
Range of Thermometer Readings.	$57 \cdot 1$	$66 \cdot 0$
Mean of all the Highest ,	$52 \cdot 1$	$54 \cdot 7$
Mean of all the Lowest	41.0	$40 \cdot 7$
Mean Daily Range	$11 \cdot 1$	$14 \cdot 0$
Deduced Mean Temp. (frommean of Max. and Min.)	$45 \cdot 5$	$46 \cdot 8$
Mean Temperature from Dry Bulb	46.9	$46 \cdot 9$
Adopted Mean Temperature of the Year	$46 \cdot 2$	$46 \cdot 8$
Mean Temperature of Evaporation	$44 \cdot 1$	$44 \cdot 5$
Mean Temperature of Dew Point...................	$41 \cdot 7$	$42 \cdot 1$
Mean elastic force of Vapourinches	0.271	0.273
Mean weight of Vapour in a cub. ft. of air...grns.	$3 \cdot 1$	$3 \cdot 3$
Mean additional weight required for saturation ,,	$0 \cdot 6$	$0 \cdot 7$
Mean degree of Humidity (saturation 100)........	85	83
Mean weight of a cubic foot of airgrns.	$540: 2$	$539 \cdot 2$
Mean amount of Cloud (0-10)	$7 \cdot 7$	$7 \cdot 3$
Total fall of Raininches	49.915	46.874
Greatest Monthly Rainfall (June)........... ,	$8 \cdot 705$	$7 \cdot 525$
Least , ", (September) ... ,"	$1 \cdot 160$	1.189
Greatest Rainfall in one day (August 7th) ,"	$1 \cdot 410$	1.622
No. of days per Month on which 005 inch or more Rain fell	$18 \cdot 4$	$17 \cdot 0$

ABSOLUTE EXTREMES FOR THE LAST 60 YEARS.

Readings of Barometer, in inches.

Thermometer, Fahrenheit.

Weight of Vapour in a cubic foot of air (grains).
Greatest monthly mean 1852 (July) $5 \cdot 1$
Least $\quad, \quad, \quad+1855$ (Feb.) $1 \cdot 4$

ABSOLUTE EXTREMES

 FOR THE LAST 60 YEARS-Continued.Rainfall, in inches.

,				1866 (Nov. 16)	3700
Greatest	"	,	month	1870 (Oct.)	$13 \cdot 437$
Least	"	"	"	1859 (May)	9
Greatest	,	"	year	1866	62.093
Least	"	"	,,	1887	$31-250$

Days on which 005 in . or more Rain fell :
Greatest No. in one.month 1890 (Jan.) 30
Least , ,, 1852 (Mar.)............ 3
Greatest , \ year 1872..................... 281
Least $\quad, \quad, \quad1855$........ 135

* Wind.

Greatest hourly velocity, in miles 1894 (Dec. 22)......... 72
Greatest No. of miles registered in a
month $\ldots .$. 1888 (Nov.)............ 12813
Least : , $\because, \quad, \quad, \quad1888$ (Sep.) 3261
Greatest Mean No. ,, ,, March 8665
Least : , $, \because, \quad, \quad$...... September 6229
Greatest No. , , ," year... 1868 102395
Least , , : , , , "... 1887 78951

[^9]
DATES OF OCCASIONAL PHENOMENA.

MONTHLY TOTALS FOR EACH HOUR OF RECORDED SUNSHINE.

Local apparent time.	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
January ...	0	0	0	0	1.7	4.8	6.6	8.5	6.5	3.5	2.7	1.2	0	0	0	0	0
February ...	0	0	0	1.7	$5 \cdot 5$	6.4	8.5	12.0	12.7	$12 \cdot 3$	11.2	$7 \cdot 1$	$0 \cdot 4$	0	0	0	0
March	0	0	0.7	6.0	$14 \cdot 8$	16.3	$20 \cdot 4$	$20 \cdot 4$	$19 \cdot 6$	17.6	19.0	$17 \cdot 6$	13.0	$3 \cdot 2$	0	0	0
April	0	$0 \cdot 1$	2.8	$8 \cdot 8$	$12 \cdot 4$	13.3	11.4	$12 \cdot 4$	10.6	11.0	$9 \cdot 3$	$9 \cdot 0$	7.2	4.9	$1 \cdot 1$	0	0
May	0.5	$2 \cdot 7$	$6 \cdot 5$	$9 \cdot 0$	$10 \cdot 8$	$9 \cdot 2$	10.5	10.9	10.8	9.2	$9 \cdot 1$	$7 \cdot 1$	6.8	$5 \cdot 5$	1.2	0	0
June	0.9	4.2	4.8	$7 \cdot 4$	$7 \cdot 4$	$7 \cdot 6$	11.2	$10 \cdot 7$	9.0	$9 \cdot 4$	$9 \cdot 1$	$8 \cdot 2$	$7 \cdot 4$	6.3	$4 \cdot 1$	$1 \cdot 3$	0
July	0.3	3.6	$8 \cdot 7$	$8 \cdot 1$	$10 \cdot 3$	11.4	13.7	$15 \cdot 4$	$16 \cdot 6$	16.9	17.2	16.2	$14 \cdot 6$	11.7	$9 \cdot 6$	$1 \cdot 4$	0
August	0	0	27	$8 \cdot 6$	$9 \cdot 5$	$10 \cdot 6$	13.3	$12 \cdot 1$	$12 \cdot 1$	12.0	11.6	12.6	$10 \cdot 4$	$7 \cdot 4$	14	1.0	0
September ...	0	0	$0 \cdot 9$	6.7	$9 \cdot 2$	$10 \cdot 6$	13.8	$15 \cdot 4$	14.0	14.9	$13 \cdot 4$	11.6	6.4	12	0	0	0
October	0	0	$0 \cdot 1$	1.8	7.7	11.2	$10 \cdot 9$	$10 \cdot 7$	11.8	10.3	$7 \cdot 4$	4.7	1.8	0	0	0	0
November ...	0	0	0	0	2.5	$6 \cdot 3$	6.9	9.6	9.6	$7 \cdot 9$	5.9	$2 \cdot 0$	0	0	0	0	0
December	0	0	0	0	$0 \cdot 1$	0.4	2.7	6.0	$5 \cdot 2$	$2 \cdot 4$	0.7	0	0	0	0	0	0
Sums ...	17	$10 \cdot 6$	27.2	58.1	91.9	$108 \cdot 1$	129.9	144-1	$138 \cdot 5$	1274	116.6	97.3	68.0	40.2	$17 \cdot 4$	$3 \cdot 7$	0

TOTAL AMOUNT OF SUNSHINE RECORDED ON EACH DAY.

TOTAL AMOUNT OF SUNSHINE RECORDED ON EACH DAY-(continued).

1907.	18	19	20	21	22	23.	24	25	26	27	28	29	30	31	Monthly.	
															Total.	Percentage.
January	$2 \cdot 1$	0	0	$0 \cdot 6$	0.8	$4 \cdot 1$	$0 \cdot 1$	0	5•1	0	0	$2 \cdot 0$	$7 \cdot 2$	$5 \cdot 8$	35.5	$14 \cdot 3$
February ..	0	0	0.8	8.2	$8 \cdot 3$	$8 \cdot 1$	0	0.7	0	$5 \cdot 3$	$4 \cdot 7$	-	-	-	$77 \cdot 8$	$28 \cdot 6$
March	$5 \cdot 4$	0.6	7.8	$9 \cdot 1$	$7 \cdot 3$	$9 \cdot 6$	$2 \cdot 3$	8.7	$10 \cdot 2$	$8 \cdot 7$	9.2	$9 \cdot 7$	$10 \cdot 7$	110	168.6	46•1
April... ...	$7 \cdot 3$	$2 \cdot 7$	1.2	0.3	$6 \cdot 0$	0	$7 \cdot 4$	78	3.9	$2 \cdot 2$	$2 \cdot 7$	$5 \cdot 8$	0.7	-	114.3	$27 \cdot 3$
May ... : ...	6.0	$0 \cdot 6$	$7 \cdot 0$	$3 \cdot 3$	8.0	0	2.3	$0 \cdot 3$	$0 \cdot 8$	$4 \cdot 7$	0	$9 \cdot 8$	0	0	$109 \cdot 8$	$22 \cdot 3$
June ...	$0 \cdot 2$	$2 \cdot 7$	0	0.7	$9 \cdot 4$	$7 \cdot 8$	0	$5 \cdot 7$	$0 \cdot 2$	$9 \cdot 2$	$7 \cdot 9$	$4 \cdot 4$	6.0	0	109.0	21.5
July ...	$12 \cdot 6$	$11 \cdot 1$	$5 \cdot 0$	$4 \cdot 2$	$3 \cdot 7$	10.4	8•1	0	$1 \cdot 4$	$7 \cdot 0$	1.9	$3 \cdot 8$	6.8	$7 \cdot 5$	$175 \cdot 7$	$34 \cdot 5$
August	8.9	5.0	6.5	1.3	0	$6 \cdot 8$	$4 \cdot 0$	0	$2 \cdot 9$	$9 \cdot 0$	$9 \cdot 2$	$0 \cdot 1$	$10 \cdot 8$	$3 \cdot 7$	$125 \cdot 3$	27.4
September .	73	$4 \cdot 5$	$4 \cdot 4$	1.7	$4 \cdot 1$	0	$5 \cdot 7$	14	$0 \cdot 2$	17	$9 \cdot 3$	0.7	0	-	$118 \cdot 1$	31.2
October	0	$3 \cdot 0$	1.0	$5 \cdot 8$	$\underline{2 \cdot 2}$	$1 \cdot 2$	$5 \cdot 6$	$0 \cdot 3$	0	$0 \cdot 7$	$1 \cdot 7$	$0 \cdot 1$	0	0	$78 \cdot 4$	$24 \cdot 0$
Noyember	$4 \cdot 5$	0	0	$0 \cdot 1$	0	$0 \cdot 1$	$0 \cdot 7$	0	0	$1 \cdot 3$	$5 \cdot 7$	$0 \cdot 5$	$4 \cdot 0$	-	50.7	$19 \cdot 8$
December	1%	- 0	0	0	0	0	12	$1 \cdot 4$	$0 \cdot 8$	$0 \cdot 3$	$1 \cdot 1$	0	$0 \cdot 1$	0	$17 \cdot 5$	$7 \cdot 6$

令

SUMMARY OF SUNSHINE.

1907.	Bright Sunshine Recorded.						
	Number of		Percentage of Possible Sunshine	Mean for the last 27 years.			
			Number of	Percentage of Possible Sunshine.			
	Days.	Hours.			Days.	Hours.	
January ...	14	$35 \cdot 5$		14.3	14.0	$34 \cdot 2$	138
February ...	20	$77 \cdot 8$	$28 \cdot 6$	$17 \cdot 6$	59.9	$21 \cdot 9$	
March	28	$168 \cdot 6$	$46 \cdot 1$	$24 \cdot 2$	$109 \cdot 5$	$29 \cdot 9$	
April ...	28	1143	$27 \cdot 3$	26.2	$150 \cdot 5$	$35 \cdot 9$	
May... ...	24	$109 \cdot 8$	$22 \cdot 3$	$27 \cdot 4$	187.3	$38 \cdot 0$	
June	26	$109 \cdot 0$	21.5	$27 \cdot 7$	192.9	$38 \cdot 0$	
July ...	29	$175 \cdot 7$	$34 \cdot 5$	$28 \cdot 4$	$180 \cdot 4$	35-5	
August ...	28	$125 \cdot 3$	$27 \cdot 4$	$27 \cdot 5$	1518	$33 \cdot 2$	
September ...	28	118.1	$31 \cdot 2$	$25 \cdot 7$	$128 \cdot 1$	$33 \cdot 8$	
October ...	24	$78 \cdot 4$	$24 \cdot 0$	22.9	86.8	$26 \cdot 6$	
November ...	19	50.7	$19 \cdot 8$	17.0	$44 \cdot 5$	$17 \cdot 4$	
December ...	14	$17 \cdot 5$	$7 \cdot 6$	$12 \cdot 9$	$25 \cdot 7$	$11 \cdot 1$	
Year ...	282	$1180 \cdot 7$	26.4	271.6	$1351 \cdot 6$	$30 \cdot 3$	

* And in other years.

OBSERVATIONS			(CIRRUS.)			JDS
1907.	G. M. T.	Cloud.		Wind.		Direction of Lower Clouds.
		Direction.*	Velocity $(0-6$.	Direction.*	$\begin{gathered} \text { Force } \\ (0-12 .) \end{gathered}$	
Jan. 6	9-0 a.m.	W	5	W	4	W
,, 3i	9-0 p.m.	N	2	Calm	0	-
Feb. 7	9.0 a.m.	N	1	Calm	0	NW
,, 22	9-0 a.m.	NW	3	NW by N	2	NW
,, 23	9.0 a.m.	N	1	N	1	NE
Mar. 6	9-0 a.m.	S	1	Calm	0	W
,, 10	9.0 a.m.	W	6	W	5	W
,, 20	9.0 p.m.	SW	2	SW by W	1	SW
Apr. 18	9-0 a.m.	N	1	N	1	N
, 22	9.0 a.m.	W	1	W by S	3	SW
May 8	9-0 a.m.	S	3	SSE	5	S
,, 12	9-0 a.m.	N	2	NE by N	1	S
,, 13	9.0 a.m.	NW	2	W	1	W
, 29	9.0 a.m.	E	4	E	4	SE
June 25	9-0 a.m.	SW	4	W	4	W
July 23	0-50 p.m.	E	2	N by E	1	E
,, 23	$2-30 \mathrm{p} . \mathrm{m}$.	E	1	NNE	1	-
,, 24	0.20 p.m.	SW	1	NE by N	1	-
", 27	$7-15$ p.m.	W	3	W by S	1	W
Aug. 1	5-40 p.m.	N	1	W by S	3	W
, 6	$4-20 \mathrm{p} . \mathrm{m}$.	W	2	WSW	4	WSW
,, 6	6-15 p.m.	W by S	2	W by S	3	WSW
, 8	Noon	W by N	2	W by S	5	SW
, 8	$1.0 \mathrm{p} . \mathrm{m}$.	W'SW	2	W by S	5	WSW
, 9	$7-40 \mathrm{p} . \mathrm{m}$.	SW by S	2	Calm	0	SW by W
,, 18	8-0 a.m.	W	3	W by S	3	W
", 18	$11-35 \mathrm{a} . \mathrm{m}$.	W by S	3	W by S	3	W by S
,, 18	1-20 p.m.	WSW	3	W by S	3	W by S

OBSERVATIONS OF UPPER (CIRRUS)-Continued.						
1907.	G. M. T.	Cloud.		Wind.		Direction of Lower Clouds.
		Direction.*	$\begin{aligned} & \text { Velocity } \\ & (0-6 .) \end{aligned}$	Direction.*	$\left(\begin{array}{c} \text { Force } \\ (0-12 .) \end{array}\right.$	
Aug. 19	$\begin{aligned} & 8-15 \mathrm{a} . \mathrm{m} . \\ & 4-30 \text { p.m. } \end{aligned}$		1	W		W by N WNW
,, 19			2	W	4	
,, 20		WNW NW by N	1	WNW	3	$\begin{gathered} \text { WNW } \\ \text { NW by W } \end{gathered}$
,, 20	$8-15 \mathrm{p} . \mathrm{m}$.	N by E	2	W by N	1	N by E
,, 21	7-30 a.m.	N by E	1	W by S	2	W
,, 23	8-15 a.m.	WNW	3	NW by W	4	WNW
,, 23	$1-40 \mathrm{p} . \mathrm{m}$.	WNW	1	WNW	3	WNW
23	$3-9 \mathrm{p.m}$.	NW	3	WNW	3	W
,, 24	$4-0$ p.m.	NW by N	2	W by S	3	SW by W
,, 26	$5-20$ p.m.	SW by S W by S	3	W	1	SW by W
,, 27	$7-20 \mathrm{a} . \mathrm{m}$.		3	Calm	0	W by S
,, 28	$2-0$ p.m.	$\begin{gathered} \text { SW by } W \\ W \text { by } S \end{gathered}$	2	W by S W	3	SW
,, 31	5.0 p.m.					W by N
Sept. 3	8-15 a.m.	WSW	3	N by W	1	NW by W
, 3	$10-0 \mathrm{a} . \mathrm{m}$.	W	3	NE by N	1	NW
, 3	$10.30 \mathrm{a} . \mathrm{m}$.	NW	3	ENE	1	NW
", 4	9.0 a.m.	NW	2	Calm	0	W
", 5	9-0 a.m.	W by N	3	WSW	4	SW
,, 5	10-30 a.m.	WNW	3	WSW	5	SW by W
5	3-30 p.m.	W	3	SW	4	SW by W
,, 6	9-15 a.m.	WSW	3	SW by S	2	SW by W
,, 8	$10-0 \mathrm{a} . \mathrm{m}$.	WNW	2	Calm	0	NE
,, 12	$5-0 \quad$ p.m.	S by W	1	W by S	1	S
,, 12	6-30 p.m.	SW	1	Calm	0	S
,, 14	8-25 a.m.	WNW	2	NW	2	WSW
,, 15	8-30 a.m.	NW by W	3	W	1	NW by W
,, 17	$8-0$ a.m.	NW by N	3	W	2	NW by W
,, 17	$10-0 \quad$ a.m.	W by S	3	W by N	2	W
, 24	$10-0$ a.m.	ENE	2	Calm	0	N
,, 27	9-0 a.m.	W by S	2	NNE	1	SW
,, 27	Noon	S	2	NNE	2	W
,, 27	$2-0$ p.m.	WSW	2	NE by N	1	SW
,, 28	$7-0 \mathrm{a} . \mathrm{m}$.	W	2	NNE	2	W
,, 28	8-0 a.m.	WSW	2	NE by N	2	W

* Whence coming.

OBSERVATIONS OF UPPER (CIRRUS)--Continued.						
1907.	G. M. T.	Cluoud.		Wind.		Direction of Lower Clouds.
		Direction.*	$\begin{aligned} & \text { Velocity } \\ & (0-6 .) \end{aligned}$	Direction.*	$\begin{gathered} \text { Force } \\ (0-12) . \end{gathered}$	
Oct. " 93 39 23 93 $9)$ 99 ,, 11 , 13 ,, 16 ,, 16 , 16 24 , 29	$\begin{aligned} & \text { 2-45 p.m. } \\ & \text { 3-20 p.m. } \\ & 5-0 \\ & \text { p.m. } \\ & 2-0 \end{aligned} \text { p.m. }$	$\underset{W}{N W}$	2	SSW	3	SW by S
			2	SSW	4	SSW
		WSW	1	SW by S	3	SW
		NNW	1	SE	2	SE by S
		NW by N	2	NW	3	NW
	$\begin{array}{rl} 9-0 & \mathrm{a} . \mathrm{m} . \\ 10-0 & \mathrm{a} . \mathrm{m} . \end{array}$	NW by W	1	NW by W	3	NW
	$8-0$ a.m.	NNW	1	NNE	1	NW
	$\begin{aligned} & 9-0 \text { a.m. } \\ & 9-10 \text { a.m. } \end{aligned}$	NW	1	NNE	1	NW
		SE by E	2	NE	1	E
	$\begin{gathered} 10-45 \mathrm{a} . \mathrm{m} . \\ 9-45 \mathrm{a} . \mathrm{m} . \end{gathered}$	S by W	3	S	4	S
		SSW	6	WSW	1	W by S
	$\begin{gathered} 10-0 \text { a.m. } \\ \text { Noon } \end{gathered}$	N	3	NE	1	N by E
		NNE	3	NE	1	NE
	$\begin{aligned} & 2-0 \text { p.m. } \\ & 8-15 \text { a.m. } \end{aligned}$	NE	3	NE by N	1	N
		WNW	2	Calm	0	NE
	10-20 a.m.	E	3	ENE	2	NE
Nov. 2	11-0 a.m.	Eby S	4	ESE	4	E
,, 5	$\begin{aligned} & 4-30 \text { p.m. } \\ & 9-0 \quad \text { a.m. } \end{aligned}$	SE	2	Calm	0	S
" 6		E by S	3	NE	1	ENE
", 10	12-15 a.m.	SW by S	2	Calm	0	SW
, 10	1-0 p.m.	N	4	WNW	1	WNW
," 18		NW	4	N by E	1	W
,, 18		WNW	4	Calm	0	-
,, 24	$\begin{aligned} 10-0 & \text { a.m. } \\ 4-0 & \text { p.m. } . \end{aligned}$	W by N	6	W	1	W
,, 30	$9-0 \text { a.m. }$	E	6	NE by N	1	-
Dec. 3		E by S	4	SW by W	1	W
,, 12	$\begin{gathered} 8-45 \mathrm{a} . \mathrm{m} . \\ 10-30 \mathrm{a} . \mathrm{m} . \end{gathered}$	S by W	3	NE by N	1	S by W
,, 14	$\begin{gathered} 10.30 \mathrm{a} . \mathrm{m} . \\ 0.55 \mathrm{p} . \mathrm{m} . \end{gathered}$	N	2	NNW	2	,
, 15	10.0 a.m.	NNW	4	Calm	0	-
,, 18	$\begin{aligned} & 1-30 \text { p.m. } \\ & 2.30 \text { p.m. } \end{aligned}$	W	6	SW by W	1	-
,, 18		W	4	Calm	0	-

* Whence coming.

CORRECTED TABLE OF RAINFALL FOR 30 YEARS.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Yearly fall.
1878	5•124	$2 \cdot 123$	2.694	1.581	$4 \cdot 663$	$3 \cdot 375$	1-198	7.052	6.329	$5 \cdot 451$	3.797	2.041	$45 \cdot 428$
1879	1.532	$2 \cdot 698$	$2 \cdot 511$	1•559	2.381	$4 \cdot 794$	6.789	$7 \cdot 706$	$3 \cdot 401$	4.145	1.316	$3 \cdot 563$	$42 \cdot 395$
1880	0.881	$3 \cdot 756$	3•174	2.015	$2 \cdot 844$	4.787	7.005	$2 \cdot 244$	$3 \cdot 969$	3.007	$7 \cdot 368$	$9 \cdot 211$	$50 \cdot 261$
1881	0.472	6.320	4.968	2.010	$5 \cdot 587$	2.738	$5 \cdot 822$	6.215	2.164	$3 \cdot 368$	$5 \cdot 226$	4.773	$49 \cdot 663$
1882	4.054	3.371	$5 \cdot 413$	$5 \cdot 657$	2.763	6.066	$7 \cdot 886$	5.332	3.116	$4 \cdot 689$	$8 \cdot 127$	$3 \cdot 751$	60.225
1883	5.534	$2 \cdot 968$	1.029	2.029	1.053	$4 \cdot 314$	3.026	$3 \cdot 459$	6.665	5.757	$5 \cdot 262$	$4 \cdot 903$	$45 \cdot 999$
1884	$7 \cdot 452$	3.865	$2 \cdot 726$	0.949	2.253	$1 \cdot 123$	5•197	$2 \cdot 849$	$3 \cdot 676$	4.069	1.694	6.312	42•165
1885	$3 \cdot 437$	3.044	$3 \cdot 732$	1744	$2 \cdot 097$	$3 \cdot 936$	$2 \cdot 363$	2.604	5.642	$5 \cdot 723$	$3 \cdot 825$	2.697	$40 \cdot 844$
1886	$7 \cdot 254$	1.066	$3 \cdot 670$	3.625	$6 \cdot 178$	2.962	5.047	$2 \cdot 347$	$4 \cdot 969$	5.155	$3 \cdot 875$	6.565	$52 \cdot 713$
1887	3200	$1 \cdot 839$	$3 \cdot 008$	1.844	2794	0.525	$2 \cdot 311$	2-255	$5 \cdot 755$	$2 \cdot 121$	$2 \cdot 474$	3•124	31.250
1888	$2 \cdot 537$	$1 \cdot 447$	$3 \cdot 601$	$2 \cdot 303$	0.917	$2 \cdot 377$	$8 \cdot 475$	6.112	2.659	$2 \cdot 487$	$5 \cdot 786$	2.935	$41 \cdot 636$
1889	$2 \cdot 588$	3.320	4.066	2.075	$2 \cdot 895$	2.081	3.032	6.837	$5 \cdot 118$	3.389	2:563	4.548	42:512
1890	5.910	0.878	$4 \cdot 355$	1.539	2.557	$4 \cdot 474$	$4 \cdot 217$	6.990	5•182	$5 \cdot 215$	8.230	0.550	50.097
1891	$3 \cdot 137$	0.614	1.926	$2 \cdot 116$	3.097	$1 \cdot 479$	3-143	9.869	$5 \cdot 003$	3.884	$4 \cdot 510$	8.686	$47 \cdot 464$
1892	$4 \cdot 175$	3 474	$1 \cdot 044$	$2 \cdot 223$	5.689	$4 \cdot 401$	1-856	7×22	5•369	$5 \cdot 444$	$3 \cdot 562$	3.894	$48 \cdot 353$
1893	$1 \cdot 793$	$5 \cdot 762$	1.699	$0 \cdot 811$	$2 \cdot 448$	$2 \cdot 382$	$5 \cdot 026$	6.090	$7 \cdot 206$	$7 \cdot 858$	$4 \cdot 575$	4.903	$50 \cdot 553$
1894	4.932	6783	$3 \cdot 902$	1.925	3-158	$3 \cdot 790$	$4 \cdot 329$	8.277	0.801	$4 \cdot 217$	3.546	$5 \cdot 114$	$50 \cdot 774$
1895	$2 \cdot 800$	0.553	4•365	$2 \cdot 648$	0.500	$3 \cdot 423$	$5 \cdot 319$	5•199	$2 \cdot 044$	$5 \cdot 767$	$3 \cdot 748$	6.005	$42 \cdot 371$

CORRECTED TABLE OF RAINFALL FOR 30 YEARS-Continued.

Year.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Yearly fall.
1896	3.343	2.691	7.079	2.943	$0 \cdot 760$	$3 \cdot 613$	2.590	$3 \cdot 300$	7092	$4 \cdot 158$	1:336	$5 \cdot 388$	44•493
1897	$1-265$	4.170	$5 \cdot 393$	$3 \cdot 045$	3-524	$4 \cdot 832$	2.743	$7 \cdot 685$	5.733	$2 \cdot 698$	5.835	$4 \cdot 699$	$51 \cdot 629$
1898	$6 \cdot 360$	$4 \cdot 673$	3•179	2•170	3•595	$2 \cdot 795$	$1 \cdot 178$	$7 \cdot 132$	$1 \cdot 747$	4•140	5.095	$6 \cdot 041$	48-105
1899	$7 \cdot 209$	2-163	$3 \cdot 842$	$4 \cdot 287$	$3 \cdot 437$	1.780	$2 \cdot 983$	$2 \cdot 360$	9•139	$3 \cdot 071$	$3 \cdot 275$	$4 \cdot 111$	$47 \cdot 657$
1900	$6 \cdot 067$	$3 \cdot 422$	$0 \cdot 661$	3-549	1.767	2.776	3•146	6•130	$3 \cdot 024$	$7 \cdot 750$	$4 \cdot 345$	$5 \cdot 573$	$48 \cdot 210$
1901	$2 \cdot 896$	$2 \cdot 136$	$3 \cdot 495$	2.538	0.818	$2 \cdot 087$	1.864	$3 \cdot 327$	1.313	$4 \cdot 597$	8.185	$5 \cdot 724$	38.980
1902	$4 \cdot 853$	$1 \cdot 410$	$3 \cdot 733$	$2 \cdot 483$	3.086	1.255	$3 \cdot 597$	3•840	1.245	$5 \cdot 131$	$2 \cdot 062$	$4 \cdot 056$	36.751
1903	5-262	$4 \cdot 609$	4.994	$2 \cdot 902$	3-309	$2 \cdot 363$	$4 \cdot 680$	6:410	6.020	10.832	$4 \cdot 589$	$2 \cdot 970$	$58 \cdot 940$
1904	3.948	$3 \cdot 978$	$2 \cdot 740$	3.873	2.995	1 $\cdot 398$	$2 \cdot 143$	$5 \cdot 253$	$1 \cdot 280$	3.725	$5 \cdot 128$	$3 \cdot 173$	$39 \cdot 634$
1905	2.938	$2 \cdot 680$	$3 \cdot 480$	$3 \cdot 690$	0.650	3.095	3.560	4.095	$4 \cdot 385$	$4 \cdot 715$	4-230	$1 \cdot 320$	38.838
1906	6.070	3.555	$4 \cdot 243$	$2 \cdot 050$	$4 \cdot 810$	1.928	$2 \cdot 765$	$4 \cdot 665$	$1 \cdot 505$	6.966	4.930	6-180	$49 \cdot 667$
1907	2.995	$3 \cdot 515$	$5 \cdot 635$	1.795	$3 \cdot 633$	8•705	3-303	$6 \cdot 210$	$1 \cdot 160$	$3 \cdot 864$	$3 \cdot 342$	$5 \cdot 758$	$49 \cdot 915$
$\begin{aligned} & \text { Means } \\ & 1878 \cdot 1907 \end{aligned}$	$\} 4 \cdot 001$	$3 \cdot 096$	$3 \cdot 545$	2466	$2 \cdot 875$	$3 \cdot 188$	3-886	$5 \cdot 302$	$4 \cdot 090$	$4 \cdot 780$	$4 \cdot 401$	$4 \cdot 619$	$46 \cdot 250$
Means for the period 1848-1877	$\} 4 \cdot 268$	3810	$3 \cdot 160$	$2 \cdot 423$	$2 \cdot 410$	3•734	$4 \cdot 075$	4•858	$4 \cdot 646$	5•406	4•354	$4 \cdot 352$	$47 \cdot 498$
60 years' means	$\} 4 \cdot 135$	$3 \cdot 453$	$3 \cdot 353$	$2 \cdot 444$	2.643	$3 \cdot 461$	$3 \cdot 981$	$5 \cdot 080$	$4 \cdot 368$	$5 \cdot 093$	$4 \cdot 378$	$4 \cdot 486$	$46 \cdot 874$

Large type, greatest and least readings in 60 years.

OBSERVATIONS OF EARTH-MAGNETISM, 1907.

Absolute measures of Horizontal Magnetic Force have been made once each month, by the method of Vibration and Deflection.

In these observations the same Magnet has been employed from the beginning of the series in March, 1863. The weight of the Magnet with its stirrup is 825 grains, and its length 3.94 inches nearly. Its moment of inertia, measured by the method of vibrations, with and without a known increase of the moment, is $5 \cdot 27303$ to the English foot-second-grain units, at the temperature 35° Fahr., and its rate of increase is 0.00073 for increase of 10°.

The temperature corrections have been obtained from the formula $q\left(t^{\circ}-32^{\circ}\right)+q^{\prime}\left(t^{\circ}-32^{\circ}\right)^{2}$ where t° is the observed temperature and 32° Fahr. the adopted standard temperature. The values of the co-efficient q and q^{\prime} are respectively 0.0001128 and 0.000000436 .

The induction co-efficient μ is 0.000244 .
The correction for error of graduation of the Deflection bar at 1.0 foot is +0.00004 ft . at $1 \cdot 3+0.000064 \mathrm{ft}$.

The observed times of vibration are entered in the Tablewithout corrections.

The time of one vibration has been obtained each month from the mean of twelve determinations of the time of 100 vibrations.

The angles of deflection are each the mean of two sets or readings.

In deducing from these observations the ratio and product of the magnetic moment m of the magnet, and the earth's horizontal magnetic intensity X, the induction and temperature corrections have always been applied, and the observed time of vibration has been corrected for the effect of torsion of the suspending thread; but no correction has been required for the rate of the chronometer, or for the arc of vibration, the former having been always under $1 \cdot 5^{5}$ and the latter never over 50^{\prime}.

The average deflection of the magnet caused by a twist of the torsion circle through 90° has been about $6^{\prime} \cdot 7$ of arc.

In the calculations of the ratio $\frac{m}{X}$, the third and subsequent terms of the series $1+\frac{\mathrm{P}}{r 2}+\frac{\mathrm{Q}}{r 4}+\& \mathrm{c}$., have always been omitted.

The value of the constant P was found to be -0.00215 .
The Vertical and Total Forces are deduced from the measures of the Horizontal Force, and the Angle of Inclination or Dip.

All the computations are in English foot-second-grain units; but in the final table the results are given only in C. G. S. units.

The Dip, or angle between the direction of total force, and that of its horizontal component, has been measured with Dover's Circle, No. 159, once each month by two needles, always when possible on the days of vibration and deflection observations.

The Declination has been observed at the beginning of each week, usually on Mondays at 4 p.m., and is quoted as the angle between the horizontal direction of force and the Astronomical Meridian, measured from the North Point.

The Differential Instruments, or Photo-Magnetographs, are of the same pattern as those at the Kew Observatory, except that the radial distances between the centres of the magnets and the surfaces of the respective cylinders are shorter, and the clock is not provided with an automatic light cut-off, for the time scale. The "cut-offs" are made by hand at the hours 2,4 , and 22 of the astronomical day, to furnish two time marks at each end of the day's curves, the changes being made between 11-30 and noon, civil time.

The scale value of the Bifilar horizontal force torsion balance, has remained very constant at 0.00051 C . G. S. for one centimetre, during the last seventeen years.

The scale value of the Unifilar Declination Magnet is $11^{\prime} \cdot 28$ are per centimetre.

OBSERVATIONS OF				DEC	LINATI	N
1907.	G. M. T. Civil Day.	West Declination.		Magnetic Dip.		
		Observations.	Monthly Mean.	Needle.	DIP.	G. M. T. Civil Day.
Jan.	$\begin{array}{rlr} \text { D. } & \text { н. } & \text { м. } \\ 7 & 16 & 0 \end{array}$	- ,	$\left\{\begin{array}{c}\circ \\ \\ 17 \\ 174 \cdot 8\end{array}\right.$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	- ,	D. H. M.
		$\begin{array}{ll}17 & 44 \cdot 9\end{array}$				
"	14 , , ,	, 45.7			$68 \quad 45 \cdot 0$	$21 \quad 100$
"	21 ,",	,, $43 \cdot 6$			$68 \quad 47 \cdot 0$	22100
"	28 ," ,	,, 45.2				
Feb.	4160	$17 \quad 44.5$				
"	11 ", ",	, $\quad 45.7$	$17 \quad 44 \cdot 6$	1	$68 \quad 46 \%$	161130
"	18 ,, ,,	,, $42 \cdot 3$		2	$68 \quad 47 \cdot 8$,, 120
"	25 ," ,	, $46 \cdot 1$				
Mar.	$416 \quad 0$	$17 \quad 46 \cdot 8$				
"	11 ", "	, 43.5	$1745 \cdot 3$	2	$68 \quad 47 \cdot 0$	191030
"	18 ,, ",	,, 44.9	$1740 \cdot 3$	1	$68 \quad 47 \cdot 0$, 110
"	25 ,, "	,, $46 \cdot 1$				
April	1160	$\begin{array}{ll}17 & 46.8\end{array}$				
"	9 ", "	,, 47.8		1	$68 \quad 48 \cdot 0$	161030
"	$15, \ldots$,	,, 46.4	$\begin{array}{lll}17 & 45\end{array}$	2	$68 \quad 49 \cdot 2$,, 1130
"	221730	,, $42 \cdot 4$				
May	61720	$17 \quad 43 \cdot 2$				
"	$1316 \quad 0$,, 46.6	746	1	$68 \quad 47 \cdot 1$	161130
"	20 ", ,	,, $48 \cdot 1$	$17 \quad 46 \cdot 0$	2	6846	,, 120
"	27 ,, ,,	,, $46 \cdot 1$				
June	3160	$17 \quad 45 \cdot 8$				
"	10 ,, ,,	,, 44.4		2	$68 \quad 45 \cdot 6$	191130
"	17 ," ",	,, 45.4	$\} 1745 \cdot 5$	1	$68 \quad 46 \cdot 8$	$20 \quad 10 \quad 0$
"	25 ,",	,, 46.3				

Observations of Vibrations and Deflections for Absolute Measure of Magnetic Force．							
1907.	G．M．T． Civil Day．	$\begin{aligned} & \text { 曾 } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \text { Time of } \\ \text { one } \\ \text { Vibration. } \end{gathered}$	G．M．T．	惷	Observed Deflection $\frac{a t 10 \mathrm{ft}}{\mathrm{at} 1.3 \mathrm{ft}}$ ．	Value of m．
	D．H．M．	－	s．	D．H．M．	。	－	C．G．S．Units．
Jan．	$15 \quad 950$	49	6.0588	$15 \begin{cases}11 & 0 \\ 11 & 0\end{cases}$	50 50	$\begin{array}{rr}11 & 26.4 \\ 5 \\ 10\end{array}$	0.017315
Feb．	$16 \quad 940$	42	6.0606	$16 \begin{cases}10 & 30 \\ 10 & 30\end{cases}$	49 49	$\begin{array}{rrr}11 & 27 \cdot 5 \\ 5 & 11 \\ 5 & 5\end{array}$	$0 \cdot 017307$
Mar．	$18 \quad 950$	49	$6 \cdot 0650$	$18\left\{\begin{array}{l}11 \\ 11\end{array} 80\right.$	50 50	$\begin{array}{rr}11 & 24: 5 \\ 5 & 10 \cdot 3\end{array}$	0.017271
April	$15 \quad 945$	45	6.0600	$15 \begin{cases}11 & 20 \\ 11 & 50\end{cases}$	50 55	$\begin{array}{rr}11 & 257 \\ 5 & 108\end{array}$	$0 \cdot 017989$
May	$16 \quad 930$	56	$6 \cdot 0603$	$\left\{\begin{array}{lll}16 & 10 & 0 \\ 17 & 10 & 0\end{array}\right.$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	$11 \quad 242$ $510 \cdot 3$	$0 \cdot 017277$
June	171020	62	$6 \cdot 0614$	$17 \begin{cases}11 & 30 \\ 11 & 45\end{cases}$	60 60	$\begin{array}{rrr}11 & 23 \cdot 7 \\ 5 & 9 \cdot 8\end{array}$	0.017305
July	$15 \quad 945$	70	$6 \cdot 0670$	$15 \begin{cases}11 & 10 \\ 11 & 20\end{cases}$	67 69	$\begin{array}{r} 11 \\ 5 \\ 52 \cdot 6 \\ 10 \cdot 0 \end{array}$	$0 \cdot 017295$
Aug．	$1910 \quad 0$	59	6.0617	$19\left\{\begin{array}{lr}10 & 50 \\ 11 & 0\end{array}\right.$	$\begin{aligned} & 56 \\ & 58 \end{aligned}$	$\begin{array}{rrr}11 & 24 \cdot 8 \\ 5 & 10\end{array}$	$0 \cdot 017306$
Sept．	$17 \quad 915$	59	$6 \cdot 0655$	$17\left\{\begin{array}{lr}10 & 5 \\ 10 & 20\end{array}\right.$	$\begin{aligned} & 57 \\ & 59 \end{aligned}$	$\begin{array}{rr}11 & 23.3 \\ 5 & 9.9\end{array}$	$0 \cdot 017278$
Oct．	171015	52	6.0595	$19 \begin{cases}9 & 40 \\ 9 & 50\end{cases}$	$\begin{aligned} & 58 \\ & 58 \end{aligned}$	$\begin{array}{rrr}11 & 24 \\ 5 & 10 \\ 5\end{array}$	$0 \cdot 017303$
Nov．	181118	52	$6 \cdot 0584$	$20 \begin{cases}11 & 20 \\ 11 & 40\end{cases}$	$\begin{aligned} & 47 \\ & 47 \end{aligned}$		$0 \cdot 017284$
Dec．	$17 \quad 930$	50	$6 \cdot 0528$	$17\left\{\begin{array}{l}10 \\ 10 \\ 11\end{array}\right.$	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	$\begin{array}{r} 11 \begin{array}{r} 23.9 \\ 5 \end{array} \quad 9.9 \end{array}$	0.017302

ABSOLUTE MEASURES-SUMMARY.

DIRECTION.			FORCE.		
1907.	Declination.	Dip.	Horizontal.	Vertical.	Total.
	- ,	-		G. S. UNI	
January ...	$17 \quad 44 \cdot 8$	$68 \quad 46.0$	$0 \cdot 17390$	$0 \cdot 44756$	$0 \cdot 48012$
February ...	$17 \quad 44 \cdot 6$	$68 \quad 47.0$	$0 \cdot 17360$	$0 \cdot 44720$	0.47962
March	$17 \quad 45 \cdot 3$	$68 \quad 47 \cdot 0$	$0 \cdot 17387$	$0 \cdot 44788$	0-48040
April ...	$17 \quad 45 \cdot 8$	$68 \quad 48 \cdot 6$	$0 \cdot 17380$	$0 \cdot 44828$	$0 \cdot 48077$
May ...	$17 \quad 46 \cdot 0$	68.46.8	$0 \cdot 17405$	$0 \cdot 44828$	0.48081
June	$17 \quad 45 \cdot 5$	6846.2	$0 \cdot 17411$	$0 \cdot 44818$	$0 \cdot 48081$
July ...	$17 \quad 45 \cdot 3$	$68 \quad 42 \cdot 9$	0•17408	$0 \cdot 44690$	0.47951
August	$17 \quad 43 \cdot 8$	$68 \quad 44 \cdot 9$	$0 \cdot 17396$	$0 \cdot 44730$	$0 \cdot 47995$
September.	$17 \quad 43 \cdot 2$	$68 \quad 48 \cdot 4$	$0 \cdot 17403$	$0 \cdot 44881$	$0 \cdot 48135$
October	$17 \quad 41 \cdot 1$	$68 \quad 47 \cdot 4$	0•17392	$0 \cdot 44814$	0.48070
November .	$17 \quad 41 \cdot 0$	$68 \quad 477$	0•17418	$0 \cdot 44890$	$0 \cdot 48151$
December ..	$17 \quad 39 \cdot 6$	$68 \quad 44 \cdot 4$	$0 \cdot 17430$	$0 \cdot 44796$	$0 \cdot 48068$
Means	$17 \quad 43 \cdot 8$	$68 \quad 46 \cdot 4$	$0 \cdot 17398$	$0 \cdot 44795$	$0 \cdot 48052$

HORIZONTAL MAGNETIC DIRECTION.

Horizontal Magnetic Direction, West of North (from daily measures of the continuous curves).

1907.		MEAN OF				Differences.$d-c$	Differences of a and b or Mean daily range.	$\begin{aligned} & \text { Highest } \\ & \text { reading of } \\ & \text { the } \\ & \text { month. } \end{aligned}$	Lowestreading of the month.	$\underset{\text { range. }}{\text { Monthly }}$
			$\begin{gathered} \text { Lowest } \\ \text { daily } \\ \text { readings. } \end{gathered}$ (b)	a and b. (c)	Dailyreading at 4a.m. and 4 p. a. (d)(d)					
		$17^{\circ}+$						$17^{\circ}+$		
January		$48 \cdot 9$	35.5	42.2	$42 \cdot 9$	0.7	$13 \cdot 4$	$58 \cdot 8$	$9 \cdot 8$	49.0
February		$50 \cdot 6$	$32 \cdot 1$	41.4	$42 \cdot 9$	1.5	18.5	898	9.8	49.0
March ...		$53 \cdot 1$	34.0	43.6	$44 \cdot 5$	0.9	$19 \cdot 1$	86.4	11.4	750
April ...		$51 \cdot 8$	$35 \cdot 3$	43.6	$44 \cdot 1$	$0 \cdot 5$	16.5	56.4	$25 \cdot 4$	31.0
May ...		504	$35 \cdot 4$	42.9	$43 \cdot 8$	$0 \cdot 9$	$15 \cdot 0$	56.4	$20 \cdot 4$	36.0
June ...		$49 \cdot 3$	34.6 3.9	42.0	42.9	0.9	14.7	$54 \cdot 4$	$25 \cdot 4$	29.0
${ }_{\text {July }}^{\text {Jugust }}$.		47.9 47.9	33.9 33.9	40.9 40.9	41.6	0.7 -0.2	14.0	$60 \cdot 4$	$24 \cdot 4$	36.0
$\stackrel{\text { August }}{\text { September }}$		479 48	$33 \cdot 9$ $34 \cdot 1$	$40 \cdot 9$ 41.5	$40 \cdot 7$ $40 \cdot 4$	-0.2 -1.1	14.0	$58 \cdot 2$ 57.2	25.2 7.2	33.0 50.0
October		46.6	$32 \cdot 6$	$41 \cdot 6$ 39	$40 \cdot 4$ 39.9	-1.1	14.7 14.0	$57 \cdot 2$ $60 \cdot 1$	7.2 20.2	50.0 39.9
November		45.5	31.7	$38 \cdot 6$	$39 \cdot 1$	0.5	$13 \cdot 8$	$64 \cdot 8$	$20 \cdot 2$ 128	39.9 52.0
December	\ldots	$42 \cdot 4$	33.8	$38 \cdot 1$	38.9	0.8	18.6	$49 \cdot 8$	22.8	27.0
Means...		$48 \cdot 6$	33.9	$41 \cdot 3$	41.8	0.5	14.7	$62 \cdot 7$	$18 \cdot 6$	$41 \cdot 6$
		or the y	41.8 W.					

* Beyond the recording limit.

HORIZONTAL MAGNETIC FORCE.

Horizontal Magnetic Force in C. G. S. Units (from daily measures of the continuous curves).
The figures in the columns are entered to the unit $10^{-5} \mathrm{C}$. G. S.

1907.		MEAN OF				Differences.$\underline{d-c}$	Differences of a and b or Mean daily range.	$\begin{gathered} \text { Highest } \\ \text { reading of } \\ \text { the } \\ \text { month. } \end{gathered}$	$\begin{aligned} & \text { Lowest } \\ & \text { rearing of } \\ & \text { the } \\ & \text { month. } \end{aligned}$	Monthly range.
		\qquad	Lowest daily readings. (b)	a and b. (c)	Daily readings at 4 a.m. and 4 p.m. (d)					
		$17000+$				$0+$		$17000+$		$0+$
January		425	383	404	403	1	42	507	297	210
February		405	344	375	383	8	61	*	2	
March...		414	362	388	396	8	52	422	282	140
April ...		414	344	379	390	11	70	442	322	120
May ...		443	352	398	415	17	91	533	322	211
June ...		459	368 358	414	424	10	91	523	338	185
${ }_{\text {July }}^{\text {August }}$...		4470	358 358	403 399	413	10 6	88	558 498	278 308	${ }_{190}$
$\stackrel{\text { August }}{\text { September }}$		440 424	358	399 387	405 396	6 9	82	498	308	190
October		429	356	393	403	10	73	459	309	150
November		430	360	395	407	12	70	454	274	180
December	.	426	389	408	410	2	37	475	340	135
Means...		430	360	395	404	9	69	484	307	177
Mean for the year 0.17404 C. G. S. Units.										

[^10]
DATES OF MAGNETIC DISTURBANCES．

The disturbances are divided generally into three classes， small，moderate，and greater；these are indicated by the initial letters of the classes，and the letter c denotes calm．Very great disturbances are marked vg ．The days are reckoned astronomically from noon to noon．

1907.	菏	$\stackrel{\dot{\Phi}}{\dot{\oplus}}$		亭	$\underset{\sim}{\dddot{\pi}}$	$\stackrel{0}{\Xi}$	$\underset{\rightrightarrows}{3}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \ddot{\sim} \end{aligned}$		安	－	1907
D．													D．
1	s	8	m	s	s	s	m	g	s	m	c	c	1
2	c	m	c	c	s	s	m	g	s	m	m	c	2
3	s	c	s	s	m	s	m	g	s		g	s	3
4	s	c	s	s		s		m	m	s	g	s	4
5	s	－	s	m	s	s	m	s	m	s	m	s	5
6	c	m	m	s	m	m	g	s	m	c	s	s	6
7	m	m	m	c	s	s	g	s	s	s	s	－－	7
8	m	g	c	s	s	s	g	s	s	m	s	s	8
9	s	${ }^{*} \mathrm{vg}$	g	s	s	m	m	g	s	s	m	c	9
10	s	g	g	s	m	m	g	m	${ }^{\prime \prime}$	s	g	m	10
11	g	g	vg	s	m	m	m	s	m	s	g	g	11
12	m	s	m		m	m	m	s	g	g	8	g	12
13	s	m	s	m	m	m	s	c	s	g	s	m	13
14	g	m	s	m	m	s	s	m	s	g	s	s	14
15	s	s	c	m	m	s	s	s	s	m	s	s	15
16	s	c	c	m	m	s	s	s	g	s	s	s	16
17	c	s	c	s	S	s	s	s	g	－	s	s	17
18	c	c	s	m	g	m	s	m	in	－	s	s	18
19	s	m	s	s	m	g	m	m	m	s	s	s	19
20	c	s	s	s	m	m	s	g	m	m	1 m	s	20
21	c	s	g	s		m	s	m	s	g	g	s	21
22	s	m	s	s	s	m	m	m	c	g	m	s	22
23	s	m	s	s	m	s	s	m	c		s	c	23
24	s	m	s	s	m	s	m	m	s	s	s	s	24
25	8	m	s	s	m	s	m	s	s	m	s	s	25
26	s	c	s	m	s	s	m	s	m	m	s	s	26
27	s	s	s	m	s	s	g	s	c	g	s	s	27
28	s	s	s	m	m	m	m	s	m	s	s	s	28
29	s		s	m	m		m	m		1 m		s	29
30	s		c	s		s		g	g	s	c	s	30
31	s		c		s		m	s		c		s	31
	6	5	7	2	0	0	0	1	3	2	3	4	
u） s	20	8	16	18	14	18	11	14	13	13	18	22	
	3	10	4	10	16	11	15	10	9	8	5	2	
앙	2	3	3	0	1	1	5	6	5	6	4	2	
（rg	0	1	1	0	0	0	0	0	0	0	0	0	

[^11]
DATES OF SOLAR DRAWINGS.

The figures express, in decimals of a day, the Greenwich Civil Time at which the drawing was made.

1907.	$\underset{\Xi}{\underset{\Xi}{\Xi}}$	$\stackrel{\stackrel{\rightharpoonup}{0}}{\boldsymbol{D}}$		$\overrightarrow{a_{0}}$	岿	$\stackrel{\text { g }}{5}$	$\underset{=}{\underset{E}{2}}$	営		نٌ	$\begin{aligned} & \dot{0} \\ & \text { B } \end{aligned}$	¢	1907
D.				$\cdot 42$	$\cdot 48$		-40	$\cdot 74$	$\cdot 37$	-45	$\cdot 42$		${ }_{1} \mathrm{D}$
2		-50		$\cdot 41$	$\cdot 40$		$\cdot 42$	$\cdot 44$		$\cdot 42$	$\cdot 47$		2
3		$\cdot 47$	$\cdot 45$		$\cdot 51$	$\cdot 48$		72	$\cdot 41$	$\cdot 40$		$\cdot 59$	3
4	$\cdot 47$		$\cdot 47$	$\cdot 40$			$\cdot 52$		$\cdot 37$	$\cdot 41$			4
5		$\cdot 50$		$\cdot 40$	$\cdot 36$		$\cdot 60$	$\cdot 47$	$\cdot 40$		$\cdot 49$		5
6	$\cdot 49$	$\cdot 45$	$\cdot 47$	$\cdot 45$. 38			$\cdot 43$	60		$\cdot 47$	$\cdot 48$	6
7		$\cdot 46$					$\cdot 60$		$\cdot 47$	$\cdot 35$		-45	7
8					-39			$\cdot 42$	$\cdot 51$	- 39			8
9		$\cdot 58$		-58	$\cdot 39$	$\cdot 38$. 68	$\cdot 42$	$\cdot 48$	-39	$\cdot 45$		9
10			$\cdot 46$	$\cdot 49$		$\cdot 39$		-50	$\cdot 38$	-36	$\cdot 45$		10
11		$\cdot 50$.50			. 35	'51	-38	-36	$\cdot 38$			11
12					. 50	$\cdot 48$	$\cdot 74$		$\cdot 36$		$\cdot 42$		12
13	$\cdot 49$	$\cdot 42$				$\cdot 43$				$\cdot 42$	$\cdot 43$		13
14									-38	$\cdot 43$. 57	14
15				$\cdot 39$	$\cdot 46$		$\cdot 60$	$\cdot 42$	38		$\cdot 40$	- 46	15
16						$\cdot 38$	-38		$\cdot 40$	$\cdot 40$			16
17		.53	. 50	$\cdot 46$. 35	$\cdot 36$	$\cdot 35$		$\cdot 45$				17
18	$\cdot 47$			$\cdot 39$	$\cdot 37$		$\cdot 36$	$\cdot 41$	$\cdot 47$		$\cdot 49$	$\cdot 50$	18
19				$\cdot 39$		$\cdot 65$	$\cdot 36$		$\cdot 61$				19
20			$\cdot 47$		$\cdot 36$		$\cdot 38$		$\cdot 46$				20
21		$\cdot 46$	$\cdot 43$			$\cdot 36$	-38	$\cdot 76$	$\cdot 47$	$\cdot 39$	$\cdot 44$		21
22		-46	$\cdot 46$	$\cdot 44$	-38	$\cdot 37$	$\cdot 65$. 66	$\cdot 38$			22
23	$\cdot 49$	$\cdot 45$. 52			$\cdot 36$	$\cdot 45$	$\cdot 37$	$\cdot 49$			$\cdot 44$	23
24				-38	$\cdot 45$		$\cdot 42$	$\cdot 64$	$\cdot 46$	$\cdot 40$			24
25			$\cdot 47$	$\cdot 46$					$\cdot 66$			$\cdot 44$	25
26	$\cdot 47$		$\cdot 44$	$\cdot 38$	$\cdot 47$		$\cdot 45$	$\cdot 37$				$\cdot 58$	26
27		$\cdot 47$	$\cdot 42$. 59	$\cdot 37$	$\cdot 45$	$\cdot 51$	$\cdot 42$	$\cdot 44$	$\cdot 47$		27
28		$\cdot 47$	$\cdot 42$			$\cdot 37$	-38	$\cdot 38$	$\cdot 42$	$\cdot 38$	$\cdot 46$	$\cdot 49$	28
29			$\cdot 43$	$\cdot 40$. 38	$\cdot 43$	$\cdot 47$				$\cdot 40$		29
30	$\cdot 43$		$\cdot 46$			$\cdot 39$	$\cdot 64$	$\cdot 38$			$\cdot 42$		30
31	$\cdot 47$		$\cdot 41$				$\cdot 43$	$\cdot 57$					31

PRESENTATIONS TO THE LIBRARY, 1907.

An Asterisk (*) indicates that the work is an excerpt.

Adelaide Observatory, South Australia:

Meteorological Observations......... 1905.
(Observatory.)

Allegheny Observatory:

- : Miscellaneous Scientific Papers, Nos. 18, 19, 20.
- : Publications, Vol. 1, No. 1. "On the Distortion of Photographic Films," by Frank Schlesinger.
(Observatory.)
Amsterdam, Koninklijke Akademie van Wetenschappen:
Essai d'une Explication du Mécanisme de la Périodicité dans
le Soleil et les Etoiles rouges variables, par A. Brester, Jz.
(Author.)

Antwerp, Société d'Astronomie:

Rapport sur l'exercise de l'année 1906.
(Society.)
Batavia, Royal Magnetical and Meteorological Observatory:
-: Cloud Observations at Batavia 1903-1905.

- : Air-pressure, Temperature, Humidity, and Wind on days of Bright Sunshine at Batavia, 1889-1906, August 1st.
- : List of Magnetic Disturbances recorded at Batavia Observatory, 1880-1899.
- :*Note on the present position of the Earth's Magnetic Axis, derived from Declination data alone, by W. van Bemmelen. "What is the Earth's Magnetic Axis and its secular motion?" A. L. Baur.
(Observatory.)
Batavia, Institut Botanique de l'état de Buitenzorg:
Observations Météorologiques, 1905, 1906.
(Institute.)
Bauer (L. A.):
-:*Magnetograph Records of Earthquakes, with special reference to the San Francisco Earthquake, April 18, 1906.
-:*The present Problems of Terrestrial Magnetism.
-:*Report of the Department of Research in Terrestrial Magnetism, Washington.
- :*Recent Results of Terrestrial Magnetic Observations.
-: : ${ }^{*}$ The Work in the Pacific Ocean on the Magnetic Survey Yacht, " Galilee."
(Author.)
Belgium, Mons:
La Revue Néphologique, No. 23.
(Editor.)

Berlin, Königlich Preuss. Meteorol. Institut:

- : Ergebnisse der Beobachtungen an den Stationen II. and III. Ordnung im Jahre 1901, von V. Kremser.
-: Ergebnisse der Gewitter Beobachtungen in den Jahren 1901 und 1902, von R. Süring.
- : Ergebnisse der Meteorologischen Beobachtungen in Potsdam im Jahre 1903, von A. Sprung.
-: Ergebnisse der Magnetischen Beobachtungen in Potsdam im Jahre 1902, von Ad. Schmidt.
- : Ergebnisse der Niederschlags-Beobachtungen im Jahre 1903, 1904, von G. Hellmann.
-: Deutsches Meteorologisches Jahrbuch für 1905, 1906. Heft 1, 2-Preussen und benachbarte Staaten.
-: Bericht über die Tätigkeit, 1906.
-: Internationaler Meteorologischer Kodex.
(Institute.)
Biggs (J. H. W.) :
Sunshine and Rainfall in Windermere, March, 1907. (Author.)
Bigourdan (M. G.) :
*Sur les passages de Mercure devant le Soleil, et en particulier sur celui du 14 November prochain (1907).
(Author.)
Bilt, Koninklijk Nederlandsch Meteorol. Institut:
Koninklijk Nederl. Meteorol. Inst. No. 102. Mededeelingen en Verhandelingen, $5 .-$ P. H. Gallè, Cyclone in the Arabian Sea, Oct. 18-Nov. 4, 1906.
(Institute.)

Birmingham, Edgbaston Observatory:

Meteorological Oliservations, 1906. With Tables and Charts of Mean 'I'emperature, Rainfall, and Bright Sunshine, 1887-1906.
(Observatory.)
Bologna, Osservatorio della R. Università:
-:*Osservazioni meteorologiche. 1905.

- :*Esame di una Livella Difettosa e Metodo per Correggerne le Indicazioni.
-:*Sopra le Dimostrazioni della Formula del Cagnoli relativa alla durata minima del Crepuscolo.
(Observatory.)

Bolton, Corporation Meteorological Observatory:

- : Annual Report of the Bolton Museums and Observatory for 1906.
-: Monthly Summaries, 1907.
(Corporation.)
Bombay, Government Observatory:
Report.
.1906.
(Observatory.)
Bordeaux, Observatoire:
Catalogue Photographique du, Ciel, Tome II. (I) Zone $+15^{\circ}-17^{\circ}$; (2) Observations D'Eros. (Observatory.)

Bosnia, Observatorium auf der Bjelasñica:

Ergebnisse der meteorologischen Beobachtungen an den Landesstationen in Bosnien-Hercegovina in den Jahren 1902 und 1903.
(Observatory.)

Bucuresci, Institul Meteorologie:

Buletinul Lunar al Observatiunilor Meteorologice din România Anul 15, 1906.
(Institute.)
Budapest, M. Kir. orsz. meteorol. és foldmágnességi intézet :

- : Bulletin Hebdomadaire des Observatoires Sismiques de la Hongrie et de la Croatie, 1907.
-: Avis macrosismique de Hongrie, 1907.
- : Jahrbücher, Band 34, Theil 4 ; Band 35, Theil 1, 2, 3.
- : Die Erdbeben in Ungarn im Jahre 1906.
(Institute.)
Budapest, Observatoire Sismique:

1906. Rapport Annuel sur les Observatoires Sismiques des pays de la sainte couronne de Hongrie, par R. de Kövesligethy.
(Observatory.)
Burgos, Observatorio Colegio Maximo:
Observaciones Meteorologicas, 1906.
(Observatory.)
Burnham (S. W.):
A General Catalogue of Double Stars within 121° of the North Pole. Part 1.-The Catalogue. Part 2.-Notes to the Catalogue. (Author.)

Cambridge Observatory:

Annual Report of the Observatory Syndicate, 1906, May 191907, May 18.
(Observatory.)
Canada, Department of Marine [etc.]:
-: General Meteorological Register for the year 1906.
-: Monthly Weather Review, 1906, Oct.-Dec. ; 1907, Jan.August.
(Department.)
Cape of Good Hope, Royal Observatory:
Annals, vol. 12, part 4. Determination of the Elements of the Orbits of Jupiter's Satellites.
(Observatory.)
Catania Observatory:
L'Eclisse Totale Di Sole del 30 Agosto, 1905. (Observatory.)
Chicago (Albert B. Porter):
"The Scientific Shop." (1) Circulars from May, 1907;
(2) Catalogue D. Optical Parts.
(The Shop.)
China, Observatoire de Zi-ka-Wei:

- : Bulletin des Observations, Tome 30, 1904.
- : Perturbations Magnetiques en 1906.
-: Annales de l'Observatoire Astronomique de Zô-Sè, Tome 1, Premier fascicule, 1901-1904.
-: Bulletin des Observations. Tome 31, 1905, Fasc. A. Magnétisme Terrestre.
(Observatory.)
Chree (Dr. C):
*Auroral and Sun-spot Frequencies contrasted.
(Author.)

Cleveland Meteorological Observatory:

Twelfth Annual Report, 1906-7.
(Observatory.)

Colne, Corporation:

Tabulated Statement of the Rainfall at Colne Cemetery, 1900-1907, by T. H. Hartley.
(Author.)

Colorado College Observatory:

- : Semi-Annual Bulletin. \qquad Notes on the Computations of Logarithms, by F. H. Loud, Director.
-: Annual Meteorological Summary for 1906.
(Observatory.)
Deslandres (M. H.):
- :*Méthodes pour la Recherche, en dehors des éclipses, des amas de particules brillantes, mêlés aux gaz et vapeurs dans la partie basse de l'atmosphère Solaire.
-:*Méthodes pour la Recherche des Particules Lumineuses mêlées aux gaz de la chromosphère et des protubérances Solaires. Application pendant l'éclipse de 1905.
-:*Photographies der Protubérances Solaires avec des écrans colorés dans l'éclipse du 30 Aout 1905.
- :"Histoire des Idées et des Recherches sur le Soleil.
-:*Enrégistrement de la surface et de l'atmosphère Solaires a l'Observatoire de Meudon.
- : *'Étude des Variations du Rayonnement Solaire.
- :*Appareils Enregistreurs de l'atmosphère Solaire.
- :*Recherches sur l'atmosphère Solaire.
(Author.)

Egypt, Survey Department:

-: Meteorological Report for the year 1904. Parts 1 and 2.

- : The Rains of the Nile Basin and the Nile Flood of 1906.
- : The Climate of Abbassia, near Cairo.
(Department.)

Ellis (W.):

A comparison of values of the Magnetic Elements, deduced from the British Magnetic Survey of 1891, with recent Observation.
(Author.)

Falmouth Observatory :

*Meteorological and Magnetical Tables and Reports for the year 1906, and Tables of Sea Temperature. (Observatory.)
Fényi (J.):
*Zur Erklärung der Grossen Inversion. (Author.)
France, Observatoire de Chevreuse (Seine-et-Oise):
Mesures D'Etoiles Doubles faites a l'Observatoire de Chevreuse de 1904 a 1906, par Maurice Farman.
(Observatory.)

Granada, Observatorio Astronómico Geodinámico y Meteorológico:

-: Boletin Mensual. 1906, Dec. ; 1907, Jan.-Nov.

- : Eclipse Total de Sol del 30 de Agosto de 1905.
-:*Bulletin de l'activite Solaire, par J. Mier y Teran, S.J.
- :* Les Observations Solaires a l'Observatoire de Cartuja, Grenade.
—:*'Activité Solaire, Janvier-Fevrier, 1907. (Observatory.)

Greenwich, Royal Observatory:

-: Astronomical, Magnetical and Meteorological Observations, 1905..........under the direction of Sir W. H. M. Christie.
-: Appendices:
Photo-Heliographic Results, 1905.
Photo-Heliographic Results, 1874-1885 (two copies.)

- :*Mean Areas and Heliographic Latitudes of Sun-Spots in the year 1905, deduced from photographs taken at the Royal Observatory, Greenwich; at Dehra Dûn; at Kodaikánal Observatory, India; and in Mauritius.
—: Clock Star List, 1908.
(Observatory.)

Groningen, Astronomical Laboratory:

Publications \qquad Edited by Prof. J. C. Kapteyn, Director : No. 17. On the Libration of the Three Inner Large Satellites of Jupiter, by W. de Sitter, Sc.D.
(Laboratory.)
Habana, Observatorio del Colegio de Belen :
Observaciones Meteorologicas, 1906.
(Observatory.)
Hale (Prof.) and Ellerman:
Photographic Map of the Sun-Spot Spectrum.
(Authors.)

Hamburg, Sternwarte :

-: Jahresbericht \qquad 1904, 1905.
-: Mitteilungen, No. 9, 10.
(Observatory.)

Harvard College Astronomical Observatory :

- : Annals:

Vol. 47, part 1, A Photographic Study of Variable Stars.
,, 52, ," 1, Eclipses of Jupiter's Satellites, 1878-1903.
,, 55, ,, 1, Second Catalogue of Variable Stars.
", 57, ", l, Observations of Seventy-five Variable Stars of Long Period \qquad
Vol. 60, Appendix to No. 2.
," No. 3, Positions of Phoebe, 1898-1904.
," ,, 4, 1777 Variables in the Magellanic Clouds.
", ", 5, Ten Variable Stars of the Algol Type.
Vol."62, part 1, Determination of Constants for the Reduction of Zones observed with the Meridian Circle 1888-1898.
-: Sixty-first Annual Report of the Director for the year ending September 30, 1906.
-: Circular, No. 119-130.
(Observatory.)

Heath (Walter) :

Occultation Residuals.
Heidelberg (Königstuhl) Astrophysikalischen Instituts:
— : * Director's Report of Work for the year 1905, 1906.

- : Publikationen-Band 2:

No. 2. Helligkeiten und mittlere Oerter von 359 Sternen der Plejaden-Gruppe.
3. Königstuhl-Nebel-Liste 4.
", 4. Beobachtungen veränderli
," 5. Königstuhl-Nebel-Liste 5.
,", 6. Untersuchung von Mikrometerschrauben.
7. Königstuhl-Nebel-Liste 6.
8. Beobachtungen veränderlicher Sterne.
9. Über die Nebel der Nova Persei.
10. Photographische Helligkeiten und mittlere Orter von 251 Sternen der Plejaden-Gruppe.
11. Sternverteilung um die grossen Nebel bei Persei und bei 12 Monocerotis.
,, 12. Bestimmung von Sternpositionen aus photographischen Aufnahmen durch Interpolations-und Abbildungsverfahren.

- : Band 3 :

No. 1. Untersuchungen über den Andromeda-Nebel.
,, 2. Über den Schweif des Kometen 1892, I. (Swift.)
," 3. Königstuhl-Nebel-Liste 7. (Institute.)

Hemsalech (Dr. G. A.) :

Les Spectres d'Etincelles:

- :*Sur une nouvelle méthode de production des spectres de flamme des corps métalliques.
- :*Sur les oscillations d'ordre supérieur (harmoniques) dans l'étincelle électrique.
- :*Sur la rôle et la nature de la décharge initiale dans l'etincelle électrique.
- :*Sur les phénomènes de résonance dans.........la production de fortes étincelles électriques.
- :*Sur une méthode simple pour l'étude des mouvements des vapeurs métalliques dans l'étincelle oscillante.
- :*Sur les spectres respectifs des différents phases de l'étincelle oscillante.
-:*Sur les effects respectifs des courants de Foucault et de hystérésis du fer sur les étincelles oscillantes.
-:*Sur une méthode simple pour l'étude des étincelles oscillantes.
(Author.)

Hong Kong Observatory :

Meteorological Observations, 1906.
(Observatory.)
India, Meteorological Department :
Memoirs, Vol. 18, parts 1 and 3.
(Department.)

Innsbruck, Meteorologische Observatorium der Universität:
Beobachtungen des meteorologischen Observatoriums der Universität Innsbruck............ 1903, 1904. (Observatory.)

International Commission :

Observations.........1905, Heft 8-12 ; 1906, Heft 1-7.
(Commission.)

International Commission on Terrestrial Magnetism :

Caractere Magnétique de chaque jour des Mois 1906, JuilletDec. ; 1907, Jan.-Sept.
(Commission.)
Ireland, Clongowes Meteorological Observatory, Kildare:
Third Annual Report, 1907.
(Observatory.)
Kasan, Universitäts-Sternwarte :
Elemente und Ephemeride des Planeten (78) Diana.. 1907.
(Observatory.)
Kavanagh (Rev. I. J.):
*"Stonyhurst College Observatory, Lancashire, England."
(Author.)
Kelvin (Lord) :
-:*An Attempt to Explain the Radio-activity of Radium.

- : *On the motions of Ether produced by collisions of Atoms or
) Molecules containing or not containing Electrions.
-:*Initiation of Deep-sea Waves of Three Classes: (1) from a
Single Displacement; (2) from a group of equal and similar Displacements; (3) From a Periodically varying SurfacePressure.
(Author.)
Kodaikánal Observatory:
-: Annual Report of the Director for 1906.
- : Bulletin No. 8, Widened Lines in Sun-Spot Spectra.
", 9, List of Prominences observed, 1906, Jan.-June.
", 10, List of Prominences observed, 1906, July-Dec.
", 11, Widened Lines in Sun-Spot Spectra.
(Observatory.)

Lancaster, County Palatine of:

Report of the Medical Officer of Health for the year 1906.

La Plata Observatorio Astronomico:

- : Ephemerides del Sol y de la Luna para 1907.
-: Comunicaciones elevadas á la Universidad, con motivo del viaje hecho á Europa por el Director, Dr. Francisco Porro de Somenzi.
(Observatory.)

Leiden, Observatoire :

Annalen der Sternwarte in Leiden. Band 9, Heft l.
(Observatory.)

Leyst (Dr. Ernst):

-: Beobachtungen angestelt im Meteorol. Observatorium der Kaiserl Universität, Moskan im Jahre 1903-1904.
-: Höfe um Sonne und Mond in Russland.
-: Meteorologische Beobachtungen in Moskau im Jahre 1905.
-: Uber Schätzung der Bewolkungsgrade.
-: Uber das Erdbeben von San-Francisco nach den Aufzeichnungen der Seismographen in Moskau.

- : Luftelectrische Zerstreuung und Radioactivität in der Höhle Bin-Basch-Choba in der Krim.
(Author.)

Lick Observatory, University of California:

-: Bulletin, No. 106-127.

- : Organization and History of the D. O. Mills Expedition to the Southern Hemisphere, by W. W. Campbell, Director.
(Observatory.)
Llinas (Barcelona) Observatorio Belloch:
Hojas Meteorològicas........ Año 1904.
(Observatory.)
Lisbon, Observatorio meteorologico "Dom Luiz":
-: Annaes do Observatorio do Infante D. Luiz. Vol. 42, 43. 1904, 1905.
-: Observações dos Postos Meteorologicos, Anno de 1889, 1890, 1904, 1905.
(Observatory.)
Liverpool Astronomical Society:
Annual Report, 1907-1908.
(S'ociety.)
Liverpool Observatory, Bidston:
Report of the Director of the Observatory to the Marine Committee, and Meteorological Results...1906. (Observatory.) Lockyer (Sir Norman):

Memorandum on the Solar Researches carried on by Sir Norman Lockyer, 1863-1906.
(Author.)
Lockyer (William J. S.):
*Note on the Permanency of some Photo-visual lenses. (Author.)
London, Meteorological Committee:
Second Annual Report.........for the year ended 31st March, 1907.
(Committee.)

London, Meteorological Office:

-: Meteorological Observations at Stations of the Second Order for the year 1902, with Frontispiece Map.
-: Hourly Readings from Self-Recording Instruments at Four Observatories in connection with the Meteorological Office, 1905.

- : Hints to Meteorological Observers in Tropical Africa. (Office.)

London, Royal Astronomical Society:
Monthly Notices, 1907.

London, Royal Institution:

Proceedings of. Vol. 18, part 2. No. 100. (Institution.)

London, Royal Meteorological Society:

The Meteorological Record : Monthly Results of Observations made at Stations of the Society, with Remarks on the Weather.........by W. Marriott. Vol. 26, No. 101-104, 1906, March 31-December 31.
(Society.)

London, Royal Society:

- : Proceedings of, 1907.
-: Histological Observations on Sleeping Sickness and other Trypanosome Infections, by F. W. Mott, M.D., F.R.S.
- : Year Book of, 1907.
(Society.)
London, Solar Physics Observatory:
- : Report made to the Solar Physics Committee by Sir Norman Lockyer upon the work done in the Solar Physics Observatory, South Kensington, 1906.
- : Spectroscopic Comparison of Metals present in certain Terrestrial and Celestial Light sources, with special reference to Vanadium and Titanium (two copies.)
-: Report of the Solar Eclipse Expedition to Palma, Majorca, August 30, 1905 (two copies.)
(Observatory.)
Lucas (J. D.), and Wulf (Th.):
*Deux Observations Faites au moyen du Récepteur au Sélénium lors de l'éclipse totale de Soleil du 30 Août 1905. (Authors.)
Lutz (Dr. C. W.) :
* Über ein Saitenelektrometer. (Author.)

Madagascar, Observatoire:

Observations Météorologiques faites a Tananarive. Vol. 16, 17, 1904, 1905.
(Observatory.)
Madrid, Observatorio del Colegio de N.S. del Recuerdo: Boletin Meteorológico. July-December, 1906. (Observatory.)

Manchester, Municipal School of Technology:

Second Annual Report of the Godlee Observatory, 1906.
(Principal.)
Mascart (M. Jean):
--: Organes Principaux de Distribution et de controle des Horologes Synchronisées Électriquement.
-: Observations Simultanées de la Surface de Jupiter. (Author.)

Mauritius, Royal Alfred Observatory:

- : Annual Report of the Director for 1906.
- : Results of Magnetical and Meteorological Observations, 1905.
(Observatory.)

Manila, Philippine Weather Bureau:

- : Annual Report of the Director for 1904, part 3.
-: Annual Report of the Director for 1905, part 1.
-: Monthly Bulletins, 1906, May-1907, February.
-: The Rainfall in the Philippines, by Rev. Miguel Saderra Maś́, S.J. (Assistant Director.)
(Observatory.)
Melbourne Observatory:
Fortieth Report of the Board of Visitors.........together with the Report of the Government Astronomer for the years 1905-1906.
(Observatory.)
Messina, Osservatorio di Messina:
Annuario dell'Anno $1906 . \quad$ (Observatory.)
Messerschmitt (J. B.) :
*Die Regestrierungen der letzten grossen Erdbebenkatastrophen auf der Erdbebenstation in München.
(Author:)
Mexico, Observatorio Meteorologico de Leon:
— : Boletin Mensual, 1907.
- :*Correlacion de los Vientos en Leon, deducida de Ocho Años de observacion, de 1898 a 1905, por Mariano Leal. (Observatory.)

Mexico, Observatorio Meteorol. Magnét. Central:
Boletin Mensual [1902 Dec., 1903 Jan.-April, 1904 JulySept.]
(Observatory.)
Mexico, Observatorio Meteorologico, Merida:
Boletin Mensual :
Año Meteorologico de 1905 á 1906. Mes de Julio-Nov. Año Meteorologico de 1906 á 1907. Mes de Diciembre de 1906.
-: Observatorio Meteorologico del Estado de Yucatán Informe Sobre El Establecimiento.
(Observatory.,
Mexico, Observatorio del Seminario de Guadalajara:
Boletin Mensual, 1906, Enero-Diciembre. (Observatory.)
Mexico, Sociedad Astronomica:
Boletin de la Soc. Astr. de Mexico, 1907.
(Society.)
Mexico, Sociedad Cientifica "Antonio Alzate":
Memorias y Revista.
Tomo 22 No. 9-12.
,, 23 ,, 5-12.
-," 24 ," $1-12$.
,, 25 ,, 1.
(Society.)
Milano, R. Osservatorio di Brera:
Nuove Determinazioni della Latitudine del Reale Osservatorio Astronomico di Brera. Dr. Giovanni Forni. (Observatory.)

Missouri University, Laws Observatory :
Bulletin, No. 10-13.
(Observatory.)
Moncalieri, Osservatorio Centrale del Real Collegio Carlo Alberto:
-: Bollettino Meteorologico e Geodinamico 3906, Dicembre1907, Novembre.
-: Riassunto delle osservazioni Meteorologische fatte al Grand Hôtel du Mont Cervin \qquad 1906.

- : Misure Magnetische nei Dintorni di Torino. Declinazione e Inclinazione. Memoria del Dr. D. Boddaert. (Observatory.)
Mount Wilson, California, Solar Observatory :
- :*Report of the Director, George E. Hale, for the year ending September 30, 1906.
- : Contributions from No. 13-20.
(Observatory.)
München, K. Erdmagnetischen Observatorium :
Magnetische Ortsbestimmungen in Bayern. II. Mitteilung.
(Observatory.)
Naples, Osservatorio di Capodimonte :
-:*Determinazioni assolute della Inclinazione Magnetica, 1901 - 1906.
- :*Variazioni della declinazione magnetica, 1904.
-:*Osservazioni astronomische, magnetische e meteorologiche in occasione dell'Eclisse Solaire del 30 Agosto [1905].
- :*Sull'altezza delli polveri Vesuviane. Cadute in Napoli dopo le eruzioni dell 22 Ottobre 1822 e dell' 8 Aprile 1906 e sull' abbassamento subito dal cratere per le stesse eruzioni; da misure fatte all'Osservatorio di Capodimonte.
- :*Osservazioni Meteoriche, 1906.
- :*Riassunto delle Osservazioni Meteorologische 1905, 1906.
(Observatory.)

Natal Government Observatory:

 Report of the Government Astronomer for 1906. (Observatory.)
National Physical Laboratory:

—: Report for the year 1906.

- : Report of the Olservatory Department for 1906, with Appendices.
(Laboratory.)

New York, Litchfield Observatory:

Heliographic Positions of Sun-Spots observed at the Litchfield Observatory, Hamilton College, from 1860 to 1870, by Dr. C. H. F. Peters.
(Observatory.)

New York Meteorological Observatory:

— : Report of the Director, Daniel Draper, Ph.D., for the year 1907.

- : Annual Tables, Daily and Hourly, for the year 1906.
- : Hourly Readings from the Draper Self-Recording Instruments, 1907.
(Observatory.)

Nichols (E. F.) :
*The Alsence of very long Waves from the Sun's Spectrum (two copies.)
(Author.)
Nodon (Albert) :
*L'action Electrique du Soleil.
(Author.)
Odessa, Observatoire Météor. et Magnét. de l'Université Imperiale :
Annales........ 13-me année-1906, par A. Klossovsky.
(Observatory.)
Ottowa, Department of the Interior:
Report of the Chief Astronomer.........for the year ending June 30, 1905.
(Department.)
Oxford University Observatory:
Oxford Astrographic Catalogue.
Vol. 1. Zone $+31^{\circ}$.
Vol. 2. Zone $+30^{\circ}$ (two copies.) (Observatory.)

Paisley Philosophical Institution :

Meteorological Observations at the Coats Observatory, 1906.
Paris, Bureau Central Meteorologique de France:
Bulletin Mensuel, 1907.
(Bureau.)
Paris Observatoire :

- : Rapport Annuel sur L'État de L'Observatoire de Paris, pour l'année 1906.
-: Catalogue Photographique du Ciel, Tome 2. Zone $+22^{\circ}$ à $+24^{\circ}$
(Observatory.)
Paris Observatoire d'Astronomie Physique: Annales, Tome 2.
(Observatory.)
Paris, Société Météorologique de France:
Revue Mensuelle, 1907.
(Society.)
Perm, Ekatinburg Observatory:
"Curven des Magnetographen an stark gestörten Tagen."
(Observatory.)
Perpignan, Observatoire:
Bulletin Météorologique. 1905.
(Observatory.)
Perth Observatory, Western Australia:
-: Catalogue of 420 Standard Stars, $31^{\circ}-41^{\circ}$ South Declination 1905.0
-: Meteorological Observations, 1905.
(Observatory.)
Plaskett (J. S.) :
*'The Spectrum of Mira Ceti.

Potsdam, Astrophysical Observatory:

Publikationen :
Band IV. Photographische Himmelskarte. Katalog No. 45, 52, 54.
-: Director's Report for 1906.
Pola, Hydrographisches Amt der K. und K. Kriegs-Marine:
Veröffentlichungen, No. 24. (Hydrographic Office.)
Prague:
*Deuxième étude sur l'appareil circumzénithal. Par Fr. Nusl
et Josef Jan Fric.
(Authors.)
Prussia, Royal Prussian Meteorological Institute :
Ergebnisse der Niederschlags-Beobachtungen im Jahre, 1903.
(Institute.)
Puebla, Observatorio Astronomico del Colegio Catolico:
*Oposicion del Planeta " Marte" en el Mes de Julio de 1907, by Gustavo Heredia, S.J., Director.
(Observatory.)
Registrar-General:
Quarterly Returns of Marriages, Births and Deaths.........
No. 232-235. (Registrar-General.)
Rigge (W. F.):

- :*Father Hagen's Astrographic Journey.
- :*The Eclipses of 1908.
- : A Church Calendar for 1907.
(Author.)
San Fernando, Instituto y Observatorio de Marina:
-: Annales-Sección 1a. - Eclipse total de Sol del 30 de Agosto de 1905 [with plates].
-: Observaciones Meteorológicas, Magnéticas y Séismicas año 1906.
(Observatory).
Schindler (Robert) :
- : Zur Sonnenfrage (two copies.)
- : Zur Mechanik der Gestirne (two copies.)
(Author.)

Scottish Meteorological Society:

Journal of, vol. 14, with Tables for the year 1906. (Society.)
See (T. J. J.) :
-:*The Cause of Earthquakes, Mountain formation and kindred phenomena connected with the physics of the Earth.
-:*On the Degree of accuracy attainable in determining the position of Laplace's Invariable Plane of the Planetary System.

- :*On the hypothesis underlying the deduction of the rigidity of the heavenly bodies.
- :*On the Temperature, Secular cooling, and contraction of the Earth, and on the Theory of Earthquakes held by the Ancients.
(Author.)

Smithsonian Institution:

Annual Report.................for the year ending June 30, 1905, and June 30, 1906.
(Institution.)

Southport, Fernley Meteorological Observatory:

Report and Results of Observations for the year 1906.
(Observatory.)

Stockholm, Kongliga Svenska Vetenskaps Akademie:

-: Observations Météorologiques Suédoises.
—: Arkiv för matematik, astronomi och fysik Band 3, Häfte 2, 3, 4 .
(Academy.)

Stockholm, Observatorium :

-: Der Zweite Sternhaufen im Hercules Messier 92, von Karl Bohlin.
-: Versuch einer Bestimmung der Parallaxe des AndromedaNebels, von Karl Bohlin.
-: Tafeln zur Berechnung der Störungen einer Gruppe Kleiner planeten Durch Saturn, von H. G. Block.
—: Über die Jährliche Parallaxe des Doppelsternsystemes 6 Cygni, von Albin Neander.
(Observatory.)
Strassburg, Kaiserliche Erdbebenstation für Erdbebenforschungen:
Wöchentlicher Bericht der Kaiserl. Hauptstation tïr Erdbebenforschungen bei Strassburg. 1907, No. 1-52.
(Institute.)

Strassburg, International Seismological Association:

-: Seismogramme des nordpazifischen und süd-amerikanischen Erdbebens am 16 August 1906. [With explanatory text, and map, by E. Rudolph and E. Tams.]
-: Les Tremblements de Terre ressentis pendant L'année 1904. Par Emilio Oddone.
-: Katalog der im Jahre 1904 Registrierten Seismischen Störungen............Elmar Rosenthal. (Dr. Arthur Schuster.)
Struve (Herman) :
*Eclipses and Transits of the Satellites of Saturn occurring in the year 1907.
(Author.)
Tananarive, l'Observatoire:
L'Observatoire d'Ambohidempona, Tananarive (1889-1906.) [By Pierre de Vregille.]
(Author.)
Tortosa, Observatorio del Ebro:
— :*'Étude des Rapports entre l'activité Solaire et les Variations Magnétiques et Électriques enrégistrées à Tortose (Espagne). Par MM. Cirera et Balcells, S.J.
-:*Remarques sur le rapport entre l'activité solaire et les perturbations magnétiques. Par MM. Cirera et Balcells.
-:*Estudio de Una Reciente Perturbación Cósmica registrada en el Observatorio del Ebro por los P.P. Cirera y Balcells, S.J.
(Observatory.)

Toulouse, Observatoire :

-: Annales de LiObservatoire Astronomique, Magnétique et Météorologique de Toulouse. Tome VII.

- : Bulletin de la Commission Météorologique du departement de la Haute-Garonne. Tome I. Cinquième fasc. 1905.
(Observatory.)
Transvaal, Meteorological Department:
Annual Report for the year ended 30th June, 1906.
(Department.)
Trieste, Osservatorio Marittimo:
Rapporto Annuale dello I. R. Osservatorio Marittimo di Trieste..........per l'anno 1903.
(Observatory.)
Turin, Societa Meteorol. Italiana Comitato Direttivo:
Bollettino Bimensuale;
Vol. 25, No. 11, 12 ; Vol. 26, No. 1-7.
(Society.)
Tyler (W. F.) :
*The Psycho-Physical aspect of Climate, with a Theory concerning Intensities of Sensation.
(Author.)

Uccle, Observatoire Royal de Belgique:

-: Annuaire Meteorologique. 6 vols., 1901-1906.

- : Annales Meteorologiques, 1901-1906, vol. 5-11; 13 and 14.
- : Les Observatoires Astronomiques et les Astronomes.
(Observatory.)

Upsala, Observatoire:

-: Ueber den Sternhaufen Messier 67.-Inaugural-Dissertation, von Erik Fagerholm.
-: Über die Rotation der Sonne zweite abhandlung, von N. C. Dunér.
(Observatory.)
Upsala, Observatoire Météorol. de l'Université d'Upsal :
Bulletin Mensuel, vol. 38, 1906.
(Observatory.)

Utrecht, Observatoire Zonnenburg :

-:*Simon Marius. Rehabilitation d'un Astronome Calomnié, par J. Bosscha.

- :*Occultations et Eclipses Mutuelles des Satellites de Jupiter en 1908, par J. A. C. Oudemans.
(Observatory.)
Vienna, K. K. Zentral-Anstalt für Meteorol, und Geodynamik :
- : Bericht über die internationale meteorologische Direktorenkonferenz in Innsbruck, September, 1905.
-: Allgemeiner Bericht und chronik der im Jahre 1904 in Oesterreich Beobachteten erdbeben.
- : Jahrbücher......... 1905.
(Observatory.)

Vienna, Observatoire de M. de Kuffner, Ottahring:

Die Radau'sche Theorie der Refraktion, von Dr. L. de Ball.
(Observatory.)

Wales, Astronomical Society:

The Cambrian Natural Observer, 1906.
(Society.)

Washburn Observatory, University of Wisconsin :

Observations of Double Stars, 1897-1906. (Observatory.)

Washington, National Geographic Society:

The Ziegler Polar Expedition, 1903-1905.-Scientific Results.
(Society.)
Washington, U.S. Department of Agriculture, Weather Bureau:

- : Monthly Weather Review, 1906 October-1907 November.
- : Report of the Chief of the Weather Burean, 1905-1906.
-: Climatology of the United States, by Alfred Judson Henry.
(Bureau.)

Washington, U.S. Coast and Geodetic Survey:

- : Distribution of the Magnetic Declination in the United States for January 1, 1905.
-: Results of Magnetic Observations made by the Coast and Geodetic Survey between July 1, 1905, and June 30, 1906.
(Superintendent.)

Washington, U.S. Naval Observatory :

-: Monthly Pilot Charts of the North Atlantic Ocean, 1907.
-: Monthly Pilot Charts of the North Pacific Ocean, 1907.
Whitmell (C. T.) :
Contact Times of the Eclipse on August 30, 1905. (Author.)
Wulf (Theod.) :
-:*Ein neues Elektrometer für statistische Ladungen. Erste Mitteilung, Zweite Mitteilung.

- :*Nouvel Électromètre pour Charges Statiques. (Author.)

Wulf (Theod.) et Lucas (J. D.) :
*Deux Observations faites au Moyen du Récepteur au Sélénium, lors de l'eclipse totale de Soleil du 30 Août, 1905. (Authors.)

Yerkes Observatory of the University of Chicago:

Publications. Vol. 3, part 2.--The Spectrum of the High Potential Discharge between Metallic Electrodes in Liquids and in Gases at High Pressures, by George E. Hale and Norton A. Kent.
(Observatory.)
Zürich, Observatoire fédéral:
Astronomische Mitteilungen. Gegründet, von Dr. Rudolf Wolf : Herausgegeben, von A. Wolfer. No. 98. (Observatory.)

Monthly Variation in four Meteorological Elements, 1907.
The dotted curves show the mean values for the last ${ }^{*} 60$ years.

Recorded Sunshine of 1907.

The dotted curves show the mean values
for the last 27 years.

Jan. Feh. Mar. April. May. June. July. Ang. Nept. Oct. Nov. Dec.

II.
\qquad

[^0]: * For the last 40 years.

[^1]: * For the last 40 years.

[^2]: * For the last 40 years.

[^3]: * Since 1867 only.

[^4]: * For the last 40 years.

[^5]: * Since 1867 only.

[^6]: * For the last 40 years.

[^7]: * For the last 40 years.

[^8]: * For the last 40 years.

[^9]: * Record dates from 1867 only.

[^10]: * Beyond the recording limits.

[^11]: ＊Exceeded the linit of registration．

