Stonyhurst College Observatory.

Lat. $53^{\circ} 50^{\prime} 40^{\prime \prime} \mathrm{N} . \quad$ Long. $9^{\mathrm{m}} \quad 52^{\mathrm{s}} .68 \mathrm{~W}$ Height of the Barometer above the Sea. 38 t feet

(FOUNDED 1838)

Results of Geophesical and

 ¥olar Observations, 1925.With Report and Notes of the Director, rev. E. D. o'CONNOR, S J., M.A., f.r.a.S

CONTENTS.

Photograph by Swaine, New Bond Strect.
The Rev. A. L. CORTIE,' S.J.,
D.Sc., F.R.A.S., F.Inst.P., F.R.Met.S.

Born 22nd April, 1859.
Died 16th May, 1925.
O.S. $1872-1878$.

REPORT AND NOTES.

General.-It is with deep regret we record the death, on 1925, May 16, of the Reverend Aloysius Laurence Cortie, S.J., D.Sc., F.R.A.S., F. Inst. P., F.R. Met. S., Director of the Stonyhurst Observatory since 1919, President of the Manchester Philosophical and Literary Society, and President of the Manchester Astronomical Society.

Father Cortie, to give him the title by which he was best known, and which he loved best, was ever actuated by a strong sense of duty, and it was truly edifying to see how this affected him in the last two or three weeks of his life, when it became evident that he would not rise again from his sick bed. He looked upon his departure from this life simply as the next duty he was called upon to perform ; and he prepared for it in the same business-like fashion as he had done for any of his various expeditions.

Many appreciations have already appeared dwelling on the cheeriness of his disposition, on the contagiousness of his good humour, on the loveableness and simplicity of his character, on the staunchness and universality of his friendships. To quote the Obituary Notice in Monthly Notices, Vol. 86, No. 4 : "It was said of him that he had no acquaintances, for acquaintances became at once his friends."

Reference, too, has been made to his untiring energy. It was not until 1914 , August, that he was freed from his many duties at the College, and thus enabled to devote his whole time to the work he loved so well. Even then another claim was made on his time to which he generously responded. Owing to the exigencies of the War, in 1916 he was asked to take over the Editorship of the Stonyhurst Magazine; by no means a light task, as on him devolved the duty of writing a great number of the obituaries of Old Boys who were killed or died during the War, in addition to the ordinary work of Editor. For two years he edited the Magazine and fully maintained the very high standard of excellence which has won for it such a well-deserved reputation.

For 19 years, 1895-1914, he was engaged in ordinary class work, teaching Science and Mathematics, and was in charge of the Music of the School. with the onerous duties of training the Choir and Orchestra for the many calls on them in Church and Concert Room.

The pulpit, too, not unfrequently claimed his services. He was always ready to oblige on such occasions ; and from 1892 onwards he regularly preached at the meetings of the British Association.

Indeed, it is truly wonderful that Father Cortie was able to carry through such an amount of Astronomical work as appears from his publications on the subject. His was indeed a" full" life.

He was born in London on 1859, April 22. He came to Stonyhurst as a boy in 1872 , had a very successful course at the College, represented his School at Cricket,
was placed sixth on the Honours List in the London Matriculation in 1878 , and awarded a $£ 10$ prize by the University, also secured the chief school prizes of that year-among them being the $£ 20$ prize for Classical Honours, and the $£^{5}$ English Essay Prize. On leaving School he entered the Noviceship of the Society of Jesus at Roehampton, where he spent three years in the exercise of the special training the Society requires of its members. In 1881 he came up to St. Mary's Hall, Stonyhurst, and a year was spent in studying for the London University Degree.

Even as a boy Aloysius Cortie had devoted some of his spare time to working at the Observatory, but his main pursuits were rather on the Classical and Literary side. In 1882, however, he definitely took up Astronomy as his special study, and while following the usual Philosophical Course at St. Mary's Hall, he started under the direction of Father Perry the systematic observation of Sun-Spot Spectra. The section from B to D in the Solar Spectrum was selected so as to supplement the series of observations between I) and F by Mr. Maunder, at Greenwich, and Professor Lockyer, at South Kensington.

The work of the first two years was mostly preliminary, but some useful results were obtained and appeared in a paper written by Father Perry for the Monthly Notices. 1884, March, Vol. xliv.

His systematic and careful notes for lecture purposes also began about this time. For Father Cortie soon realized that he had a very special gift as a lecturer ; and it is well known how eminently successful he was in
this matter. The demands on him for Gilchrist and other Lectures, both at home and abroad, were indeed very great. And the variety of his audiences, both as regards mental capacity, condition of life, and age, would have frightened anyone with less confidence in himself than Father Cortie. His lectures were indeed a very integral part of his life, and it is chiefly in the role of a lecturer that perhaps he will be best remembered by the general public.

In 1885 Father Cortie completed his Philosophical Studies and came on the College Staff to teach Mathematics and Science, while he devoted all his spare time to Astronomy.

In 1889 he went to St. Beuno‘s, North Wales, for his Theological Studies, in immediate preparation for the Priesthood, to which state he was raised in 1892 , September 22. His holidays, however, were usually spent at Stonyhurst, where he pursued his Astronomical work.

In 1890 appeared his first substantial contribution to Astronomical Literature :--"Observations of the Spectra of Sun-Spots in the region B-D, made at the Stonyhurst College Observatory in the years 1882 1889," and published in the Memoirs R.A.S., Vol. 50.

In 1891, January 9, he was elected Fellow of the Royal Astronomical Society, and in the following year published his life of Father Perry.

For a short time after this he was Director of Studies at the newly founded Jesuit Day School at Stamford Hill, London ; but in 1895 he was back again at Stonyhurst, and there spent the remainder of his life.

In 1894 he had joined the B.A.A., and became a very active member of the Association. For eleven years -from 1900 to 1910 -he was Director of the Solar Section, and in this capacity furnished a number of Reports to the Memoirs of the Association.

For many years he was President of the Preston Astronomical Society; from 1911 to his death President of the Manchester Astronomical Society ; and for more than ten years served on the Council of the Royal Astronomical Society.

In 1905 he attended the Second Conference of the International Union for Co-operation in Solar Research, which met at Cambridge, England, and was appointed a member of the Committee on the Spectra of Sun-Spots. In the same year he organized an Expedition to observe the Total Solar Eclipse in Spain, his results and report being printed in the Transactions of the Royal Irish Academy xxxiii, Section A, Part I.

In 1908 he attended the Third Conference of the I.C'.C.S.R., which met at Meudon, and at which his classification of Sun Spots was adopted. In 1910 the Conference took place at Mount Wilson. Father Cortie attended as one of the delegates of the R.A.S., and contributed a Report on the Spectra of Sun Spots in the Region $\lambda 5890$ - $\lambda 6560$. He was reappointed a member of the Committee on Sun-Spot Spectra.

The fifth Conference met at Bonn, in 1913, when Father Cortie was present as Secretary of the SubCommittee on visual observations of Prominences and Related Phenomena.

The War then intervened, but in 1921 he attended the International Congress at Potsdam. In January of the next year, 1922, he was appointed member of the Committee on the Solar Atmosphere at the Astronomical Union, and in May attended the Congress in Rome.

In 1911 he was in charge of the Total Solar Eclipse Expedition to Vavau, in the South Pacific on behalf of the Permanent Joint Solar Eclipse Committee, on which he served for a great number of years. The results were only partially successful owing to clouds at the time of totality.

Likewise in 1914, he led the Expedition to Hernôsand, Sweden, where he was fortunate in having excellent weather. The results of both eclipses were in due course ${ }^{\text {b }}$ communicated to the R.A.S.

His last expedition was in 1924, when he travelled to Toronto, Canada, to attend the meeting of the British Association as one of the delegates of the R.A.S.

He was very faithful in his attendance at the B.A. meetings, and usually contributed a Paper. His final Paper: "The Relation between Solar Activity and Te"restrial Magnetic Disturbances "-Report B.A., 1924, and " The 27-day period (interval) in Terrestrial Magnetic Disturbances "-Proceedings R.S., A. 106, pp. 19-32, published also in 1924 are the last words he had to say on his main life-work-the inter-relation between Solar Disturbances and Magnetic Storms.

A list of his publications is appended. This will perhaps give some little idea of Father Cortie's work in furtherance of the Science of his predilection.

It will be noticed that in addition to his solar and magnetic work, he undertook a fair share of stellar spectroscopy, especially of Novæ; nor was he indifferent to the more general bearings of Science.

The following is a list of the papers he contributed to the Monthly Notices of the R.A.S. :-

1. Bands observed in the Spectra of Sun Spots at the Stonyhurst Observatory ; xlvii, 19.
2. (Conjointly with Father Perry) Observations of the Spectrum between C and D of a Sun Spot observed 1884, May 27, and another of 1889 , May 7 ; xlix, 410.
3. Note on the Spectrum of the Sun Spot of 1889, June ; l, 64.
4. Second note on the same; 1, 331.
5. Spectroscopic Notes and Queries; li, 18.
6. Abstract of "Observations of the Spectra of SunSpots in the region $B-D$, made at the Stonyhurst College Observatory in the years $1882-89$ "; li, 76. Published in the Memoirs, Vol. 50.
7. The Heliographic co-ordinates of Sun Spots and Faculæ in the Stonyhurst Drawings; lvii, 141.
8. The Wilsonian Theory and Mr. Howlett's Drawings of Sun Spots; lviii, 91.
9. Vanadium in the Spectrum, C to D, of Sun Spots; Iviii, 370.
10. The duration of the greater Sun-Spot disturbances for the years $1881-99$; lx, 531 .
11. Note on the Visual Spectrum of Nova Persei ; lxi, 463.
12. Visual and Spectroscopic Observations of the SunSpot Group of 1901, May $19-J u n e 26$; 1xii, 516.
13. The Spectra of Sun-Spots in the region B-D ; lxiii, 468.
14. Variation in Latitude of the greater Sun-Spot Distances of 1881-1903; lxiv, 762.
15. Magnetic Storms and Associated Sun Spots; lxv, 197.
16. Note on the Visual Spectrum of Mira Ceti in December, 1906 ; lxvii, 537.
17. Note to Captain Daunt's paper on Helium D Absorption in the neighbourhood of Sun Spots; lxviii, 625.
18. (Conjointly with Father Sidgreaves). Note on Comet c 1908 (Morehouse), September 29 -October 2; lxix, 54.
19. The Sun Spots and associated Magnetic Storms of September-October, 1909 ; lxx, 19.
20. (Conjointly with Father Sidgreaves). Notes on Comet 1910 I ; lxx, 464.
21. Note on the Spectrum of Nove Geminorum ; lxxii, 714.
22. The Sun-Spot Minimum, Sun Spots and Prominences, 1912, October 12; lxxiii, 51.
23. Sun-Spots and Terrestrial Magnetic Phenomena, 1898 -1911: the cause of the annual variation in Magnetic Disturbances; lxxiii, 52.
24. The Greater Magnetic Storms ; Ixxiii, 148.
25. Sun-Spot Areas, Magnetic Storms and the Sun's Corona ; lxxiii, 431.
26. The mode of propagation of the Sun's influence in Magnetic Storms ; lxxiii, 539.
27. The Spectrum of Nova Geminorum 2, 1912, April, and 1913, February-April; lxxiii, 646.
28. An area of long continued Solar Disturbances and the Associated Magnetic Storms; Lxxiv, 670.
29. The Transit of Mercury, 1914, Nov. 6-7; lxxv, 66.
30. Preliminary Report on the Total Solar Eclipse of 1924, August 21, observed by the Expedition of the Joint Permanent Eclipse Committee to Hernosand, Sweden ; lxxv, 105.
31. The Sun-Spot and the Solar Corona of 1914, August 21 (showing that regions of long continued solar spot activity were associated with bundles of divergent streamers) ; lxxv, 496.
32. The Efficiency of Sun Spots in relation to Terrestrial Magnetic Disturbances; lxxvi, 15.
33. The Efficiency of Sun Spots in relation to the mean daily range of Terrestrial Magnetic Declination ; lxxvi, 631.
34. The Chromospheric and Coronal Spectrum (60007600) in the total Solar Eclipse, 1911, April 28 ; lxxviii, 441.
35. The Spectrum of the Corona, 1914, August 21 ; lxxviii, 665.
36. The Earlier Spectrum of Nova Aquilæ; Ixxix, 121.
37. The Spectrum of Nova Aquilae, 1918, June 15; lxxix, 171.
38. The Spectrum of Nova Aquilere, 1918, July 25; lxxix, 491.
39. The Spectrum of Nove Aquilae, 1918, August 23October 23 ; lxxix, 555.
40. Note on the disturbed Sun-Spot Area on the Sun's Eastern Limb, 1919, May 29 ; lxxx, 204.
41. The Spectrum of Nova Aquilæ, July-August; Ixxx, 205.
42. The great Solar-Spot Group and the Magnetic Storm, 1920, March 22-23; lxxx, 574.
43. The Spectrum of Nova Cygni III ; lxxxi, 57.
44. The Ultra-Violet Spectrum of Nova Aquilæ; lxxxi, 438.
45. (Conjointly with Father Rowland). The partial Eclipse of the Sun, 1921, April 7th; Spectroscopic observations of the Reversing Layer ; lxxxi, 485.
46. The Sun-Spot Group and the Magnetic Disturbances 1921, May 8-21; lxxxi, 515.
47. Terrestrial Magnetic Disturbances and Sun-Spots; Ixxxii, 170.
48. Solar and Terrestrial Magnetic Phenomena, 19131921 ; lxxxiii, 204.
49. The Magnetic Disturbance of 1924, Januery 29-30; lxxxiv, 531.
50. The Spectrum of γ Cesssiopeix, $\mathbf{H} \beta$ to B ; lxxxiv, 576.

The following were his contributions to the British Association Meetings :-

1. On the Types of Sun-Spot Disturbances, 1900, Report, 675.
2. On the Drift in Longitude of Groups of Faculæ on the Sun's Surface ; 1901, Report, 542.
3. Minimum Sun-Spots and Terrestrial Magnetism; 1902, Report, 522.
4. Solar Prominences and Terrestrial Magnetism ; 1903, Report, 574.
5. The Spectra of Sun-Spots; 1904, Report, 458.
6. On the Connection between Disturbed Areas of the Solar Surface and the Solar Corona; 1906, Report, 499.
7. The Variability in Light of Mira Cati and the Temperature of Sun-Spots; 1907, Report, 465.

XIV.

8. On the possible existence of Steam in the regions of Sun-Spots; 1908, Report, 639.
9. On the Recent Eclipse of the Sun ; 1911, Report, 343.
10. Magnetic Disturbances, Sun-Spots, and the Solar Corona; 1912, Report, 411.
11. Solar and Terrestrial Magnetic Disturbances; 1913, Report, 394.
12. Efficiency of Sun-Spots in relation to Terrestrial Magnetic Phenomena; 1916, Report, 364.
13. Progressive Spectra of Nova Aquilæ, 1918-1919; 1919, Report, 147.
14. Comparison of Drawings of Solar Facula and Photographs of Calcium Floceuli; 19:0, Report, 351, 381.
15. Magnetic Storms of the present Solar Cycle; 1921, Report, 416, 464 (A29).
16. The Relation between Solar Activity and Terrestrial Magnetic Disturbances; 19:4, Report, 370.

In this Group may be inserted his paper on-" The 27-day period (interval) in Terrestrial Magnetic Disturbances "; Proceedings of the R.S., A. 106, pp. 19-3?.

Total Solar Eclipse Work:

1. "The Total Solar Eelipse of 1905"; Transactions of the Royal Irish Academy xxxiii, Section A, Part I.
2. "Report of the Total Solar Eclipse of 1911"; Proceedings of the Royal Society, A, lxxxvii, 293.
3. "The Total Solar Eclipse of 1914"; Proceedings of the Royal Institute, 1914-1915.

The following Papers were contributed to The Astrophysical Journal:-

1. On the Types of Sun-Spot Disturbances; xiii, 4 .
2. On Drift in Longitude of Groups of Facule on the Sun's Surface ; xiv, 5.
3. The Spectra of Sun-Spots in the Red and Yellow Regions of the Spectrum ; xx, $\mathbf{2 5 3}$.
4. On the Connexion between Disturbed Areas of the Solar Surface and the Solar Corona; xxiv, 355.
5. The Variability in Light of Mira Ceti and the Temperature of Sun-Spots; xxvi, 123.
6. On the possible existence of Steam in the regions of Sun-Spots; xxviii, 5.
7. Sir Norman Lockyer (Oḅituary)) ; liii, 233.

To The Observatory he contributed the following articles:-

1. Papal Brief on Astronomy ; xiv, 226.
2. Sun-Spot Group of August 28-October 4; xiv, 368.
3. On the Spectra of Sun-Spots; xxvii, 366.
4. Problems of Solar Physics (two papers); xxx, 100 and 180 .
5. Disturbed Areas of the Solar Surface and the Solar Corona; xxx, 123.
6. A letter on Galileo ; $\mathrm{xxx}, 415$.
7. The Absorption of D_{3} in the neighbourhood of Sun-Spots; xxxi, 51.
8. Recent work on the Spectra of Sun-Spots ; xxxi, 450.
9. Sun-Spots and Solar Temperature ; xxxii, 60.
10. Water Vapour Lines in the Sun's Spectrum ; xxxii, 102.
11. The Foundations of Astro-Physics ; xxxii, 465.
12. The Devil, The Turk and the Comet; $x x x i i i, 91$.
13. The recent Magnetic Disturbance and the Sun's Activity (1910) ; xxxiii, 100.
14. Newall's " Spectroscope and its work"; xxxiii, 446.
15. Magnetic Disturbances, Sun-Spots and the Sun's Corona; xxxv, 356.
16. Progressive Spectra of Nove Aquilæ, 1918-1919; xlii, 366.
17. Extract from " Photographio Evidence for the Formation of Stars from Nebulæ" published in Photographic Journal; lix, 207]. xlii, 398.

18-23. Sun-Spot Areas and Terrestrial Magnetic Horizontal Ranges and Disturbances for the years 1919-1924 (inclusive) ; xliii, 121; xliv, 91; xlv, 84 ; xlvi, 87 ; xlvii, 86 ; xlviii, 86.
24. Comparisons of Drawings of Solar Faculæ and Spectroheliograms of Calcium Flocculi; xliii, 387.
25. Early Spectra of Nova Aquilæ; xliii, 229.
26. Dissymetry in Sun Spots; xliv, 121.
27. Series of Magnetic Disturbances; xlvi, 298.

To the B.A.A. Journal and Memoirs he contributed as follows:-

Memoirs :

The 8th (1898), 9th (1899), 10th (1900), 11th (1901), 12th (1902), and 13th (1910); Reports of the Seotion of the Observation of the Sun ; Parts I of Vols. viii, xi, xii, xiii, xiv and xvii.

Journal:

1. Some Problems with regard to Faculæ ; ix, 3.
2. The Solar Surface during the Year 1902; xiv, 1.
3. Some Sun-Spot Groups of 1903, October, November ; Magnetic Storms and Auroræ ; xiv, 2.
4. The Stonyhurst Dises for Measuring the Positions of Sun-Spots; xviii, 1 .
5. The Solar Surface in 1908 ; xix, 7.
6. A simple method of measuring the heights of Solar Prominences; xxiv, 1.
7. Notes on the Progressive Spectra of Nova Aquilæ; xxx, 1.

In Nature are to be found frequent references to Father Cortie's work and to his published papers. The following are his own contributions:-

1. The Chromospheric Line $\mathrm{A}^{\circ} \mathbf{6 6 7 6 \cdot 9}$. 1891, Dec. 3, p. 103.
2. A short history of Scientific Education, 1898, Nov. 3; p. 6 .
3. The Absorption of D3 (He) in the Neighbourhood of Sun-Spots; 1908, Jan. 23; p. 281.
4. "Stonyhurst Sun Discs"; 1908, March 19; p. 469.
5. Water Vapour Lines in the Sun-Spot Spectrum; 1909, Feb. 11 ; p. 448.
6. Solar Activity and Magnetic Storms; 1910, Jan. 6 ; p. 293.
7. The New Comet, 1910 a. ; 1910, February 10 ; p. 440.
8. Brilliant Meteor of July 31; 1910, Aug.; p. 204.
9. Photography of Ha during Solar Eclipses; 1912, Jan. 11; p. 349.
10. Errors of the Computed Times of Solar Eclipse Phenomena; 1912, Oct. 17, p. 191.
11. The Total Solar Eclipse Expedition to Hernosand, Sweden ; 1914, Oct. 22, p. 202.
12. The Magnetic Storm and Solar Disturbance of June 17; 1915, June 24, p. 450 ; July 15, p. 537 ; Aug. 5, p. 618.
13. The Aurora Australis of June 17; 1915, Sept. 30, p. 114.
14. The Aurora Borealis of November 5; 1915, Nov. 25, p. 342.
15. The Aurora, Magnetic Storm, and Sun-Spot of Jan. 4, 1917, Feb. 8, p. 446.
16. Pope Innocent VIII and Witchcraft ; 1918, May 2, p. 169.
17. Nova Aquilæ ; 1918, Aug. 22, p. 492.
18. The Magnetic Storm of Aug. 11-12; 1919, Aug. 14, p. 483.
19. A New Astronomical Model ; 1919, Nov. 27, p. 343.
20. Magnetic Storm of March 22-23, and Associsted Phenomena; 1920, April 1, p. 137.
21. The Spectrum of Nova Cygni III; 1920, Sept. 16, p. 79.
22. The Great Sun-Spot Group and Magnetic Disturbances, May 8-21; 1921, June 2, p. 426.
23. Aurora Borealis, Terrestrial Magnetic Disturbances and Sun-Spots; 1921, Oct. 27, p. 272.
24. Terrestrial Magnetic Disturbances and Sun-Spots; 1922, Jan. 12, p. 44.
25. The Influence of Science; 1922, Aug. 5, p. 180 ; Sept. 16, p. 378.
26. The Magnetic Disturbance of March 24-25; 1923, April 21, 534.
27. Astronomy for All-A Review ; 1924, June 21, p. 884.

His obituary appears in 1925, June 6, p. 881.
As President of the Manchester Astronomical Society, he contributed the following papers to the Journal :-

1. The Origin of the Sun and Stars; 1914.
2. On Counting the Stars; No. 2; 1914-15; p. 1.
3. The Colours and the Spectra of the Stars; No. 3; 1915-16; p. 1.
4. The Planetary Relations; No. 4; 1916-17, p. 2.
5. Measuring the Stars ; No. 6; 1922, p. 25.
6. The Work of a Magnetic Observatory ; Ibid., p. 23.
7. Solar Prominences ; Ibid., p. 41.
8. Eistein and Gravitation; The Astronomical Tests; No. 7 ; 1922-24, p. 45.

To The Month, the periodical published by the English Province of the Society of Jesus, he contributed the following articles:-

1. The Eruption of Krakatao ; 1889, March.
2. Some recent Studies on the Solar Spectrum; 1891, August.
3. Babylonian Astronomy ; 1892, April.
4. The Temporary Star in Auriga; 1893, January.
5. The Total Eclipse of the Sun of August 9th; 1896, August.
6. The Attitude of the Church towards Natural Sciences; 1899, September.
7. The November Meteors; 1899, November.
8. The Total Eclipse of the Sun of May 28th, 1900 ; 1900, May.
9. The Sun's Corons ; 1910, October.
10. The System of the Stars; 1912, March.
11. The Origin of the Sun and Stars; 1914, January.
12. On Counting the Stars; 1914, October.
13. The Colour and the Spectra of the Stars; 1916, March.
14. Comets and their Tails; 1916, August.
15. The Relations of Science and Literature in Education ; 1917, January.
16. The Planetary Relations; 1917, June.
17. Gunfire and Rainfall ; 1918, February.
18. The Motion of the Sun in Space ; 1918, June.
19. The Spiral Nebulæ; 1919, March.
20. The Confines of the known Material Universe ; 1921, April.
21. Measuring the Stars; 1922, February.
22. The Origin of the Solar System; 1922, July.
23. The System of the Stars, an Argument from Design ; 1922, September.
24. Does Revelation fetter Science? 1922, December.
25. "Men like Gods "; 1923, September.
26. Science and Men ; 1923, November.
27. Einstein and Gravitation :--The Astronomical Tests; 1924, March.

To the American periodical, America, he contributed :-

1. The Centenary of a Great Astronomer (Secchi); 1918, June 22.
2. Father Secchi's Work; 1918, June 29.

3 and 4. Astronomer and Jesuit, Father Walter Sidgreaves; 1919, September 27, Octoher 4.
5. Galileo again ; 1923, September 15.
6. Measuring the Diameters of the Stars ; 1923, Novem. ber 3.
7. The System of the Planets; 1924, August 16.
8. The System of the Stars; its Dimensions; 1924, October 4.
9. The System of the Stars; its Symmetry; 1924, October 18th.
10. Watching the Stars; 1925, March 14th.

Other articles and papers appeared as follows :-
" What Catholics have done for Astronomy" ; Benziger's Magazine; 1908, January.
" The Maintenance of the Sun's Heat "-Liverpool Astronomical Society, Annual Report, 1908--1909.
"Sun-Spots"-The XIX Century and After; 1903, November.
" The Sun's Corona "-The Rochdale Literary and Scientific Society; 1907; April 10th.
" New Stars "-Knowledge; xxiv, No. 188.
"Solar Surface Disturbances"-Knowledge xxxvii, No. 546, 1.
" The Nature of Sun-Spots"-Science Progress; 1917, October.
" New Stars "—Science Progress ; 1921, April.
" Astronomy in our Schools "-The Chaldæon III, 11.

[^0]After Father Cortie's death Father J. P. Rowland carried on the work of Director until the appointment of the new Director, which took place only in December, 1925.

The Observatory Staff was further much handicapped by sickness, with the result that very little more than routine work was done during the year.

The Meteorological, Magnetic and Seismological Observations have been carried on as usual, and the results forwarded to the official centres.

Father Rowland attended the meeting of the International Astronomical Union at Cambridge, and was nominated a member of the Solar Physics Commission. He has also been elected a member of the Seismological Committee of the British Association.

The Grating Spectrograph has not been in use during the year, owing to the lack of a mirror for the heliostat; the 10 -inch mirror, formerly on loan from the Permanent Eclipse Committee, and the 8 -inch mirror subsequently substituted for it, both having been recalled for use on Eclipse Expeditions.

Meteorological.-The Meteorological continuous records have been uninterrupted during the year. For a description of the instruments and for the values of their constants reference may be made to. our Report for 1920 , pp. v-vii. But the Standard Barometer was restored to its original position, 381 feet above sea level, on 1921, November 10th.

The weather conditions for the year were most varied. A gale of 50 miles an hour ushered in the New Year, and the closing days of December witnessed a similar disturbance. But on the whole the dominating character of the weather was sunny, with $1363 \cdot 7$ hours of bright sunshine on 294 days.- [The greatest number of days in a year on which bright sunshine has been recorded was 300 in 1905, and the least number of hours was $927 \cdot 6$, in 1912.]

Fine day periods of five days or more were recorded as follows :-January 9-14, June 4-11, 1630, July 10-25, August 14--20, October 5-12, November 8-23, December 1-5; that is a total of eight periods, with an average duration of $10 \cdot 1$ days each. It was the sunniest June for the past 26 years, while the rainfall of that month was the least on record-a period of 78 years. November, too, broke all previous records for the number of hours of sunshine, $89 \cdot 9$, giving an average of practically three hours a day, or $35 \cdot 1$ per cent. of the possible.

Bright sunshine for 10 hours or more was registered : one day in March, three days in April, one day in May, 13 days in June, six days in July, two days in August, and one day in September. The days on which was recorded the greatest number of continuous hours of sunshine were:-March 9 ; April 3, 8, 12, 19-21, 23-26; June 1, 5-11, 14, 17, 18, 23-25, 28-30; July 12-14, 19, 24, 25, 30 ; August 11, 15-17; September 3, 4, 10, 24, 27.

The rainfall was below the average by $5 \cdot 280$ inches, though there was precipitation on 215 days.

The wettest months were February, September and October, and the driest were March, June and November.

The greatest fall of rain in 24 hours was on the 10 th of February, when 1.020 inches were registered.

The adopted mean temperature for the year was $46^{\circ} \cdot 8$, slightly below the normal. The highest shade temperature was $83^{\circ} \cdot 5$, on July 22nd ; the lowest was $17^{\circ} \cdot 0$, on December 25th. June, July and August were the warmest months; February, November and December the coldest.

Gales of wind, 37 miles per hour and over, occurred : four in January, one in April, one in October, and one in December. The greatest velocity of the wind was on January 14th and on April 16th, which was registered at 50 miles per hour, in direction S and W. by N. respectively.

Magnetical.-Since the death of Father Cortie, Father Rowland has been responsible for the Magnetic Observations and Reductions. Absolute measures of Horizontal Magnetic Force have been made once each month by the method of Vibration and Deflection. The constants of the magnetometer needles were described in our 1921 Annual Report (p. vii). The Inclination is also measured, once each month, by two needles, with Dover's Circle, No. 159. The Declination is observed four times each month, at nearly equal intervals, and usually at 16 hours. The Differential Instruments, or Photo-Magnetographs, which have been in practically continuous action since the year 1866, are of the Kew Observatory pattern, except that the radial distances between the centres of the magnets and the surfaces of the respective cylinders are somewhat shorter, being 152.4 Cms . The time-scale is provided by cutting off the light every two hours, by means of an electro-magnet actuated from the Synchronome Clock. The scale values of the instruments are as follows:-

For the Unifilar	\ldots	$11 \cdot 28^{\prime}$	per Cm. of Ordinate.
,, Bifilar	\ldots	$\cdot 000496$	C.G.S. ," .,

The Vertical Force Balance does not give sufficiently consistent readings to allow of numerical values being safely quoted, and the interpretation of its record is confined to estimates of greater or less disturbance.

Four daily readings are measured on the curves, the highest, the lowest, and those at the hours 4 and 16.

The absolute measures of Horizontal Direction and Force are corrected by the difference between the curve ordinate at the time of observation and the monthly mean of the four daily readings, according to the rule stated on page xii of our Report, 1908 ; and the month means are taken from the readings on the five quietest days of the month.

The Vertical and Total Forces are deduced from the measures of the Horizontal Force, and the angle of Inclination or Dip.

In the Table of Magnetic Disturbances (page 38) the intention is that a calm (c) shall mean a smooth curve ; small (s) a disturbance noteworthy only as opposed to a calm ; moderate (m) a disturbance not to be neglected for any comparison with other phenomena, solar or terrestrial ; greater (g) a marked disturbance; and very great (v.g.) a decided storm.

Corresponding tabulations are sent quarterly to the Meteorological Institute at De Bilt (Holland), for the International Committee on Terrestrial Magnetism. In these the significant notes are restricted to three0 (quiet), 1 (moderately disturbed), and 2 (highly disturbed). The character figures are assigned according to the scheme detailed in the Annuaire for 1918 of the Royal Dutch Meteorological Institute. From a comparison of these character letters with the figures
published for each day from the central international station at De Bilt for the years 1921，1922，the mean values of the figures corresponding to each letter are $\mathrm{c}-0 \cdot 2$ ，s－0．6，m－0．9，g－1．3，and v．g．－－1．5．The civil day is used for both the international figures and for our own characteristic letters．The rule followed in assigning these letters to denote the magnetic character of a day is as follows ：－．

From the measured ranges of \mathbf{D} and H in minutes of arc on the five quietest days of a month a mean value is obtained of D and H combined．Similarly for each day of the month a mean value in minutes of arc of the range of D and H combined is set down．The excess of this mean daily range over the mean for the five quietest days gives the magnetic character of the day．The following values of the excess are adopted for the table of magnetic disturbances ：－0 to 2 calm， 3 to 7 small， 8 to 15 moderate， 16 to 20 great，above 20 very great．

It follows from the nature of the process that these indications are not absolute，but relative to the mean amount of disturbance on the quiet days．It may happen also that a disturbance is classed as（v．g．）which can hardly claim the rank of a magnetic storm properly so called，and this is the case with every disturbance so classed during the year．

The mean daily ranges of Declination， $7^{\prime} \cdot 8$ for the quiet days，and $13^{\prime} \cdot 0$ for all days．and of Horizontal Force 33 for the quiet days，and 60 for all days（C．G．S． units），shew a decided increase on the corresponding values for 1924．The percentage of magnetically quiet days（c）was 36 ，as against 48 in the preceding year． These figures all shew a general increase in magnetic disturbance corresponding to the increased solar activity with the passage of the spot minimum．

The mean magnetic characters of the various months, derived from the numerical values on the international scale referred to above, of the Stonyhurst letters m, g, v.g., point to September and October as the most magnetically active months, and to February and April as the quietest. The following table exhibits a comparison of the Mean Daily Sunspot Areas with the Mean Daily Magnetic Character (1) including calms and small disturbances; (2) excluding calms and small disturbances $(c-0 \cdot 2, \mathrm{~s}-0 \cdot 6, \mathrm{~m}-0.9, \mathrm{~g}-1 \cdot 3$, and v.g.-1 5 international scale).

MEAN DAILY

SUN SPOT

Too much significance should not be attached to these numerical values of magnetic character, as the system of evaluation cannot be considered entirely satisfactory, as it appears to give an unduly preponderating influence to relatively small disturbances.

The greatest disturbances of the year occurred on June 24-25, September 1-2, and October 23-24, with extreme ranges in D of $41^{\prime}, 46^{\prime}$, and 47^{\prime}, and in H of 238,176 , and 180_{γ} respectively. " Sudden Commencements" were noted on January 16, 19 h .38 m ., 18, 19 h. 48 m., July 9, 4 h. 8 m., August 14, 3 h. 53 m., $22,14 \mathrm{~h} .48 \mathrm{~m} ., 31,16 \mathrm{~h} .16 \mathrm{~m}$. , September $1,17 \mathrm{~h} .46 \mathrm{~m}$., 21,2 h. 16 m., October 1, 3 h. 27 m., November 1, 0 h .42 m .

Astronomical Time Service.-The time service of the Observatory is under the charge of Father Row. land. His report is as follows :--

The radio time signals from the Eiffel Tower have been taken regularly throughout the year and the errors and rates of the siderial and mean time clocks and chronometers determined from them. Time marks are made by the Synchronome Clock every minute on the Milne-Shaw Seismograph, and every two hours on the Magnetographs, the operation having been quite satisfactory throughout the year.

Solar Observations.-Observations of the solar surface were made on 253 days, and include 251 drawings. Of these drawings 211 are complete, and show all spots and faculæ ; of the remaining 40,33 are complete for the spots, two are only approximate, and five incomplete.

The mean daily disc area of the spots (in units of $1 / 5000$ th of the visible surface), stands at $3 \cdot 53$, as compared with 1.36 in 1924, and 0.37 in 1923 .

The following table shows the distribution of spot-groups in the hemispheres, with their maximum
areas and the number of spotless days observed. It will be seen from this table that the sun-spot activity has shown a marked increase during the year, particularly so during the last month. It will also be noticed that the Northern Hemisphere was considerably more disturbed than the Southern.

Month	Northern Hemisphere		Southern Hemisphere		Spotless days observed	Sum. of Max'm Areas
	No. of Groups	Max'm Area	No. of Groups	Max'm Areas		
January	2	$0 \cdot 6$	1	$0 \cdot 1$	16	$0 \cdot 7$
February	9	$5 \cdot 1$	6	$6 \cdot 3$	7	11.4
March	4	$5 \cdot 3$	3	$2 \cdot 8$	-	$8 \cdot 1$
April .	15	$14 \cdot 7$	5	$2 \cdot 9$	--	$17 \cdot 6$
May	9	$15 \cdot 8$	7	$2 \cdot 5$	--	18.3
June	9	$5 \cdot 7$	10	6.7*	2	12.4
July	11	$8 \cdot 0$	7	11.1	1	19.1
August	11	$9 \cdot 4$	6	$3 \cdot 6$	3	13.0
September ..	11	$10 \cdot 2$	11	$6 \cdot 8$	-	17.0
October	11	9.7	9	$17 \cdot 1$	--	26.8
November.	15	$25 \cdot 3$	7	14.4	-	$39 \cdot 7$
December	17	51.8	12	$31 \cdot 1$	-	$82 \cdot 9$
Total	124	$161 \cdot 6$	84	$105 \cdot 4$	29	$267 \cdot 0$

On pages 40 to 45 will be found the Sun-spot Statistics for the year, including the mean " types" of the various groups.

Whereas in 1924 only 71 groups were recorded, in 1925 the number totalled 208. In consequence of this large increase, it has not been thought advisable to continue the record of "Disturbed Sun-spot Areas" started in 1923. Nor would the record convey infor-
mation of much use. The following points, however, are worthy of note :-

1. The Spots during the year were distributed almost entirely along the belts, Latitude $+10^{\circ}$ to $+28^{\circ}$, and -11° to -30°. The only exceptions were :-

Group No.	Mean. Lat.	Mean I.ong.	Max. Area	Date
270	$+8.8$	$344 \cdot 2$	$0 \cdot 5$	Feb. 7-14
337	+ 9.5	$52 \cdot 0$	0.1	June 22-23
368	-5.2	$96 \cdot 9$	$0 \cdot 0$	Aug. 11
290	$+30 \cdot 3$	$230 \cdot 2$	$0 \cdot 2$	April 6-13
312	$+33 \cdot 6$	$144 \cdot 1$	$2 \cdot 0$	May 17-22
333	$+30 \cdot 6$	211.0	0.9	June 9-13
378	+31.2	$238 \cdot 0$	$0 \cdot 1$	Sept. 1
469	$+37 \cdot 9$	$353 \cdot 8$	$0 \cdot 2$	Dec. 31
266	-32.8	$88 \cdot 5$	$0 \cdot 2$	Feb. 1
271	$-32 \cdot 3$	$339 \cdot 7$	$0 \cdot 0$	Feb. 7
273	-30.7	271-3	1.2	Feb. 12-16
288	-32.0	$287 \cdot 9$	$0 \cdot 2$	April 3-6
335	$-34 \cdot 8$	$194 \cdot 8$	$0 \cdot 7$	June 13-14
341	$-35 \cdot 0$	$191 \cdot 1$	$0 \cdot 3$	July 1-5
396	$-32 \cdot 6$	$218 \cdot 0$	$1 \cdot 4$	Sept. 18-27
435	$-30 \cdot 4$	$106 \cdot 2$	$0 \cdot 2$	Nov. 20-27

2. In Longitude, the less disturbed areas in the Southern Hemisphere for the most part corresponded to the more disturbed areas in the Northern Hemisphere, and vice versa. This is well shown in the accompanying Table. It will be noted that in the Section 70° to 90° the actual area disturbed in the Southern Hemisphere is greater than that in the Northern Hemisphere, although the number of groups is much fewer. This is due to the great group No. 465 [mean lat. $-20^{\circ} \cdot 0$, mean long. $77^{\circ} \cdot 9$, max. area $18 \cdot 5$], recorded between Dec. 23rd and 31st.
XXIX.

Longitude	Southern Hemisphere		Northern Hemisphere	
	No. of Groups	Max. Area	No. of Groups	Max. Area
$0^{\circ}-12^{\circ}$	3	$0 \cdot 8$	0	$0 \cdot 0$
$12^{\circ}-26^{\circ}$	3	$0 \cdot 4$	10	$1 \cdot 7$
$26^{\circ}-48^{\circ}$	5	1.0	11	$27 \cdot 6$
$48^{\circ}-70^{\circ}$	0	$0 \cdot 0$	12	$12 \cdot 4$
$70^{\circ}-90^{\circ}$	3	$19 \cdot 1$	12	11.4
$90^{\circ}-112^{\circ}$	10	$8 \cdot 4$	4	$6 \cdot 8$
$112^{\circ}-140^{\circ}$	2	$0 \cdot 2$	8	$20 \cdot 8$
$140^{\circ}-151^{\circ}$	3	$0 \cdot 7$	3	$4 \cdot 5$
$151^{\circ}-161^{\circ}$	0	$0 \cdot 0$	6	$4 \cdot 1$
$161^{\circ}-173^{\circ}$	6	$4 \cdot 4$	1	$0 \cdot 1$
$173^{\circ}-190^{\circ}$	4	$0 \cdot 6$	5	$7 \cdot 8$
$190^{\circ}-215^{\circ}$	6	$6 \cdot 3$	12	28.8
$215^{\circ}-230^{\circ}$	11	21.0	0	$0 \cdot 0$
$230^{\circ}-250^{\circ}$	5	$2 \cdot 3$	8	$5 \cdot 9$
$250^{\circ}-270^{\circ}$	8	$15 \cdot 9$	5	$5 \cdot 7$
$270^{\circ}-290^{\circ}$	7	$15 \cdot 0$	6	$10 \cdot 8$
$290^{\circ}-308^{\circ}$	2	$0 \cdot 1$	3	$1 \cdot 2$
$308^{\circ}-320^{\circ}$	4	$1 \cdot 1$	1	. 9
$320^{\circ}-328^{\circ}$	0	$0 \cdot 0$	2	$1 \cdot 2$
$328^{\circ}-344^{\circ} \cdot 2$	4	1.7	0	$0 \cdot 0$
$344^{\circ} \cdot 2-360$	1	$0 \cdot 6$	4	$4 \cdot 6$

3. It will also be noted from the Table that the least disturbed sections are from 140° to 190°, and especially from 290° to 12° Longitude.
4. The Mean Latitude for the year is $+20^{\circ}$, in the Northern Hemisphere; and -21°, in the Southern.

In the Southern Hemisphere the groups are fairly evenly distributed about the Mean Latitude. In the Northern Latitude this is also the case between

Longitudes 10° to 90°, and 300° to 360°. Between 90° and 300° the preponderance is alternately in excess and in defect of the Mean. Thus :-

In excess, between Longitudes $90^{\circ}-120^{\circ}, 160^{\circ}-260^{\circ}$. In defect, between Longitudes $120^{\circ}-160^{\circ}, 260^{\circ}-300^{\circ}$.

Seismological.-Father Rowland reports:-The Milne-Shaw seismograph has been in service throughout the year. A few records were lost through light failure and minor instrumental defects. The trouble due to instability of the site, which was referred to in our Report for 1924, resulting in entanglement of the lines of the record, has not been eliminated, as was hoped, by the repairs to the retaining walls of the round pond in front of the Observatory. It is now clear that this instability is to be attributed primarily to unequal temperature changes, due to the different effects of sunshine on the East and West sides of the Observatory. During the summer months a good many records suffer at certain times of the day from this defect, but fortunately not many earthquake records have been involved in the illegible portions of the trace.

The number of Earthquakes recorded during the year was 55, or little more than half the number of the previous year. They were distributed as follows:-

$$
\begin{aligned}
& \text { Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec. Total. } \\
& \begin{array}{lllllllllllll}
6 & 9 & 9 & 4 & 16 & 9 & 4 & 6 & 4 & 4 & 6 & 2 & 55
\end{array}
\end{aligned}
$$

The most notable of these were on March lst (Eastern Canada), April 16th (China), June 28th (China Sea), October 13th (N. Atlantic), November 13th (Philippine Isles), December 10th (Central America). None of them was of more than moderate intensity on our records,
but that of March 1st, which shook a large area in Eastern Canada and the United States, including New York, and did considerable damage along the banks of the St. Lawrence, aroused considerable public interest in this country. A small British Earthquake (Cornwall) was recorded on February list.

Our grateful thanks are tendered to the Governments, Institutions, Observatories, and individuals who have kindly contributed presentations to the Library during the year.

FEBRUARY, 1925.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Ground Frost on the lst, 7th, 8th, 10th, 12th-16th, 19th28th. Hoar Frost on the 20th, 22nd and 24th. Snow on the 6th, 9th, 11th, 14th, 19th, 23rd and 24th. Hail on the 6th, 9th, 12th, 19th, and 23rd. Heavy Rain on the 5th, 9th, 10th and 11th. Fog on the 14th and 23nd. Thunder on the 6th and 11th. Lightning on the 6th and 23rd. Solar Halo on the 14th.

EXTREME READINGS FOR FEBRUARY,

During 78 Years.

Highest reading of Barometer	1902 (lat)	30-476 in.
Loweat	1900 (19th) $27 \cdot 870$ in.
Highest temperature ...	1877 (8th)	58.3°
Lowest	1902 (11th)	$5 \cdot 0^{\circ}$
Highest adopted mean temperature	1869	$44.0{ }^{\circ}$
Lowest	1855	$28.6{ }^{\circ}$
Greatest fall of rain	1848	8.882 in.
Least	1858	$0 \cdot 306 \mathrm{in}$.
Greatest fall of rain in one day	1909 (3rd)	2.000 in
Greatest No. of days on which . 005 or more rain fell	1910	27
Least	1855	. 4
*Greatest hourly velocity of wind...	1903 (27th)	60 mls .
*Greatest No. of miles registered ...	1868	12577
*Least \quad,	1917	3160

MARCH, 1925.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	$+$	0.282 in.
Monthly range ,"	\ldots	\ldots	\ldots	-	0.356 in.
Mean of highest daily temperatures		\ldots	\ldots	-	1.7°
Mean of lowest	"	\cdots	\cdots	$+$	$0 \cdot 7^{\circ}$
Mean daily range ...	\ldots	\ldots	\ldots	-	$2.4{ }^{\circ}$
Adopted mean temperatur			\ldots		$0 \cdot 0^{\circ}$
Total rainfall	-	-	1.205 in

Ground Frost on the 1st, 3rd-5th, 8th-13th, 21st-23rd, and 25 th -28 th. Snow on the 8 th- 10 th, 12 th, 20 th, 21 st, 23rd, and 24th-26th. Hail on the 7th-10th, 13th, 24th and 25th. Fog on the 15th, 16 th, 18th, and 19th. Thunder on the 25th. Lightning on thr 25th. Lunar Halo on the 11 th.

EXTREME READINGS FOR MARCH,

During 78 Years.

Higheet reading of Barometer	1854 (4th)	$30 \cdot 452$ in.
Lowest	1876 (10th)	$28 \cdot 100$ in.
Higheat temperature	1871 (25th)	68.0°
Lowest	1874 (10th)	11.1°
Highest adopted mean temperature	1920	$44 \cdot{ }^{\circ}$
Lowest	1883	$34.4{ }^{\circ}$
Greatest fall of rain	1912	$7 \cdot 205$ in.
Leart	1852	0.352 in.
Greatest fall of rain in one day ...	1898 (17th)	$1 \cdot 540 \mathrm{in}$.
Greatest No. of days on which		
. 005 in. or more rain fell ...	$\dagger 1861$	28
Least	1852	3
*Greatest hourly velocity of wind	1905 (15th)	57 mls .
*Greatest No. of miles registered ...	1903	12773
*Least	1892	5725

[^1]
APRIL, 1925.

DIFFERENCES.

The signs + and - mean respentively above and below the Monthly average.

Mean barometric pressure	\ldots	\ldots	\ldots	-	0.097 in .
Monthly range	\ldots	...	\ldots	-	$0 \cdot 128$ in.
Mean of highest daily temper	ratures	-	$4 \cdot 1^{\circ}$
Mean of lowest	,.	\ldots	\ldots	$+$	$0 \cdot 6{ }^{\circ}$
Mean daily range	\ldots	-	$4.7{ }^{\circ}$
Adopted mean temperature		-	$0 \cdot 7^{\circ}$
Total rainfall				+	$0 \cdot 167 \mathrm{in}$.

Ground Frost on the 3rd, 4th, 13th, 20th, 21st, 25th, 26th, 29th, a:ad 30th. Hail on the 15th, 23rd, 26th, 28th, and 30th. Heavy liain on the 22nd. Gale of Wind on the 16th. Thunder on the Tib, 8th, 15 th, 26 th and 28 th. Lightning on the 7th, 8 th, 15 th, and 26th. Lunar Halo on the 1st and 3rd. Solar Halo on the 14th.

EXTREME READINGS FOR APRIL, During 78 Years.

Highest reading of Barometer	1906 (8th)	$\ldots30 \cdot 317$ in.
Lowest	1919 (14th)	$28 \cdot 250 \mathrm{in}$.
Highest temperature	1852 (14th)	$74.1{ }^{\circ}$
Lowest	1917 (2nd)	$13 \cdot{ }^{\circ}$
Highest adopted mean temperature	1865	$48.5{ }^{\circ}$
Lowest	1917	$39.8{ }^{\circ}$
Greatest fall of rain	1867	$5 \cdot 672 \mathrm{in}$.
Least	1852	$0 \cdot 478$ in.
Cireatest fall of rain in one day ...	1923 (12th)	$1 \cdot 260$ in.
Greatest No. of days on which		
Least , , , ,	1852	4
*Greatest hourly velocity of wind..	1911 (19th)	53 mls .
*Greatest No. of miles registered ...	1904	11016
*Least ., ., ., ...	1884	5047

MAY, 1925.					
DIFFERENCES.					
The signs + and - mean respectively above and below the Monthly average.					
Mean barometric pressure	..	\ldots	...	-	0.216 in .
Monthly range	\ldots			$+$	0.061 in .
Mean of highest daily temp	ratures	...		-	$1 \cdot 2^{\circ}$
Mean of lowest	,"		.	$+$	$2 \cdot 7{ }^{\circ}$
Mean daily range		-	$3.9{ }^{\circ}$
Adopted mean temperature	...	\cdots		+	$0 \cdot 7^{\circ}$
Total rainfall	\ldots	$+$	1.744 in .

Ground Frost on the lst. Hail on the 28th and 30th. Heavy Rain on the 8th and 23 rd . Thunder on the 7th, 18th, 19th, 25th, 28 th, and 30 th. Lightning on the 7 th, 18th, 19th, 28th, and 30th. Solar Halo on the 22nd.

EXTREME READINGS FOR MAY,

During 78 Years.

Highest reading of Barometer	1881 (10th)	in.
Lowest	1887 (28th)	59 in.
Highest temperature	1864 (19th)	$82.5{ }^{\circ}$
Lowest	1855 (4th)	$23.5{ }^{\circ}$
Highest adopted mean temperature	1848	$55.1{ }^{\circ}$
Lowest	1855	45.0°
Greatest fall of rain	1924	765 in.
Least	1859	249
Greatest fall of rain in one day ...	1881 (5th)	64
Greatest No. of days on which . 005 in. or more rain fell		22
Least	$\dagger 1848$	4
*Greatest hourly velocity of wind...	1888 (2nd)	49
*Greatest No. of miles registered ...	1888	9648
* Least	1918	5113

JUNE, 1925.								
Results of Observations taken during the Month.								$\begin{aligned} & \text { for } \\ & \text { last } \\ & \text { ears. } \end{aligned}$
Mean Reading of the Barometer inches 29.714 29.564								
Highest " ", on the 10th ... ", 30.024 29.								
Lowest ," ", on the 21st ... ," 29.495 29.								
Range of Barometer Readings ," 0.529 0.88								
Highest Reading of a Max. Therm. on the l0th... $80.5 \quad 76 \cdot 7$								
Lowest Reading of a Min. Therm. on the 22nd								
Range of Thermometer Readings 37.1 37								
Mean of Highest Daily Readings 66.								
Mean of Lowest Daily Readings 49.								
Mean Daily Range 16.6 16.9								
Deduced Mean Temp. (from mean of Max. and Min.)								
Mean Temperature from Dry Bulb								
Adopted Mean Temperature 57.0 55								
Mean Temperature of Evaporation 52.6 51.8								
Mean Temperature of Dew Point 48.5 48.3								
Mean elastic force of Vapour inches 0.341 0.347								
Mean weight of Vapour in a cub, ft, of air, grains 3.8 3.8								
Mean additional weight required for saturation ,, 1.								
Mean degree of Humidity (saturation 100)								
Mean weight of a cubic foot of air grains $532 \cdot 1$ 531.4								
Fall of Rain inches $0.282 \quad \mathbf{3 . 2 6 0}$								
Greatest Rainfall in one day (3rd) $\ldots . . .$. ". 0.200 0.801 No. of days on which $\cdot 005$ in. or more Rain fell... 5 15.0								
Wind :-Direction \qquad No. of days. \qquad	N	NE	E	SE	S	sw	w	NW
	4	4	0	0	1	3	14	4
Mean Velocity in miles per hr .	$6 \cdot 4$	$4 \cdot 5$	0	0	$3 \cdot 5$	$5 \cdot 9$	$7 \cdot 3$	$5 \cdot 0$
Total No. of miles...............	615	433	0	0	85	425	2462	835
Total No. of miles registered \qquad 4855 Greatest hourly velocity (on the lst, Dir. W.S.W.). \qquad								an*
								$7 \cdot 2$
								$9 \cdot 1$

JUNE, 1925.					
DIFFERENCES.					
The signs + and - mean respectively above and below the Monthly average.					
Mean barometric pressure + 0.150 in.					
$\begin{array}{llllll}\text { Monthly range } \quad . . . & \cdots & 0.355 \text { in }\end{array}$					
Mean of lowest , , + 1.7 ${ }^{\circ}$					
Mean daily range					
Adopted mean temperature $+\quad 1 \cdot 9^{\circ}$					
Total rainfall - 2.978 in .					
The driest month of June on record. Thunder on the 12th. Fog on the 19th. Solar Halo on the 28th.					
EXTREME READINGS FOR					
During 78 Years.					
Highest reading of Barometer ... 1874 (15th)30.219 in.					
Lowest ", ., ... 1862 (12th)28•632 in.					
Highest temperature 1893 (18th) 88.7"					
Lowest ., 1902 (9th) 32.00					
Highest adopted mean temperature 1896 $59 \cdot 3^{\circ}$					
Lowest , , 1907 51.5°					
Greatest fall of rain 1907 8.705 in.					
Least ", 1925 0.282 in.					
Greatest fall of rain in one day ... 1857 (8th) 2.093 in .					
Greatest No. of days on which					
.005 in. or more rain fell ... $\dagger 1907$					
Least ,, ,, ,, 1887					
*Greatest hourly velocity of wind... 1897 (16th) 45 mls .					
*Greatest No. of miles registered ... 1877 8384					
*Least , ,		1915			3967

JULY, 1925.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	-	0.024 in .
Monthly range	\cdots	...	\cdots	+	$0 \cdot 026$ in.
Mean of highest daily temperatures		$+$	$1 \cdot 7^{\circ}$
Mean of lowest ,"	"	$+$	$3 \cdot 1{ }^{\circ}$
Mean daily range	-	$1.4{ }^{\circ}$
Adopted mean temperature			...	+	$1 \cdot 6{ }^{\circ}$
Total rainfall			...	-	1.511 in .

Heavy Rain on the 25th and 29th. Thunder on the 17th, 22nd, 25th, 26th and 27th. Lightning on the 22nd, 25th and 26th.

EXTREME READINGS FOR JULY,

During 78 Years.

Highest reading of Barometer	1911 (130-203 in
Lowest	1922 (6th)	28.493 in.
Highest temperature	1901 (20th)	$89.0{ }^{\circ}$
Lowest	1857 (1st)	$36.0{ }^{\circ}$
Highest adopted mean temperature	1901	$63.2{ }^{\circ}$
Lowest	1922	54.0°
Greatest fall of rain	1888	$8 \cdot 475 \mathrm{in}$.
Least	1868	669 in .
Greatest fall of rain in one day	1888 (2nd)	482
Greatest No. of days on which		
. 005 in. or more rain fell ...	$\dagger 1920$	28
Least	$\dagger 1863$	8
*Greatest hourly velocity of.wind..	1892 (8th)	44 m
*Greatest No. of miles registered ...	1879	8288
*Least	1913	4577

AUGUST, 1925.								
Results of Observations taken during the Month.								n for last years.
Mean Reading of the Barometer inches 29.521								492
Highest ", \quad on 30th				"	30	0-188		892
Lowest " " on the 2				,		$9 \cdot 127$. 944
Range of Barometer Readings				"		I. 061		948
Highest Reading of a Max. Therm. on the 7th \& 9th						$68 \cdot 0$		$76 \cdot 0$
Lowest Reading of a Min. Therm. on the 26th...						$42 \cdot 6$		41.9
Range of Thermometer Readings						$25 \cdot 4$		$34 \cdot 1$
Mean of Highest Daily Readings						$64 \cdot 3$		$66 \cdot 3$
Mean of Lowest Daily Readings						$52 \cdot 7$		$50 \cdot 8$
Mean Daily Range						$11 \cdot 6$		$5 \cdot 5$
Deduced Mean Temp. (from mean of Max. and Min.)						$56 \cdot 8$		$5 \cdot 9$
Mean Temperature from Dry Bulb						$58 \cdot 6$		$57 \cdot 7$
Adopted Mean Temperature						$57 \cdot 7$		$5 \cdot 3$
Mean Temperature of Evaporation						$55 \cdot 4$		$54 \cdot 4$
Mean Temperature of Dew Point						$53 \cdot 3$		$1 \cdot 8$
Mean elastic force of Vapour						$0 \cdot 408$		387
Mean weight of Vapour in a cub. ft. of air, grains						$4 \cdot 6$		$4 \cdot 3$
Mean additional weight required for saturation ,,						$0 \cdot 8$		$0 \cdot 9$
Mean degree of Humidity (saturation 100)						85		82
Mean weight of a cubic foot of air grains						$527 \cdot 5$		$7 \cdot 4$
Mean amount of Cloud (0-10)						$7 \cdot 6$		$7 \cdot 3$
Fall of Rain inches						$3 \cdot 965$		061
Greatest Rainfall in one day (21st) ,						$0 \cdot 567$		064
No. of days on which - 005 in. or more Rain fell...					22		$18 \cdot 6$	
Wind :-Direction	N	NE	E	SE	S	SW	W	NW
No. of days.......................	4	2	3	0	2	4	15	1
Mean Velocity in miles per hr .	. 0	$4 \cdot 9$	4.7	0	$12 \cdot 6$	6 4.5	$8 \cdot 6$	$4 \cdot 2$
Total No. of miles...	384	234	335	0	607	7427	3097	104
(. ${ }^{\text {c }}$ (Mean*								
Total No. of miles registered \qquad Greatest hourly velocity (on the l2th, Dir. S. by W.) \qquad					5188		$6324 \cdot 9$	
						24		$0 \cdot 7$

AUGUST, 1925.

DIFFERENCES.

Heavy Rain on the 21st and 26th. Thunder on the 5th, 10th, 20th, 21st, 23rd and 24th. Lightning on the 10th, 20th, and 23rd.

EXTREME READINGS FOR AUGUST,

During 78 Years.

Highest reading of Barometer	1874 (21st)30-114 in.
Lowest	1917 (28th)	$28 \cdot 156$ in.
Highest temperature	1868 (2nd)	$88.0{ }^{\circ}$
Lowest	1887 (13th)	$33.4{ }^{\circ}$
Highest adopted mean temperature	1911	$62 \cdot{ }^{\circ}$
Lowest	1848	$52.5{ }^{\circ}$
Greatest fall of rain	1891	$9 \cdot 869$ in
Least	1871	88
Greatest fall of rain in one day ...	1857 (7th)	333 in
Greatest No. of days on which		
. 005 in . or more rain fell	1891	27
Least	1880	. 6
*Greatest hourly velocity of wind...	1903 (31st)	45 ml
*Greatest No. of miles registered ...	1903	8486
*Least	1915	3918

SEPTEMBER, 1925.								
Results of Observations taken during the Month.								tean for he lest 8 year.
Mean Reading of the Barometer				nches		9.499		29.541
Highest ," on	e 30th					9.953		30.006
Lowest ", ", on th	e 22 n					8.7.20		28.885
Range of Barometer Readings						$1 \cdot 233$		$1 \cdot 121$
Highest Reading of a Max. Therm. on the 15th..						$62 \cdot 3$		71.
Lowest Reading of a Min. Therm. on the 10th \& 13th						$39 \cdot 4$		$36 \cdot 7$
Range of Thermometer Readings						$22 \cdot 9$		35.0
Mean of Highest Daily Readings						56.8		61
Mean of Lowest Daily Readings						45.5		47.3
Mean Daily Range						$11 \cdot 3$		$14 \cdot 5$
Deduced Mean Temp. (from mean of Max. and Min.)						49.9		53.3
Mean Temperature from Dry Bulb						51.9		54.
Adopted Mean Temperature						$50 \cdot 9$		53.8
Mean Temperature of Evaporation						$48 \cdot 4$		$51 \cdot 0$
Mean Temperature of Dew Point						$45 \cdot 6$		48
Mean elastic force of Vapour inches						$0 \cdot 309$		$0 \cdot 339$
Mean weight of Vapour in a cub. ft. of air, grains						$3 \cdot 5$		3.9
Mean additional weight required for saturation,.						$0 \cdot 7$		$0 \cdot 8$
Mean degree of Humidity (saturation 100)						84		82
Mean weight of a cubic foot of air grains						$535 \cdot 8$		$532 \cdot 6$
Mean amount of Cloud (0-10)						$7 \cdot 1$		$6 \cdot 7$
Fall of Rain inches						$4 \cdot 572$		$4 \cdot 323$
Greatest Rainfall in one day (19th), No. of days on which - 005 in . or more Rain fell...						- 754		$0 \cdot 960$
						23		16.6
Wind :-Direction No. of days \qquad	N	NE	E	SE	s	sw	w	NW
		0	0	1	3	5	12	4
Mean Velocity in miles per hr.		0	0	$5 \cdot 6$	$9 \cdot 2$	$6 \cdot 6$	$10 \cdot 0$	010
Total No. of miles..............		0	0	134	664	795	287	100
							Mean*	
							6083.3	
								31.9

SEPTEMBER, 1925.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	\ldots	...	\ldots	-	$0 \cdot 042$ in.
Monthly range ",	\ldots	...	\ldots	$+$	$0 \cdot 112 \mathrm{in}$.
Mean of highest daily temperatures		\cdots	\ldots	-	$5 \cdot 0^{\circ}$
Mean of lowest	,	-	$1.8{ }^{\circ}$
Mean daily range	\ldots	...	-	$2 \cdot 2^{\circ}$
Adopted mean temperature	...	\cdots	...	-	$2 \cdot{ }^{\circ}$
Total rainfall	$+$	$0 \cdot 250$ in.

Hail on the 20th. Heavy Rain on the 12th, 19th, 22nd, 23rd, and 24th. Fog on the 28th and 30th. Thunder on the 15th. Lightning on the 9th. Solar Halo on the 20th.

EXTREME READINGS FOR SEPTEMBER,

During 78 Years.

Highest reading of Barometer	1851 (15th)	$30 \cdot 247$ in.
Lowest	1918 (23rd)	28-210 in.
Highest temperature	1868 (6th)	85.0°
Lowest	$\dagger 1885$ (25th)	$29.8{ }^{\circ}$
Highest adopted mean temperature	1865	59.1°
Lowest	1863	$50 \cdot 9^{\circ}$
Greatest fall of rain	1918	12.620 in.
Least	1910	$0 \cdot 652$ in.
Greatest fall of rain in one day	1889 (26th)	$2 \cdot 060$ in.
Greatest No. of days on which . 005 in. or more rain fell	1918	29
Least	$\dagger 1851$	6
*Greatest hourly velocity of wind..	1875 (26th)	53 ml
*Greatest No. of miles registered...	1869	9053
*Least	1888	3261

OCTOBER, 1925.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	-	0.001 in .
Monthly range	\ldots	$+$	0.592 in .
Mean of highest daily tempe	res	\ldots	...	$+$	$0 \cdot{ }^{\circ}$
Mean of lowest		\ldots	...	+	$1.7{ }^{\circ}$
Mean daily range	\ldots	...	-	$1.6{ }^{\circ}$
Adopted mean temperature	...	\ldots	...	$+$	1.0°
Total rainfall	$+$	$0 \cdot 651$ in.

Ground Frost on the 9th, 10th and 14th. Heavy Rain on the 12th, 19th, 22nd, 23rd and 24th. Gale of Wind on the 26th. Fog on the 1st, 2dd, 5th, 6th, 10th and 31st. Aurora Borealis on the 9 th and 21st.

EXTREME READINGS FOR OCTOBER,

During 78 Years.

[^2]
NOVEMBER, 1925.

DIFFERENCES.

The signs + and - mean respectively above and below the MONtHLy average.

Mean barometric pressure	$+$	0.095 in.
Monthly range ",	\cdots	-	$0 \cdot 230$ in.
Mean of highest daily temp	ratures	\cdots	...	-	$4 \cdot 9^{\circ}$
Mean of lowest	,	-	$5 \cdot 1^{\circ}$
Mean daily range	$+$	$0 \cdot 2^{\circ}$
Adopted mean temperatur	-	$5 \cdot 0^{\circ}$
Total rainfall	-	1.866 in

Hoar and Ground Frost, 9th-17th and 19th to 30 th. Thunder on the 4th. Hail on the 27th. Snow on the 29th and 30th, Lunar Halo on the 25th. Fog on the 14th, 20th and 21st.

EXTREME READINGS FOR NOVEMBER, During 78 Years.

Highest reading of Barometer	1922 (15th)	30-375 in.
Lowest	1891 (11th)27-938 in.
Highest temperature	1900 (lst)	$62.4{ }^{\circ}$
Lowest	1901 (15th)	$17.5{ }^{\circ}$
Highest adopted mean temperature	$\dagger 1881$	$47 \cdot 0^{\circ}$
Lowest	1915	$36.3{ }^{\circ}$
Greatest fall of rain	1866	$9 \cdot 026$ in.
Least	1855	1.158 in.
Greatest fall of rain in one day	1866 (16th)	3.700 in.
Greatest No. of days on which		
. 005 in. or more rain fell	1913	28
Least ", ",	1848	6
*Greatest hourly velocity of wind...	1887 (lst)	62 ml
*Greatest No. of miles registered....	1888	12813
*Least ., ". .,	1915	4893

DECEMBER, 1925.								
Results of Observations taken during the Month.								
Mean Reading of the Barometer				ches		-265		427
Highest ", ,, on	4th					-122		058
Lowest ", ," on th	20th					- 274		532
Range of Barometer Reading						1-848		526
Highest Reading of a Max. Therm. on the			e 29	th...		53.8		2
Lowest Reading of a Min. Therm. on the			e 25	th...		17.0		21.5
Range of Thermometer Readings						36.8		3
Mean of Highest Daily Readings						$40 \cdot 7$		$43 \cdot 5$
Mean of Lowest Daily Readings						$30 \cdot 7$		33.8
Mean Daily Range						$10 \cdot 0$		9.7
Deduced Mean Temp. (from mean of			,	Min.)		$35 \cdot 7$		38.7
Mean Temperature from Dry Bulb						$36 \cdot 7$		$39 \cdot 3$
Adopted Mean Temperature						$36 \cdot 2$		$39 \cdot 0$
Mean Temperature of Evaporation						$35 \cdot 0$		37.4
Mean Temperature of Dew Point						$33 \cdot 2$		$35 \cdot 4$
Mean elastic force of Vapour inches						0.191		209
Mean weight of Vapour in a cub. ft. of air, grains						$2 \cdot 2$		$2 \cdot 4$
Mean additional weight required for saturation .,						$0 \cdot 3$		$0 \cdot 4$
Mean degree of Humidity (saturation 100)						89		87
Mean weight of a cubic foot of air grains						$547 \cdot 0$		$46 \cdot 8$
Mean amount of Cloud (0-10)						$7 \cdot 0$		$7 \cdot 7$
Fall of Rain inches						$4 \cdot 395$		742
Greatest Rainfall in one day (28th)						0.885		853
No. of days on which -005 in. or more Rain fell...						20		$20 \cdot 2$
Wind :-Direction................ No. of days \qquad	N	NE	E	SE	s	sw	w	
	7	4	0	2		7	7	2
Mean Velocity in miles per hr.		$7 \cdot 2$	0	$3 \cdot 7$	15.9	$915 \cdot 3$	$14 \cdot 3$	3
Total No. of miles		689	0	176	761		2	184
								ean
Total No. of miles registered								54.7
Greatest hourly velocity (on the 30 th, at 10 p.m., Dir. W.S.W.) \qquad						44		42.1

DECEMBER, 1925.

DIFFERENCES.

The signs + and - mean respectively above and below the Monthly average.

Mean barometric pressure	...	\ldots	...	-	$0 \cdot 162 \mathrm{in}$.
Monthly range	\ldots	\ldots		$+$	0.322 in .
Mean of highest daily temp		...		-	$2 \cdot 8^{\circ}$
Mean of lowest		-	$3 \cdot{ }^{\circ}$
Mean daily range ...	\cdots	$+$	$0 \cdot 3^{\circ}$
Adopted mean temperature	-	$2 \cdot 8^{\circ}$
Total rainfall					- 347

Ground Frost, 1st-7th, 11th-17th, and 19th-26th. Hoar Frost on the 4th, 5th, 12th and 14th. Snow on the 13th, 15th, 19th, 21st, 22nd-26th. Hail on the 9th and 30th. Heavy Rain on the 9 th and 28th. Gale on the 30th. Fog on the 4 th. Thunder on the 9 th and 30 th. Lightning on the 9 th and 30th. Lunar Halo on the 23rd.

Fuimmary of Observations, 1925.

Results of Observations taken during the Year.		Mean for the last 78 Years.
Readings of Barometer in inches.		
Mean of the Year	$29 \cdot 476$	$29 \cdot 493$
Highest Monthly Mean (March)	$29 \cdot 734$	$29 \cdot 742$
Lowest ," ," (February)	$29 \cdot 109$	$29 \cdot 225$
Highest Reading (January 19th)	$30 \cdot 269$	$30 \cdot 290$
Lowest , (February 26th)	$28 \cdot 112$	$28 \cdot 208$
Range	$2 \cdot 157$	$2 \cdot 032$
Thermometer, Fahrenheit.		
Highest Monthly Mean Temperature (July)	$69 \cdot 0$	$58 \cdot 6$
Lowest " , ", (December)..	$30 \cdot 7$	$35 \cdot 7$
Highest Reading of a Max. Therm. (July 22nd) ...	$83 \cdot 5$	$81 \cdot 3$
Lowest ", Min. ", (December 25)	$17 \cdot 0$	$16 \cdot 3$
Range of Thermometer Readings	$66 \cdot 5$	$65 \cdot 0$
Mean of Highest Daily	$53 \cdot 1$	$54 \cdot 4$
Mean of Lowest Daily	$41 \cdot 5$	$41 \cdot 0$
Mean Daily Range	$11 \cdot 6$	$13 \cdot 4$
Deduced Mean Temp. (from Mean of Max. and Min.)	$46 \cdot 2$	$46 \cdot 7$
Mean Temperature from Dry Bulb.....................	$47 \cdot 3$	$47 \cdot 1$
Adopted Mean Temperature of the Year	$46 \cdot 8$	$47 \cdot 0$
Mean Temperature of Evaporation	$44 \cdot 5$	$44 \cdot 6$
Mean Temperature of Dew Point	$42 \cdot 0$	$42 \cdot 1$
Mean elastic force of Vapour inches	$0 \cdot 277$	0.274
Mean weight of Vapour in a cub. ft. of air...grns.	$3 \cdot 1$	$3 \cdot 2$
Mean additional weight required for saturation ,,	0.7	$0 \cdot 7$
Mean degree of Humidity (saturation 100).........	84	83
Mean weight of a cubic foot of air grns.	$538 \cdot 3$	$539 \cdot 1$
Mean amount of Cloud (0-10)	$7 \cdot 2$	$7 \cdot 3$
Total fall of Rain inches	$42 \cdot 982$	47-262
Greatest Monthly Rainfall (February)	5.885	$7 \cdot 569$
Least , ", (March)	$2 \cdot 150$	$1 \cdot 257$
Greatest Rainfall in one day (February 10th).....	$1 \cdot 020$	$1 \cdot 641$
No. of days per Month on which - 005 inch or more Rain fell \qquad	$17 \cdot 9$	$17 \cdot 2$

[^3]
ABSOLUTE EXTREMES

FOR THE LAST 78 YEARS-Continued.

Rainfall, in inches.

Greatest hourly velocity, in miles 1894 (Dec. 22)... 72
Greatest No. of miles registered in a
month 1888 (Nov.) 12813
Least ", ". ... 1917 (Feb́b.) 3160
Greatest Mean No. ,, ., ... March 8448
Least ". ". ... September 6054
Greatest No. ," ,"year.. 1868 102395
Least , ., ., ., ... 1915 70623

30

MONTHLY		TOTALS			FOR	EACH		HOUR		OF	RECORDED			SUNSHINE.			
1925. Local apparent time	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12--1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
January ...	\ldots	...	\cdots	...	$0 \cdot 1$	$2 \cdot 7$	$5 \cdot 6$	$8 \cdot 0$	$7 \cdot 2$	$5 \cdot 3$	$4 \cdot 1$	0.4	...	\ldots	...	\ldots	\ldots
February	\cdots	0.2	1.0	$4 \cdot 2$	$5 \cdot 9$	$6 \cdot 8$	$7 \cdot 7$	$7 \cdot 6$	6.2	$2 \cdot 6$	$1 \cdot 2$	$0 \cdot 1$	\ldots
March	\cdots	...	0.9	$6 \cdot 7$	$9 \cdot 1$	$11 \cdot 3$	$12 \cdot 7$	$10 \cdot 3$	11.0	$11 \cdot 6$	$10 \cdot 3$	$9 \cdot 2$	8.5	$3 \cdot 1$
April	$0 \cdot 3$	$6 \cdot 1$	$11 \cdot 1$	$11 \cdot 6$	$15 \cdot 0$	$15 \cdot 1$	$15 \cdot 7$	$15 \cdot 9$	14.7	$15 \cdot 1$	$17 \cdot 0$	$12 \cdot 8$	$7 \cdot 8$	$2 \cdot 1$	0.2	...
May	$0 \cdot 2$	1.4	$5 \cdot 1$	$6 \cdot 3$	$8 \cdot 4$	$9 \cdot 3$	$8 \cdot 9$	$9 \cdot 3$	$13 \cdot 3$	$12 \cdot 7$	$12 \cdot 0$	$12 \cdot 1$	$8 \cdot 3$	6.4	$2 \cdot 9$...	\cdots
June ...	$0 \cdot 7$	$6 \cdot 2$	$11 \cdot 1$	$14 \cdot 1$	$17 \cdot 6$	18.5	$20 \cdot 0$	$19 \cdot 6$	$22 \cdot 1$	22.5	$21 \cdot 0$	$20 \cdot 7$	$20 \cdot 3$	$19 \cdot 6$	$16 \cdot 8$	$9 \cdot 4$	$0 \cdot 2$
July ...	$0 \cdot 9$	$4 \cdot 2$	$6 \cdot 3$	$12 \cdot 0$	$12 \cdot 6$	11.5	$10 \cdot 2$	11.7	13.7	15.8	16.2	14.3	$16 \cdot 0$	16.0	$10 \cdot 3$	$5 \cdot 3$	
August ...	\cdots	1-2	$3 \cdot 6$	$6 \cdot 0$	$8 \cdot 6$	11.2	$12 \cdot 5$	11.3	$10 \cdot 9$	$10 \cdot 8$	$9 \cdot 0$	$10 \cdot 1$	$10 \cdot 9$	9-8	$4 \cdot 9$	$0 \cdot 8$	\ldots
September	2.8	$11 \cdot 3$	$14 \cdot 8$	$14 \cdot 6$	$14 \cdot 1$	13.2	11.4	11.2	$10 \cdot 6$	$10 \cdot 3$	$9 \cdot 2$	5.9	$0 \cdot 5$
October	1.9	$4 \cdot 4$	5.6	$8 \cdot 8$	$9 \cdot 4$	$10 \cdot 0$	$11 \cdot 1$	$11 \cdot 2$	$7 \cdot 3$	$5 \cdot 8$	0.8				
Novem	1.7	9-9	$13 \cdot 9$	$15 \cdot 8$	$14 \cdot 5$	15.5	13.0	$5 \cdot 6$					
December		$0 \cdot 3$	$4 \cdot 8$	8.7	$10 \cdot 3$	$10 \cdot 3$	8.9	6.2	1.4					
Sums..	1.8	$13 \cdot 3$	$37 \cdot 8$	$72 \cdot 1$													
												$109 \cdot 5$		68.7	37.5	$15 \cdot 7$	$0 \cdot 2$

	\pm	$\stackrel{F}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{i}{i}$	$\begin{aligned} & \infty \\ & \dot{\infty} \end{aligned}$	io	$\stackrel{̣}{\dot{\phi}}$	$\begin{aligned} & \text { 世 } \\ & \dot{\circ} \end{aligned}$	$\stackrel{\infty}{\dot{0}}$		$\dot{0}$	$\dot{\sim}$	；
	$\stackrel{+}{-}$	$\ddot{0}$	$\begin{aligned} & \stackrel{+}{\mathrm{N}} \end{aligned}$		$\stackrel{i}{i}$	$\stackrel{\Gamma}{\sim}$	$\begin{aligned} & \infty \\ & \dot{\sim} \end{aligned}$	$\stackrel{\infty}{0}$	is	is	$\stackrel{\Im}{\sim}$	$\stackrel{+}{4}$	$\stackrel{10}{0}$
	15	is	io	$\stackrel{\infty}{\dot{\sim}}$	$\underset{\sim}{\circ}$	$\overrightarrow{\dot{\sigma}}$	$\begin{aligned} & \underset{i}{+} \end{aligned}$	$\stackrel{10}{\sim}$	$\begin{aligned} & \dot{\sigma} \\ & \dot{\sigma} \end{aligned}$	$\stackrel{\odot}{-}$	$\stackrel{?}{-}$	$\stackrel{\sim}{0}$	\because
$\begin{aligned} & \text { I } \\ & \mathbb{U} \\ & \hline \end{aligned}$	$\underset{\sim}{*}$	2	$\stackrel{10}{2}$	：	$\xrightarrow{10}$	12	$\stackrel{\ominus}{\dot{\sim}}$	$\stackrel{+}{9}$	$\stackrel{\rightharpoonup}{-}$	，	4		is
	$\stackrel{9}{9}$	$\stackrel{1}{0}$	\bigcirc		10	4	$\dot{+}$	$\stackrel{-}{\square}$	$\stackrel{\circ}{\circ}$	io	$\stackrel{-}{-}$	$\stackrel{\square}{0}$	$\stackrel{\sim}{\sim}$
\mathbf{Z}	$\stackrel{\sim}{\sim}$		－	$\stackrel{\sim}{\infty}$	$\stackrel{10}{\square}$	$\stackrel{\circ}{\circ}$	Q1 －1	$\stackrel{\square}{\circ}$	：	$\stackrel{\infty}{\infty}$	：	\bigcirc	$\stackrel{1}{19}$
	$\vec{\square}$	；	；	$\begin{aligned} & 30 \\ & \dot{\sim} \end{aligned}$	$\stackrel{\rightharpoonup}{\sim}$	；	$\begin{aligned} & \text { ì } \\ & \text { in } \end{aligned}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	$\dot{\infty}$	$\stackrel{0}{\sim}$	\vec{i}	$\stackrel{?}{i}$
	\bigcirc	$\dot{0}$	$\vdots \stackrel{\infty}{ }$	$\begin{aligned} & \infty \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & 10 \\ & \dot{4} \end{aligned}$	$\stackrel{+}{4}$	$\stackrel{+}{9}$	$\stackrel{4}{4}$	$\stackrel{9}{4}$	$\stackrel{+}{\infty}$	$\stackrel{\circ}{\dot{\circ}}$	is	4
	σ	$\stackrel{\sim}{i}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\dot{0}$	$\ddot{0}$	＋1 ì	$\stackrel{\sim}{4}$	$\stackrel{ְ}{\infty}$	$\stackrel{\sim}{\text {－}}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{7}{6}$	$\ddot{\dot{\circ}}$
$\frac{1}{2}$ $\frac{1}{0}$ $\frac{2}{\infty}$	∞	；	：	∞	$\dot{\infty}$	$\stackrel{\stackrel{\sim}{0}}{\dot{\circ}}$	$\stackrel{9}{9}$	0	$\stackrel{\infty}{\dot{\circ}}$	10	is	$\stackrel{-}{6}$	$\stackrel{?}{-}$
	－			$\stackrel{\sim}{\sim}$	$\stackrel{\text { N }}{\stackrel{1}{c}}$	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{+}{0}$	$\stackrel{\sim}{\infty}$	10	$\stackrel{\text { ® }}{0}$	10		！
	ω	$\begin{array}{ll} \infty & + \\ \text { is } \end{array}$			$\stackrel{\otimes}{\dot{\sim}}$	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	$\dot{\infty}$	$\stackrel{\overbrace{}}{0}$	is	$\stackrel{\infty}{i}$	；	＋	$\dot{\sim}$
$\stackrel{1}{\mathbf{1}}$	10	$\stackrel{\sim}{\sim}$	！		$\stackrel{\underset{\sim}{N}}{\stackrel{1}{2}}$	$\dot{\sim}$	$\stackrel{\square}{-}$	$\xrightarrow{20} 9$	$\stackrel{-}{-}$	$\stackrel{-}{-}$	$\begin{aligned} & 0 \\ & \text { is } \end{aligned}$	＋	$\dot{\sim}$
$\begin{aligned} & \frac{1}{2} \\ & \frac{2}{2} \\ & \frac{0}{4} \end{aligned}$	＋	$\dot{0}$		$\begin{aligned} & \text { ஸ } \\ & \dot{\sim} \end{aligned}$	$\stackrel{20}{i}$	$\overrightarrow{0}$	$\stackrel{+}{\infty}$	＋	$\stackrel{\infty}{\text { is }}$	$\stackrel{\square}{8}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\infty}{\text { ¢ }}$	！
	\cdots	\vdots	φ	$\dot{\varphi}$	$\stackrel{\oplus}{-}$	：	$\stackrel{+}{\sim}$	$\stackrel{\square}{-}$		$\stackrel{\rightharpoonup}{-}$	：		$\stackrel{\text { ® }}{\text { ¢ }}$
	N	： 0	$\stackrel{\circ}{\circ}$	\bigcirc	！	$\stackrel{\text { a }}{\sim}$	$\dot{-}$	10	$\stackrel{\infty}{\infty}$	$\stackrel{+}{4}$	$\stackrel{\sim}{0}$	－	$\stackrel{\leftarrow}{\circ}$
$\frac{1}{4}$	\rightarrow		$\stackrel{\square}{2}$	！	$\dot{\oplus}$	$\stackrel{+}{\infty}$	10 - -	$\stackrel{-}{6}$	$\stackrel{\square}{i}$	10	$\begin{aligned} & 10 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	$\stackrel{\infty}{\dot{N}}$
	N్				䓲		$\begin{aligned} & \Phi \\ & \stackrel{y}{5} \end{aligned}$	雨			$\begin{aligned} & \text { B } \\ & \text { O} \\ & \text { O} \\ & 0 \end{aligned}$		

SUMMARY OF SUNSHINE.

	Briget Sunshine Reconded					
	1925			Mean for the last 45 years		
	Number of		Percentage of Possible Sunshine	Number of		$\left\|\begin{array}{c} \text { Percentage } \\ \text { of } \\ \text { Possible } \\ \text { Sunshine } \end{array}\right\|$
	Days	Hours		Days	Hours	
January ...	17	$33 \cdot 4$	$13 \cdot 5$	$14 \cdot 3$	$32 \cdot 4$	$13 \cdot 1$
February ...	19	$42 \cdot 5$	$15 \cdot 6$	$17 \cdot 7$	$56 \cdot 8$	20•7
March ...	24	$104 \cdot 7$	$28 \cdot 6$	24.2	$102 \cdot 8$	$28 \cdot 1$
April ...	27	$160 \cdot 5$	$38 \cdot 3$	$26 \cdot 2$	$146 \cdot 8$	$35 \cdot 2$
May ...	29	$116 \cdot 6$	$23 \cdot 7$	27•7	$183 \cdot 3$	$37 \cdot 2$
June ...	30	$260 \cdot 4$	$51 \cdot 3$	$28 \cdot 0$	$185 \cdot 9$	$36 \cdot 6$
July ...	31	177.0	$23 \cdot 0$	$28 \cdot 4$	$170 \cdot 4$	$33 \cdot 5$
August ...	25	$121 \cdot 6$	$26 \cdot 6$	$27 \cdot 5$	$146 \cdot 8$	$32 \cdot 0$
September ..	23	$129 \cdot 9$	34-3	$25 \cdot 6$	$123 \cdot 7$	$32 \cdot 6$
October ...	25	$76 \cdot 3$	$23 \cdot 4$	$23 \cdot 6$	$85 \cdot 8$	$26 \cdot 3$
November	24	$89 \cdot 9$	$35 \cdot 1$	$17 \cdot 8$	47-7	$18 \cdot 7$
December ...	20	$50 \cdot 9$	$22 \cdot 0$	$13 \cdot 7$	$26 \cdot 4$	11.4
Year ...	294	$1363 \cdot 7$	$30 \cdot 5$	$274 \cdot 9$	$1310 \cdot 1$	$29 \cdot 3$

SUMMARY OF SUNSHINE-Continued.
EXTREMES FOR THE LAST 46 YEARS.

$\begin{aligned} & \text { 胃 } \\ & \frac{2}{2} \\ & \frac{1}{2} \end{aligned}$	Number of Days.			Number of Hours				$\begin{gathered} \text { Percentage } \\ \text { of } \\ \text { Possible Sunshine } \end{gathered}$			
	on which Sunshine was recorded										
	Greatest		east	Great	est	Lea		Greatest		Least	
Jan.	$21 \quad 1881$	8	1898	$64 \cdot 2$	1881	$12 \cdot 3$	1913	$25 \cdot 9$	1881	$5 \cdot 0$	1913
Feb.	$24 \quad 1895$	11	1882	$89 \cdot 3$	1887	$29 \cdot 6$	1882	$32 \cdot 8$	1887	$10 \cdot 9$	1882
Mar.	$28 * 1894$	17	1904	$168 \cdot 6$	1907	$56 \cdot 8$	1912	$46 \cdot 1$	1907	$15 \cdot 5$	1912
April	30 *1909	22	1920	$223 \cdot 7$	1893	$80 \cdot 7$	1920	$53 \cdot 4$	1893	19.3	1920
May	30 * 1880	22	1886	$266 \cdot 6$	1881	$79 \cdot 7$	1906	$54 \cdot 1$	1881	$16 \cdot 2$	1906
June	30 *1896	24	*1888	$272 \cdot 5$	1887	$85 \cdot 2$	1912	$53 \cdot 6$	1887	$16 \cdot 8$	1912
July	31 *1882	24	1920	$263 \cdot 4$	1911	98-0	1888	$51 \cdot 7$	1911	$19 \cdot 3$	1888
Aug.	$31 * 1886$	23	1894	$235 \cdot 2$	1899	$74 \cdot 1$	1912	$51 \cdot 5$	1899	$16 \cdot 2$	1912
Sept.	$30 \quad 1914$	21	1897	$176 \cdot 5$	1914	$62 \cdot 9$	1896	$46 \cdot 6$	1914	$16 \cdot 6$	1896
Oct.	28*1891	17	1889	$134 \cdot 9$	1899	$50 \cdot 0$	1889	$41 \cdot 4$	1899	$15 \cdot 3$	1889
Nov.	$24 \quad 1925$	9	1897	$89 \cdot 9$	192 s	$18 \cdot 5$	1891	$33 \cdot 8$	1915	$7 \cdot 2$	1891
Dec.	$20 \quad 1917$	6	1882	$60 \cdot 1$	1886	$7 \cdot 4$	1912	$26 \cdot 0$	1886	$3 \cdot 2$	1912
Year	3001905	251	1903	$1613 \cdot 7$	1887	927-6	1912	$36 \cdot 1$	1887	$20 \cdot 7$	1912

*And in other vears.

Horizontal Magnetic Direction, West of North (from daily measures of the continuous curves).									
1925.	MFANS OF *				Mean for the month	$\underset{\dagger}{\text { Mean daily }} \underset{ }{\text { range }}$		Lowest reading of the month $14^{\mathrm{c}}+$	$\begin{gathered} \text { Montbly } \\ \text { range } \end{gathered}$
	Highest readings	Lowest readings	$\begin{aligned} & \text { 4a.m. } \\ & \text { readings } \end{aligned}$	$\underset{\text { readings* }}{4} \text { p.m. }$					
	$14^{\circ}+$								
January ...	61.5	\prime 57.9	$58 \cdot 5$	$60 \cdot 3$	$59 \cdot 8$	$8 \cdot 1$	$67 \cdot 0$	38.0	29.0
February ...	$62 \cdot 1$	$57 \cdot 1$	$58 \cdot 1$	$59 \cdot 5$	$59 \cdot 2$	$9 \cdot 9$	67.0	$37 \cdot 0$	$30 \cdot 0$
March	$62 \cdot 6$	55.8	$57 \cdot 2$	$58 \cdot 6$	$58 \cdot 6$	13.5	$70 \cdot 0$	$49 \cdot 0$	$2 \mathrm{I} \cdot 0$
April	$61 \cdot 7$	$52 \cdot 3$	$55 \cdot 5$	$57 \cdot 9$	$56 \cdot 9$	11.9	68.0	$45 \cdot 0$	$23 \cdot 0$
May	$59 \cdot 3$	$51 \cdot 3$	$53 \cdot 7$	$56 \cdot 5$	$55 \cdot 2$	11.6	$68 \cdot 0$	$38 \cdot 0$	$30 \cdot 0$
June	$59 \cdot 7$	$49 \cdot 1$	$51 \cdot 3$	56.5	$54 \cdot 2$	$14 \cdot 9$	$74 \cdot 0$	$33 \cdot 0$	$41 \cdot 0$
July	$57 \cdot 8$	$47 \cdot 2$	51.8	$55 \cdot 6$	$53 \cdot 1$	13.1	66.0	38.0	$28 \cdot 0$
August $\quad .$.	$56 \cdot 9$	$46 \cdot 5$	$50 \cdot 1$	$53 \cdot 3$	$51 \cdot 7$	$15 \cdot 1$	67.0	$38 \cdot 0$	$29 \cdot 0$
September ...	$55 \cdot 5$	$46 \cdot 1$	$48 \cdot 9$	51.9	$50 \cdot 6$	$16 \cdot 4$	$64 \cdot 0$	$17 \cdot 0$	$47 \cdot 0$
October ...	$53 \cdot 9$	$44 \cdot 7$	$47 \cdot 5$	$50 \cdot 7$	$49 \cdot 2$	$18 \cdot 2$	68.0	$18 \cdot 0$	$50 \cdot 0$
November ...	$48 \cdot 8$	$43 \cdot 0$	$45 \cdot 0$	$46 \cdot 4$	$45 \cdot 8$	$12 \cdot 2$	$59 \cdot 0$	$16 \cdot 0$	$43 \cdot 0$
December ...	$49 \cdot 2$	$44 \cdot 2$	$45 \cdot 2$	47.4	$46 \cdot 5$	$11 \cdot 2$	$66 \cdot 0$	$27 \cdot 0$	$39 \cdot 0$
Means	$57 \cdot 4$	$49 \cdot 6$	51.9	$53 \cdot 7$	$53 \cdot 4$	$13 \cdot 0$	$67 \cdot 0$	$32 \cdot 8$	$34 \cdot 2$
		Mean f	e year	. ${ }^{\text {a }}$	53.				

HORIZONTAL MAGNETIC FORCE. Horizontal Magnetic Force in C. G. S. Units (from daily measures of the continuous The figures in the columns are entered to the unit 10^{-5} C.G.S.									
1925	MEANS OF*				$\begin{gathered} \text { Mean } \\ \text { Hern } \\ \text { fohe } \\ \text { mhonth } \end{gathered}$	$\underset{\substack{\text { Mean dally } \\ \text { range } \\ \dagger}}{ }$	$\begin{gathered} \text { Highest } \\ \text { reading of } \\ \text { the } \\ \text { month } \end{gathered}$	Lowestreading ofthe month	$\underset{\text { range }}{\text { Monthly }}$
	Highest reading	$\underset{\text { readings }}{\substack{\text { Lowest }}}$	$\underset{\text { readings }}{\text { 4a.m. }}$	$\underset{\text { readings }}{4 \mathrm{p} \cdot \mathrm{~m}}$					
	$17000+$					$0+$	$17000+$		$0+$
January ...	279	268	277	275	275	$32 \cdot 8$	323	185	138
February ...	274	251	268	264	264	$32 \cdot 6$	292	200	92
March ...	294	270	288	288	285	$42 \cdot 2$	323	222	101
April	283	240	269	271	265	$58 \cdot 1$	322	203	119
May	274	238	256	258	257	$57 \cdot 6$	314	195	119
June	297	245	270	279	273	$84 \cdot 9$	394	157	237
July ${ }^{\text {... }}$...	275	230	258	262	256	$72 \cdot 2$	335	182	153
August ...	293	245	275	281	271	74.4	351	193	158
September ...	271	235	258	255	255	$75 \cdot 7$ 80	340	$\begin{array}{r}99 \\ \hline 135\end{array}$	241
October November	289	${ }_{220}^{243}$	276	236 236	${ }_{233}^{271}$	$80 \cdot 5$ 48.8	346 364	135 128	211 136
December ...	259	238	249	251	249	$55 \cdot 8$	303	122	181
Means	277	244	265	266	263	$59 \cdot 6$	326	168	157
Mean for the year - 17263 C. G. S.' Units.									

ABSOLUTE		MEASURES-SUMMARY.			
DIRECTION			FORCE.		
1925	Declination Corrected	Inclination	Horizontal	Vertical	Total
	$\stackrel{\circ}{14}+$	$68+$	$\frac{\text { C. G }}{\frac{0 \cdot 17000+1}{}}$	S. UNI	$\frac{\mathrm{TS} .}{0 \cdot 47000+}$
January ...	59.8	41.9	275	305	553
February ...	$59 \cdot 2$	$40 \cdot 6$	264	225	476
March ...	$58 \cdot 6$	$42 \cdot 9$	285	369	617
April	56.9	41.5	265	265	513
May	55.2	$41 \cdot 1$	257	225	472
June	54.2	$43 \cdot 3$	273	354	598
July	$53 \cdot 1$	$42 \cdot 7$	256	284	528
August ..	51.7	$40 \cdot 4$	271	- 237	490
September ...	$50 \cdot 6$	461	255	413	647
October ...	49.2	42.4	271	313	560
November ...	$45 \cdot 8$	$39 \cdot 4$	233	100	348
December ...	$46 \cdot 5$	$43 \cdot 7$. 249	307	546
Means ...	$\begin{gathered} 14 \quad 53 \cdot 4 \\ \mathrm{~W} . \end{gathered}$	$\begin{array}{ll} 68 \quad 42 \cdot 2 \end{array}$	0-17263	$0 \cdot 44282$	$0 \cdot 47529$

DATES OF MAGNETIC DISTURBANCES．

The disturbances are divided generally into three classes， small，moderate，and greater；these are indicated by the initia］ letters of the classes，and the letter c denotes calm．Very great disturbances are marked v．g．The days are civil days．

1925		$\begin{aligned} & \dot{0} 0 \\ & \substack{0 \\ 4} \end{aligned}$		号	$\stackrel{\leftrightarrow}{\underset{\beta}{\infty}}$	$\stackrel{\Phi}{5}$	$\frac{\stackrel{\rightharpoonup}{\jmath}}{\square}$	苍	$\begin{aligned} & \text { 落 } \\ & \text { O } \end{aligned}$	$$	$\begin{gathered} \stackrel{8}{8} \\ 8 \end{gathered}$	¢	1925
D．													D．
1	c	s	m	c	c	m	s	s	v．g．	c	g	s	1
2	c	c	c	c	c	s	s	c	v．g．	c	m	s	－ 2
3	s	c	c	s	s	m	c	m	m	c	5	c	3
4	c	c	s	c	g	m	s	m	s	m	S	s	4
5	s	c	m	s	s	c	s	s	s	s	c	m	5
6	c	c	c	m	c	s	s	s	s	s	S	m	6
7	s	s	c	c	s	c	s	m	m	c	3	m	7
8	c	m	c	c	s	c	c	g	c	m	g	s	8
9	c	g	m	m	m	s	s	m	s	v．g．	v．g．	s	9
10	c	s	m	s	s	s	s	m	s	s	v．g．	m	10
11	c	c	s	s	s	c	c	c	c	g	m	8	11
12	c	S	c	m	s	c	c	c	s	v．g．	s	c	12
13	s	s	s	c	c	g	c	c	c	s	m	s	13
14	s	s	c	c	c	c	s	c	v．g．	c	g	s	14
15	S	c	g	s	c	c	m	c	g	m	c	m	15
16	g	5	s	s	c	s	c	s	m	s	s	m	16
17	m	s	s	c	c	s	c	s	s	c	s	c	17
18	m	S	c	c	s	s	c	m	m	c	s	m	18
19	v．g．	m	s	c	s	s	s	c	c	c	s	c	19
20	g	m	m	m	s	c	c	c	s	m	s	s	20
21	g	c	c	s	s	c	m	s	v．g．	g	c	c	21
22	c	c	s	s	s	s	m	m	m	m	c	c	22
23	m	c	m	c	s	m	s	g	m	v．g．	s	s	23
24		s		c	5	v．g．	s	s	v．g．	v．g．	s	s	24
25	c	s	c	c	c	v．g．	m	m	s	s	s	c	25
26	c	c	s	s	c	s	m	s	c	c	c	c	26
27	c	c	m	s	s	m	m	c	c	m	c	v．g．	2.7
28	c	s	c	c	m	m	m	c	c	s	c	v．g．	28
29	s		s	s	s	s	s	s	c	s	s	c	29
30	s		s	c	m	s	c	m	c	c	c	s	30
31	c		c		m		c	s		s		c	31
（c	15	12	12	15	10	9	11	10	9	10	8	10	
4	10	12	11	11	16	12	13	10	9	9	14	12	
E．m	3	3	7	4	4	6	7	9	6	6	3	7	
${ }_{\sim} \mathrm{g}$	2	1	1	\cdots	1	1	．．．	2	1	2	3	\cdots	
（vg	1	\cdots	\cdots	．．．	\cdots	2	．．．	\cdots	5	4	2	2	

DATES OF SOLAR OBSERVATIONS，AND DISC AREAS OF SPOTS AS MEASURED FROM THE DRAWINGS．

The unit is $\frac{1}{5000}$ th of the visible surface． $\mathrm{n}=$ note without a complete drawing．

1925	宦	$\stackrel{\dot{8}}{\stackrel{\circ}{8}}$		$$	な	$\stackrel{0}{5}$	$\stackrel{\stackrel{\rightharpoonup}{7}}{\square}$	号号	$\begin{gathered} \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{y}{2} \end{gathered}$	ثٌ	$\begin{aligned} & \ddot{0} \\ & \text { Z } \end{aligned}$	¢	1925
D．													D
1		$0 \cdot 3$		$0 \cdot 1$	3－1	$2 \cdot 2$	$1 \cdot 1$	$1 \cdot 9$	$3 \cdot 8$	6．5		$4 \cdot 6$	1
2	$0 \cdot 0$		0.		$4 \cdot 6$	$7 \cdot 4$	1.9	1.4	1.7	$4 \cdot 8$	0.8	$3 \cdot 6$	2
3	n		0.0	$0 \cdot 2$		$7 \cdot 7$			$1 \cdot 7$			$3 \cdot 2$	3
4	0.0	$0 \cdot 0$	$0 \cdot 0$	0．2		$7 \cdot 3$	$4 \cdot 9$	$0 \cdot 0$	$1 \cdot 1$		$1 \cdot 0$	$2 \cdot 8$	4
5	$0 \cdot 1$			$0 \cdot 3$	$6 \cdot 4$	$6 \cdot 4$	$4 \cdot 5$		$0 \cdot 4$	$3 \cdot 6$	0.2	$2 \cdot 0$	5
6	$0 \cdot 0$	0．1		$0 \cdot 2$	$5 \cdot 3$	$5 \cdot 4$		0.6	$1 \cdot 4$			$3 \cdot 9$	6
7		$0 \cdot 7$	0.0	$0 \cdot 9$	$6 \cdot 8$	$5 \cdot 3$	7.9	0.7					7
8			$0 \cdot 0$	$0 \cdot 6$		$6 \cdot 3$	$8 \cdot 5$	$1 \cdot 1$	1.5	$1 \cdot 1$	07		8
9	0.0		0	$0 \cdot 5$		$6 \cdot 4$	$9 \cdot 1$	$2 \cdot 9$	$2 \cdot 3$	$0 \cdot 8$	$2 \cdot 2$	n	9
10	$0 \cdot 0$		$0 \cdot 0$	$1 \cdot 5$	$3 \cdot 1$	$7 \cdot 4$	$4 \cdot 9$	4.4	$3 \cdot 4$	$0 \cdot 7$	$4 \cdot 2$		10
11	0.0		$0 \cdot 2$	$2 \cdot 4$		$7 \cdot 3$	$2 \cdot 5$	$4 \cdot 2$	4．8	0．7	$10 \cdot 1$	11.7	11
12	$0 \cdot 0$	$4 \cdot 8$	$0 \cdot 6$	3．7	$1 \cdot 3$	$5 \cdot 7$	$2 \cdot 7$		$4 \cdot 8$		$12 \cdot 3$	$16 \cdot 9$	12
13	0.0	$5 \cdot 2$		$2 \cdot 9$	1.7	$3 \cdot 9$	4.1	1.9	$2 \cdot 3$	$1 \cdot 7$	$10 \cdot 3$		13
14		$5 \cdot 3$		$2 \cdot 8$	$2 \cdot 2$	$2 \cdot 5$	$1 \cdot 7$	$0 \cdot 2$		3．3	$8 \cdot 0$	$19 \cdot 7$	14
15	0.0	$4 \cdot 3$	$2 \cdot 5$	$2 \cdot 5$	$2 \cdot 6$	$1 \cdot 1$		$0 \cdot 0$	$0 \cdot 3$		$5 \cdot 4$		15
16	0.0	$3 \cdot 0$		1.8	$2 \cdot 4$			$0 \cdot 0$	1.8	9.2	$4 \cdot 3$		16
17	$0 \cdot 0$			0.8	$3 \cdot 8$	$0 \cdot 3$	$2 \cdot 1$	$0 \cdot 1$			$2 \cdot 4$		17
18	0.0				$4 \cdot 5$	$0 \cdot 2$	$2 \cdot 1$	$0 \cdot 2$	$1 \cdot 7$	n	$2 \cdot 6$		18
19		0．7		3－3	$4 \cdot 6$	$0 \cdot 0$	$1 \cdot 2$			15.2	$5 \cdot 2$		19
20			n	$2 \cdot 2$	$4 \cdot 6$	$0 \cdot 0$			$2 \cdot 8$		$7 \cdot 7$		20
21			$0 \cdot 7$	$1 \cdot 6$	$4 \cdot 8$	0.0	$0 \cdot 6$		$2 \cdot 8$	1	9－3		21
22	0.	0.2	$0 \cdot 6$		$3 \cdot 7$	0.3	$0 \cdot 4$	$1 \cdot 4$		$14 \cdot 7$			22
23	$0 \cdot 2$			1.2		0.2	0.0	1.7	$6 \cdot 7$		$16 \cdot 4$	$25 \cdot 6$	23
24	$0 \cdot 0$		$0 \cdot 3$	$1 \cdot 9$	$4 \cdot 5$	$0 \cdot 6$	1.0	1.9	$4 \cdot 5$			$33 \cdot 6$	24
25	0.0	0.0	$0 \cdot 6$	$1 \cdot 4$	$3 \cdot 0$	$0 \cdot 4$	$4 \cdot 0$	2.8	$3 \cdot 9$	$5 \cdot 8$	$20 \cdot 6$		25
26			1	$0 \cdot 7$	$2 \cdot 0$				6.9		16.2		26
27	0.0	0	4		$2 \cdot 6$	2	$2 \cdot 7$	$3 \cdot 6$	$7 \cdot 8$	1.8	14.9	$45 \cdot 3$	27
28		$0 \cdot 1$	2	0	$2 \cdot 5$	$0 \cdot 6$	$2 \cdot 4$	$4 \cdot 8$			$10 \cdot 8$		28
29			2.9	$0 \cdot 2$		$1 \cdot 1$							29
30	$0 \cdot 0$		1.9	$1 \cdot 2$	1.8	$1 \cdot 5$		$4 \cdot 7$		$0 \cdot 9$	$5 \cdot 6$		30
31					1.7		1.5					$25 \cdot 4$	31
Daily Meana	$0 \cdot 0$	1.8	$1 \cdot 0$	$1 \cdot 4$	$3 \cdot 5$	$3 \cdot 1$	$3 \cdot 1$	$1 \cdot 8$	$3 \cdot 1$	4．7	$7 \cdot 4$	15．3｜	

SUN-SPOT STATISTICS, 1925.

The numbering of the Groups is in continuation of that in the Annual Report of 1924. The present series was started on January lst, 1921. Any area less than $\frac{1}{10}$ unit is entered as $0 \cdot 0$. s-chief spot ; g-centre of group ; p-preceding ; f-following-

No. of Group	Date	Mean Latitude	$\begin{gathered} \text { Mean } \\ \text { Longitude } \end{gathered}$	Max. Area	Where Measured	Mean Type
263	Jan. 3-5	$-18 \cdot 7$	$46 \cdot 9$	$0 \cdot 1$	g.	I.
264	19	$+22 \cdot 2$	294.0	$0 \cdot 4$	g .	I.
265	23	+23.6	$253 \cdot 4$	$0 \cdot 2$	g.	I.
266	Feb.	$-32 \cdot 8$	$88 \cdot 5$	$0 \cdot 2$	g .	I.
267	1-6	$+23.5$	16.2	$0 \cdot 1$	s.	I.
268	4	$+24 \cdot 5$	$82 \cdot 0$	$0 \cdot 0$	s.	1.
269	4-6	$+23 \cdot 2$	$59 \cdot 8$	$0 \cdot 1$	g.	I.
270	7-14 ..	+ $8 \cdot 8$	344.2	$0 \cdot 5$	s.	I.
271	7	$-32 \cdot 3$	$339 \cdot 7$	$0 \cdot 0$	s.	I.
272	7-16	$-18 \cdot 7$	$273 \cdot 8$	$4 \cdot 4$	s.	IV.
273	,, 12-16	$-30 \cdot 7$	271.3	$1 \cdot 2$	g.	I.
274	12-16	$+17.5$	$246 \cdot 8$	$0 \cdot 1$	g .	I.
275	14	+15.4	$283 \cdot 0$	$0 \cdot 1$	g .	I.
276	15	+21.1	$237 \cdot 9$	$0 \cdot 0$	g.	I.
277	16	+14.5	$266 \cdot 8$	$0 \cdot 1$	g.	I.
278	,, 22	$-21 \cdot 8$	$209 \cdot 3$	$0 \cdot 1$	s.	I.
279	22	$+22.9$	$180 \cdot 3$	$0 \cdot 1$	s.	I.
280	28-Mar. 3.	-24.9	$84 \cdot 5$	$0 \cdot 4$	s.	I.
281	Mar. 2	$-18 \cdot 9$	$24 \cdot 6$	$0 \cdot 1$	g.	1.
282	,, 11-22	$-21 \cdot 8$	$222 \cdot 5$	$2 \cdot 5$	s.	IV.
283	,, 22	$-30 \cdot 0$	$222 \cdot 0$	$0 \cdot 2$	s.	I.
284	,, 24Apl. 1	+19.5	$100 \cdot 6$	$4 \cdot 1$	p.s.	V.
285	26	$+19 \cdot 7$	$87 \cdot 4$	$0 \cdot 1$	s.	I.
286	, 27	+19.8	$70 \cdot 9$	$0 \cdot 0$	s.	1.
287	,, 28	$+20 \cdot 2$	83.4	$0 \cdot 1$	s.	I.
288	Apl. 3-6	$-32 \cdot 0$	$287 \cdot 9$	$0 \cdot 2$	s.	I.
289	5-8	+15.6	$272 \cdot 1$	$0 \cdot 5$	g.	I.
290	6--13	$+30 \cdot 3$	$230 \cdot 2$	$0 \cdot 2$	s.	I.
291	,. 7-12	$-22 \cdot 5$	$220 \cdot 4$	$0 \cdot 3$	s.	I.
292	9-17	$+20 \cdot 5$	241.4	$2 \cdot 6$	p.g.	III.
293	9-10	$-15 \cdot 3$	$263 \cdot 2$	$0 \cdot 0$	g .	I.
294	10-12 .. .	$+12 \cdot 2$	$283 \cdot 0$	$0 \cdot 3$	g.	I.

SUN-SPOT STATISTICS, 1925-Contd.

No. of Group	Date	Mean Latitude	$\begin{gathered} \text { Mean } \\ \text { L.ongitude } \end{gathered}$	Max. Area	Where Measured	$\begin{aligned} & \text { Mean } \\ & \text { Type } \end{aligned}$
295	Apl. 11-17	$+20 \cdot 3$	$202 \cdot 6$	$0 \cdot 8$	s.	IV.
296	,, 12-17	+17.4	$156 \cdot 8$	$0 \cdot 2$	S.	I
297	,, 15-20	+21.0	$173 \cdot 8$	$0 \cdot 6$	s.	IV.
298	, 17-21	$-24 \cdot 5$	$90 \cdot 7$	$2 \cdot 2$	g.	V .
299	, 19-21	+20.1	114.6	$0 \cdot 4$	g .	I.
300	19--21	+18.0	89.0	$0 \cdot 1$	s.	I.
301	,, 19-23	$+15 \cdot 6$	$71 \cdot 0$	$0 \cdot 1$	s.	I.
302	," 23	$+13 \cdot 9$	$67 \cdot 6$	$0 \cdot 1$	s.	I.
303	,, 23-28	$+26 \cdot 8$	$95 \cdot 1$	$1 \cdot 7$	g.	III.
304	,. 24--25	$+20 \cdot 1$	$117 \cdot 3$	0.2	p.s.	I.
305	,, 25-28	$-16 \cdot 6$	$30 \cdot 9$	0.2	g .	I.
306	,, 29	+11.9	$44 \cdot 9$	$0 \cdot 2$	g.	I.
307	, 30-May 12.	+15.4	$275 \cdot 9$	$6 \cdot 7$	g.	IV.
308	May 5-7	$+20 \cdot 1$	$241 \cdot 6$	$0 \cdot 1$	s.	I.
309	,. 10	$+26.4$	$204 \cdot 0$	$0 \cdot 2$	s.	I.
310	,, 10-18	-19.0	$173 \cdot 0$	1.0	g .	III.
311	12-22	+17.8	$122 \cdot 6$	$1 \cdot 9$	p.s.	III, IV.
312	17-22	$+33 \cdot 6$	$144 \cdot 1$	$2 \cdot 0$	p.s.	III, IV.
313	,, 17-26	$+19 \cdot 7$	$79 \cdot 5$	$1 \cdot 2$	p.s.	III.
314	,, 17-28	$+22 \cdot 2$	59.4	$3 \cdot 8$	g .	III.
315	,. 18-20	$-21 \cdot 6$	$100 \cdot 1$	$0 \cdot 2$	f.s.	II.
316	, 20-22	$+25 \cdot 4$	$110 \cdot 8$	$0 \cdot 1$	s.	I.
317	,, 20-24	$-19 \cdot 5$	$25 \cdot 8$	$0 \cdot 2$	g.	I.
318	,. 27-28	$-19 \cdot 2$	$3 \cdot 8$	$0 \cdot 2$	s.	I.
319	,27.. .	$-26 \cdot 7$	$2 \cdot 7$	$0 \cdot 0$	S.	I.
320	, 27-June 3..	$-19 \cdot 4$	$344 \cdot 1$	0.9	s.	I.
321	,, 27- ., 7..	$+138$	$276 \cdot 3$	1.5	s.	IV.
322	., 30	$-25 \cdot 8$	$248 \cdot 0$	$0 \cdot 0$	S.	I.
323	31-June 9..	$+26.5$	$259 \cdot 7$	$5 \cdot 0$	g.	III.
324	June 1-5	$+25.9$	$214 \cdot 6$	$0 \cdot 7$	f.s.	I.
325	,, 1-11	$-27 \cdot 7$	$216 \cdot 4$	$0 \cdot 7$	S.	IV.
326	,. 3-14	$+20 \cdot 7$	$191 \cdot 1$	$1 \cdot 3$	s.	IV.
327	., 4-6	$-17 \cdot 0$	$180 \cdot 3$	$0 \cdot 1$	s.	I.
328	, 5-15	$+22 \cdot 3$	$170 \cdot 9$	$1 \cdot 1$	S.	IV.
329	5-6	-22.4	$283 \cdot 1$	$0 \cdot 2$	s.	1.
330	7-8	$+18.2$	$260 \cdot 2$	$0 \cdot 3$	g.	I.
331	7-15	$+18 \cdot 2$	$180 \cdot 1$	$1 \cdot 1$	g .	IV.

	SUN-SPOT STATISTICS, 1926-Contd.					
$\left\|\begin{array}{l} \text { No. of } \\ \text { Group } \end{array}\right\|$	Date.	Mean Latitude	$\begin{gathered} \text { Mean } \\ \text { Longitude } \end{gathered}$	Max. Area	Where Measured	Mean Type
332	June 7-18	+17.1	$140 \cdot 0$	$2 \cdot 1$	p.s.	III, IV.
333	8-13	$+30 \cdot 6$	211.0	$0 \cdot 9$	f.g.	I.
334	8-13	$-13 \cdot 3$	$210 \cdot 5$	$2 \cdot 1$	f.s.	III.
335	13-14	$-34 \cdot 8$	$194 \cdot 8$	$0 \cdot 7$	g.	II.
336	18-19	$+25 \cdot 2$	$41 \cdot 5$	$0 \cdot 1$	8.	I.
337	,, 22-23	$+9.5$	$52 \cdot 0$	$0 \cdot 1$	s.	I.
338	", 22-23	$-28 \cdot 3$	$45 \cdot 8$	$0 \cdot 2$	p.s.	I.
339	,. 24-July 1.	-26.5	$271 \cdot 8$	$0 \cdot 6$	s.	I.
340	, 28- , 9 .	$-12 \cdot 4$	$223 \cdot 4$	1.5	s.	IV.
341	July 1-5	-35.0	191.1	$0 \cdot 3$	s.	1.
342	, $2 \ldots$	$-15 \cdot 4$	254•9	$0 \cdot 1$	g.	I.
343	2-13	$-14 \cdot 8$	$173 \cdot 8$	$8 \cdot 4$	p.s.	IV, V.
344	$\because 4-5$	-28.8	$250 \cdot 3$	$0 \cdot 5$	p.s.	I.
345	5	$+15 \cdot 6$	$151 \cdot 2$	$0 \cdot 0$	s.	I.
346	7	$-20 \cdot 0$	$139 \cdot 8$	$0 \cdot 1$	g.	1.
347	9-18	$+17.4$	$88 \cdot 0$	1.0	s.	IV.
348	,, 10-14	$+17 \cdot 7$	$79 \cdot 0$	$0 \cdot 7$	g.	I.
349	,, 11-14	$+18 \cdot 4$	$61 \cdot 0$	$0 \cdot 7$	s.	IV.
350	,, 11-19	$+23.9$	$49 \cdot 4$	1.2	s.	IV.
351	13	$+16 \cdot 9$	$138 \cdot 8$	$0 \cdot 1$	f.s.	I.
352	17-19	$-17 \cdot 2$	$1 \cdot 4$	$0 \cdot 6$	g.	I.
353	, 18	$+26 \cdot 7$	29.0	$0 \cdot 1$	g.	I.
354	,. 18	$-20 \cdot 6$	$95 \cdot 0$	$0 \cdot 1$	g.	I.
355	,, 19-22	$+18 \cdot 2$	$13 \cdot 4$	$0 \cdot 3$	p.g.	I.
356	,, 21-22	-25.0	$32 \cdot 0$	$0 \cdot 3$	g.	I.
357	,, 22	$+27 \cdot 1$	$30 \cdot 4$	$0 \cdot 1$	s.	I.
358	24-Aug. 2..	$+20 \cdot 4$	271-9	$3 \cdot 2$	p.s.	II.
350	,, 24- ,, 2..	-29.2	$244 \cdot 6$	$1 \cdot 6$	g.	III.
360	,, 25-28 ..	-11.4	$226 \cdot 6$	$0 \cdot 3$	s.	1.
361	Aug. 6-7	$+28.2$	$146 \cdot 9$	$0 \cdot 1$	g.	I.
362	, 6	$+22 \cdot 2$	$140 \cdot 2$	$0 \cdot 1$	g.	I.
363	. 6-9	$-27 \cdot 8$	$164 \cdot 2$	$0 \cdot 6$	g.	II.
364	,, 7-14	+23.4	$118 \cdot 3$	$4 \cdot 0$	g.	II.
365	,, 8-13	$+21 \cdot 1$	$66 \cdot 4$	$0 \cdot 5$	s.	III.
366	", 9-13	$+21 \cdot 1$	$35 \cdot 4$	$0 \cdot 1$	g.	I.
367	,, 10-14	-27.8	$95 \cdot 0$	$0 \cdot 1$	g.	1.
368	, $11 . .$.	-5.2	$96 \cdot 9$	$0 \cdot 0$	s.	I.

SUN-SPOT STATISTICS, 1925-Contd.

No. of Group	Date	Mean Latitude	$\begin{gathered} \text { Mean } \\ \text { Longitude } \end{gathered}$	Max Area	Where Measured	$\begin{aligned} & \text { Mean } \\ & \text { Type } \end{aligned}$
369	Aug. 11	$+13.9$	$15 \cdot 7$	$0 \cdot 0$	S.	I.
370	,, 17-18	$+24.8$	$21 \cdot 3$	$0 \cdot 2$	p.s.	I.
371	,, 22-28	$-26 \cdot 7$	$247 \cdot 2$	$0 \cdot 6$	s.	IV.
372	,, 22-Sept. 2..	$-17 \cdot 7$	$221 \cdot 4$	$2 \cdot 3$	p.s.	IV.
373	,, 24-25	+17.6	$300 \cdot 5$	$0 \cdot 2$	g .	I.
374	,, 24-Sept. 3..	$+21 \cdot 6$	$204 \cdot 4$	$2 \cdot 5$	g.	II.
375	,, 28- ,, 3..	$+21 \cdot 7$	$160 \cdot 2$	$0 \cdot 8$	s.	I.
376	,, 30	$-28 \cdot 1$	$235 \cdot 7$	$0 \cdot 0$	s.	I.
377	,, 30-Sept. 10..	$+20.5$	$105 \cdot 4$	$0 \cdot 9$	g .	I.
378	Sept. 1	$+31 \cdot 2$	$238 \cdot 0$	$0 \cdot 1$	g.	I.
379	,, 1-3	$+22 \cdot 0$	$183 \cdot 6$	$0 \cdot 2$	g.	I.
380	1-3	-19.4	$186 \cdot 6$	$0 \cdot 1$	g.	I.
381	,, 2-6	$-25 \cdot 3$	$165 \cdot 0$	$0 \cdot 2$	g.	I.
382	, 6	-23.6	$144 \cdot 9$	$0 \cdot 1$	s.	I.
383	,, 6	-27.8	$111 \cdot 3$	$0 \cdot 1$	s.	I.
384	,, 2-5	-18.3	$94 \cdot 0$	$0 \cdot 2$	g.	1.
385	,, 4-6	+20.8	$138 \cdot 6$	$0 \cdot 2$	g .	I.
386	4	+20.6	$123 \cdot 1$	$0 \cdot 0$	S.	I.
387	4	$+24 \cdot 1$	$72 \cdot 4$	$0 \cdot 0$	S.	I.
388	,, 4-6	$+20 \cdot 3$	$41 \cdot 0$	$0 \cdot 2$	s.	I.
389	,, 6-13	+18.7	$68 \cdot 1$	$4 \cdot 6$	g .	II.
390	,, 11-12	$-18 \cdot 9$	$18 \cdot 4$	$0 \cdot 1$	g.	I.
391	,, 15-21	+18.1	$309 \cdot 6$	$0 \cdot 9$	s.	IV.
392	,, 15-16	-18.9	$329 \cdot 1$	$0 \cdot 1$	g .	I.
393	,, 16-25	+28.8	$243 \cdot 6$	$0 \cdot 7$	p.s.	II.
394	,, 18--27	$+22 \cdot 6$	$208 \cdot 5$	$0 \cdot 7$	s.	I.
395	,, 18-27	$-16 \cdot 3$	$221 \cdot 9$	$0 \cdot 9$	S.	IV.
396	,, 18-27	$-32 \cdot 6$	$218 \cdot 0$	1.4	S.	IV.
397	,, 20-21	$-16 \cdot 6$	$309 \cdot 8$	$0 \cdot 2$	g.	I.
398	,. 23-27	-12.5	$227 \cdot 1$	$3 \cdot 3$	f.s.	II.
399	,, 25-Oct. 2..	$+11 \cdot 9$	$156 \cdot 0$	$2 \cdot 7$	S.	IV.
400	Oct. 1-2	+22.9	$157 \cdot 6$	$0 \cdot 2$	g .	I.
401	,, 1-10	+16.1	$79 \cdot 5$	0.9	s.	IV.
402	,, 1-11	$+14.8$	$42 \cdot 9$	$0 \cdot 5$	s.	I.
403	,, 1-8	-18.9	$101 \cdot 6$	$4 \cdot 0$	p.s.	V.
404	," 9-18	$-17 \cdot 1$	318.7	$0 \cdot 6$	g.	I.
405	,, 10-11	$-19 \cdot 0$	$292 \cdot 2$	$0 \cdot 0$	g.	I.

SUN-SPOT STATISTICS, 1925-Contd.

No. of Group	Date	$\begin{gathered} \text { Mean } \\ \text { Latitude } \end{gathered}$	Mean Longitude	Max. Area	Where Measured	$\begin{aligned} & \text { Mean } \\ & \text { Type } \end{aligned}$
406	Oct. 11	$+11.9$	19.9	$0 \cdot 1$	g.	I.
407	,, 11-16	-23.5	333.9	$0 \cdot 7$	g .	I.
408	13-22	$+16.2$	$240 \cdot 9$	$1 \cdot 9$	g .	III.
409	14	+14.2	17.2	$0 \cdot 0$	s.	I.
410	,, 14-25	-20.2	$228 \cdot 0$	7-6.	f.s.	II.
411	16-27	$+20.5$	$203 \cdot 7$	$4 \cdot 1$	p.s.	V.
412	,, 18-22	-13.8	$269 \cdot 2$	$2 \cdot 6$	g .	II.
413	,, 18-27	$-17 \cdot 4$	$195 \cdot 4$	0.9	s.	I.
414	,. 21-25	$-23 \cdot 2$	$149 \cdot 1$	$0 \cdot 4$	s.	IV:
415	,, 22	$+20 \cdot 6$	$276 \cdot 5$	0.0	s.	1.
416	22--27	$+17 \cdot 6$	$187 \cdot 5$	0.8	s.	IV.
417	22-27	$+16.6$	151.6	0.2	s.	I.
418	30-Nov. 4..	+13.4	$38 \cdot 0$	$1 \cdot 0$	s.	I.
419	$30-\quad 2$.	-22.5	$40 \cdot 2$	$0 \cdot 2$	p.s.	III.
420	Nov. 5	+12.9	$53 \cdot 6$	$0 \cdot 1$	s.	I.
421	," 5	- $15 \cdot 8$	$312 \cdot 7$	0.1	s.	I.
422	8	+23.7	24.9	$0 \cdot 1$	s.	I.
423	8	$-15 \cdot 3$	$298 \cdot 4$	$0 \cdot 0$	s.	I.
424	8-19	-14.3	268.9	$12 \cdot 1$	g.	II.
425	9	+24.9	351.9	$0 \cdot 2$	g .	It
426	9	+13.5	321.0	$0 \cdot 1$	s.	I.
427	9-12	$-20 \cdot 3$	$256 \cdot 0$	$0 \cdot 3$	g.	I.
428	12	$-13 \cdot 8$	$252 \cdot 7$	$0 \cdot 1$	s.	I.
429	14-17	$+22.4$	$200 \cdot 4$	$0 \cdot 4$	s.	I.
430	16-27	-21.5	$161 \cdot 4$	$1 \cdot 5$	s.	IV.
431	18-19	+12.6	$266 \cdot 3$	$0 \cdot 2$	g .	I.
432	,, 18-30	$+17 \cdot 9$	$126 \cdot 7$	11.5	g.	V.
433	, 19	$+20.5$	$197 \cdot 0$	$0 \cdot 0$	s.	I.
434	19-26	$+22.9$	$180 \cdot 2$	$4 \cdot 8$	g.	V.
435	,, 20-27	$-30 \cdot 4$	$106 \cdot 2$	$0 \cdot 2$	s.	I.
436	,, 23	$+24.9$	$198 \cdot 7$	$0 \cdot 0$	g.	I.
437	23-Dec. 3.	$+22 \cdot 0$	$84 \cdot 7$	$5 \cdot 9$	g.	V.
438	," 26	+26.1	$30 \cdot 7$	0.0	s.	I.
439	26-Dec. 1..	$+20 \cdot 3$	21.8	0.5	g.	I.
440	, 30	$+12 \cdot 7$	$13 \cdot 5$	$0 \cdot 3$	g.	I.
441	30-Dec. 6..	$+20 \cdot 4$	$358 \cdot 2$	$1 \cdot 4$	s.	IV.
442	Dec. 1-4	$+15 \cdot 3$	$67 \cdot 9$	0.9	p.s.	IV.

SUN-SPOT STATISTICS, 1925-Contd.

No. of Group	Date	$\begin{gathered} \text { Mean } \\ \text { Latitude } \end{gathered}$	Mean	Max Area	Where Measured	$\begin{aligned} & \text { Mean } \\ & \text { Type } \end{aligned}$
443	Dec. 1-6	$+27 \cdot 6$	$327 \cdot 6$	$1 \cdot 1$	g.	I.
444	, 2-6	$+10 \cdot 8$	$13 \cdot 2$	$0 \cdot 1$	g.	I.
445	3-6.	$+23 \cdot 8$	$37 \cdot 2$	$0 \cdot 2$	g .	I.
446	3-6.	$-17 \cdot 7$	$356 \cdot 8$	$0 \cdot 6$	g.	1.
447	6	$+14.9$	$294 \cdot 5$	$0 \cdot 5$	g.	1.
448	", 6	-27.8	$308 \cdot 5$	$0 \cdot 2$	g.	I.
449	6-14	-18.5	$280 \cdot 9$	6.9	p.s.	V.
450	6--12	$-13 \cdot 1$	$259 \cdot 3$	$0 \cdot 2$	s.	I.
451	11-14	$+23 \cdot 6$	$203 \cdot 1$	$12 \cdot 4$	p.s.	V.
452	,, 11-23	$+24.5$	$179 \cdot 1$	$1 \cdot 4$	g .	I.
453	11-14	$-14 \cdot 6$	191.5	$2 \cdot 1$	8.	IV.
454	, 12-14	$-20 \cdot 0$	$167 \cdot 2$	$0 \cdot 5$	s.	I.
455	, $14 . . \quad .$.	-19.8	$237 \cdot 4$	$0 \cdot 1$	s.	I.
456	23-24	$+23.5$	$143 \cdot 6$	$2 \cdot 4$	s.	IV.
457	,, 23-24	$+15.5$	$135 \cdot 9$	4.4	s.	IV.
458	,, 23-24	$+19.0$	$120 \cdot 0$	$0 \cdot 2$	g.	I.
459	,, 23-31	$+15 \cdot 0$	$76 \cdot 3$	$2 \cdot 1$	s.	IV.
460	, 23	+22.0	$67 \cdot 9$	$0 \cdot 1$	8.	I.
461	,, 23-31	$+23 \cdot 4$	$36 \cdot 3$	$24 \cdot 7$	g.	V.
462	,, 23	-18.5	$174 \cdot 6$	$0 \cdot 2$	s.	I.
463	, 23-24	$-17 \cdot 2$	119.4	$0 \cdot 1$	s.	I.
464	,, 23-27	$-11 \cdot 7$	$108 \cdot 3$	$1 \cdot 3$	s.	IV.
465	, 23-31	$-20 \cdot 0$	$77 \cdot 9$	$18 \cdot 5$	g.	V
466	, $24 . . \quad$.. ..	$-20 \cdot 7$	$166 \cdot 0$	$0 \cdot 5$	p.s.	I.
467	,, 27	$+28 \cdot 5$	64.9	$0 \cdot 2$	s.	1.
468	31	$+10 \cdot 8$	$38 \cdot 8$	$1 \cdot 0$	g.	II.
469	,, $31 . . \quad .$.	+37.9	$353 \cdot 8$	$0 \cdot 2$	g .	I.
470	, $31 . . .$.	$+23 \cdot 3$	291.8	$0 \cdot 1$	s.	I.

[^0]: " Cosmic Immortality "-The Philosopher, 1924, Jan.March, II, 1.
 " Blind Chance-or God $?$ "-The Catholic World, 1724, May.

[^1]: * For the last 5 S years.

[^2]: * For the last 58. years. \dagger And in other years.

[^3]: \dagger And on other dates.

