Stonyhurst College Observatory.

Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime} \mathrm{N}$. Long. $9^{\mathrm{m}} 52^{\mathrm{s}} .68 \mathrm{~W}$. Height of the Barometer above the Sea, 38 I feet.

Results of
 SliDeteorological, SIDagnetical, AND
 ※eismologícal Observations, 1918.

With Report and Notes of the Director, rev. W. SIDOREAVES, S.J., F.r.A.S.

CONTENTS.

Report and Notes of the Director v.
Solar and Astro-physical Notes x.
Seismological x!.
Obituary. Father Walter Sidgreaves xiv.
Monthly Meteorological Tables 1
Yearly Meteorological Summary 25
Extreme Readings during 71 years.. 27
Dates of Occasional Phenomena 24
Monthly lotals of Recorded Sunshine for each hour 30
Total amount of Sunshine recorded on each day 31
Summary of Sunshine 33
Summary of Sunshine : Monthly extremes during 38 years 34
Magnetic Report:

1. Horizontal Direction and Force dedueed from daily curves 35
2. Absolute Measures-Summary 37
3. Magnetic Disturbances, 1918 38
Dates of Solar ()bservations and Disc Areas of Spots irom the Drawings, 1918 39

Father Wiather Sidgreaves, S.J., F.R.A.S.,
IDirector of the Stonyhurst College Observatory, 1863-1868, and 1890.1919.

Died June 12th, 1919. Aged 82.

REPORT AND NOTES.

Meteorological.-The Meteorological continuous records have been uninterrupted during the year, except that the Robinson's Anemograph was out of action for repairs on eleven days in June and on one day in November.

The Anemograph stands about 45 feet above the ground. A velocity of the wind of 37 miles per hour and over is called a gale.

Bright sunshine is recorded by a Campbell-Stokes Recorder.

The self-recording Rain Guage is of the Beckley pattern. Its receiving surface is 22 inches above the ground, and 377 feet above sea-level. The daily measures are taken at $10 \mathrm{a} . \mathrm{m}$. for the preceding 24 hours. Heavy rain noted in the monthly tabulations, signifies a fall of $\frac{1}{2}$ inch or over during the day. The rainfall values as printed in the monthly tables were registered not by the Beckley Self-Recorder but by the M.O. 8-inch gauge.

The Barometer is a standard barometer of the pattern approved by the Meteorological Office. It is mounted in the underground Magnetic Chamber. Its cup is 363 feet above sea-level. Its readings in the monthly tables are quoted for the density of mercury at 32° Fahr., and for the original position of the barometer at 381 feet above sea-level; and the mean pressures are corrected for diurnal range.

The Thermometers are the property of the Meteorological Office. They are mounted at 7 feet above the ground on the north side of the Observatory, enclosed in a Stevenson Screen. All the readings are corrected for index errors, as determined by the Office-standards.

The monthly mean temperature is derived in two ways: 1st, from the mean of the highest and lowest daily readings corrected by the average difference between this mean and the true mean of the hourly tabulations; and 2 nd , from the mean of the readings at 9 a.m. and 9 p.m. corrected in the same manner. Both corrections have been furnished by the Greenwich records, and are taken from the well-known Glaisher's tables. The Adopted mean temperature is the mean of these two results.

The weather of the year as a whole, rainfall excejted, was remarkably close to the normal (see Summary p. (25). The Summer months in general, however, were coller, and the winter months warmer than usual ; the former being 0.3° below, and the latter 1.5° above their respective averages. The only summer-like weather of the year occurred in May and August. The latter month at mean temperature 58.3° was the warmest month of the year, and January, with mean temperature $38: 3^{\circ}$ and 1° above normal was yet the coldest month of the twelve. The three relatively warmest months were February, December and May, their mean temperatures being $4.6^{\circ}, 3 \cdot 9^{\circ}$, and $3 \cdot 7^{\circ}$ above their respective averages; and the excessively wet month of September was, relatively, the coldest month of the twelve at 2.8° below its average temperature.

Temperatures in the shade reached 70° and over on 22 days, viz., 5 days in May, 3 in June, 4 in July, and 10 in August, the highest reading being 79.8° in May, and the lowest $13 \cdot 1^{\circ}$ in January.

Heavy rains of 1 inch or over in 24 hours occurred on 8 days of the year, viz., February 6th and 10th, July 23 rd (on which day 1 inch was registered in half-anhour), September 8th and 15th, December 1st, 22nd, and 28th.

The most striking feature of the year's weather was the extraordinary heavy rainfall recorded in the months of September and December. In the Report for 1916 it was stated that a month's rainfall of 10 inches or over had not been registered during 69 years, except in the month of October. But now, in 1918 (71 years) two other months have exceeded this amount, viz., September, with a total of 12.620 inches on 29 days, and December, with 10.595 inches on 30 days.

The excess over their combined average of these two months alone, $14 \cdot 207$ inches, not only covers the total excess of the whole year, but leaves $2 \frac{1}{3}$ inches to spare.

Fine day periods are recorded as follows:-Jan. $1-6,24-31$; Feb. 13-18; March 1-8, 11-17, 19-26; April 1-5, April 12-May 3, 5-11, 13-22, 25-June 6, 27-July 8, 25-Aug. 5, 8-16, 19-24, Oct. 15-26; Nov. 11-24. Total, 17 periods, average duration, 8 days.

The prevailing direction of the wind has been in
all months, except April, from the west side of the meridian. In April the easterly direction was much more pronounced than the westerly.

Magnetical.-The Differential Photo-Magnetographs are of the same pattern as those at the Kew Observatory, except that the radial distances between the centres of the magnets and the surfaces of the respective cylinders are somewhat shorter. Time marks on the curves are now made at set hours by hand.

The scale values of the instruments are as follows:

For the Unifilar ... $11 \cdot 28^{\prime} \quad$ per Cm . of Ordinate. Bifilar ... 00050 C.G.S.

In connection with these, absolute measures of Horizontal Direction and Force have been made regularly ; of the former four times, and of the latter once in each month. These have been corrected by the difference between the curve ordinate at the time of observation and the monthly mean of the four daily readings, according to the rule stated on page xii. of our Report, 1908; but the month-means are now taken from the readings on the five quietest days of the month.

The inclination, or Dip, has been observed once each month by two needles with Dover's circle No. 159.

The Vertical and Total Forces are deduced from the measures of the Horizontal Force, and the Angle of Inclination or Dip.

In the table of magnetic disturbances (page 38) the intention is that a calm (c) shall mean a smooth curve; small (s) a disturbance noteworthy only as opposed to a calm ; moderate (m) a disturbance nct to be neglected for any comparison with other phenomena, solar or terrestrial, and worth a reference to the original curve; greater (g) a marked disturbance; and very great (v.g.) a decided storm.

Corresponding tabulations are sent quarterly to the Meteorological Institute at De Bilt (Holland), for the International Committee on Terrestrial Magnetism. In these the significant notes are restricted to three- $0,1,2$. The general returns from the Bureau show considerable discordance between the interpretations of different authorities ; and it may be well to state the rule followed at this Observatory. The two important notes are held to be 0 and 2: the former meaning a true calm, and the latter a disturbance not less than our note (m) ; and the intervening note comprises all the rest.

On this list the notes are quoted for the civil dayWe cannot undertake hourly readings, but it is necessary to divide the civil day into its two halves a.m. and p.m. for the tabulations of maximum and minimum ranges, since these readings occur as often as not on different sheets. The astronomical day is now suppressed, and the civil day is used for both the international figures, $0,1,2$, and our own characteristic letters.

Judging by the ranges of the Declination and Horizontal Force Magnets (D and H), the year has been
more disturbed than the previous year 1917. This is out of accord with the mean daily spot area, as may be seen in the comparisons shown in the next section (page xI). Both D and H have increased in spite of the marked decline in spot area. But at the actual maximum of sun spot area in August, 1917, that month's mean range of H was greater than that of any other month since and including the last maximum in 1905. Also the mean range of D for the same month was greater than the greatest of any other month for the seven years 1911-17, but less than those of the earlier years of the sun spot cycle, including 1905.

Solar and Astro-Physical.--The Perry Memorial 15 inch O.G. equatorial, with the Whitelow 6 inch O.G. camera attached, the Thorp prism equatorial, and the larse srating spectrometer, remain under the direction of Father Cortie

Observations of the solar surface were made on $2(x)$ days, and include 199 drawings on as many days, and notes without a drawing on 1 day. Of the drawings 169 are complete, showing all spots and faculæ, and the remaining 30 are complete, so far as the spots are concerned, but are wanting in a full record of the faculæ.

The mean daily disc-area of the spots (in units of sionth of the visible surface), stands at 79 , a decrease of nearly 35 per cent. on last year's figure. Taking the spot area as index, solar activity has greatly and steadily declined since the great maximum of August, 1917.

A comparison of the mean dise area of the spots
with the mean daily range of magnetic Declination in minutes of arc, and of horizontal force in units 10^{-5} C.G.S., is set forth as foilows :-

Year.	1913	1914	1915	1916	1917	1918	
Spot Area	$0 \cdot 04$	$0 \cdot 82$	$4 \cdot 51$	$4 \cdot 52$	$12 \cdot 1$	$7 \cdot 9$	
Declination range	$9 \cdot 7$	$10 \cdot 2$	$11 \cdot 7$	$12 \cdot 1$	$11 \cdot 8$	$12 \cdot 4$	
Horizontal	Force						
Range	39	47	58	63	59	69	

In our last report we noted that a preliminary comparison of the drawings of the faculæ and the photographs of flocculi, showed an almost perfect agreement between the faculæ and the calcium flocculi, but no similarity with the hydrogen flocculi. We find, in addition, in numerous cases, that streams of faculæ connect sun-spot disturbances, although the sun-spots may be widely separated in latitude, though situated on the same limb of the sun.

A good series of spectrograms of Nova Aquilæ (1918), covering the period June 10th to October 23rd, was obtained with the Thorp and the Whitelow prismatic cameras. Three spectra, typical of characteristic phases in the life history of a Nova, taken on June 10th, June 15th, and July 29th, have been measured, and the results have been presented to the R.A.S.

The spectroscopic results for the total solar eclipses of 1911, and 1914, were finally reduced, and the results were presented to the R.A.S. The photograph of the spectrum of the chromosphere, and of the corona, which was obtained in 1911, extends far into the red, and 25 previously unrecorded lines are assigned to the chromosphere in the region 6600 to 7640 A . There are also
probable indications of a new coronal radiation about 7150 A . From the photograph of the spectrum of the corona taken in 1914, the wave-lengths of 36 faint lines between 4780 and 6616 A were obtained, and of these 24 do not appear in any previous records.

Several popular lectures on astronomical subjects have been given to the troops in home camps and in hospitals in connection with the Army education scheme.

8eismological.-A short account of the Seismograph is given on page xiii. of our Annual, 1909. It is of the Milne photographic pattern, and is mounted with horizontal pendulum, or boom, in the astronomical meridian. A copy of its register is sent monthly to the Secretary of the Seismological Committee of the British Association for the Advancement of Science. This contains many small disturbances of uncertain origin, which do not appear in our occasional bulletins distributed amongst the Seismic stations at home and abroad; they have to await confirmation by other Observatories. The instrument has been in constant service throughout the year. But it is now considered out of date and to be only of second rate value. The natural period of the boom in oscillation is too closely the same as that of the earth transmitting a shock; and the result is a series of interferences, which throws doubt upon the true time of the greatest displacement. We hope to find a remedy with a mechanical device for damping the oscillations of the boom. But for this we have to await the return of better times, when the Observatory staff may have recovered its normal efficiency.

The following papers have been published during the year:-

1. "The Chromospheric and Coronal Spectrum in the Total Solar Eclipse, 1911, April 28th." Monthly Notices R.A.S. 78, 441.
2. "The Spectrum of the Corona, 1914, August 21st."
3. "The earlier Spectrum of Nova Aquilæ, 1918." Ibid. 79, 121.

Owing to the greatly increased cost of paper and printing we cease, for the present, to publish our appendix " Presentations to the Library."

FATHER WALTER SIDGREAVES, S.J.

It is with very great and sincere regret that we have to record the death of Father Walter Sidgreaves, S.J., the Director of the Stonyhurst College Observatory, who died at Stonyhurst on June 12th, 1919, in his 82nd year, after a lingering last illness, borne with exemplary patience. His loss to the Observatory, the staff of which is greatly depleted owing to the exigencies of the war, is a severe one.

He was born on October 4th, 1837, the second son of Edward Sidgreaves, Esq., of Grimsargh, near Preston, and was educated at Stonyhurst College. He entered the Society of Jesus in 1855, and was ordained priest in 1871. He had a long and distinguished scientific career. His first directorship of the Observatory was during the years $1863-68$, while the late Father Perry was engaged in his theological studies. In 1863 he commenced the regular series of magnetic observations, which have been continued uninterruptedly since that time. In 1866 he installed all the self-recording meterological instruments in the Observatory, the Observatory having been chosen by the Board of Trade as one of the seven principal stations for meterology in the British Isles. The following year an eight-inch equatorial was purchased, which permitted of great development
in the astronomical work of the Observatory. He accompanied Father Perry on a magnetic survey of the west and east of France in the years 1868-69. He also served as companion to Father Perry in the two Government expeditions to observe the transit of Venus across the Sun's disc in Kerguelen Island in 1874, and in Madagascar in 1882.

On the death of Father Perry on the total solar eclipse expedition of 1889, at Salut Isles, French Guiana, Father Sidgreaves succeeded him in the direction of the Observatory. While maintaining the solar work inaugurated by Father Perry, he devoted himself more particularly to stellar spectroscopy. He devised some very efficient instruments with which he took remarkable photographs of the spectra of the new stars of 1892 and 1901, as also of many other stars. The results of his astrophysical work have appeared in several papers communicated to the Royal Astronomical Society, as detailed below. His photographic work in stellar spectroscopy was awarded a gold medal in the St. Louis Exposition of 1904, and a grand prix by the Franco-British Exhibition of 1908 .

He was of a retiring disposition, but all who came in contact with him were attracted by his kindly and sympathetic manner. Although he has been ailing in health during the past six months, with indomitable courage he observed the magnetic elements until a month before his death.

During his second directorship of the Observatory he installed a 15 -inch equatorial telescope, the memorial
subscribed for by the friends of the late Father Perry, he acquired a seismograph, and erected a powerful wireless telegraphic plant.

He was elected a fellow of the Royal Astronomical Society in 1891, and served for many years on the Council of the Society. He also taught as a young man, chemistry and mathematics, and as a priest, physics, for 25 years, at St. Mary's Hall, Stonyhurst. His lectures were marked by much originality in exposition, and remarkable skill in experimental demonstration. His original researches on the spectrum of the star β Lyræ formed the subject of a lecture he delivered before the Royal Institution in 1904.

He contributed two memoirs to the Royal Astronomical Society. The first on the " Spectrum of Nova Aurigæ " (li. 29), contains a long list of bright and dark lines measured in the spectrum of the star, and is a very valuable contribution to our knowledge of the constitution of new stars. Nova Aurigæ was the first new star the spectrum of which was photographed, and Father Sidgreaves was one of the first observers to obtain such photographs. He recognised the similarity between the spectrum of the star and that of the solar chromosphere.

The second Memoir, " On the connection between sun-spots and earth-magnetic storms" (liv. 85), contains a discussion, founded on a very great number of measures of the areas of sun-spots from the Stonyhurst drawings, and the ranges in the magnetic elements derived from our photographic records. The conclusion he arrived
at was that the connection was not one of direct cause and effect, but that both the spots on the sun, and the magnetic storms on earth were due to clouds of electrified particles which existed between the sun and the earth

The following is a list of the papers he contributed to the Monthly Notices R.A.S. :-

1. Note on the Stonyhurst drawings of Solar Spots and Faculæ, lii. 104.
2. The variable spectrum of β Lyræ in the region F-h, liv. 94.
3. Notes on Solar Observations at Stonyhurst College Observatory, lv. 6.
4. The Wilsonian theory and the Stonyhurst drawings of sun-spots, lv. 282.
5. The spectrum of β Lyræ as observed at Stonyhurst College Observatory, lvii. 515.
6. The spectrum of o Ceti as photographed at Stonyhurst College Observatory, lviii. 34.
7. Eclipse of the Moon, 1898, December 27th, lix. 162.
8. Notes on the spectrum of γ Cassiopeiæ and o Ceti. lix. 505.
9. The partial eclipse of the Sun, 1900, May 28th, observed at Stonyhurst College Observatory, lx. 592.
10. Notes on the spectrum of Nova Persei, observed at the Stonyhurst College Observatory, lxi. 335.
11. Note 2. 1 xi. 388.
12. Note 3. Ixi. 389.
13. Note 4. lxi. 462.
14. The spectrum of Nova Persei, 1901, February 28th to April 26th; with appendix on the spectrum in September, lxii. 521.
15. A spectrographic study of β Lyræ, lxiv. 168.
16. The spectrum of Mira Ceti in December, 1906, as photographed at Stonyhurst College Observatory, lxvii. 534.

And conjointly with Father Cortie :-
17. Note on Comet 1908 c (Morehouse), 1908, September 29th to October 2nd, lxix 54.
18. Notes on Comet 1910 a. lxx. 464.

The papers on the spectra of the stars are illustrated by some beautiful reproductions from his original photographs, and are most valuable detailed descriptions, accompanied by tables of wave-lengths of the particular stars studied. He has left hundreds of plates of the spectra of the brighter stars, which await measurement.

In solar physics, one of the chief studies he made, was of a long series of photographs of the H and K calcium lines of the sun's spectrum, in the general light of the sun. The result was to prove that the sun is akin to that class of stars which show both bright and dark lines in their spectra.

Contrary to the usually accepted theory he held, from a study of a long series of the Stonyhurst drawings, that the umbræ of sun-spots werc elevations above, and not depressions below, the sun's surface.

He also contributed several papers to the Journal of the British Astronomical Association, the Astrophysical Journal, and other scientific periodicals. He acted for a term as President of the North-Western Branch of the British Astronomical Association.

He was a most painstaking, methodical, and accurate observer. He had a large share of the dogged determination of the typical Lancashire man's character. For the last nine years, however, except for observations with the transit instrument for time, he had practically given up astronomical work, and devoted himself almost entirely to the magnetic observations and reductions, which he had himself inaugurated 56 years ago.

He was buried at Stonyhurst, with which College by far the great part of his long life had been identified, and which he had so faithfully served, on June 14th, 1919.-R.I.P.

The present Report of the Observatory was practically finished at the time of Father Sidgreaves' death. My share in the work has been the arrangement of the Notes left by Father Sidgreaves, and the writing of the Solar and Astrophysical portions of the Report.
A. I.. C.

METEOROLOGICAL REPORT.

JANUARY, 1918.

JANUARY, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	-	0.013 in.
Monthly range		-	0.184 in.
Mean of highest daily temperatures		\cdots	...	$+$	$1 \cdot 0^{\text {a }}$
Mean of lowest	"	\cdots	...	-	$0 \cdot 1{ }^{\circ}$
Mean daily range	+	$1 \cdot 1^{\circ}$
Adopted mean temperatur	\ldots	...	\ldots	$+$	$0 \cdot 9{ }^{\circ}$
Total rainfall	\ldots	...	-	$0 \cdot 496 \mathrm{in}$.

Ground Frost on lst-3rd, 6th-17th, 29th-31st. Snow on 4th, 7th, 11th-14th, 16th, 18th. Hail on 7th, 9th, 12th, 13th, 14th and 17th. Heavy Rain on 18th. Gale of Wind on 20th.

A fairly normal January.

EXTREME READINGS FOR JANUARY, During 71 Years.

Highest reading of Barometer	1896 (9th)	$\ldots30 \cdot 597$ in.
Lowest	1884 (26th)	$\ldots . . .27 \cdot 803$ in.
Highest temperature	1877 (7th)	59.9°
Lowest	1881 (15th)	$4 \cdot 6{ }^{\circ}$
Highest adopted mean temperature	1916	44.7 ${ }^{\circ}$
Lowest	1881	29.2°
Greatest fall of rain	1910	$8 \cdot 403 \mathrm{in}$.
Least	1881	0.472 in .
Greatest fall of rain in one day ...	1914 (8th)	$2 \cdot 074$ in.
Greatest No. of days on which		
Least	$\dagger 1850$	8
*Greatest hourly velocity of wind	1899 (12th)	63 mls .
*Greatest No. of miles registered.	1890	11661
*Least ." "	1881	4352

FEBRUARY, 1918.

[^0]
FEBRUARY, 1918.

DIFFERENCES.

Ground Frost on 16th-18th, 24th, 27th, 28th. Snow and hail on 28th. Heavy Rain on 6th, 9th, 10th and 20th. Gale of Wind on 2lst. Lightning on 9th. Solar Halo on 5th.

An unusually warm, wet, and cloudy February.

EXTREME READINGS FOR FEBRUARY,

During 71 Years.

Highest reading of Barometer	1902 (1st)	. $30 \cdot 476 \mathrm{in}$.
Lowest	1900 (19th)	. $27 \cdot 870 \mathrm{in}$.
Highest temperature	1877 (8th)	$58.3{ }^{\circ}$
Lowest	1902 (11th)	$5 \cdot 0^{\circ}$
Highest adopted mean temperature	1869	$44 \cdot 0^{\circ}$
Lowest	1855	$28.6{ }^{\circ}$
Greatest fall of rain	1848	$8 \cdot 882 \mathrm{in}$.
Least	1858	$0 \cdot 306 \mathrm{in}$.
Greatest fall of rain in one day ...	1909 (3rd)	$2 \cdot 000 \mathrm{in}$.
Greatest No. of days on which - 005 or more rain fell	1910	27
Least	1855	... 4
*Greatest hourly velocity of wind ...	1903 (27th)	60 mls .
*Greatest No. of miles registered	1868	12577
*Least	1917	3160

MARCH, 1918.								
Results of Observations taken during the Month.								
Mean Reading of the Barometer inches 29.612								447
Highest ", on the 21st... Lowest Range of Barometer Readings						-055		. 042
						. 634		- 642
						$1 \cdot 421$		- 400
Highest Reading of a Max. Therm. on the				rd...		$58 \cdot 0$		56.8
Lowest Reading of a Min. Therm. on the 9th..						$29 \cdot 6$		$23 \cdot 2$
Range of Thermometer Readings						28.4		$33 \cdot 6$
Mean of Highest Daily Readings						$46 \cdot 8$		$47 \cdot 0$
Mean of Lowest Daily Readings						$35 \cdot 6$		$34 \cdot 3$
- Mean Daily Range						11.2		12.7
Deduced Mean Temp. (from mean of Max. \& Min.)						$40 \cdot 2$		39.7
Mean Temperature from Dry Bulb						41.9		$40 \cdot 2$
Adopted Mean Temperature						$41 \cdot 1$		$40 \cdot 0$
Mean Temperature of Evaporation						$39 \cdot 6$		$38 \cdot 1$
Mean Temperature of Dew Point						37.7		$35 \cdot 7$
Mean elastic force of Vapour inches						0. 226		. 209
Mean weight of Vapour in a cub. ft. of air, grains						$2 \cdot 6$		$2 \cdot 4$
Mean additional weight required for saturation ,,						$0 \cdot 4$		0.5
Mean degree of Humidity (saturation 100)........						89		85
Mean weight of a cubic foot of air grains						347.7		$46 \cdot 1$
Mean amount of Cloud (0-10)						$6 \cdot 9$		$7 \cdot 5$
Fall of Rain inches						1.690		. 370
Greatest Rainfall in one day (27th)						-650		. 768
No. of days on which - 005 or more Rain fell...						12		16.7
Wind:-Direction \qquad No. of Days \qquad	N	NE	E		s	sw	w	
	2	7	4	2	7	2	5	2
Mean Velocity in miles per hr.	8	$7 \cdot 2$	$12 \cdot 5$	6.3	$7 \cdot 8$	$5 \cdot 7$	$6 \cdot 3$	$11 \cdot 3$
Total No. of miles..............	180	1215	1196	302	1305	5273	758	541
Total No. of Miles registercd Greatest hourly velocity (28 th \& 31 st at 4 a.m. and 2 p.m., Dir. S. and S.S.F.							Mean*	
							$8496 \cdot 5$	
								0.8

MARCH, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the
Monthly average.

Ground Frost on 1st-3rd, 9th, 13th, 14th, 17th, 21st-26th, and 30th. Snow on 1st-3rd, and 8th. Hail on Ist. Heavy Rain on 27th.

The weather in general was exceptionally dry and calm.

EXTREME READINGS FOR MARCH, During 71 Years.

MAY, 1918.								
Resulte of Observations taken during]the Month.							$\begin{aligned} & \text { Mean for } \\ & \text { the lest } \\ & 71 \text { yeara. } \end{aligned}$	
Mean Reading of the Barometer inches 29.621 20.541								
Highest ", ",	on the 31st		...	,		051		. 992
Lowest ," , on	on the 13th				29	049		. 956
Range of Barometer Readings			.			002		. 036
Highest Reading of a Max. Therm. on the 22nd...						79.8		71.9
Lowest Reading of a Min. Therm. on the 1st ...						$34 \cdot 6$		31.9
Range of Thermometer Readings						$45 \cdot 2$		$40 \cdot 0$
Mean of Highest Daily Readings						62.7		59.5
Mean of Lowest Daily Readings						45.5		42.4
Mean Daily Range						7.2		$17 \cdot 1$
Deduced Mean Temp. (from mean of Max. \& Min.)						52.4		$49 \cdot 2$
Mean Temperature from Dry Bulb						54.2		$50 \cdot 0$
Adopted Mean Temperature						53.3		$49 \cdot 6$
Mean Temperature of Evaporation						$50 \cdot 1$		$46 \cdot 4$
Mean Temperature of Dew Point						46.9		$42 \cdot 9$
Mean elastic force of Vapour inches						321		. 279
Mean weight of Vapour in a cub. ft. of air, grains						$3 \cdot 6$		$3 \cdot 1$
Mean additional weigh required for saturation .,						1.0		0.9
Mean degree of Humidity (saturation 100).........						79		75
Mean weight of a cubic foot of air grains						$4 \cdot 3$		37.0
Mean amount of Cloud (0-10)......................						$5 \cdot 3$		7.0
Fall of Rain inches						805		. 655
Greatest Rainfall in one day (3rd)						540		. 633
No. of days on which - 005 in . or more Rain fell...					9			14.4
Wind:-Direction No. of days.			E	SE	s	sw	w	Nw
		6	2	0	6	7	8	0
Mean Velocity in miles per hr .			$10 \cdot 1$	0	$7 \cdot 8$	$6 \cdot 2$	6.5	0
Total No. of miles..............			485	0		1040	1240	0
							Mean*	
Total No. of Miles registered					5113		6961.0	
Greatest hourly velocity (22nd, 1 p.m. Dir. S.S.E.)								$2 \cdot 6$

MAY, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean brometric pressure	\ldots	$+$	0.080 in
Monthly range	...	\ldots	\ldots	-	0.034 in.
Mean of highest daily temperatures		\ldots	...	$+$	$3 \cdot 2^{\circ}$
Mean of lowest	"	+	$3 \cdot 1{ }^{\circ}$
Mean daily range	$+$	$0 \cdot 1{ }^{\circ}$
Adopted mean temperature	$+$	$3.7{ }^{\circ}$
Total rainfall	\ldots	-	0.850 in .

Ground Frost on 1st, 5th, 9th-11th. Heavy Rain on 3rd. Thunder on 17th, 21st, 22nd, and 23rd. Lightning on 17th, 22nd, and 23rd. Solar Halo on 5th and 25th.

The general weather during this month was the finest of the year.

EXTREME READINGS FOR MAY,

During 71 Years.

Highest reading of Barometer ... 1881 (10th)30-332 in.				
Lowest	1887	(28th)		$28 \cdot 559$ in.
Highest temperature	1864	(19th)		$82.5{ }^{\circ}$
Lowest	1855	(4th)		$23.5{ }^{\circ}$
Highest adopted mean temperature	1848			$55 \cdot 1^{\text {® }}$
Lowest	1855			45.0°
Greatest fall of rain	1886			6.178 in .
Least	1859			0.249 in .
Greatest fall of rain in one day ...	1881	(5th)		647 in .
Greatest No. of days on which				
. 005 in . or more rain fell ... \dagger	1860			22
Least ., " ., \dagger	1848			4
*Greatest hourly velocity of wind	1888	(2nd)		49 mls .
*Greatest No, of miles registered...	1888			9648
*Least ., ." ..	1918			5113

JUNE, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Hail on 22nd. Heavy Rain on 25th. Thunder on 5th, 14th, and 25th. Lightning on 14th and 25th. Solar Halo on llth.

A dry, but rather cold, June.

EXTREME READINGS FOR JUNE,

During 71 Years.

Highest reading of the Barometer	1874	(15th) 3	n.
Lowest	1862	(12th)		$2 \cdot 632$ in.
Highest temperature	1893	(18th)		$88.7{ }^{\circ}$
Lowest	1902	(9th)		$32.0{ }^{\circ}$
Highest adopted mean temperature	1896			$59.3{ }^{\circ}$
Lowest	1907			51.5°
Greatest fall of rain	1907			$8 \cdot 705 \mathrm{in}$.
Least	1887			0. 525
Greatest fall of rain in one day	1857	(8th)		$2 \cdot 093$
Greatest No. of days on which				
- 005 in . or more rain fell	$\dagger 1907$			27
Least	1887			4
*Greatest hourly velocity of wind	1897	(16th)		45 mls .
*Greatest No. of miles registered...	1877			8384
*Least ."	1915			3967

JULY, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	...	\ldots	-	$0 \cdot 062 \mathrm{in}$.
Monthly range	\ldots	\ldots	...	$+$	$0 \cdot 109 \mathrm{in}$.
Mean of highest daily temperatures		...	\ldots	-	$2 \cdot 4^{\circ}$
Mean of lowest	"	\ldots	...	-	$0 \cdot 4{ }^{\circ}$
Mean daily range	-	$2.0{ }^{\circ}$
Adopted Mean temperature	-..	\ldots	\cdots	-	$0 \cdot 8^{\circ}$
Total rainfall ...	\ldots	\ldots		$+$	0.852 in .

Heavy Rain on 23rd. Thunder on 8th-12th, 16th-18th, 20th, 23rd, and 26th. Lightning on 9 th-11th, 17th, 18th, 20th and 23rd. Solar Halo on 7th, 21st and 28th.

This, though the warmest month of the year, was nevertheless, a relatively wet and cold July.

EXTREME READINGS FOR JULY,

During 71 Years.

Highest reading of Barometer	1911 (10th)	30. 203 in.
Lowest	1877 (15th)	$28 \cdot 564$ in.
Highest temperature	1901 (20th)	89.0°
Lowest	1857 (1st)	$36.0{ }^{\circ}$
Highest adopted mean temperature	1901	$63.2{ }^{\circ}$
Lowest	1862	$54 \cdot{ }^{\circ}$
Greatest fall of rain	1888	$8 \cdot 475$ in.
Least	1868	$0 \cdot 669 \mathrm{in}$.
Greatest fall of rain in one day ...	1888 (2nd)	$2 \cdot 482 \mathrm{in}$.
Greatest No. of days on which		
- 005 in . or more rain fell	$\dagger 1861$	27
Least	$\dagger 1863$	8
*Greatest hourly velocity of wind	1892 (8th)	44 mls .
*Greatest No. of miles registered ...	1877	8288
*Least ",	1913	4577

AUGUST, 1918.

Results of Observations taken during the Month.								
Mean Reading of the Barometer inches						$9 \cdot 534$. 492
Highest ", "	on the 10th					- 887		. 886
Lowest ," ,	on the 5th					- 101		-94'
Range of Barometer Readings						$0 \cdot 786$.939
Highest Reading of a Max. Therm. on the 21st...						$77 \cdot 0$		$76 \cdot 5$
Lowest Reading of a Min. Therm. on the 24th...						$43 \cdot 8$		41.8
Range of Thermometer Readings						$33 \cdot 2$		$34 \cdot 7$
Mean of Highest Daily Readings						$66 \cdot 5$		$66 \cdot 6$
Mean of Lowest Daily Readings						$52 \cdot 8$		$50 \cdot 7$
Mean Daily Range						13.7		15.9
Deduced Mean. Temp. (from Mean of Max. \& Min.)						58.0		57
Mean Temperature from Dry Bulb						$58 \cdot 6$		57.8
Adopted Mean Temperature						58.3		$57 \cdot 4$
Mean Temperature of Evaporation						55.4		$54 \cdot 5$
Mean Temperature of Dew Point						$52 \cdot 8$		51.
Mean elastic force of Vapour inches						$0 \cdot 400$. 387
Mean weight of Vapour in a cub. ft. of air, grains						$4 \cdot 5$		$4 \cdot 3$
Mean additional weight required for saturation ,,						$1 \cdot 0$		$0 \cdot 9$
Mean degree of Humidity (saturation 100)						82		82
Mean weight of a cubic foot of air grains						$527 \cdot 2$		$27 \cdot 4$
Mean amount of Cloud (0-10).....................						$7 \cdot 4$		$7 \cdot$
Fall of Rain inches						E. 195		. 018
Greatest Rainfall in one day (5th), No. of days on which -005 in. or more Rain fell...						$0 \cdot 860$. 058
						18		18.4
Wind:-Direction No. of days.	N	NE	E	SE	s	sw	w	
	3	1	0	1		13	9	
Mean Velocity in miles per hr.	. 0		0	$6 \cdot 1$	$5 \cdot 2$		$9 \cdot 6$	
Total No. of miles		22	0	146	371		20	
Total No. of Miles registered 6480								an*
								6.7
Greatest hourly velocity (14th, 2 p.m. Dir. S.W. by S.)						22		1

AUGUST, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	$+$	0.042 in .
Monthly range	\ldots	-	0.153 in.
Mean of highest daily temp	peratures	\ldots	\ldots	-	$0 \cdot 1{ }^{\circ}$
Mean of lowest	,"	\ldots	\ldots	$+$	$2 \cdot 1^{\circ}$
Mean daily range	\cdots	\ldots	-	$2 \cdot{ }^{\circ}$
Adopted mean temperatur		$+$	$0 \cdot 9^{\circ}$
Total rainfall	$+$	$0 \cdot 177$ in.

Heavy Rain on 5th, 19th, 25th, 27th, and 31st. Lightning on 5th.

After May, this was the most summer-like month of the year.

EXTREME READINGS FOR AUGUST,

During 71 Years.

Highest reading of Barometer	1874 (21st)30•114 in,
Lowest	1917 (28th)	$28 \cdot 156 \mathrm{in}$.
Highest temperature	1868 (2nd)	$88.0{ }^{\circ}$
Lowest	1887 (13th)	$33.4{ }^{\circ}$
Highest adopted mean temperature	1911	$62 \cdot{ }^{\circ}$
Lowest	1848	$52 \cdot 5^{\circ}$
Greatest fall of rain	1891	$9 \cdot 869 \mathrm{in}$.
Least	1871	$2 \cdot 085 \mathrm{in}$.
Greatest fall of rain in one day ...	1857 (7th)	$2 \cdot 333$ in
Greatest No. of days on which		
- 005 in . or more rain fell	1891	27
Least	1880	- 6
*Greatest hourly velocity of wind	1903 (31st)	45 m
*Greatest No. of miles registered...	1903	8486
*Least	1915	3918

SEPTEMBER, 1918.								
Kesults of Observations taken during the Month.								
Mean Reading of the Barometer inches						- 209		542
Highest , ",	on the 7th					9.755		. 009
Lowest ,, ,, on	on the $23 \mathrm{rd} .$.					. 210		. 888
Range of Barometer Readings						$1 \cdot 545$		$\cdot 121$
Highest Reading of a Max. Th						$69 \cdot 0$		$72 \cdot 0$
Lowest Reading of a Min. Therm. on the				th...		$38 \cdot 6$		$36 \cdot 6$
Range of Thermometer Readings						$30 \cdot 4$		$35 \cdot 4$
Mean of Highest Daily Readings						$56 \cdot 6$		$62 \cdot 0$
Mean of Lowest Daily Readings						$46 \cdot 6$		$47 \cdot 2$
Mean Daily Range						$10 \cdot 0$		$14 \cdot 8$
Deduced Mean Temp. (from mean of				in.)		$50 \cdot 3$		$53 \cdot 4$
Mean Temperature from Dry Bulb						$51 \cdot 6$		-2
Adopted Mean Temperature						$51 \cdot 0$		$53 \cdot 8$
Mean Temperature of Evaporation						$48 \cdot 5$		51.
Mean Temperature of Dew Point						$45 \cdot 9$		$48 \cdot 3$
Mean elastic force of Vapour				ches		- 311		. 339
Mean weight of Vapour in a cub. ft. of air,				ains		$3 \cdot 5$		$3 \cdot 9$
Mean additional weight required for saturation ,						$0 \cdot 7$		0.9
Mean degree of Humidity (saturation 100)........						83		81
Mean weight of a cubic foot of air...........grains						$529 \cdot 3$		$32 \cdot 6$
Mean amount of Cloud (0-10)						$8 \cdot 2$		$6 \cdot 7$
Fall of Rain inches						-620		- 322
Greatest Rainfall in one day (15th)......... .,						. 690		. 966
No. of days on which -005 in. or more Rain fell...						29		16.4
Wind :-Direction \qquad No. of days \qquad	N	NE	E	SE	s	sw	w	Nw
	4	1	0	0	6	7	11	1
Mean Velocity in miles per hr .	$5 \cdot 6$	$9 \cdot 0$	0	0	$10 \cdot 9$		$13 \cdot 1$	$9 \cdot 2$
les	539	217	0	0	1576	1904	3453	220
Total No. of Miles registered 7909								n*
								1-2
Greatest hourly velocity (20th \& 25th, Dir. S. by E. and W.S.W.						30		$32 \cdot 3$

SEPTEMBER, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	-	0.333 in
Monthly range	...	\ldots	...	$+$	$0 \cdot 424 \mathrm{in}$.
Mean of highest daily tempe	ratures	-	$5 \cdot 4^{\circ}$
Mean of lowest	,	..		-	$0 \cdot 6{ }^{\circ}$
Mean daily range...	-	$4 \cdot 8^{\circ}$
Adopted mean temperature				-	$2 \cdot 8{ }^{\circ}$
Total rainfall					$\cdot 298$

Hail on 8th, 9th, 11th, 27th, and 28th. Heavy Rain on 1st, 4th, 8th, 9th, 13th, 14th, 15th, 21st, 22nd, 25th, and 27th. Thunder on 8th-11th, 17th, and 27th. Lightning on 10th and 27th. Lunar Halo on 18th. Solar Halo on 29th.

The total rainfall and number of rainy days were both the greatest on record for this month, and in addition the weather was unusually cold and stormy.

EXTREME READINGS FOR SEPTEMBER,

 During 71 Years.

OCTOBER, 1918.								
Results of Observations taken during the Month.								$\begin{aligned} & \text { nfor } \\ & \text { last } \\ & \text { ears. } \end{aligned}$
Mean Reading of the Barometer	 inches			29	. 497		438
Highest ," ," on	n the 20th			,"	29	. 879		015
Lowest ," , on	on the			,	29	. 058		674
of Barometer Readings.						. 821		341
Highest Reading of a Max. Therm. on the				th...		$62 \cdot 2$		$4 \cdot 0$
Lowest Reading of a Min. Therm. on the 26th ...						$33 \cdot 4$		9.6
Range of Thermometer Readings						$28 \cdot 8$		4.4
Mean of Highest Daily Readings						$53 \cdot 1$		$4 \cdot 5$
Mean of Lowest Daily Readings						$42 \cdot 7$		$1 \cdot 9$
Mean Daily Range						$10 \cdot 4$		$2 \cdot 6$
Deduced Mean Temp. (from Mean. of Max. and Min.)						$46 \cdot 9$		$7 \cdot 2$
Mean Temperature from Dry Bulb						$47 \cdot 3$		$7 \cdot 9$
Adopted Mean Temperature						$47 \cdot 1$		$7 \cdot 6$
Mean Temperature of Evaporation						$45 \cdot 3$		$5 \cdot 4$
Mean Temperature of Dew Point						$43 \cdot 3$		$3 \cdot 0$
Mean elastic force of Vapour.................inches						$\cdot 281$		278
Mean weight of vapour in a cub. ft. of air, grains						$3 \cdot 2$		$3 \cdot 2$
Mean additional weight required for saturation ,						$0 \cdot 5$		$0 \cdot 6$
Mean degree of Humidity (saturation 100)........						88		84
Mean weight of a cubic foot of airgrains						$38 \cdot 9$		$7 \cdot 5$
Mean amount of Cloud (0-10)						$7 \cdot 9$		$7 \cdot 3$
Fall of Rain						- 215		019
Greatest Rainfall in one day (5th)						$\cdot 705$		985
No. of days on which - 005 in. or more Rain fell...					20			$8 \cdot 9$
Wind :-Direction \qquad No. of days \qquad	N	NE	E	SE	S	sw	w	NW
		3	0	1	6	8	3	
Mean Velocity in miles per hr .	$3 \cdot 4$	$3 \cdot 9$	0	$17 \cdot 8$	$10 \cdot 2$	14.9	$5 \cdot 2$	4.7
Total No. of miles..............	323	830		428	1470	2869	748	340
Mean ${ }^{*}$								
Total No. of miles registered					6461		$6953 \cdot 5$	
Greatest hourly velocity (7th, 6 a.m., Dir. S.S.E.)..								$7 \cdot 7$

OCTOBER, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometic pressure	\ldots	\cdots	...	$+$	$0 \cdot 059$ in.
Monthly range	\ldots	\ldots	\ldots	-	$0 \cdot 520$ in.
Mean of highest daily temper	eratures	...	\ldots	-	$1 \cdot 4^{\circ}$
Mean of lowest ,		\ldots	\ldots	+	$0 \cdot 8^{\circ}$
Mean daily range ,		\ldots	\ldots	-	$2 \cdot 2^{\circ}$
Adopted Mean temperature	...	\ldots	\ldots	-	$0 \cdot 5^{\circ}$
Total rainfall		\ldots	\ldots	$+$	$0 \cdot 196$ in.

Ground Frost on 1st, 13th, 24th, and 26th. Hoar Frost on 13th. Hail on 1st, 3rd-5th, 6th, and 8th. Heavy Rain on 3rd, 5th, and 9th. Gale of Wind on 7th. Fog on 26th and 27th. Thunder on 7th. Lightning on 6th and 7th.

EXTREME READINGS FOR OCTOBER,

During 71 Years.

Highest reading of Barometer	1884 (5th)	.30-306 in.
Lowest	1862 (19th)28-139 in.
Highest temperature	1890 (12th)	$74.0{ }^{\circ}$
Lowest	1895 (28th)	$17 \cdot{ }^{\circ}$
Highest adopted mean temperature	1908	$52 \cdot 5^{\circ}$
Lowest	1895	$42 \cdot{ }^{\circ}$
Greatest fall of rain	1870	$13 \cdot 437$ in.
Least ,"	1915	$1 \cdot 180 \mathrm{in}$.
Greatest fall of rain in one day	1870 (8th)	$2 \cdot 529 \mathrm{in}$.
Greatest No. of days on which		
- 005 in. or more rain fell	1903	29
Least	1864	10
*Greatest hourly velocity of wind	1877 (15th)	52 mls .
*Greatest No. of miles registered...	1874	9818
*Least ., ., ., ...	1915	3965

- F'or the last 51 years. $\dagger 1$ day's record lost. Instrument under repairs.

NOVEMBER, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Ground Frost on 3rd, 4th, 6th-9th, 12th-23rd, 26th, and 30th. Hoar Frost on 7th, 8th, 13th-15th, 18th-23rd. Hail on 8th. Heavy Rain on 10th and 26th. Gales of Wind on 2nd, 4th, and 8th. Fog on 25th-29th. Solar Halo on 7th and 12th. Aurora Borealis on 29th.

There was absolutely no rain for 12 consecutive days, 11th-22nd inclusive.

EXTREME READINGS FOR NOVEMBER, During 71 Years.

Highest reading of Barometer	1857 (12th)	$30 \cdot 350$ in.
Lowest	1891 (11th)	$27 \cdot 938$ in.
Highest temperature	1900 (1st)	62.4°
Lowest	1901 (15th)	$17 \cdot 5^{\circ}$
Highest adopted mean temperature $\dagger 1881$		$47 \cdot 0^{\circ}$
Lowest	1915	36.3°
Greatest fall of rain	1866	9.026 in.
Least	1855	$1 \cdot 158 \mathrm{in}$.
Greatest fall of rain in one day	1866 (16th)	$3 \cdot 700 \mathrm{in}$.
Greatest No. of days on which		
- 005 in. or more rain fell ...	1913	28
Least	1848	6
*Greatest hourly velocity of wind...	1887 (1st)	62 mls .
*Greatest No. of miles registered ...	1888	12813
*Least ., ., ., ..	1915	4893

DECEMBER, 1918.								
Results of Observations taken during the Month.								
Mean Reading of the Barometer inches 29.259								. 430
Highest	on the 14th					-750		. 060
Lowest	on the 18th					8.720		. 529
Range of Barometer Readings.						$1 \cdot 070$. 531
Highest Reading of a Max. Therm. on the				h...		$55 \cdot 0$		$52 \cdot 9$
Lowest Reading of a Min. Therm. on the 26th ...						$27 \cdot 6$		$21 \cdot 1$
Range of Thermometer Readings.						$27 \cdot 4$		$31 \cdot 8$
Mean of Highest Daily Readings						$47 \cdot 3$		$43 \cdot 3$
Mean of Lowest Daily Readings						$39 \cdot 2$		$33 \cdot 6$
Mean Daily Range						$8 \cdot 1$		9.7
Deduced Mean Temp. (from Mean. of Max. and Min.)						$43 \cdot 3$		$38 \cdot 5$
Mean Temperature from Dry Bulb						$42 \cdot 1$		$39 \cdot 1$
Adopted Mean Temperature						$42 \cdot 7$		38.8
Mean Temperature of Evaporation						$40 \cdot 6$		37.2
Mean Temperature of Dew Point						$38 \cdot 1$		$35 \cdot 2$
Mean elastic force of Vapour inches						- 230		207
Mean weight of Vapour in a cub. ft. of air, grains						$2 \cdot 7$		$2 \cdot 4$
Mean additional weight required for saturation ,,						$0 \cdot 5$		$0 \cdot 4$
Mean degree of Humidity (saturation 100)						84		87
Mean weight of a cubic foot of air grains						$539 \cdot 9$		$47 \cdot 1$
Mean amount of Cloud (0-10)						$8 \cdot 1$		$7 \cdot 6$
Fall of Rain inches						. 595		686
Greatest Rainfall in one day (28th)........ .,						- 400		855
No. of days on which - 005 in . or more Rain fell...						30		$9 \cdot 9$
Wind:-Direction No. of days.	N	NE	E	SE	s	sw	w	Nw
	4	1	0	0	10	9	7	0
Mean Velocity in miles per hr .	$5 \cdot 9$	$4 \cdot 1$	0	0	$9 \cdot 4$		12	0
Total No. of miles..............	571	99	0	0	2244	42738	2018	0
Total No. of miles registered 7670 Greatest hourly velocity (12th and 23rd Dir. W.S.W. and W.N.W.) \qquad							*Mean	
							$7802 \cdot 6$	
								$2 \cdot 2$

DECEMBER, 1918.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	\ldots	...	-	$0 \cdot 141$ in.
Monthly range	\ldots	\ldots	...	-	0.461 in .
Mean of highest daily temp	ratures	$+$	$4 \cdot 0^{\circ}$
Mean of lowest ",	"	\ldots	\cdots	+	$5 \cdot 6{ }^{\circ}$
Mean daily range	"	\ldots	\ldots	-	$1.6{ }^{\circ}$
Adopted mean temperature	\ldots	$+$	$3.9{ }^{\circ}$
Total rainfall	+	$5 \cdot 909 \mathrm{in}$.

Ground Frost on 9th-11th, 15th, 17th-22nd, 24th-26th, and 31st. Snow on $17 \mathrm{th}, 18 \mathrm{th}, 19 \mathrm{th}, 24 \mathrm{th}$, and 26 th. Hail on 16th, 18 th, 19 th, 23 rd , and 26th. Heavy Rain on 1st, 2nd, 14th, 15th, 18th, 19th, 22nd, 27th, and 28th. Thunder and Lightning on 18th. Solar Halo on 7th.

The total rainfall and the number of rainy days were both the greatest on record for December. Aurora Borealis on 25th.

EXTREME READINGS FOR DECEMBER, During 71 Years.

Highest reading of Barometer	1905 (12th)	30-484 in.
Lowest	1886 (8th)	.27-350 in.
Highest temperature	1876 (9th)	$58 \cdot 1^{\circ}$
Lowest	1860 (24th)	$6 \cdot 7^{\circ}$
Highest adopted mean temperature	1857	$44 \cdot 6{ }^{\circ}$
Lowest	1878	$30 \cdot 3^{\circ}$
Greatest fall of rain	1918	$10 \cdot 595$ in.
Least	1890	0.550 in .
Greatest fall of rain in one day ...	1870 (19th)	1.962 in .
Greatest No. of days on which . 005 in . or more rain fell	1918	30
Least	$\dagger 1853$	8
*Greatest hourly velocity of wind...	1894 (22nd)	72 mls .
*Greatest No. of miles registered ...	1898	11265
*Least ."	1916	4517

Fummary of Observations, 1918.

Results of Observations taken during the Year.		$\begin{aligned} & \text { Mean for } \\ & \text { the last } \\ & 71 \text { Years. } \end{aligned}$
Readings of Barometer in inches.		
Mean of the Year	29-507	29-492
Highest Monthly Mean (June)	$29 \cdot € 30$	29.744
Lowest ,, ", (September)	$29 \cdot 209$	$29 \cdot 220$
Highest Reading (February)	$30 \cdot 290$	30-291
Lowest ,] (September)	$28 \cdot 210$	$28 \cdot 201$
Range	$2 \cdot 080$	$2 \cdot 090$
Thermometer, Fahrenheit.		
Highest Monthly Mean Temperature (August) ...	$58 \cdot 3$	$58 \cdot 6$
Lowest ", ", (January)	$38 \cdot 5$	$35 \cdot 5$
Highest Reading of a Max. Therm. (May 22nd)...	$79 \cdot 8$	81.4
Lowest ," Min. ," (January 13th)	$13 \cdot 1$	15.9
Range of Thermometer Readings	66.7	$65 \cdot 5$
Mean of Highest Daily	53.9	$54 \cdot 5$
Mean of Lowest Daily	$42 \cdot 2$	40.9
Mean Daily Range	11.7	$13 \cdot 6$
Deduced Mean Temp. (from mean of Max. and Min.)	$47 \cdot 0$	$46 \cdot 8$
Mean Temperature from Dry Bulb	$48 \cdot 0$	$47 \cdot 1$
Adopted Mean Temperature of the Year	$47 \cdot 5$	$47 \cdot 0$
Mean Temperature of Evaporation	$45 \cdot 3$	$44 \cdot 6$
Mean Temperature of Dew Point	$42 \cdot 9$	$42 \cdot 1$
Mean elastic force of Vapour inches	$0 \cdot 283$	$0 \cdot 274$
Mean weight of Vapour in a cub. ft. of air...grns.	$3 \cdot$	$3 \cdot 2$
Mean additional weight required for saturation ,"	0.6	0.7
Mean degree of Humidity (saturation 100)........	84	83
Mean weight of a cubic foot of air...........grns.	538.7	$539 \cdot 1$
Mean amount of Cloud (0-10)	$7 \cdot 1$	$7 \cdot 3$
Total fall of Rain inches	58.992	47-179
Greatest Monthly Rainfall (September)	$12 \cdot 620$	$7 \cdot 619$
Least , , (April)	$1 \cdot 410$	1.235
Greatest Rainfall in one day (September 15th) .,	$1 \cdot 690$	$1 \cdot 629$
No. of days per Month on which - 005 inch or more Rain fell \qquad	$18 \cdot 1$	$17 \cdot 1$

ABSOLUTE EXTREMES FOR THE LAST 71 YEARS.

Readings of Barometer, in inches.

Thermometer, Fahrenheit.

Highest mo			1901	(July)	63.2
Lowest	"	"	1855	(Feb.) 6
Highest yearly	"	"	1868		$49 \cdot 1$
Lowest	"	"	1879		$44 \cdot 1$
Highest reading		"	1901	(July 20th)	$89 \cdot 0$
Lowest		"	1881	(Jan. 15th.)	4.6

Weight of Vapour in a cubic foot of air (grains).

| Greatest monthly mean | \ldots. | 1852 (July) | $5 \cdot 1$ | |
| :--- | :---: | :--- | ---: | ---: | ---: |
| Least \quad, \quad, | | $\dagger 1855$ | (Feb.) | $1 \cdot 4$ |

ABSOLUTE EXTREMES

FOR THE LAST 71 YEARS-Continued.

Rainfall, in inches.

DATES OF OCCASIONAL PHENOMENA.

	\pm			i	$\begin{aligned} & \infty \\ & \text { is } \end{aligned}$			$\stackrel{\infty}{i}$	$\stackrel{\sim}{\square}$	\because		$\dot{\mathbf{0}}$	$\begin{aligned} & \text { is } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\stackrel{-}{0}$	$\dot{\dot{o}}$
$>$	$\stackrel{\square}{2}$		8	$\stackrel{\sim}{0}$			4	$\dot{\sim}$	$\begin{aligned} & 0 \\ & \dot{N} \end{aligned}$	i		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \sim \end{aligned}$	¢ +	$\stackrel{\square}{-}$
-	\cdots				$\stackrel{0}{0}$	$\stackrel{\sim}{c}$	$\stackrel{+}{\mathrm{N}}$	$\begin{aligned} & 8 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { ip } \\ & \text { is } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \dot{\text { m}} \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{N}}$:	$\begin{aligned} & \dot{\circ} \\ & \dot{\gamma} \end{aligned}$	$\stackrel{9}{0}$;
$\underset{U}{\mathbf{U}}$	\pm		!	!	$\stackrel{\infty}{\infty}$	$\stackrel{c}{\dot{\sim}}$		$\stackrel{i r}{\sim}$	$\dot{+}$	$\begin{aligned} & \dot{0} \\ & \text { is } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$;	:	$\stackrel{3}{4}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\stackrel{1}{2}}$
$山$	\cdots			:	$\begin{aligned} & 10 \\ & \infty \end{aligned}$:	$\begin{aligned} & 0 \\ & \text { is } \end{aligned}$	$\begin{aligned} & \approx \\ & \vdots \end{aligned}$		$\dot{\sim}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 10 \\ & 60 \end{aligned}$	$\stackrel{7}{0}$	
\mathbf{Z}	N			:	$\stackrel{\square}{0}$			∞	$\stackrel{\sim}{\sim}$	$\stackrel{?}{\sim}$		$\begin{aligned} & \mathbf{N} \\ & \dot{\sigma} \end{aligned}$	$\stackrel{+}{+}$	$\stackrel{4}{9}$	\cdots	$\stackrel{?}{9}$
$\underset{\boldsymbol{u}}{\mathbf{u}}$	$=$:	$\stackrel{8}{0}$	is		\dot{N}	$\begin{aligned} & \underset{0}{2} \end{aligned}$	m		$\dot{8}$	$\begin{aligned} & \mathrm{in} \\ & \dot{n} \end{aligned}$	$\stackrel{\sim}{\dot{\circ}}$	$\stackrel{\circ}{0}$:
$\underline{0}$	응		:	:	$\stackrel{\square}{-}$			$\stackrel{?}{\dot{-}}$	$\begin{aligned} & 10 \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{+}{\sim}$		$\begin{aligned} & \text { is } \\ & \text { is } \end{aligned}$?	$\stackrel{\square}{\sim}$;	:
$\begin{gathered} \mathbb{U} \\ \boldsymbol{\sim} \end{gathered}$	の			:	$\stackrel{\infty}{\dot{0}}$	$\dot{0}$		$\begin{aligned} & \infty \\ & \infty \end{aligned}$	$\stackrel{N}{\mathbf{O}}$	-		$\underset{\infty}{\dot{\infty}}$	is		$\stackrel{N}{\circ}$!
$\underset{Z}{w}$	∞			$\dot{\dot{N}}$;	$\begin{aligned} & \infty \\ & \dot{m} \end{aligned}$		$\stackrel{i}{i}$	e	$\underset{\sim}{9}$		\dot{m}	$\dot{0}$	-	$\stackrel{\stackrel{\rightharpoonup}{c}}{\stackrel{1}{2}}$.
$\overline{\bar{N}}$	N			:	:	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \end{aligned}$		$\ddot{0}$	$\begin{aligned} & \text { in } \\ & \dot{8} \end{aligned}$	$\dot{7}$		$\begin{aligned} & \infty \\ & \dot{\phi} \end{aligned}$	$\underset{i}{C}$	$\begin{aligned} & \infty \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\infty} \end{aligned}$	$\dot{0}$
$\underset{\infty}{2}$	ω				\dot{i}	$\stackrel{\square}{\square}$		$\dot{\circ}$	$\dot{\dot{\sim}}$	$\stackrel{\stackrel{N}{\dot{N}}}{ }$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$	$\begin{aligned} & \text { N } \\ & \dot{\sim} \end{aligned}$	in	$\stackrel{\sim}{\dot{+}}$;
4	↔			$\stackrel{\square}{4}$:	\cdots		$\dot{\sim}$	$\dot{\infty}$	$\stackrel{\infty}{+}$	$\stackrel{\sim}{\circ}$	$\stackrel{\infty}{\infty}$:	;	-	;
\vdash	*		$\bar{\sim}$	\dot{m}	!	$\begin{aligned} & \text { P } \\ & \infty \end{aligned}$		$\ddot{0}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\dot{\varphi}$		is	:	$\begin{aligned} & \text { is } \\ & \text { is } \end{aligned}$	$\overrightarrow{0}$	$\stackrel{\rightharpoonup}{0}$
3	\bigcirc	∞			$\begin{aligned} & \text { n } \\ & \text { in } \end{aligned}$	∞		$\stackrel{\square}{2}$	$\dot{\vec{g}}$	$\stackrel{\rightharpoonup}{\mathbf{\sim}}$		\bigcirc	$\dot{\dot{\sigma}}$;	:	:
4	N	∞		:	$\stackrel{i}{i}$	$\stackrel{\rightharpoonup}{1}$!	$\underset{\sim}{\text { ¢ }}$	¢ $\dot{-}$		$\stackrel{4}{+}$	$\begin{aligned} & \infty \\ & \text { i } \end{aligned}$	0	$\stackrel{+}{0}$	$\dot{0}$
$\frac{1}{1}$	-	$\stackrel{0}{0}$	9		$\stackrel{i}{i}$	18	is	is	$\stackrel{\text { N }}{+}$	¢	is	is		n	!	;
\bigcirc	$\stackrel{\infty}{\infty}$				$\begin{aligned} & \text { g } \\ & \text { n } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \tilde{E} \\ & \frac{0}{\circ} \end{aligned}$		$\underset{\sim}{\text { din}}$	$\stackrel{\underset{\sim}{\underset{Z}{\Xi}}}{\underset{\sim}{2}}$	$\underset{\Xi}{\beth}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \mathbf{w}_{0} \\ & \vec{z} \end{aligned}$	$\begin{aligned} & \stackrel{\pi}{0} \\ & \stackrel{0}{6} \\ & \stackrel{y}{c} \end{aligned}$		$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		\vdots ¢ E U U O

SUMMARY OF SUNSHINE.

	Briget Sunghine Recordmd					
	1918			Mean for the last 38 years		
	Number of		$\begin{aligned} & \text { Percentage } \\ & \text { of } \\ & \text { Possible } \\ & \text { Sunshine } \end{aligned}$	Number of		Percentage of Possible Sunshine
	Days	Hours		Days	Hours	
January ..		$43 \cdot 9$	$17 \cdot 7$	$14 \cdot 2$	$32 \cdot 7$	$13 \cdot 2$
February	15	$31 \cdot 5$	$11 \cdot 6$	$17 \cdot 7$	$58 \cdot 2$	$21 \cdot 2$
March	23	$104 \cdot 7$	$28 \cdot 6$	$24 \cdot 1$	$103 \cdot 5$	$28 \cdot 3$
April		$172 \cdot 7$	$41 \cdot 2$	$26 \cdot 4$	$149 \cdot 6$	$35 \cdot 7$
May	28	193.0	$39 \cdot 1$	$27 \cdot 6$	$186 \cdot 2$	$37 \cdot 8$
June	29	$199 \cdot 2$	$39 \cdot 2$	$27 \cdot 9$	$185 \cdot 1$	$36 \cdot 4$
July	29	$165 \cdot 5$	$32 \cdot 5$	$28 \cdot 4$	$175 \cdot 2$	$34 \cdot 4$
August	29	150.1	$32 \cdot 8$	$27 \cdot 6$	$150 \cdot 2$	$32 \cdot 9$
September ..	23	$103 \cdot 0$	$27 \cdot 2$	$25 \cdot 7$	$124 \cdot 4$	$32 \cdot 8$
October	22	$72 \cdot 1$	$22 \cdot 1$	23.4	$83 \cdot 2$	$25 \cdot 5$
November	21	$35 \cdot 3$	$13 \cdot 8$	$17 \cdot 4$	$45 \cdot 9$	$17 \cdot 9$
December ...	16	$22 \cdot 7$	9.8	13.4	$25 \cdot 6$	11.1
Year	278	$1293 \cdot 7$	$29 \cdot 0$	273.7	$1319 \cdot 9$	$29 \cdot 6$

FORCE.

Horizontal Magnetic Force in C. G.S. Units (from daily measures of the continuous curves).
The figures in the columns are entered to the unit 10 C.G.S.

1918		MEANS OF +					$\underset{\vdots}{\text { Mean daily }} \begin{gathered} \text { range } \\ \ddagger \end{gathered}$	$\begin{aligned} & \text { Highest } \\ & \text { reading of } \\ & \text { the } \\ & \text { month } \end{aligned}$	$\begin{aligned} & \text { Lowest } \\ & \text { reading of } \\ & \text { the } \\ & \text { month } \end{aligned}$	Monthly range
		Highest readings	Lowest readings	$\underset{\text { readings }}{4 \text { p.m. }}$	$\underset{\text { readings** }}{4 \mathrm{a}}$					
		$17000+$				$0+$		$17000+$		$0+$
January	.	372	340	356	353	355	41	397	259	- 138
February	-	362	336	356	349	351	52	400	257	143
March	...	362	324	346	350	346	61	438	81	357
April	362	312	339	341	338	86	414	123	291
May ...	\cdots	357	306	337	345	335	79	372	240	132
June ...		316	271	299	306	298	70	405	217	188
July ...		348	301	329	338	329	76	400	240	160
August	...	334	285	319	322	315	77	405	222	183
September	\ldots	347	295	328	326	324	78	403	181	222
October	\cdots	339	301	328	330	325	77	402	181	221
November	.	336	312	325	332	326	62	441	232	179
December		332	311	323	322	322	65	411	218	193
Means ...		347	308	332	335	330	69	405	204	201
Mean for the year $0 \cdot 17330$ C. G. S. Units.										

ABSOLUTE			MEASURES-SUMMARY.				
DIRECTION					FORCE.		
1918	Declination Corrected		Inclination		Horizontal	Vertical	Total
					C. G. S. UNITS.		
January ...	$16 \quad 11.2$		68	$44 \cdot 6$	$0 \cdot 17362$	0.44632	$0 \cdot 47890$
February ...		12.7	68	$43 \cdot 6$	0.17323	0.44492	0.47746
March	$16 \quad 11.8$		68	$44 \cdot 3$	0.17349	$0 \cdot 44586$	0.47842
April	$16 \quad 7.9$			41.6	0.17369	0.44534	0.47802
May	$16 \quad 7.5$		684	$43 \cdot 2$	0.17338	0.44516	0.47773
June	$16 \quad 5 \cdot 8$		$68 \quad 43.8$		0.17342	0.44550	$0 \cdot 47806$
July	$16 \quad 6.9$		$68 \quad 42 \cdot 2$		0.17346	0.44498	0.47760
August ...	$16 \quad 5.7$		$68 \quad 42.8$		0.17307	0.44421	0.47673
September ...	$16 \quad 9.2$		$68 \quad 43.8$		$0 \cdot 17313$	0.44475	0.47726
October	$16 \quad 10 \cdot 7$		$68 \quad 44 \cdot 3$		$0 \cdot 17350$	0.44588	0.47845
November ...	$16 \quad 7 \cdot 9$		$68 \quad 43.5$		0.17296	0.44421	0.47669
December ...	$16 \quad 5 \cdot 6$		$68 \quad 42 \cdot 0$		0.17270	0.44295	0.47543
Means ...	$16 \quad 8.6$		$68 \quad 43 \cdot 3$		0.17330	$0 \cdot 44501$	0.47756

DATES OF MAGNETIC DISTURBANCES．

The disturbances are divided generally into three classes， small，moderate，and greater；these are indicated by the initial letters of the classes，and the letter c denotes calm．Very great disturbances are marked vg．The days are reckoned astronomic－ ally from noon to noon．

1918		$\begin{aligned} & \dot{8} \\ & \stackrel{\circ}{4} \end{aligned}$	$\begin{aligned} & \text { 杏 } \\ & \text { in } \end{aligned}$	菏		$\stackrel{\underset{\Xi}{\Xi}}{\stackrel{0}{2}}$	$\frac{\grave{\Xi}}{\beth}$	$\stackrel{80}{\underset{\sim}{4}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { 心 } \\ & 0 \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \text { B } \end{aligned}$	¢	1918
D．													D．
1	＊	S	c	s	s	c	m	c	m	m	s	v．g．	1
2	＊	s	s	c	c	c	c	s	s	m	s	m	2
3	＊	c	s	s	c	s	m	s	s	m	c	m	3
4	＊	c	c	5	s	c	＊	s	m	m	c	s	4
5	＊	s	c	m	m	s	c	S	＊	m	c	c	5
6	s	m	c	g	c	s	c	s	＊	m	c	c	6
7	c	c	s	s	c	s	s	c	c	S	c	m	7
8	c	c	g	s	s	S	s	s	m	g	c	v．g．	8
9	c	s	c	s	c	m	S	s	s	s	c	m	9
10	c	m	s	s	c	g	s	c	s	c	s	m	10
11	c	m	m	v．g．	s	m	m	s	c	c	m	m	11
12	s	g	s	m	s	m	m	s	c	c	g	m	12
13	s	m	c	c	c	s	m	c	c	c	m	m	13
14	c	m	c	c	s	s	s	c	s	c	m	s	14
15	s	m	m	c	m	m	s	＊	s	s	g	c	15
16	c	m	m	c	v．g．	m		c	m	g	S	c	16
17	c	s	c	c	g	S	c	c	S	g	s	c	17
18	c	c	c	m	s	S		c	m	S	c	s	18
19	c	c	c	m	s	c	c	c	m	m	m	m	19
20	c	s	c	c	s	c	c	c	s	s	s	s	20
21	c	s	S	c	C	m	S	c	v．g．	s	s	s	21
22	c	c	s	c	c	c	c	c	m	m	s	s	22
23	c	m	m	s	c	c	c	c	c	s	m	s	23
24	c	s	c	c	c	c	＊	m	s	s	m	S	24
25	c	c	c	g	c	c	m	m	c	s	c	v．g．	25
26	c	c		m	c	S	s	s	m	c	c	g	26
27	s	s	s	c	c	s	s	m	c	c	c	c	27
28	c	m	c	c	c	c	g			m	S	c	28
29	m		c	c	s	c	S	c	s	c	v．g．	c	29
30	v．g．		c	m	s	c	s	c	m	s	m	c	30
31	m		c		c		s	m		S		c	31
（c）	18	9	17	13	16	12	8	15	7	8	11	10	
4	5	9	9	8	11	11	14	11	11	11	9	8	
Et	2	9	4	6	2	6	6	4	9	9	7	9	
$\stackrel{H}{\mathrm{~g}}$	i	1	1	2	1	1	1	\cdots	\cdots	3	2	1	
（vg	1	\cdots	\cdots	1	1	\cdots	\cdots	\ldots	1	．．．	1	3	

DATES OF SOLAR OBSERVATIONS, AND DISC AREAS OF SPOTS AS MEASURED FROM THE DRAWINGS.

The unit is $\frac{1}{500}{ }_{0}$ th of the visible surface.
$\mathrm{n}=$ note without a complete drawing.

1918	安	$\dot{\rightharpoonup_{i}^{2}}$	$\begin{aligned} & \text { 要 } \end{aligned}$	E	$\underset{\sim}{\vec{\pi}}$	$\stackrel{\unrhd}{\Xi}$	$\underset{\Xi}{\stackrel{~}{j}}$	$\dot{\sim}$	$\stackrel{\dot{0}}{\stackrel{\rightharpoonup}{0}}$	$\stackrel{3}{0}$	$\begin{aligned} & \dot{0} \\ & \ddot{z} \end{aligned}$	هِّ	19
D.		5.0	$3 \cdot 6$		7.7	$13 \cdot 3$	$5 \cdot 3$	$10 \cdot 4$		13.0			D.
2	11.0		$2 \cdot 4$			13.6		12.0					
3	$11 \cdot 0$		$2 \cdot 7$	$8 \cdot 4$	$8 \cdot 2$	15.51	$11 \cdot 6$		1.8				3
4		$2 \cdot 7$		$10 \cdot 2$		$16 \cdot 01$	$12 \cdot 2$	$15 \cdot 5$		7.2		1.5	4
5		$3 \cdot 6$		12.0	$10 \cdot 6$	$13 \cdot 3$		15.3					
6			$1 \cdot 3$	13.0	$10 \cdot 8$	14.011	$12 \cdot 7$		1.8	$2 \cdot 8$	$2 \cdot 1)$		6
7	$8 \cdot 4$			$12 \cdot 2$		$9 \cdot 4$	$12 \cdot 5$	11.0	3.0	35	$2 \cdot 2$	$5 \cdot 1$	7
8	106			$8 \cdot 6$	$9 \cdot 0$	$4 \cdot 3$		5.7		6.0	18		8
9			$2 \cdot 7$		11.0		$10 \cdot 0$	$5 \cdot 3$	$3 \cdot 1$				9
10					$10 \cdot 7$		$7 \cdot 3$	$4 \cdot 4$	3.6				10
11					8.0	$3 \cdot 0$	$6 \cdot 7$			71			11
12					$7 \cdot 5$		6.0	$7 \cdot 4$	$4 \cdot 4$	6.2	2.7	$7 \cdot 4$	12
13			$11 \cdot 6$				$4 \cdot 1$	$9 \cdot 0$	$9 \cdot 3$	7.0	$5 \cdot 6$		13
14				$3 \cdot 0$	$5 \cdot 4$	$0 \cdot 6$	$3 \cdot 0$	$8 \cdot 0$			$9 \cdot 0$	7.0	14
15					$5 \cdot 4$	$0 \cdot 4$	8.0	$9 \cdot 8$		78			15
16	$4 \cdot 5$	$7 \cdot 7$		$3 \cdot 3$	$3 \cdot 0$		8.0	n		$10 \cdot 0$	$13 \cdot 6$	36	16
17		10.4	$12 \cdot 1$	$2 \cdot 8$	$3 \cdot 3$	$0 \cdot 4$	10.0		$12 \cdot 3$	$12 \cdot 8$		5.4	17
18		$12 \cdot 0$			$2 \cdot 8$				$10 \cdot 0$			$7 \cdot 0$	18
19				$4 \cdot 0$	$2 \cdot 1$	$1 \cdot 1$	$9 \cdot 5$	$12 \cdot 1$	$9 \cdot 0$	13.4	$21 \cdot 0$		19
20					20	$2 \cdot 0$			$8 \cdot 8$	$18 \cdot 0$		$14 \cdot 3$	20
21	14.7	6.2	$1 \cdot 6$	$3 \cdot 0$	$2 \cdot 0$	$2 \cdot 6$	11.0	18.0		17.0	14.0		21
22			2.7	$3 \cdot 0$	$2 \cdot 6$			15.0			$10 \cdot 0$		22
23			$3 \cdot 0$			$2 \cdot 0$		15.5		15.0		$20 \cdot 2$	23
24			$4 \cdot 0$	$4 \cdot 0$		$2 \cdot 5$	$15 \cdot 6$	15.0					24
25	14.6	$5 \cdot 5$	$8 \cdot 2$	$3 \cdot 6$	$2 \cdot 5$	1.6	$15 \cdot 4$		$9 \cdot 6$	13.0	$9 \cdot 6$		25
26	11.7		$8 \cdot 4$	$5 \cdot 2$	$4 \cdot 0$	1.2	12.0			11.5		8.0	26
27				7.0	$5 \cdot 6$		$10 \cdot 0$		$8 \cdot 2$		$12 \cdot 0$		27
28	$7 \cdot 4$	$4 \cdot 2$		$7 \cdot 0$	$9 \cdot 2$		$8 \cdot 5$	12.0	$13 \cdot 0$			6.5	28
29	7.4			$9 \cdot 5$	$9 \cdot 4$	$3 \cdot 7$	$7 \cdot 4$	$8 \cdot 4$					29
30	$7 \cdot 8$			8.0	$10 \cdot 3$		$6 \cdot 6$		$13 \cdot 0$				30
31	$5 \cdot 7$				$12 \cdot 3$		6.7	$6 \cdot 0$		78		1.8	31
Meants	$10 \cdot 4$	6.4	$4 \cdot 9$	6.7	6.6	6.0	$9 \cdot 2$	10.8	$7 \cdot 4$	$10 \cdot 0$	$8 \cdot 6$	$7 \cdot 3$	

[^0]: * For the last 51 years.

